

THVD1439, THVD1439V THVD1449, THVD1449V SLLSF79B – APRIL 2021 – REVISED SEPTEMBER 2021

THVD14x9x 3-V to 5.5-V RS-485 Transceivers With 4-kV Surge Protection and 1.8-V VIO Capability

1 Features

Texas

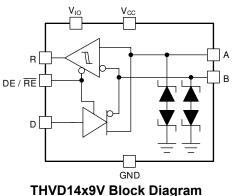
INSTRUMENTS

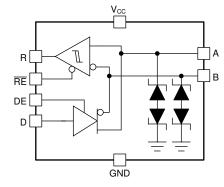
- Meets or exceeds the requirements of the TIA/ EIA-485A standard
- 3-V to 5.5-V Supply Voltage
- V_{IO} Support from 1.65-V to V_{CC} supply level (THVD1439V, THVD1449V)
- Bus I/O protection
 - ± 4-kV IEC 61000-4-5 1.2/50-µs surge
 - ± 15-kV IEC 61000-4-2 Contact discharge
 - ± 15-kV IEC 61000-4-2 Air-gap discharge
 - ± 4-kV IEC 61000-4-4 Electrical fast transient
 - ± 15-kV HBM ESD
 - ± 15-V DC bus fault
- · Available in two speed grades
 - THVD1439, THVD1439V: 250 kbps
 - THVD1449, THVD1449V: 12 Mbps
- Extended ambient temperature range: -40°C to 125°C
- Extended operational common-mode range: ± 12 V
- Large receiver hysteresis for noise rejection
- Low Power Consumption
 - Standby supply current: < 3 μA
 - Current during operation: < 5 mA
- Glitch-free power-up/down for hot plug-in capability
- Open, short, and idle bus failsafe
- 1/8 Unit load (up to 256 bus nodes)
- Industry standard 8-pin SOIC
 for drop-in compatibility

2 Applications

- Wireless infrastructure
- Factory automation
- Motor drives
- Building automation
- HVAC
- Grid infrastructure

3 Description


THVD14x9(V) devices are half-duplex RS-485 transceivers with integrated surge protection. Surge protection is achieved by integrating transient voltage suppressor (TVS) diodes in the standard 8-pin SOIC (D) package. This feature increases the reliability by providing better immunity to noise transients coupled to the data cable which eliminates the need for external protection components.


THVD1439 and THVD1449 operate from a single 3.3-V or 5-V supply. The THVD1439V and THVD1449V devices support an additional V_{IO} supply to operate the IOs from as low as 1.65 V supply level. The devices in this family feature a wide common-mode voltage range making them suitable for multipoint applications over long cable runs.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
THVD1439 THVD1439V THVD1449 THVD1449V	SOIC (8)	4.90 mm × 3.91 mm

(1) For all available devices, see the orderable addendum at the end of the data sheet.

THVD14x9 Block Diagram

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

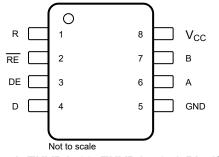
Table of Contents

1 Features	1
3 Description	
4 Revision History	
5 Pin Configuration and Functions	
6 Specifications	
6.1 Absolute Maximum Ratings	<mark>5</mark>
6.2 ESD Ratings	5
6.3 ESD Ratings, IEC	5
6.4 Recommended Operating Conditions	
6.5 Thermal Information	
6.6 Power Dissipation	6
6.7 Electrical Characteristics	7
6.8 Switching Characteristics (THVD1439,	
THVD1439V)	9
6.9 Switching Characteristics (THVD1449,	
THVD1449V)	9
6.10 Typical Characteristics	
7 Parameter Measurement Information	

8 Detailed Description	14
8.1 Overview	14
8.2 Functional Block Diagrams	14
8.3 Feature Description.	.14
8.4 Device Functional Modes	.18
9 Application and Implementation	19
9.1 Application Information	.19
9.2 Typical Application	
10 Power Supply Recommendations	.22
11 Layout	23
11.1 Layout Guidelines	23
11.2 Layout Example	
12 Device and Documentation Support	.25
12.1 Device Support	25
12.2 Receiving Notification of Documentation Updates.	25
12.3 Support Resources	25
12.4 Trademarks	25
12.5 Electrostatic Discharge Caution	25
12.6 Glossary	

4 Revision History

Changes from Revision A (June 2021) to Revision B (September 2021)		
•	Changed document status from Advanced Information to Production data	1


Device Comparison Table

PART NUMBER	DUPLEX	ENABLES	V _{IO}	SIGNALING RATE	NODES
THVD1439		Separate DE and \overline{RE}	No	up to 250 kbps	
THVD1439V	Half	Combined DE / RE	Yes	up to 250 kbps	256
THVD1449		Separate DE and \overline{RE}	No	up to 12 Mbpo	250
THVD1449V]	Combined DE / RE	Yes	up to 12 Mbps	

Copyright © 2021 Texas Instruments Incorporated

5 Pin Configuration and Functions

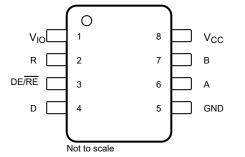


Figure 5-1. THVD1439, THVD1449, 8-Pin (SOIC), Top View

	PIN				
NAME	THVD1439, THVD1449	THVD1439 V, THVD1449V	١⁄٥	DESCRIPTION	
V _{IO}	-	1	Р	1.8-V to 5-V supply for R, D, and RE/DE	
R	1	2	0	Receiver data output	
RE	2	-	I	Receiver enable, active low (2 M Ω internal pull-up)	
DE	3	-	I	Driver enable, active high	
DE/ RE	-	3	I	Driver enable (Active high), Receiver enable (Active Low). (2 $M\Omega$ internal pull-down)	
D	4	4	I	Driver data input	
GND	5	5	-	Device ground	
A	6	6	I/O	Bus I/O port, A (complementary to B)	
В	7	7	I/O	Bus I/O port, B (complementary to A)	
V _{CC}	8	8	Р	3.3-V to 5-V supply for the device	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply voltage	V _{CC}	-0.5	7	V
Logic supply voltage	V _{IO}	-0.5	V _{CC} +0.2	V
Bus voltage	Range at any bus pin (A or B)	-15	15	V
Input voltage	Range at any logic pin (R, D, DE, or RE) THVD1439, THVD1449	-0.3	5.7	V
Input voltage	Range at any logic pin (R, D, DE, or RE) THVD1439V, THVD1449V	-0.3	V _{IO} +0.2	V
Receiver output current	Ι _Ο	-24	24	mA
Storage temperature	T _{stg}	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT	
		Human-body model (HBM), per ANSI/ESDA/	Bus terminals and GND	±15,000		Ĺ
V _(ESD)	Electrostatic discharge	JEDEC JS-001 ⁽¹⁾	All pins except bus terminals and GND	±4,000	v	
		Charged-device model (CDM), per JEDEC specific	cation JESD22-C102 ⁽²⁾	±1,500		Ĺ

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 ESD Ratings, IEC

				VALUE	UNIT
V _(ESD) Electrostatic dis	Electrostatic discharge	Contact Discharge, per IEC 61000-4-2	Bus terminals	±15,000	V
	Electrostatic discharge	Air-Gap Discharge, per IEC 61000-4-2	Dus terminais	±15,000	
V _(EFT)	Electrical fast transient	Per IEC 61000-4-4	Bus terminals	±4,000	V
V _(surge)	Surge	Per IEC 61000-4-5, 1.2/50 μs	Bus terminals	±4,000	V

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
V _{CC}	Supply voltage		3	5.5	V
V _{IO}	IO Supply Voltage (V Variant)		1.65	V _{CC}	V
VI	Input voltage on logic pins (R, D,	THVD1439, THVD1449	0	5.5	V
VI	DE, or RE)	THVD1439V, THVD1449V	0	V _{IO}	V
VI	Input voltage at bus pins (A or B) ⁽¹⁾		-12	12	V
V _{IH}	High-level input voltage (R, D, DE, or RE)	THVD1439V, THVD1449V	0.67 * V _{IO}	V _{IO}	V
V _{IL}	Low-level input voltage (R, D, DE, or RE)		0	0.33 * V _{IO}	V
V _{IH}	High-level input voltage (R, D, DE, or RE)	THVD1439, THVD1449	2	5.5	V
V _{IL}	Low-level input voltage (R, D, DE, or RE)	111001433, 111001443	0	0.8	V
V _{ID}	Differential input voltage	·	-12	12	V
I _O	Output current, driver		-60	60	mA
I _{OR}	Output current, receiver		-8	8	mA
RL	Differential load resistance		54		Ω
1/4	Siznaling rate	THVD1439, THVD1439V		250	kbps
1/t _{UI}	Signaling rate	THVD1449, THVD14149V		12	Mbps
T _A	Operating ambient temperature	•	-40	125	°C

(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

6.5 Thermal Information

		THVD1439 THVD1439V THVD1449 THVD1449V	
	THERMAL METRIC ⁽¹⁾	D (SOIC)	UNIT
		8 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	120.7	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	50.3	°C/W
R _{θJB}	Junction-to-board thermal resistance	62.8	°C/W
ΨJT	Junction-to-top characterization parameter	7.5	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	62.2	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.6 Power Dissipation

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		VALUE	UNIT	
	Priver and receiver enabled,	Unterminated	THVD1439	250 kbps	160	mW
		$R_L = 300 \Omega$, C $_L = 50 pF$ (driver)	THVD1449	12 Mbps	290	
		RS-422 load R_L = 100 Ω , C_L = 50 pF (driver)	THVD1439	250 kbps	190	mW
	50% duty cycle square wave at signaling rate		THVD1449	12 Mbps	290	11100
		RS-485 load	THVD1439	250 kbps	250	mW
		$R_L = 54 \Omega$, $C_L = 50 pF$ (driver)	THVD1449	12 Mbps	320	11100

6.7 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN TYP MAX		MAX	UNIT
Driver							
		R _L = 60 Ω, -12 \	/ ≤ V _{test} ≤ 12 V (See Figure 7-1)	1.5	2		V
V _{OD}	Driver differential output	R _L = 60 Ω, -12 \ 7-1)	/ \leq V _{test} \leq 12 V, 4.5 V \leq V _{CC} \leq 5.5 V (See Figure	2.1			V
	voltage magnitude	R _L = 100 Ω (See	e Figure 7-2)	2	2.5		V
		R_L = 54 Ω (See	Figure 7-2)	1.5	2		V
Δ V _{OD}	Change in differential output voltage	R _L = 54 Ω (See	Figure 7-2)	-50		50	mV
V _{oc}	Common-mode output voltage	R_L = 54 Ω (See	Figure 7-2)	1	V _{CC} / 2	3	V
ΔV _{OC(SS)}	Change in steady-state common-mode output voltage	$R_L = 54 \Omega$ (See	Figure 7-2)	-50		50	mV
I _{OS}	Short-circuit output current	DE = V _{CC} , -12 \	$I \le V_0 \le 12 V$	-250		250	mA
Receiver							
			V ₁ = 12 V		75	135	
I _I	Bus input current	DE = 0 V, V _{CC} = 0 V or 5.5 V	V ₁ = -7 V	-100	-40		μA
		- 0 0 01 0.0 0	V ₁ = -12 V	-135	-75		
V _{TH+}	Positive-going input threshold voltage ⁽¹⁾			40	125	200	mV
V _{TH-}	Negative-going input threshold voltage ⁽¹⁾	Over common-r	node range of ±12 V	-200	-125	-40	mV
V _{HYS}	Input hysteresis				250		mV
V _{TH_FSH}	Input fail-safe threshold			-40		40	mV
		THVD1439V,	I _{OH} = -4 mA; V _{IO} = 1.65 V - 3 V	V 04	V 0.2		
V _{OH}	Output high voltage	THVD1449V	I _{OH} = -8 mA; V _{IO} = 3 V - 5.5 V	V _{IO} – 0.4	V _{IO} - 0.2		v
• OH		THVD1439, THVD1449	I _{OH} = -8 mA	V _{CC} - 0.4	V _{CC} - 0.2		·
		THVD1439V,	I _{OL} = 8 mA; V _{IO} = 3 V - 5.5 V				
Vol	Output low voltage	THVD1449V	I _{OL} = 4 mA; V _{IO} = 1.65 V - 3 V		0.2	0.4	v
VOL	Caparion Volago	THVD1439, THVD1449	I _{OL} = 8 mA		0.2	0.1	·
l _{oz}	Output high-impedance current	$V_{O} = 0 V \text{ or } V_{CO}$, RE = V _{CC}	-1		1	μA
Logic	·						
I	Input current (D, DE, RE)	THVD1439V, THVD1449V	$ \begin{array}{ c c c } 3 \ V \leq V_{CC} \leq 5.5 \ V, \ 1.65 \leq V_{IO} \leq V_{CC} \ V, \ 0 \ V \leq V_{IN} \leq \\ V_{IO} \end{array} $	-5		5	μA
I _{IN}		THVD1439, THVD1449	$3 \text{ V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{ V}, 0 \text{ V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{CC}}$	-5		5	μA
Thermal P	Protection						
T _{SHDN}	Thermal shutdown threshold	Temperature ris	ing	150	170		°C
T _{HYS}	Thermal shutdown hysteresis				10		°C

6.7 Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

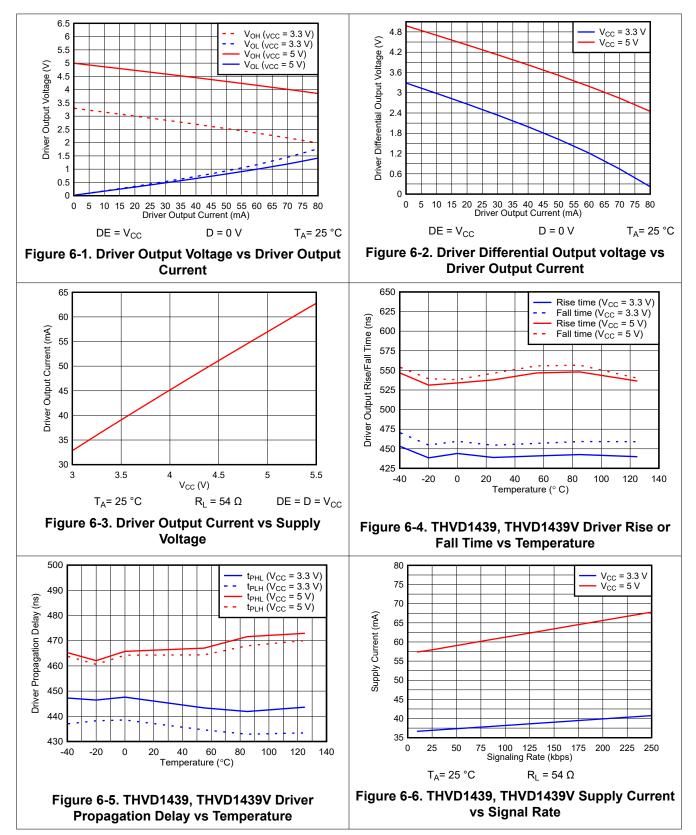
PARAMETER		ARAMETER TEST CONDITIONS			MIN	TYP	MAX	UNIT
Supply								
			Driver and receiver enabled (THVD1439, THVD1449)	$\overline{RE} = 0 \text{ V, DE} = V_{CC}, \text{ No}$ load		3	4	mA
	Cumply surrant (suissant)	V -2 6 V	Driver enabled, receiver disabled	$\overline{RE} = V_{CC}$, $DE = V_{CC}$, No load		2	3	mA
	Supply current (quiescent)	V _{CC} =3.6 V	Driver disabled, receiver enabled	RE = 0 V, DE = 0 V, No load		1.7	2.2	mA
			Driver and receiver disabled (THVD1439, THVD1449)	RE = V _{CC} , DE = 0 V, D = open, No load		0.1	1.5	μA
l _{cc}			Driver and receiver enabled (THVD1439, THVD1449)	$\overline{RE} = 0 \text{ V, DE} = V_{CC}, \text{ No}$ load		3.5	5	mA
	Cumply surrant (suissant)		Driver enabled, receiver disabled	$\overline{RE} = V_{CC}, DE = V_{CC},$ No load		2.5	3.8	mA
	Supply current (quiescent)	V _{CC} =5.5 V	Driver disabled, receiver enabled	RE = 0 V, DE = 0 V, No load		1.8	2.4	mA
			Driver and receiver disabled (THVD1439, THVD1449)	RE = V _{CC} , DE = 0 V, D = open, No load		0.2	3	μA
l	VIO supply surrent (quisseent)	THVD1439V,	Driver Enabled	DE/ RE =V _{IO} , D=open, No load			5	μA
l _{io}	VIO supply current (quiescent)	THVD1449V	Receiver enabled	DE/RE= 0 V, D=open, No load			5	μA

(1) Under any specific conditions, V_{TH+} is assured to be at least V_{HYS} higher than $V_{TH-}.$

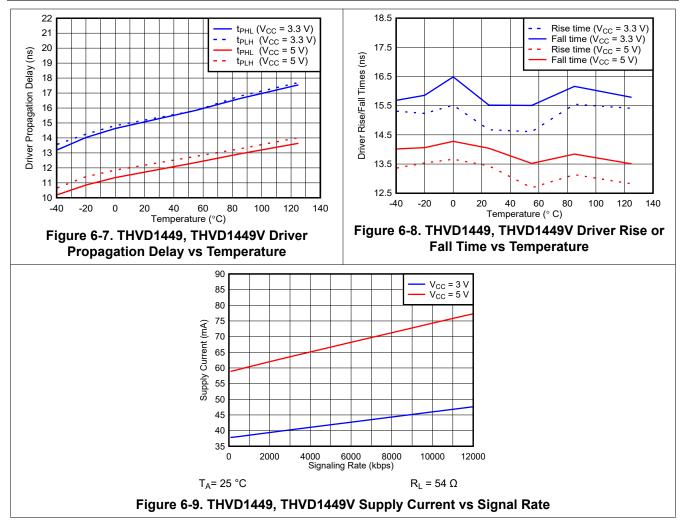
6.8 Switching Characteristics (THVD1439, THVD1439V)

250-kbps devices (THVD1439, 39V), over recommended operating conditions. All typical values are at 25 °C.

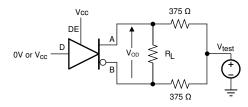
PARAMETER		TEST C	TEST CONDITIONS			MAX	UNIT
Driver							
t _r , t _f	Differential output rise/fall time			300	570	1200	ns
t _{PHL} , t _{PLH}	Propagation delay	R _L = 54 Ω, C _L = 50 pF	See Figure 7-3		450	650	ns
t _{SK(P)}	Pulse skew, t _{PHL} – t _{PLH}	-				50	ns
t _{PHZ} , t _{PLZ}	Disable time				25	125	ns
	Enable time	RE = 0 V	See Figure 7-4 and Figure 7-5		240	600	ns
t _{PZH} , t _{PZL}		RE = V _{CC}			2	4	μs
t _{SHDN}	Pulse width (logic low) on DE pin to initiate device shutdown	RE = V _{CC}			300		ns
Receiver							
t _r , t _f	Differential output rise/fall time				9	25	ns
t _{PHL} , t _{PLH}	Propagation delay	C _L = 15 pF	See Figure 7-6		70	110	ns
t _{SK(P)}	Pulse skew, t _{PHL} – t _{PLH}	-				7	ns
t _{PHZ} , t _{PLZ}	Disable time				22	60	ns
t _{PZH(1)} ,		DE = V _{CC}	See Figure 7-7		120	185	ns
t _{PZL(1)} , t _{PZH(2)} , t _{PZL(2)}	Enable time	DE = 0 V	See Figure 7-8		4	10	μs
t _{D(OFS)}	Delay to enter fail-safe operation	- C _L = 15 pF	See Figure 7-9	14	20	36	μs
t _{D(FSO)}	Delay to exit fail-safe operation			25	40	66	ns
t _{SHDN}	RE pulse width to initiate device shutdown	DE = 0 V			300		ns


6.9 Switching Characteristics (THVD1449, THVD1449V)

12-Mbps devices (THVD1449, 49V), over recommended operating conditions. All typical values are at 25 °C.


PARAMETER		TEST C	TEST CONDITIONS			MAX	UNIT
Driver							
t _r , t _f	Differential output rise/fall time			2	12	25	ns
t _{PHL} , t _{PLH}	Propagation delay	R _L = 54 Ω, C _L = 50 pF	See Figure 7-3	7	10	25	ns
t _{SK(P)}	Pulse skew, t _{PHL} – t _{PLH}					3.5	ns
t _{PHZ} , t _{PLZ}	Disable time				25	75	ns
	Enable time	RE = 0 V	See Figure 7-4 and Figure 7-5		18	65	ns
t _{PZH} , t _{PZL}	Enable time	$\overline{RE} = V_{CC}$			2	4	μs
t _{SHDN}	Pulse width (logic low) on DE pin to initiate device shutdown	RE = V _{CC}			300		ns
Receiver						I	
t _r , t _f	Differential output rise/fall time				3	10	ns
t _{PHL} , t _{PLH}	Propagation delay	C _L = 15 pF	See Figure 7-6	30	60	110	ns
t _{SK(P)}	Pulse skew, t _{PHL} – t _{PLH}					4	ns
t _{PHZ} , t _{PLZ}	Disable time				10	30	ns
t _{PZH(1)} ,		DE = V _{CC}	See Figure 7-7		90	130	ns
t _{PZL(1)} , t _{PZH(2)} , t _{PZL(2)}	Enable time	DE = 0 V	See Figure 7-8		4	10	μs
t _{D(OFS)}	Delay to enter fail-safe operation	$c_{1} = 15 \text{ pE}$	See Figure 7.0	14	20	36	μs
t _{D(FSO)}	Delay to exit fail-safe operation	C _L = 15 pF	See Figure 7-9	25	35	55	ns
t _{SHDN}	Pulse width (logic high) on \overline{RE} pin to initiate device shutdown	DE = 0 V			300		ns

6.10 Typical Characteristics



7 Parameter Measurement Information

Figure 7-1. Measurement of Driver Differential Output Voltage With Common-Mode Load

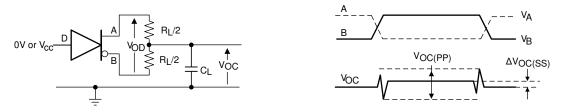
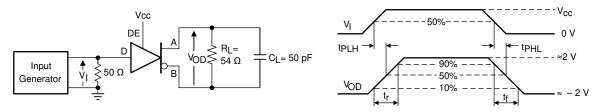
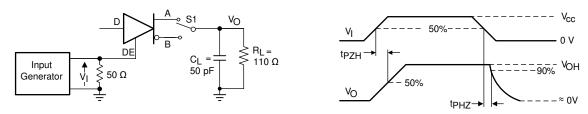




Figure 7-2. Measurement of Driver Differential and Common-Mode Output With RS-485 Load

Figure 7-3. Measurement of Driver Differential Output Rise and Fall Times and Propagation Delays

Figure 7-4. Measurement of Driver Enable and Disable Times With Active High Output and Pull-Down Load

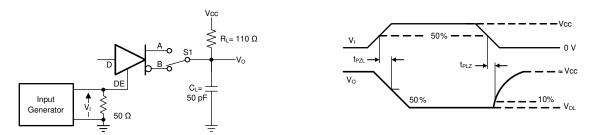
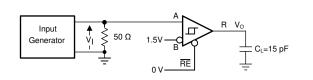



Figure 7-5. Measurement of Driver Enable and Disable Times With Active Low Output and Pull-up Load

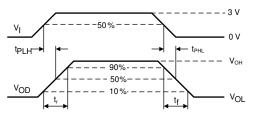


Figure 7-6. Measurement of Receiver Output Rise and Fall Times and Propagation Delays



Figure 7-7. Measurement of Receiver Enable/Disable Times With Driver Enabled

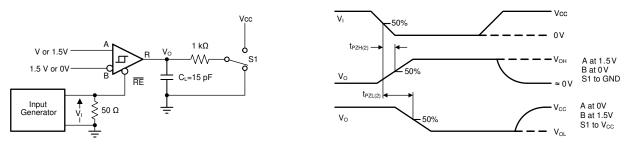
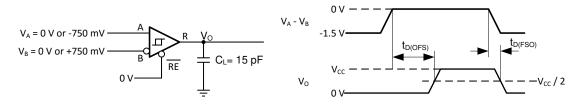



Figure 7-8. Measurement of Receiver Enable Times With Driver Disabled

Copyright © 2017, Texas Instruments Incorporated

Figure 7-9. Fail-Safe Delay Measurements

8 Detailed Description

8.1 Overview

THVD14x9(V) devices are surge-protected, half duplex RS-485 transceivers available in two speed grades suitable for data transmission up to 250 kbps and 12 Mbps respectively. Surge protection is achieved by integrating transient voltage suppressor (TVS) diodes in the standard 8-pin SOIC (D) package.

THVD1439 and THVD1449 devices have active-high driver enables and active-low receiver enables. A standby current of less than 1.5 μ A (V_{CC} = 3.6 V) can be achieved by disabling both driver and receiver. THVD1439V and THVD1449V have a single enable/disable pin that either enables the driver or the receiver at a time.

8.2 Functional Block Diagrams

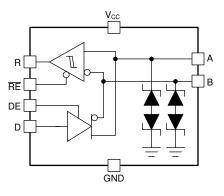


Figure 8-1. THVD1439 and THVD1449 Block Diagram

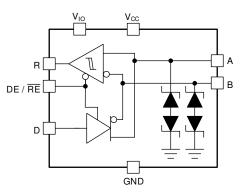


Figure 8-2. THVD1439V and THVD1449V Block Diagram

8.3 Feature Description

8.3.1 Electrostatic Discharge (ESD) Protection

The bus pins of the THVD14x9(V) transceiver family include on-chip ESD protection against ±15-kV HBM and ±15-kV IEC 61000-4-2 contact discharge. The International Electrotechnical Commission (IEC) ESD test is far more severe than the HBM ESD test. The 50% higher charge capacitance, $C_{(S)}$, and 78% lower discharge resistance, $R_{(D)}$, of the IEC model produce significantly higher discharge currents than the HBM model. As stated in the IEC 61000-4-2 standard, contact discharge is the preferred transient protection test method.

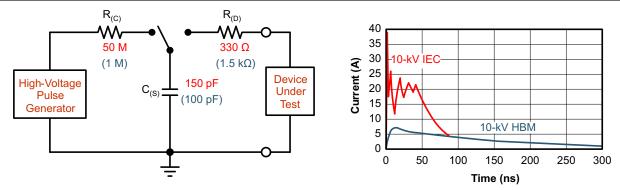


Figure 8-3. HBM and IEC ESD Models and Currents in Comparison (HBM Values in Parenthesis)

The on-chip implementation of IEC ESD protection significantly increases the robustness of equipment. Common discharge events occur because of human contact with connectors and cables.

8.3.2 Electrical Fast Transient (EFT) Protection

Inductive loads such as relays, switch contactors, or heavy-duty motors can create high-frequency bursts during transition. The IEC 61000-4-4 test is intended to simulate the transients created by such switching of inductive loads on AC power lines. Figure 8-4 shows the voltage waveforms in to $50-\Omega$ termination as defined by the IEC standard.

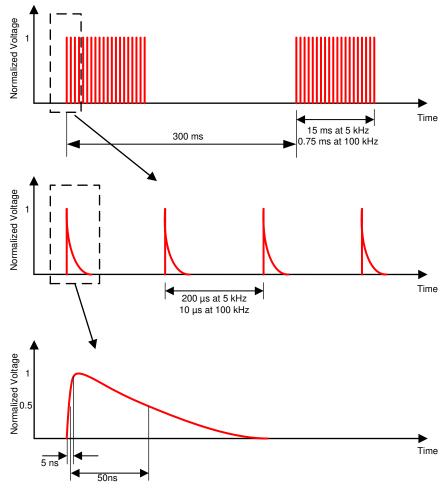


Figure 8-4. EFT Voltage Waveforms

Internal ESD protection circuits of the THVD14x9(V) protect the transceivers against \pm 4-kV EFT. With careful system design, one could achieve EFT Criterion A (no data loss when transient noise is present).

8.3.3 Surge Protection

Surge transients often result from lightning strikes (direct strike or an indirect strike which induce voltages and currents), or the switching of power systems, including load changes and short circuit switching. These transients are often encountered in industrial environments, such as factory automation and power-grid systems.

Figure 8-5 compares the pulse-power of the EFT and surge transients with the power caused by an IEC ESD transient. The diagram on the left shows the relative pulse-power for a 0.5-kV surge transient and 4-kV EFT transient, both of which dwarf the 10-kV ESD transient visible in the lower-left corner. 500-V surge transients are representative of events that may occur in factory environments in industrial and process automation.

The diagram on the right shows the pulse-power of a 6-kV surge transient, relative to the same 0.5-kV surge transient. 6-kV surge transients are most likely to occur in power generation and power-grid systems.

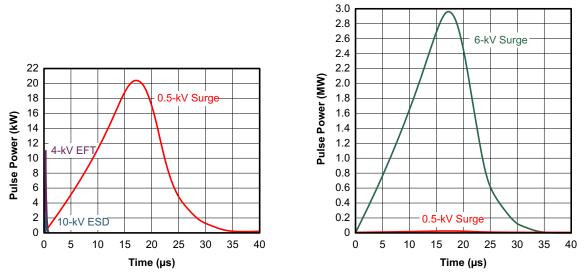
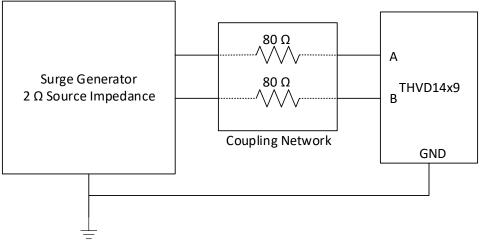
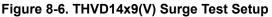




Figure 8-5. Power Comparison of ESD, EFT, and Surge Transients

Figure 8-6 shows the test setup used to validate THVD14x9 surge performance according to the IEC 61000-4-5 1.2/50-µs surge pulse.

THVD14x9(V) product family is robust to \pm 4-kV surge transients without the need for any external components. The transient current and voltage waveforms resulting from a +4-kV surge test as described in Figure 8-6 are shown in Figure 8-7. The bus pin voltage is clamped by the integrated surge protection diodes such that the internal circuitry is not damaged during the surge event. The clamping voltage at the bus pins for versus the total current from the surge generator is shown in Figure 8-8.

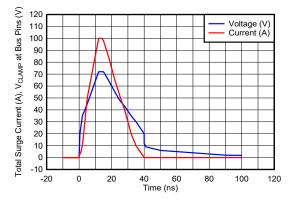


Figure 8-7. Transient current and voltage waveforms from +4-kV Surge Test. The current waveform is the total current output from the generator and the voltage waveform is the voltage at A or B pin of the transceiver.

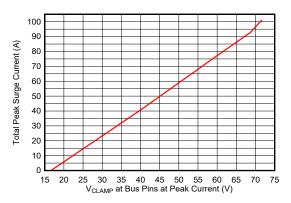


Figure 8-8. Clamping voltage at bus pins vs total surge current from the surge generator

8.3.4 Enhanced Receiver Noise Immunity

The differential receivers of THVD14x9(V) family feature fully symmetric thresholds to maintain duty cycle of the signal even with small input amplitudes. In addition, 250 mV (typical) hysteresis guarantees excellent noise immunity.

8.3.5 Failsafe Receiver

The differential receivers of the THVD14x9(V) family are failsafe to invalid bus states caused by the following:

- · Open bus conditions, such as a disconnected connector
- Shorted bus conditions, such as cable damage shorting the twisted-pair together
- · Idle bus conditions that occur when no driver on the bus is actively driving

In any of these cases, the receiver will output a fail-safe logic high state if the input amplitude stays for longer than $t_{D(OFS)}$ at less than $|V_{TH \ FSH}|$.

8.4 Device Functional Modes

When the driver enable pin, DE, is logic high, the differential outputs A and B follow the logic states at data input D. A logic high at D causes A to turn high and B to turn low. In this case the differential output voltage defined as $V_{OD} = V_A - V_B$ is positive. When D is low, the output states reverse: B turns high, A becomes low, and V_{OD} is negative.

When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin has an internal pull-down resistor to ground, thus when left open the driver is disabled (high-impedance) by default. The D pin has an internal pull-up resistor to V_{CC} , thus, when left open while the driver is enabled, output A turns high and B turns low.

INPUT	ENABLE	OUTI	PUTS	FUNCTION
D	DE	Α	В	FUNCTION
н	Н	Н	L	Actively drive bus high
L	Н	L	Н	Actively drive bus low
Х	L	Z	Z	Driver disabled
Х	OPEN	Z	Z	Driver disabled by default
OPEN	Н	Н	L	Actively drive bus high by default

Table 8-1. Driver Function Table

When the receiver enable pin, \overline{RE} , is logic low, the receiver is enabled. When the differential input voltage defined as $V_{ID} = V_A - V_B$ is higher than the positive input threshold, V_{TH+} , the receiver output, R, turns high. When V_{ID} is lower than the negative input threshold, V_{TH-} , the receiver output, R, turns low. If V_{ID} is between V_{TH+} and V_{TH-} the output is indeterminate.

When \overline{RE} is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of V_{ID} are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or the bus is not actively driven (idle bus).

DIFFERENTIAL INPUT	ENABLE	OUTPUT	FUNCTION							
$V_{ID} = V_A - V_B$	RE	R	FUNCTION							
V _{TH+} < V _{ID}	L	Н	Receive valid bus high							
$V_{TH-} < V_{ID} < V_{TH+}$	L	Indeterminate	Indeterminate bus state							
V _{ID} < V _{TH-}	L	L	Receive valid bus low							
X	Н	Z	Receiver disabled							
X	OPEN	Z	Receiver disabled by default							
Open-circuit bus	L	Н	Fail-safe high output							
Short-circuit bus	L	Н	Fail-safe high output							
Idle (terminated) bus	L	Н	Fail-safe high output							

Table 8-2. Receiver Function Table

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

THVD14x9(V) are half-duplex RS-485 transceivers with integrated system-level surge protection. Standard 8-pin SOIC (D) package allows drop-in replacement into existing systems and eliminate system-level protection components.

9.2 Typical Application

An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. To eliminate line reflections, each cable end is terminated with a termination resistor, R_T , with a value that matches the characteristic impedance, Z_0 , of the cable. This method, known as parallel termination, allows for higher data rates over longer cable length.

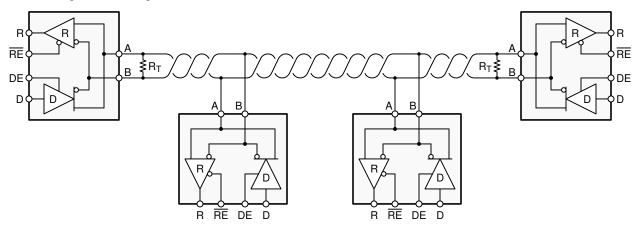


Figure 9-1. Typical RS-485 Network With Half-Duplex Transceivers

9.2.1 Design Requirements

RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of applications with varying requirements, such as distance, data rate, and number of nodes.

9.2.1.1 Data Rate and Bus Length

There is an inverse relationship between data rate and cable length, which means the higher the data rate, the short the cable length; and conversely, the lower the data rate, the longer the cable length. While most RS-485 systems use data rates between 10 kbps and 100 kbps, some applications require data rates up to 250 kbps at distances of 4000 feet and longer. Longer distances are possible by allowing for small signal jitter of up to 5 or 10%.

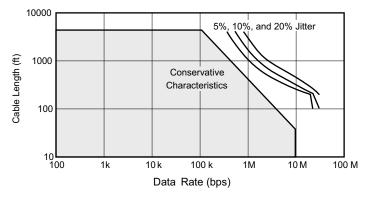


Figure 9-2. Cable Length vs Data Rate Characteristic

Even higher data rates are achievable (that is, 12 Mbps for the THVD1449(V)) in cases where the interconnect is short enough (or has suitably low attenuation at signal frequencies) to not degrade the data.

9.2.1.2 Stub Length

When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as the stub, should be as short as possible. Stubs present a non-terminated piece of bus line which can introduce reflections as the length of the stub increases. As a general guideline, the electrical length, or round-trip delay, of a stub should be less than one-tenth of the rise time of the driver, thus giving a maximum physical stub length as shown in Equation 1.

$$L_{(STUB)} \le 0.1 \times t_r \times v \times c$$

(1)

where

- t_r is the 10/90 rise time of the driver
- *c* is the speed of light $(3 \times 10^8 \text{ m/s})$
- v is the signal velocity of the cable or trace as a factor of c

9.2.1.3 Bus Loading

The RS-485 standard specifies that a compliant driver must be able to driver 32 unit loads (UL), where 1 unit load represents a load impedance of approximately 12 k Ω . Because the THVD14x9(V) devices consist of 1/8 UL transceivers, connecting up to 256 receivers to the bus is possible.

9.2.2 Detailed Design Procedure

RS-485 transceivers operate in noisy industrial environments typically require surge protection at the bus pins. Figure 9-3 compares 4-kV surge protection implementation with a regular RS-485 transceiver (such as THVD14x0) against with the THVD14x9(V). The internal TVS protection of the THVD14x9(V) achieves ±4-kV IEC 61000-4-5 surge protection without any additional external components, reducing system level bill of materials.

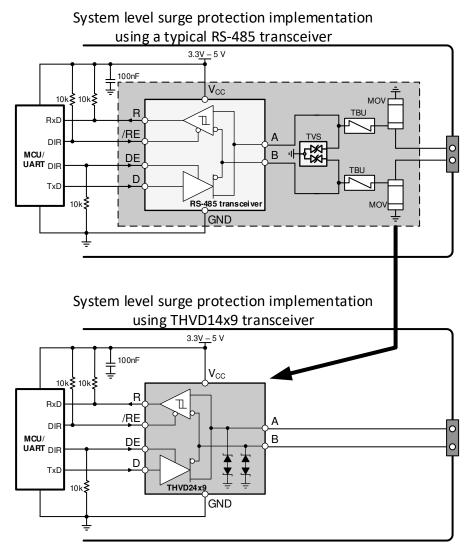
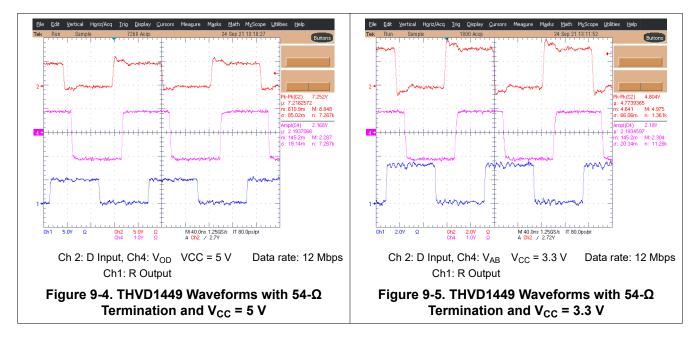



Figure 9-3. Implementation of System-Level Surge Protection Using THVD14x9(V)

9.2.3 Application Curves

10 Power Supply Recommendations

To ensure reliable operation at all data rates and supply voltages, each supply should be decoupled with a 100 nF ceramic capacitor located as close to the supply pins as possible. This helps to reduce supply voltage ripple present on the outputs of switched-mode power supplies and also helps to compensate for the resistance and inductance of the PCB power planes.

11 Layout

11.1 Layout Guidelines

Additional external protection components generally are not needed when using THVD14x9(V) transceivers.

- Use V_{CC} and ground planes to provide low-inductance. Note that high-frequency currents tend to follow the path of least impedance and not the path of least resistance. Apply 100-nF to 220-nF decoupling capacitors as close as possible to the V_{CC} pins of transceiver, UART and/or controller ICs on the board.
- 2. Use at least two vias for V_{CC} and ground connections of decoupling capacitors to minimize effective via inductance.
- 3. Use $1-k\Omega$ to $10-k\Omega$ pull-up and pull-down resistors for enable lines to limit noise currents in these lines during transient events.

11.2 Layout Example

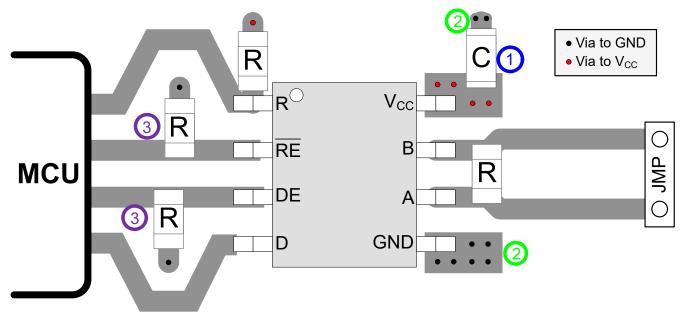


Figure 11-1. THVD1439, THVD1449 Layout Example

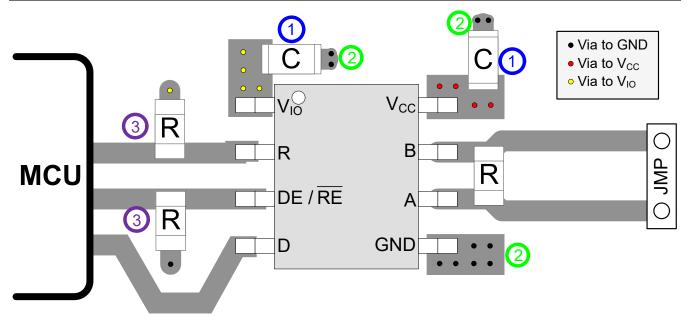


Figure 11-2. THVD1439V THVD1449V Layout Example

12 Device and Documentation Support

12.1 Device Support

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
THVD1439DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	-40 to 125	T1439
THVD1439DR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	-40 to 125	T1439
THVD1439DR.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	-	Call TI	Call TI	-40 to 125	
THVD1439VDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	-40 to 125	1439V
THVD1439VDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	-40 to 125	1439V
THVD1439VDR.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	-	Call TI	Call TI	-40 to 125	
THVD1449DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	-40 to 125	T1449
THVD1449DR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	-40 to 125	T1449
THVD1449DR.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	-	Call TI	Call TI	-40 to 125	
THVD1449VDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	-40 to 125	T1449V
THVD1449VDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	-40 to 125	T1449V
THVD1449VDR.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	-	Call TI	Call TI	-40 to 125	

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

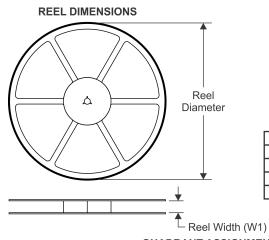
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

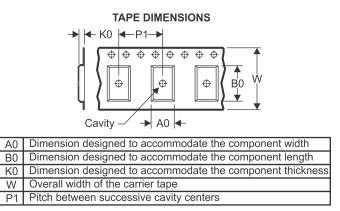
www.ti.com

PACKAGE OPTION ADDENDUM

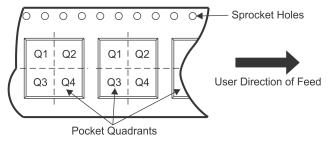
18-Jul-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

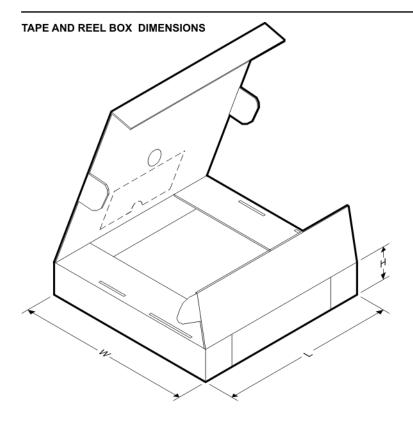

PACKAGE MATERIALS INFORMATION

Texas **NSTRUMENTS**


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
THVD1439DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THVD1439VDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THVD1449DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THVD1449VDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

4-Apr-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
THVD1439DR	SOIC	D	8	2500	346.0	346.0	29.0
THVD1439VDR	SOIC	D	8	2500	346.0	346.0	29.0
THVD1449DR	SOIC	D	8	2500	346.0	346.0	29.0
THVD1449VDR	SOIC	D	8	2500	346.0	346.0	29.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated