SCDS088G - APRIL 1999 - REVISED AUGUST 2003

 Designed to be Used in Voltage-Limiting Applications 	DBQ, DGV, DW, OR PW PACKAGE (TOP VIEW)
 6.5-Ω On-State Connection Between Ports A and B 	GND 1 24 GATE
 Flow-Through Pinout for Ease of Printed Circuit Board Trace Routing 	A2 [] 3 22]] B2 A3 [] 4 21 [] B3
• Direct Interface With GTL+ Levels	A4 🛛 5 20 🗍 B4
 ESD Protection Exceeds JESD 22 2000-V Human-Body Model (A114-A) 1000-V Charged-Device Model (C101) 	A5 [] 6 19 [] B5 A6 [] 7 18 [] B6 A7 [] 8 17 [] B7 A8 [] 9 16 [] B8
description/ordering information	A9 🛛 10 🛛 15 🗋 B9
The SN74TVC3010 provides 11 parallel NMOS pass transistors with a common gate. The low on-state resistance of the switch allows	A10 11 14 B10 A11 12 13 B11

connections to be made with minimal propagation

The device can be used as a 10-bit switch with the gates cascaded together to a reference transistor. The low-voltage side of each pass transistor is limited to a voltage set by the reference transistor. This is done to protect components with inputs that are sensitive to high-state voltage-level overshoots. (See Application Information in this data sheet.)

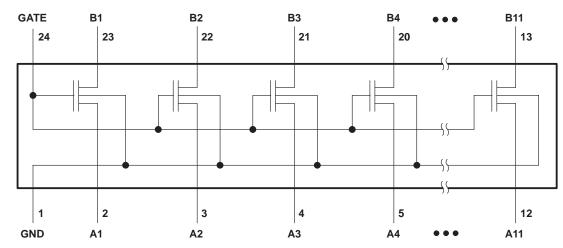
All of the transistors in the TVC array have the same electrical characteristics; therefore, any one of them can be used as the reference transistor. Since, within the device, the characteristics from transistor to transistor are equal, the maximum output high-state voltage (V_{OH}) is approximately the reference voltage (V_{REF}), with minimal deviation from one output to another. This is a large benefit of the TVC solution over discrete devices. Because the fabrication of the transistors is symmetrical, either port connection of each bit can be used as the low-voltage side, and the I/O signals are bidirectional through each FET.

TA	PACKAGE	≣†	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
	SOIC – DW	Tube	SN74TVC3010DW	TVC3010		
	3010 - DW	Tape and reel	SN74TVC3010DWR	1003010		
-40°C to 85°C	SSOP (QSOP) – DBQ	Tape and reel	SN74TVC3010DBQR	TVC3010		
	TSSOP – PW	Tape and reel	SN74TVC3010PWR	TT010		
	TVSOP – DGV	Tape and reel	SN74TVC3010DGVR	TT010		

ORDERING INFORMATION

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

delay.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SCDS088G - APRIL 1999 - REVISED AUGUST 2003

simplified schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, V _I (see Note 1)		–0.5 V to 7 V
Input/output voltage range, VI/O (see Note 1) .		–0.5 V to 7 V
Continuous channel current		
Input clamp current, I _{IK} (V _I < 0)		–50 mA
Package thermal impedance, θ_{JA} (see Note 2):	: DBQ package	61°C/W
	DGV package	86°C/W
	DW package	46°C/W
	PW package	
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and input/output negative-voltage ratings may be exceeded if the input and input/output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		MIN	TYP	MAX	UNIT
V _{I/O}	Input/output voltage	0		5	V
VGATE	GATE voltage	0		5	V
IPASS	Pass-transistor current		20	64	mA
Т _А	Operating free-air temperature	-40		85	°C

SCDS088G - APRIL 1999 - REVISED AUGUST 2003

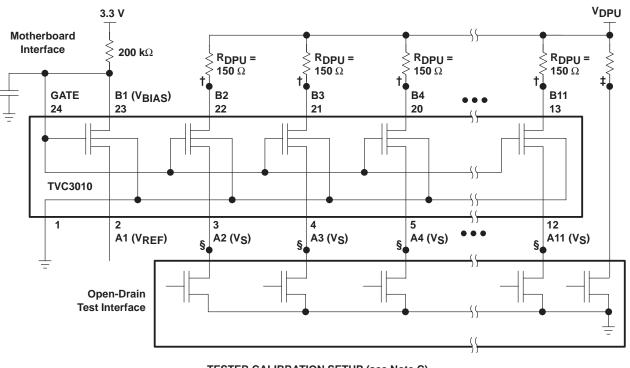
application operating conditions (see Figure 3)

		MIN	TYP	MAX	UNIT
VBIAS	BIAS voltage	V _{REF} + 0.6	2.1	5	V
VGATE	GATE voltage	V _{REF} + 0.6	2.1	5	V
VREF	Reference voltage	0	1.5	4.4	V
V _{DPU}	Drain pullup voltage	2.36	2.5	2.64	V
IPASS	Pass-transistor current		14		mA
IREF	Reference-transistor current		5		μA
Т _А	Operating free-air temperature	-40		85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

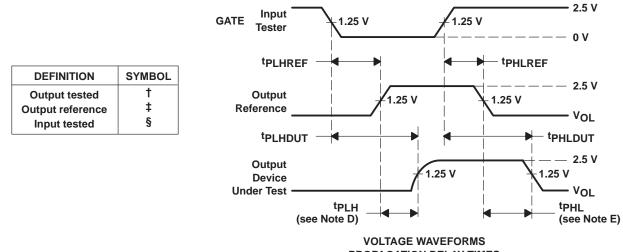
PARAMETER		TEST CONDITIONS	5	MIN TYP	† MAX	UNIT
VIK	$V_{BIAS} = 0,$	l _l = –18 mA			-1.2	V
V _{OL}	I _{REF} = 5 μA, V _{DPU} = 2.625 V,	V _{REF} = 1.365 V, R _{DPU} = 150 Ω	V _S = 0.175 V, See Figure 1		350	mV
C _{i(GATE)}	V _I = 3 V or 0			2	4	pF
C _{io(off)}	$V_{O} = 3 V \text{ or } 0$				4 12	pF
C _{io(on)}	$V_{O} = 3 V \text{ or } 0$			1	2 30	pF
r _{on} ‡	I _{REF} = 5 μA, V _{DPU} = 2.625 V,	V _{REF} = 1.365 V, R _{DPU} = 150 Ω	V _S = 0.175 V, See Figure 1		12.5	Ω

[†] All typical values are at $T_A = 25^{\circ}C$.


[‡] Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two (A or B) terminals.

switching characteristics over recommended operating free-air temperature range, $V_{DPU} = 2.36$ V to 2.64 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
^t PLH	A or B	B or A	0	4	ns
^t PHL	A OF B	BOIA	0	4	115



SCDS088G - APRIL 1999 - REVISED AUGUST 2003

PARAMETER MEASUREMENT INFORMATION

TESTER CALIBRATION SETUP (see Note C)

PROPAGATION DELAY TIMES

- NOTES: A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
 - B. The outputs are measured one at a time with one transition per measurement.
 - C. Test procedure: tpLHREF and tpHLREF are obtained by measuring the propagation delay of a reference measuring point. tPLHDUT and tPHLDUT are obtained by measuring the propagation delay of the device under test.
 - D. tpLH = tpLHDUT tpLHREF
 E. tpHL = tpHLDUT tpHLREF

Figure 1. Tester Calibration Setup and Voltage Waveforms

SCDS088G - APRIL 1999 - REVISED AUGUST 2003

APPLICATION INFORMATION

TVC background information

In personal computer (PC) architecture, there are industry-accepted bus standards. These standards define, among other things, the I/O voltage levels at which the bus communicates. Examples include the GTL+ host bus, the AGP graphics port, and the PCI local bus. In new designs, the system components must communicate with existing bus infrastructure. Providing an evolutionary upgrade path is important in the design of PC architecture, but the existing bus standards must be preserved.

To achieve the ever-present need for smaller, faster, lighter devices that draw less power, yet have faster performance, most new high-performance digital integrated circuits are being designed and produced with advanced submicron semiconductor process technologies. These devices have thin gate-oxide or short channel lengths and very low absolute-maximum voltages that can be tolerated at the inputs/outputs (I/Os) without causing damage. In many cases, the I/Os of these devices are not tolerant of the high-state voltage levels on the preexisting buses with which they must communicate. Therefore, it became necessary to protect the I/Os of devices by limiting the I/O voltages.

The Texas Instruments (TI) translation voltage-clamp (TVC) family was designed specifically for protecting sensitive I/Os (see Figure 2). The information in this data sheet describes the I/O-protection application of the TVC family and should enable the design engineer to successfully implement an I/O-protection circuit utilizing the TI TVC solution.

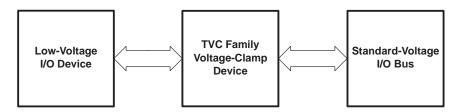
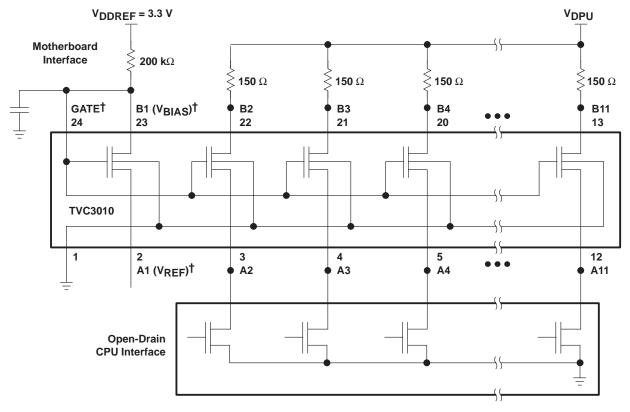


Figure 2. Thin Gate-Oxide Protection Application



SCDS088G - APRIL 1999 - REVISED AUGUST 2003

APPLICATION INFORMATION

TVC voltage-limiting application

For the voltage-limiting configuration, the common GATE input must be connected to one side (A or B) of any one of the transistors (see Figure 3). This connection determines the V_{BIAS} input of the reference transistor. The V_{BIAS} input is connected through a pullup resistor (typically, $200 k\Omega$) to the V_{DD} supply. A filter capacitor on V_{BIAS} is recommended. The opposite side of the reference transistor is used as the reference voltage (V_{REF}) connection. The V_{REF} input must be less than $V_{DDREF} - 1 V$ to bias the reference transistor into conduction. The reference transistor regulates the gate voltage (V_{GATE}) of all the pass transistors. V_{GATE} is determined by the characteristic gate-to-source voltage difference (V_{GS}) because $V_{GATE} = V_{REF} + V_{GS}$. The low-voltage side of the pass transistors has a high-level voltage limited to a maximum of $V_{GATE} - V_{GS}$, or V_{REF} .

[†]V_{REF} and V_{BIAS} can be applied to any one of the pass transistors. GATE must be connected externally to V_{BIAS}.

Figure 3. Typical Application Circuit

SCDS088G - APRIL 1999 - REVISED AUGUST 2003

APPLICATION INFORMATION

electrical characteristics

The electrical characteristics of the NMOS transistors used in the TVC devices are illustrated by TI SPICE simulations. Figure 4 shows the test configuration for the TI SPICE simulations. The results, shown in Figures 5 and 6, show the current through a pass transistor versus the voltage at the source for different reference voltages. The plots of the dc characteristics clearly reveal that the device clamps at the desired reference voltage for the varying device environments.

Figure 5 shows the V-I characteristics, with low reference voltages and a reference-transistor drain-supply voltage of 3.3 V. To further investigate the spread of the V-I characteristic curves, V_{REF} was held at 2.5 V and I_{REF} was increased by raising V_{DDREF} (see Figure 6). The result was a tighter grouping of the V-I curves.

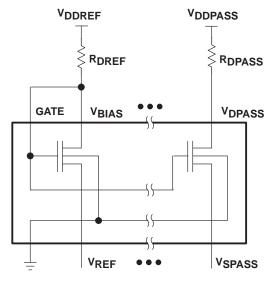
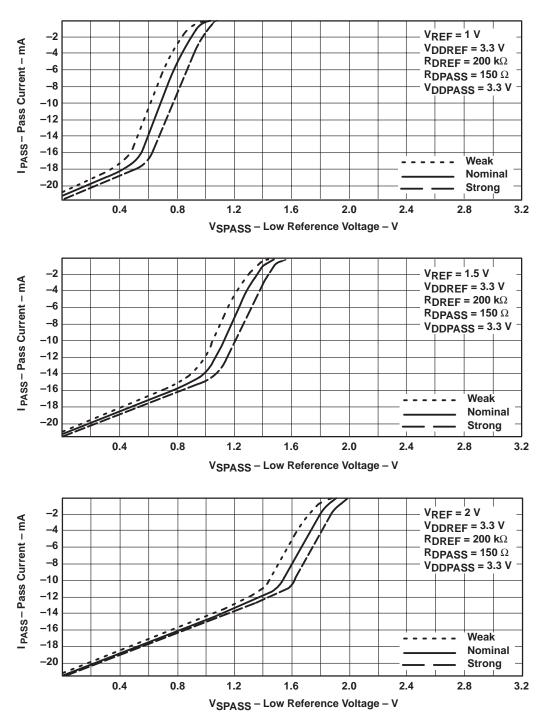



Figure 4. TI SPICE Simulation Schematic and Voltage-Node Names

SCDS088G - APRIL 1999 - REVISED AUGUST 2003

APPLICATION INFORMATION

Figure 5. Electrical Characteristics at Low V_{REF} Voltages

SCDS088G - APRIL 1999 - REVISED AUGUST 2003

SCDS088G - APRIL 1999 - REVISED AUGUST 2003

APPLICATION INFORMATION

features and benefits

The TVC family has several features that benefit a system designer when implementing a sensitive-I/O-protection solution. Table 1 lists these features and their associated benefits.

FEATURES	BENEFITS
Any FET can be used as the reference transistor.	Ease of layout
All FETs on one die, tight process control	Very low spread of V _O relative to V _{REF}
No active control logic (passive device)	No logic power supply (V _{CC}) required
Flow-through pinout	Ease of trace routing
Devices offered in different bit-widths and packages	Optimizes design and cost effectiveness
Designer flexibility with VREF input	Allows migration to lower-voltage I/Os without board redesign

Table 1. Features and Benefits

conclusion

The TI TVC family provides the designer with a solution for protection of circuits with I/Os that are sensitive to high-state voltage-level overshoots. The flexibility of TVC enables a low-voltage migration path for advanced designs to align with industry standards.

frequently asked questions (FAQ)

- 1. Q: Can any of the transistors in the array be used as the reference transistor?
 - A: Yes, any transistor can be used as long as its V_{BIAS} pin is connected to the GATE pin.
- 2. Q: In the recommended operating conditions table of the data sheet, the typical V_{BIAS} is 3.3 V. Should V_{BIAS} be equal to or greater than V_{REF} on the reference transistor?
 - A: V_{BIAS} is a variable that is determined by V_{REF}. V_{BIAS} is connected to V_{DD} through a resistor to allow the bias voltage to be controlled by V_{REF}. V_{DD} can be as high as 5.5 V. V_{REF} needs to be at least 1 V less than V_{DDREF} on the reference transistor.
- 3. Q: Do both A and B ports have 5-V I/O tolerance or is 5-V I/O tolerance provided only on the low-voltage side?
 - A: Both ports are 5-V tolerant.

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74TVC3010DBQR	NRND	Production	SSOP (DBQ) 24	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TVC3010
SN74TVC3010DBQR.A	NRND	Production	SSOP (DBQ) 24	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TVC3010
SN74TVC3010DGVR	NRND	Production	TVSOP (DGV) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TT010
SN74TVC3010DGVR.A	NRND	Production	TVSOP (DGV) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TT010
SN74TVC3010DW	NRND	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TVC3010
SN74TVC3010DW.A	NRND	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TVC3010
SN74TVC3010DWR	NRND	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TVC3010
SN74TVC3010DWR.A	NRND	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TVC3010
SN74TVC3010PW	NRND	Production	TSSOP (PW) 24	60 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TT010
SN74TVC3010PW.A	NRND	Production	TSSOP (PW) 24	60 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TT010
SN74TVC3010PWR	NRND	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TT010
SN74TVC3010PWR.A	NRND	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TT010

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

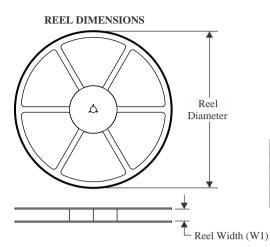
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

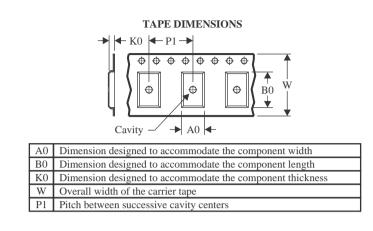
www.ti.com

PACKAGE OPTION ADDENDUM

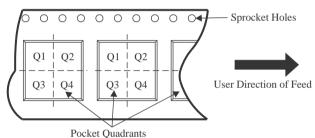
23-May-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

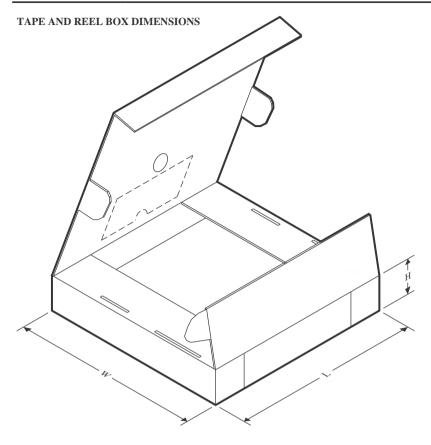


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

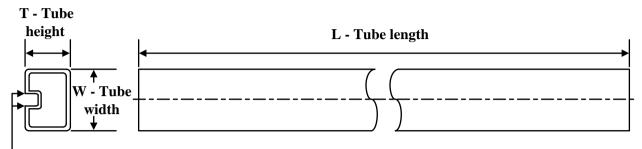

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74TVC3010DBQR	SSOP	DBQ	24	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74TVC3010DGVR	TVSOP	DGV	24	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74TVC3010DWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Jul-2025

*All dimensions are nominal

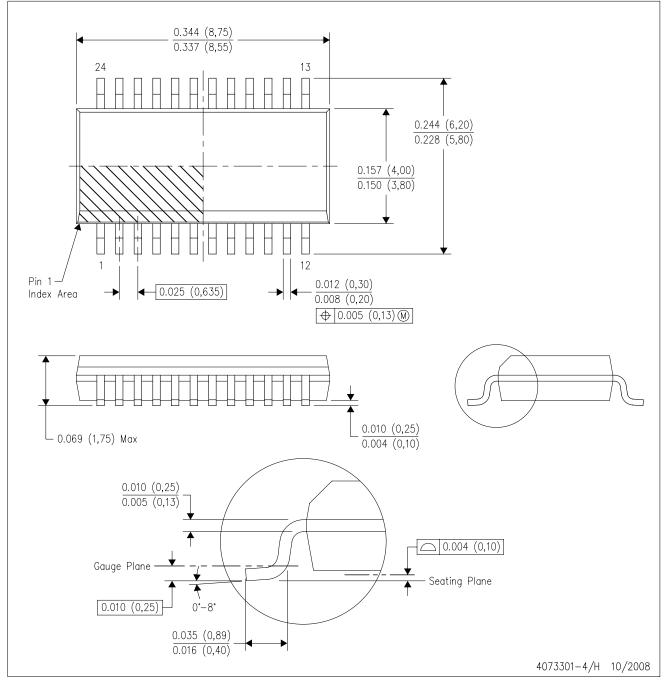

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74TVC3010DBQR	SSOP	DBQ	24	2500	353.0	353.0	32.0
SN74TVC3010DGVR	TVSOP	DGV	24	2000	353.0	353.0	32.0
SN74TVC3010DWR	SOIC	DW	24	2000	350.0	350.0	43.0

TEXAS INSTRUMENTS

www.ti.com

24-Jul-2025

TUBE


- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74TVC3010DW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74TVC3010DW.A	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74TVC3010PW	PW	TSSOP	24	60	530	10.2	3600	3.5
SN74TVC3010PW.A	PW	TSSOP	24	60	530	10.2	3600	3.5

DBQ (R-PDSO-G24)

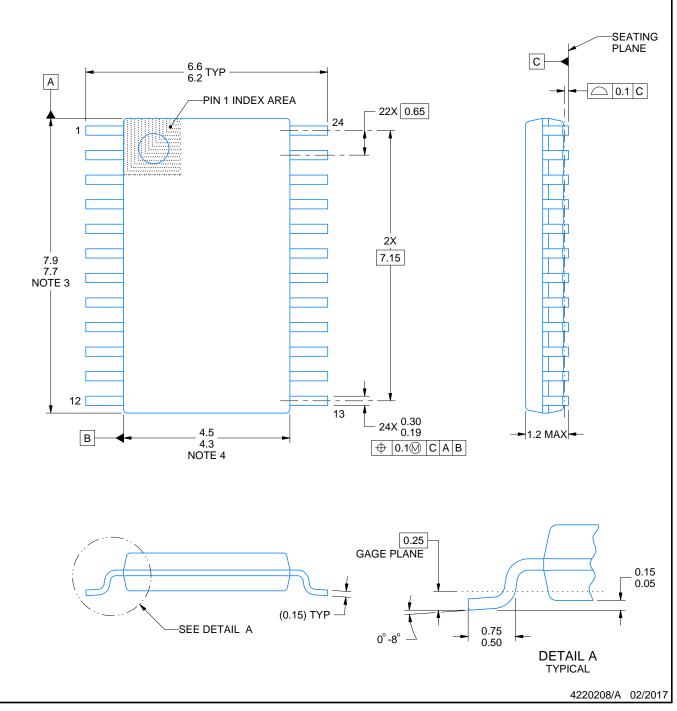
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.

D. Falls within JEDEC MO-137 variation AE.


PW0024A

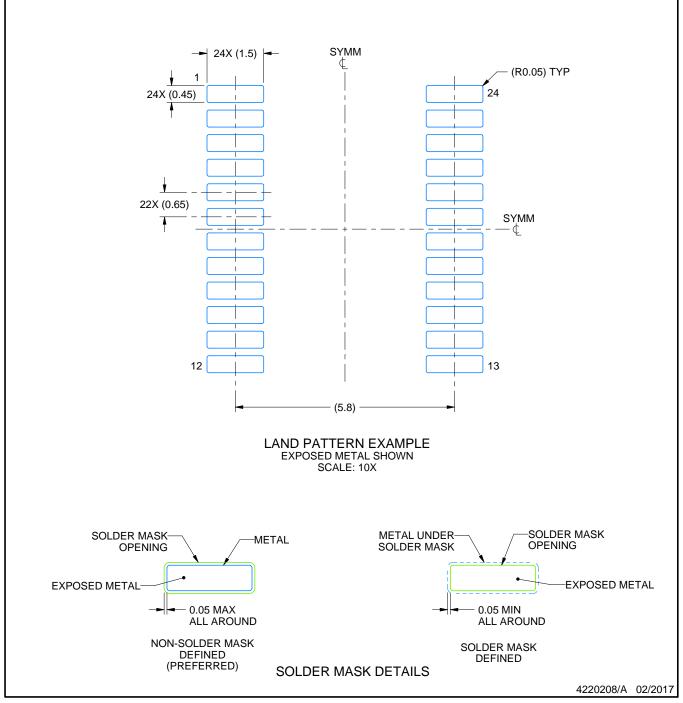
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0024A

EXAMPLE BOARD LAYOUT

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0024A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AD.


DGV0024A

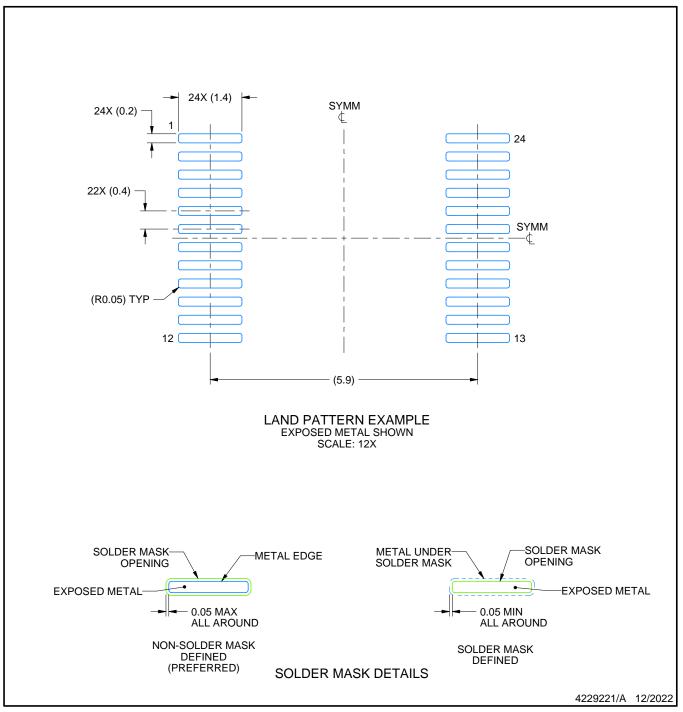
PACKAGE OUTLINE

TVSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



DGV0024A

EXAMPLE BOARD LAYOUT

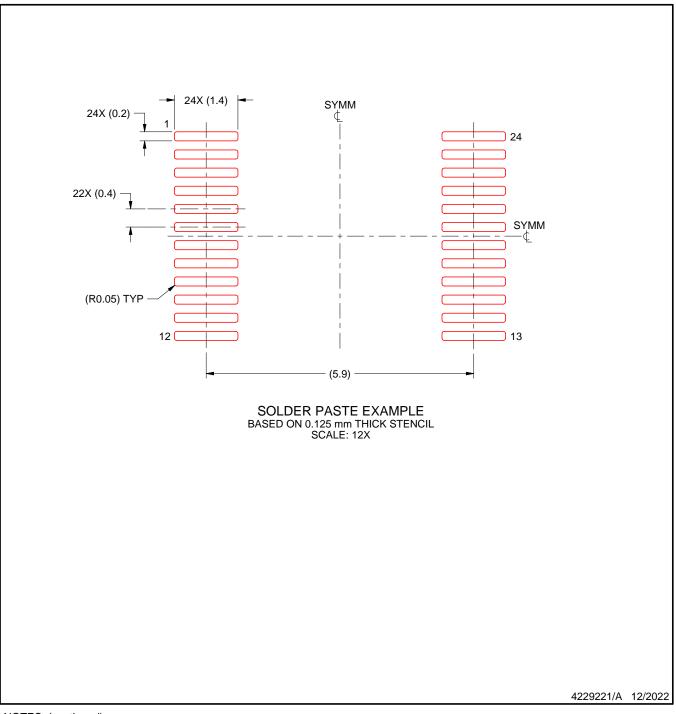
TVSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGV0024A

EXAMPLE STENCIL DESIGN

TVSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated