TCA9509 Level-Translating I²C and SMBUS Bus Repeater #### 1 Features - Two-channel bidirectional buffer - I²C bus and SMBus compatible - Operating supply voltage range of 2.7V to 5.5V on - Operating voltage range of 0.9V to 5.5V on A side - Voltage-level translation from 0.9V to 5.5V and 2.7V to 5.5V - Active-high repeater-enable input - Requires no external pullup resistors on lowervoltage port-A - Open-drain I²C I/O - 5.5-V Tolerant I²C and enable input support mixedmode signal operation - Lockup-free operation - Accommodates standard mode and fast mode I²C devices and multiple controllers - Supports arbitration and clock stretching across Repeater - Powered-off high-impedance I²C bus pins - Supports 400-kHz fast I²C bus operating speeds - Available in - 1.6mm × 1.6mm, 0.4mm height, 0.5mm pitch QFN package - 3mm × 3mm Industry standard MSOP package - Latch-up performance exceeds 100mA Per JESD 78, class II - ESD protection exceeds JESD 22 - 2000V Human-body model (A114-A) - 1000V Charged-device model (C101) ## 2 Applications - Servers - Routers (Telecom Switching Equipment) - **Industrial Equipment** - Products with many I²C targets and or long PCB #### **Device Information** | PART NUMBER | PACKAGE (1) | BODY SIZE (NOM) | |-------------|-------------|-----------------| | TCA9509 | VSSOP (8) | 3.00mm × 3.00mm | | | X2QFN (8) | 1.60mm × 1.60mm | For all available packages, see the orderable addendum at the end of the data sheet. Simplified Schematic ## 3 Description This TCA9509 integrated circuit is an I²C bus/SMBus Repeater for use in I²C/SMBus systems. It can also provide bidirectional voltage-level translation (up-translation/down-translation) between low voltages (down to 0.9V) and higher voltages (2.7V to 5.5V) in mixed-mode applications. This device enables I²C and similar bus systems to be extended, without degradation of performance even during level shifting. The TCA9509 buffers both the serial data (SDA) and the serial clock (SCL) signals on the I²C bus, thus allowing 400pF bus capacitance on the B-side. This device can also be used to isolate two halves of a bus for voltage and capacitance. The TCA9509 has two types of drivers – A-side drivers and B-side drivers. All inputs and B-side I/Os are overvoltage tolerant to 5.5V. The A-side I/Os are overvoltage tolerant to 5.5V when the device is unpowered (VCCB and/or VCCA = 0 V). The bus port B drivers are compliant with SMBus I/O levels, while the A-side uses a current sensing mechanism to detect the input or output LOW signal which prevents bus lock-up. The A-side uses a 1 mA current source for pull-up and a 200Ω pull-down driver. This results in a LOW on the A-side accommodating smaller voltage swings. The output pull-down on the A-side internal buffer LOW is set for approximately 0.2V, while the input threshold of the internal buffer is set about 50mV lower than that of the output voltage LOW. When the A-side I/O is driven LOW internally, the LOW is not recognized as a LOW by the input. This prevents a lock-up condition from occurring. The output pull-down on the B-side drives a hard LOW and the input level is set at 0.3 of SMBus or I²C-bus voltage level which enables B side to connect to any other I²C-bus devices or buffer. The TCA9509 drivers are not enabled unless V_{CCA} is above 0.8V and V_{CCB} is above 2.5V. The enable (EN) pin can also be used to turn the drivers on and off under system control. Caution should be observed to only change the state of the EN pin when the bus is idle. ## **Table of Contents** | 1 Features | 1 | 8 Application and Implementation | 1 | |--|----------------|---|------| | 2 Applications | | 8.1 Application Information | 11 | | 3 Description | | 8.2 Typical Application | | | 4 Pin Configuration and Functions | 4 | 9 Power Supply Recommendations | | | 5 Specifications | 5 | 10 Layout | | | 5.1 Absolute Maximum Ratings | 5 | 10.1 Layout Guidelines | | | 5.2 ESD Ratings | | 10.2 Layout Example | | | 5.3 Recommended Operating Conditions | 5 | 11 Device and Documentation Support | 16 | | 5.4 Thermal Information | 6 | 11.1 Receiving Notification of Documentation Updates. | 16 | | 5.5 Electrical Characteristics | <mark>6</mark> | 11.2 Support Resources | . 16 | | 5.6 Timing Requirements | 7 | 11.3 Trademarks | 16 | | 5.7 I ² C Interface Timing Requirements | 7 | 11.4 Electrostatic Discharge Caution | 16 | | 6 Parameter Measurement Information | 8 | 11.5 Glossary | 16 | | 7 Detailed Description | 9 | 12 Revision History | 17 | | 7.1 Overview | 9 | 13 Mechanical, Packaging, and Orderable | | | 7.2 Functional Block Diagram | 9 | Information | 17 | | 7.3 Feature Description | 10 | 13.1 Tape and Reel Information | 18 | | 7.4 Device Functional Modes | 10 | | | ## **4 Pin Configuration and Functions** Figure 4-2. DGK Package, 8-Pin VSSOP, Top View Figure 4-1. RVH Package, 8-Pin X2QFN, Top View **Table 4-1. Pin Functions** | PIN | | 1/0 | DESCRIPTION | | | | | |-----------------------|-----|--------|--|--|--|--|--| | NAME | NO. | 1/0 | DESCRIPTION | | | | | | V _{CCA} | 1 | Supply | A-side supply voltage (0.9 V to 5.5 V) | | | | | | SCLA | 2 | I/O | Serial clock bus, A side. | | | | | | SDAA | 3 | I/O | Serial data bus, A side. | | | | | | GND | 4 | Supply | Supply ground | | | | | | EN | 5 | Input | Active-high repeater enable input | | | | | | SDAB | 6 | I/O | Serial data bus, B side. Connect to V _{CCB} through a pull-up resistor. | | | | | | SCLB | 7 | I/O | Serial clock bus, B side. Connect to V _{CCB} through a pull-up resistor. | | | | | | V _{CCB} | 8 | Supply | B-side and device supply voltage (2.7 V to 5.5 V) | | | | | | Thermal
Attach Pad | - | - | Thermal Attach Pad is not electrically connected and it is recommended to be attached to GND for best thermal performance. This is for the RVH package only. | | | | | ## 5 Specifications ## 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |------------------|---|--------------------|------|-----|------| | V _{CCB} | Supply voltage | | -0.5 | 6 | V | | V _{CCA} | Supply voltage | | -0.5 | 6 | V | | VI | Enable input voltage ⁽²⁾ | | -0.5 | 6 | V | | V _{I/O} | I ² C bus voltage ⁽²⁾ | | -0.5 | 6 | V | | I _{IK} | Input clamp current | V ₁ < 0 | | -20 | A | | I _{OK} | Output clamp current | V _O < 0 | | -20 | - mA | | P_d | Max power dissipation | | | 100 | mW | | TJ | Junction temperature | | | 125 | °C | | T _{stg} | Storage temperature | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## 5.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|---------------|--|-------|------| | V | Electrostatic | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±2000 | V | | V _(ESD) | discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ | ±1000 | | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ## **5.3 Recommended Operating Conditions** | | | | MIN | MAX | UNIT | |------------------|--------------------------------|------------|------------------------|------------------------|------| | V _{CCA} | Supply voltage, A-side bus | | 0.9 ⁽¹⁾ | 5.5 | V | | V _{CCB} | Supply voltage, B-side bus | | 2.7 | 5.5 | V | | | High-level input voltage | SDAA, SCLA | 0.7 × V _{CCA} | V _{CCA} | | | V _{IH} | | SDAB, SCLB | 0.7 × V _{CCB} | 5.5 | V | | | | EN | 0.7 × V _{CCA} | 5.5 | | | | Low-level input voltage | SDAA, SCLA | -0.5 | 0.3 | | | V _{IL} | | SDAB, SCLB | -0.5 | 0.3 × V _{CCB} | V | | | | EN | -0.5 | 0.3 × V _{CCA} | | | | Low level output ourrent | SDAA, SCLA | | 10 | μA | | I _{OL} | Low-level output current | SDAB, SCLB | | 6 | mA | | T _A | Operating free-air temperature | | -40 | 85 | °C | (1) Low-level supply voltage ⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. #### **5.4 Thermal Information** | | | TCA | | | |-----------------------|---|-------------|-------------|------| | | THERMAL METRIC(1) | RVH (X2QFN) | DGK (VSSOP) | UNIT | | | | 8 PINS | 8 PINS | | | R _{0JA} | Junction-to-ambient thermal resistance ⁽²⁾ | 160.3 | 222.9 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 66.4 | 109.5 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 115.9 | 144.5 | °C/W | | ΨЈТ | Junction-to-top characterization parameter | 0.8 | 34.5 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 116.2 | 142.7 | °C/W | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | 80.5 | n/a | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. #### **5.5 Electrical Characteristics** $V_{CCB} = 2.7 \text{ V}$ to 5.5 V, $V_{CCA} = 0.9 \text{ V}$ to $(V_{CCB}-1)$, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted) | | PARAMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------------------|--|------------|---|------|------|------|------| | V _{IK} | Input clamp voltage | | I _I = -18 mA | -1.5 | | -0.5 | V | | Vo. | , | SDAA, SCLA | $I_{OL} = 10 \mu A,$ $V_{ILA} = V_{ILB} = 0 V,$ $V_{CCA} = 0.9 \text{ to } 1.2 \text{ V}$ | | 0.18 | 0.25 | V | | V _{OL} | Low-level output voltage | SDAA, SCLA | $I_{OL} = 20 \mu A,$ $V_{ILA} = V_{ILB} = 0 V,$ $1.2V < V_{CCA} \le (V_{CCB} - 1 V)$ | | 0.2 | 0.3 | V | | V _{OL} – V _{ILc} | Low-level input voltage below low-level output voltage | SDAA, SCLA | | | 50 | | mV | | V | SDA and SCL low-level input | SDAA, SCLA | V _{CCA} ≥ 1.5 V and V _{CCB} ≥ 3.15 V | 110 | 150 | | mV | | V _{ILc} | voltage contention | SDAA, SCLA | V _{CCA} < 1.5 V or V _{CCB} < 3.15 V | 50 | 100 | | | | V _{OLB} | Low-level output voltage | SDAB, SCLB | I _{OL} = 6 mA | - | 0.1 | 0.2 | V | | | Quiescent supply current for V _{CCA} | | All port A Static high | 0.25 | 0.45 | 0.9 | mA | | I _{CC} | | | All port A Static low | 1.25 | | | MA | | I _{CC} | Quiescent supply current for V _C | ССВ | All port B Static high | 0.2 | 0.5 | 1.1 | mA | | | | SDAB, SCLB | V _I = V _{CCB} | - | | ±1 | | | | | | V _I = 0.2 V | - | | 10 | | | | Input leakage current | | V _I = V _{CCA} | - | | ±1 | | | l _l | input leakage current | SDAA, SCLA | V _I = 0.2 V | | | 10 | μA | | | | EN | V _I = V _{CCB} | | | ±1 | | | | | EIN | V _I = 0.2 V | | | -10 | | | 1 | High-level output leakage | SDAB, SCLB | V _O = 3.6 V | | | 10 | μA | | I _{OH} | current | SDAA, SCLA | V ₀ - 3.0 V | - | | 10 | μΑ | | C _{IOA} | I/O capacitance of A-side | SCLA, SDAA | V _I = 0 V | - | 6.5 | 7 | pF | | C _{IOB} | I/O capacitance of B-side | SCLB, SDAB | V _I = 0 V | 5.5 | | 6.2 | pF | ⁽²⁾ The package thermal impedance is calculated in accordance with JESD 51-7. ## 5.6 Timing Requirements over recommended operating free-air temperature range (unless otherwise noted) | | | MIN | MAX | UNIT | |-----------------|---|-----|-----|------| | t _{su} | Setup time, EN high before Start condition ⁽¹⁾ | 100 | | ns | | t _h | Hold time, EN high after Stop condition ⁽¹⁾ | 100 | | ns | (1) EN should change state only when the global bus and the repeater port are in an idle state. ## 5.7 I²C Interface Timing Requirements $T_A = -40$ °C to 85°C (unless otherwise noted) Copyright © 2024 Texas Instruments Incorporated | | PARAMETE | ER . | V _{CCA}
(INPUT) | V _{CCB}
(OUTPUT) | TEST CONDITIONS | MIN | TYP ⁽¹⁾ | MAX | UNIT | |-------------------|--|------------------|-----------------------------|------------------------------|-----------------|-------|--------------------|-------|------| | t _{PHL} | Propagation delay | port A to port B | 1.9 V | 5 V | EN High | 123.1 | 127.2 | 132.8 | ns | | | | port B to port A | 1.9 V | 5 V | EN HIGH | 88.1 | 88.8 | 89.8 | | | t _{PLH} | Dropogation dolay | port A to port B | 1.9 V | 5 V | EN High | 122.6 | 125.7 | 131.7 | | | Piop | Propagation delay | port B to port A | 1.9 V | 5 V | EN FIIGH | 123 | 124.1 | 126.9 | ns | | t _{rise} | Transition time | port A | 1.9 V | 5 V | EN High | 40.1 | 40.9 | 41.9 | | | | | port B | | | | 57.3 | 57.5 | 58.4 | ns | | | Transition time | port A | 1.9 V | 1.9 V 5 V | EN High | 14.5 | 16.4 | 17.9 | | | t _{fall} | | port B | 1.9 V | 5 V | EN High | 18.7 | 19.4 | 20.2 | ns | | t _{PLH2} | Propagation delay
50% of initial low on
Port A to 1.5 V on
Port B | port A to port B | 1.9 V | 5 V | | 176 | 177.3 | 178 | ns | | f _{MAX} | Maximum switching frequency | | | | | 400 | | | KHz | Figure 5-1. Bus A (0.9-V to 5.5-V Bus) Waveform Figure 5-2. Bus B (2.7-V to 5.5-V Bus) Waveform ## **6 Parameter Measurement Information** - A. R_T termination resistance should be equal to Z_{OUT} of pulse generators. - B. C_L includes probe and jig capacitance. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns. - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLH} and t_{PHL} are the same as t_{pd}. Figure 6-1. Test Circuit and Voltage Waveforms ## 7 Detailed Description #### 7.1 Overview This TCA9509 integrated circuit is an I²C bus/SMBus Repeater for use in I²C/SMBus systems. It can also provide bidirectional voltage-level translation (up-translation/down-translation) between low voltages (down to 0.9 V) and higher voltages (2.7 V to 5.5 V) in mixed-mode applications. This device enables I²C and similar bus systems to be extended, without degradation of performance even during level shifting. The TCA9509 buffers both the serial data (SDA) and the serial clock (SCL) signals on the I^2 C bus, thus allowing 400-pF bus capacitance on the B-side. This device can also be used to isolate two halves of a bus for voltage and capacitance. The TCA9509 has two types of drivers – A-side drivers and B-side drivers. All inputs and B-side I/O's are overvoltage tolerant to 5.5V. The A-side I/O's are overvoltage tolerant to 5.5 V when the device is unpowered ($V_{\rm CCB}$ and/or $V_{\rm CCA}$ = 0V). ## 7.2 Functional Block Diagram Copyright © 2017, Texas Instruments Incorporated #### 7.3 Feature Description #### 7.3.1 Two-Channel Bidirectional Buffer The TCA9509 is a two-channel bidirectional buffer with level-shifting capabilities, featuring an integrated current source on the A-side. #### 7.3.2 Integrated A-Side Current Source The A-side ports of the TCA9509 feature an integrated 1 mA current source, eliminating the need for external pull-up resistors on SDAA and SCLA. #### 7.3.3 Standard Mode and Fast Mode Support The TCA9509 supports standard mode as well as fast mode I²C. The maximum system operating frequency will depend on system design and delays added by the repeater. #### 7.4 Device Functional Modes Table 7-1 lists the functional modes for the TCA9509. Table 7-1. Function Table | INPUT
EN | FUNCTION | | | | | | |-------------|----------------------------|--|--|--|--|--| | L | Outputs disabled | | | | | | | Н | SDAA = SDAB
SCLA = SCLB | | | | | | ## 8 Application and Implementation #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. #### 8.1 Application Information The TCA9509 is 5-V tolerant, so it does not require any additional circuitry to translate between 0.9-V to 5.5-V bus voltages and 2.7-V to 5.5-V bus voltages. When the B-side of the TCA9509 is pulled low by a driver on the I^2C bus and the falling edge goes below 0.3 V_{CCB} , it causes the internal driver on the A-side to turn on, causing the A-side to pull down to about 0.2 V_{CCB} . When the A-side of the TCA9509 falls, a comparator detects the falling edge and causes the internal driver on the B-side to turn on and pull the B-side pin down to ground. In order to illustrate what would be seen in a typical application, refer to Figure 5-1. If the bus controller in Figure 8-1 were to write to the target through the TCA9509, waveforms shown in Figure 5-2 would be observed on the B bus. This looks like a normal I^2C bus transmission, except that the high level may be as low as 0.9 V, and the turn on and turn off of the acknowledge signals are slightly delayed. On the A-side bus of the TCA9509, the clock and data lines would have a positive offset from ground equal to the V_{OL} of the TCA9509. After the eighth clock pulse, the data line is pulled to the V_{OL} of the controller device, which is close to ground in this example. At the end of the acknowledge, the level rises only to the low level set by the driver in the TCA9509 for a short delay, while the B-bus side rises above 0.3 V_{CCB} and then continues high. It is important to note that any arbitration or clock stretching events require that the low level on the A-bus side at the input of the TCA9509 (V_{IL}) be at or below V_{ILC} to be recognized by the TCA9509 and then transmitted to the B-bus side. ## 8.2 Typical Application Figure 8-1. Typical Application, A-side Connected to controller #### 8.2.1 Design Requirements A typical application is shown in Figure 8-1. In this example, the system controller is running on a 1.2-V I^2C bus, and the target is connected to a 3.3-V bus. Both buses run at 400 kHz. Controller devices can be placed on either bus. For the level translating application, the following should be true: $V_{CCA} \le (V_{CCB} - 1 \text{ V})$ - V_{CCA} = 0.9 V to 5.5 V - $V_{CCB} = 2.7 \text{ to } 5.5 \text{ V}$ - A-side ports must not be connected together Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback Pullup resistors should not be placed on the A-side ports #### 8.2.2 Detailed Design Procedure #### 8.2.2.1 Clock Stretching Support The TCA9509 can support clock stretching, but care needs to be taken to minimize the overshoot voltage presented during the hand-off between the target and controller. This is best done by increasing the pull-up resistor value on B-side ports. #### 8.2.2.2 V_{ILC} and Pulldown Strength Requirements For the TCA9509 to function correctly, all devices on the A-side must be able to pull the A-side below the voltage input low contention level (V_{ILC}). This means that the V_{OL} of any device on the A-side must be below V_{ILC} min. The V_{OL} can be adjusted by changing the I_{OL} through the device which is set by the pull-up resistance value. The pull-up resistance on the A-side must be carefully selected to ensure that the logic levels will be transferred correctly to the B-side. Figure 8-2. Typical Star Application Multiple B-sides of TCA9509 can be connected in a star configuration, allowing all nodes to communicate with each other. The A-sides should not be connected together when used in a star/parallel configuration. uet Felder Links, TCA0500 Copyright © 2024 Texas Instruments Incorporated Figure 8-3. Typical Series Application, Two B-Sides Connected Together Figure 8-4. Typical Series Application, A-side Connected to B-Side To further extend the I^2C bus for long traces/cables, multiple TCA9509 devices can be connected in series as long as the A-side is connected to the B-side and $V_{CCA} \le (V_{CCB} - 1 \text{ V})$ must also be met. Series connections can also be made by connecting both B-sides together while following power supply rule $V_{CCA} \le (V_{CCB} - 1 \text{ V})$. I^2C bus target devices can be connected to any of the bus segments. The number of devices that can be connected in series is limited by repeater delay/time-of-flight considerations on the maximum bus speed requirements. ## 9 Power Supply Recommendations V_{CCB} and V_{CCA} can be applied in any sequence at power up. The TCA9509 includes a power-up circuit that keeps the output drivers turned off until V_{CCB} is above 2.5 V and the V_{CCA} is above 0.8 V. After power up and with the EN high, a low level on the B-side (below $0.3 \times V_{CCB}$) turns the corresponding A-side driver (either SDA or SCL) on and drives the A-side down to approximately 0.2 V. When the B-side rises above $0.3 \times V_{CCB}$, the A-side pull-down driver is turned off and the external pull-up resistor pulls the pin high. When the A-side falls first and goes below $0.3 \times V_{CCA}$, the B-side driver is turned on and the B-side pulls down to 0 V. The A-side pull-down is not enabled unless the A-side voltage goes below 0.4 V. If the A-side low voltage does not go below 0.5 V, the B-side driver turns off when the A-side voltage is above $0.7 \times V_{CCA}$. If the A-side low voltage goes below 0.4 V, the A-side pull-down driver is enabled, and the A-side is able to rise to only 0.5 V until the B-side rises above $0.3 \times V_{CCB}$. A 100 nF a decoupling capacitor should be placed as close to the V_{CCA} and V_{CCB} pins in order to provide proper filtering of supply noise. Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TCA9509* ## 10 Layout ## 10.1 Layout Guidelines There are no special layout procedures required for the TCA9509. It is recommended that the decoupling capacitors be placed as close to the VCC pins as possible. ## 10.2 Layout Example Figure 10-1. Example Layout ## 11 Device and Documentation Support ## 11.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. #### 11.2 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 11.3 Trademarks TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners. #### 11.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ## 11.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TCA9509* ## 12 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | C | hanges from Revision D (April 2021) to Revision E (October 2024) | Page | |---|--|----------------| | • | Updated Tape and Reel Information | 18 | | C | hanges from Revision C (December 2017) to Revision D (April 2021) | Page | | • | Changed the terms master and slave To controller and target in the data sheet | 1 | | • | Changed I _{CC} Quiescent supply current for V _{CCB} MIN value from 0.5 mA to 0.20 mA and the TYP value | | | | 0.9 mA to 0.5 mA in the Electrical Characteristics table | <mark>6</mark> | | • | Changed text From: "Multiple B-sides of TCA9509 s" To: "Multiple B-sides of TCA9509" | 12 | | • | Updated Tape and Reel Information | | | | | | | C | hanges from Revision B (January 2012) to Revision C (December 2017) | Page | | • | Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and | | | | Implementation section, Power Supply Recommendations section, Layout section, Device and | | | | Documentation Support section, and Mechanical, Packaging, and Orderable Information section | 1 | | • | Added junction temperature to the Absolute Maximum Ratings | | | • | Changed thermal information for RVH and DGK packages | | | • | Changed V _{ILC} , added Test Conditions with new MIN and TYP values in the <i>Electrical Characteristics</i> | | | • | Updated Bus A (0.9-V to 5.5-V Bus) Waveform | <mark>7</mark> | | • | Updated Bus B (2.7-V to 5.5-V Bus) Waveform | 7 | | | | | | C | hanges from Revision A (October 2011) to Revision B (January 2012) | Page | | • | Added DGK package and package information to datasheet. | 1 | | | | | | C | hanges from Revision * (August 2011) to Revision A (October 2011) | Page | | • | Corrected V _{CCA} operating voltage lower limit, to 0.9 V at multiple instances in document | 1 | | • | Changed Operating Supply Voltage Range value error in FEATURES for B side. Changed from (0.9 \ | | | | V on B side) to (2.7 V to 5.5 V on B side) | <mark>1</mark> | | • | Changed Operating Voltage Range value error in FEATURES for A side. Changed (2.7 V to $V_{CCB}-1$ | V on A | | | side) to (0.9 V to V _{CCR} – 1 V on A side) | 1 | # 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: TCA9509 Copyright © 2024 Texas Instruments Incorporated ## 13.1 Tape and Reel Information # TAPE DIMENSIONS KO P1 BO W Cavity A0 | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | | | <u> </u> | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width W1
(mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TCA9509MRVHR | X2QFN | RVH | 8 | 5000 | 180.0 | 8.4 | 1.8 | 1.8 | 0.5 | 4.0 | 8.0 | Q1 | | TCA9509RVHR | X2QFN | RVH | 8 | 5000 | 180.0 | 8.4 | 1.8 | 1.8 | 0.5 | 4.0 | 8.0 | Q3 | | TCA9509DGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | TCA9509MRVHR | X2QFN | RVH | 8 | 5000 | 183.0 | 183.0 | 20.0 | | TCA9509RVHR | X2QFN | RVH | 8 | 5000 | 202.0 | 201.0 | 28.0 | | TCA9509DGKR | VSSOP | DGK | 8 | 2500 | 364.0 | 364.0 | 27.0 | www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking | |-----------------------|--------|---------------|-----------------|-----------------------|------|-------------------------------|----------------------------|--------------|--------------| | | (1) | (2) | | | (3) | (4) | (5) | | (6) | | TCA9509DGKR | Active | Production | VSSOP (DGK) 8 | 2500 LARGE T&R | Yes | NIPDAU SN
 NIPDAUAG | Level-1-260C-UNLIM | -40 to 85 | (7KO, 7KQ) | | TCA9509DGKR.A | Active | Production | VSSOP (DGK) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (7KO, 7KQ) | | TCA9509DGKR.B | Active | Production | VSSOP (DGK) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (7KO, 7KQ) | | TCA9509MRVHR | Active | Production | X2QFN (RVH) 8 | 5000 LARGE T&R | Yes | NIPDAUAG | Level-1-260C-UNLIM | -40 to 85 | 7K | | TCA9509MRVHR.A | Active | Production | X2QFN (RVH) 8 | 5000 LARGE T&R | Yes | NIPDAUAG | Level-1-260C-UNLIM | -40 to 85 | 7K | | TCA9509MRVHR.B | Active | Production | X2QFN (RVH) 8 | 5000 LARGE T&R | Yes | NIPDAUAG | Level-1-260C-UNLIM | -40 to 85 | 7K | | TCA9509RVHR | Active | Production | X2QFN (RVH) 8 | 5000 LARGE T&R | Yes | NIPDAU NIPDAUAG | Level-1-260C-UNLIM | -40 to 85 | 7K | | TCA9509RVHR.A | Active | Production | X2QFN (RVH) 8 | 5000 LARGE T&R | Yes | NIPDAUAG | Level-1-260C-UNLIM | -40 to 85 | 7K | | TCA9509RVHR.B | Active | Production | X2QFN (RVH) 8 | 5000 LARGE T&R | Yes | NIPDAUAG | Level-1-260C-UNLIM | -40 to 85 | 7K | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. ## PACKAGE OPTION ADDENDUM www.ti.com 23-May-2025 and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. - 4. Exposed tie bars may vary in size and location. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. SMALL OUTLINE PACKAGE #### NOTES: PowerPAD is a trademark of Texas Instruments. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-187. SMALL OUTLINE PACKAGE NOTES: (continued) - 6. Publication IPC-7351 may have alternate designs. - 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. - 9. Size of metal pad may vary due to creepage requirement. SMALL OUTLINE PACKAGE NOTES: (continued) - 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 12. Board assembly site may have different recommendations for stencil design. #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated