SCBS142U-MAY 1992-REVISED OCTOBER 2013

3.3-V ABT 16-Bit Buffers/Drivers With 3-State Outputs

Check for Samples: SN54LVTH16244A, SN74LVTH16244A

FEATURES

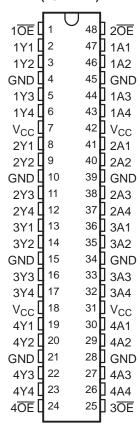
- Members of the Texas Instruments Widebus™ Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

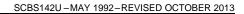
DESCRIPTION

The 'LVTH16244A devices are 16-bit buffers and line drivers designed for low-voltage (3.3-V) $V_{\rm CC}$ operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. These devices provide true outputs and symmetrical active-low output-enable ($\overline{\rm OE}$) inputs.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.


AA.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN54LVTH16244A . . . WD PACKAGE SN74LVTH16244A . . . DGG, DGV, OR DL PACKAGE (TOP VIEW)

GQL OR ZQL PACKAGE (TOP VIEW)

		1	2	3	4	5	6	
Δ	_	()	()		()	()	())
В		()	()	()	()	()	()	ı
С		()	()	()	()	()	()	ı
D		()	()	()	()	()	()	ı
Е		()	()			()	()	ı
F		()	()			()	()	ı
G		()	()	()	()	()	()	ı
н		()	()	()	()	()	()	ı
J		()	()	()	()	()	()	ı
K	L	()	()	()	()	()	()	J

TERMINAL ASSIGNMENTS⁽¹⁾ (56-Ball GQL/ZQL Package)

	1	2	3	4	5	6
Α	1 OE	NC	NC	NC	NC	2 OE
В	1Y2	1Y1	GND	GND	1A1	1A2
С	1Y4	1Y3	V _{CC}	V _{CC}	1A3	1A4
D	2Y2	2Y1	GND	GND	2A1	2A2
E	2Y4	2Y3			2A3	2A4
F	3Y1	3Y2			3A2	3A1
G	3Y3	3Y4	GND	GND	3A4	3A3
Н	4Y1	4Y2	V _{CC}	V _{CC}	4A2	4A1
J	4Y3	4Y4	GND	GND	4A4	4A3
K	4 OE	NC	NC	NC	NC	3 OE

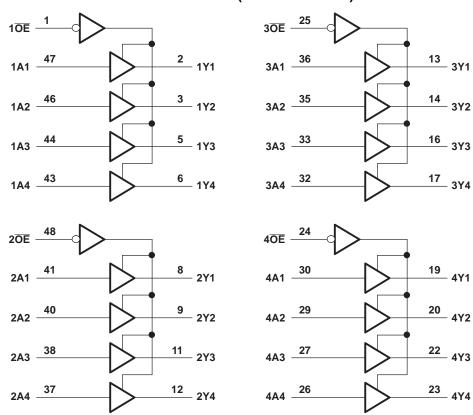
(1) NC - No internal connection

GRD OR ZRD PACKAGE (TOP VIEW)

	_	1	2	3	4	5	6	_
Α		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
В		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	()	
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	()	
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	()	
Е		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	()	
F		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	()	
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
J		\bigcirc	\bigcirc	\bigcirc	()	\bigcirc	\bigcirc	
	\							_

TERMINAL ASSIGNMENTS⁽¹⁾ (54-Ball GRD/ZRD Package)

	•				o ,	
	1	2	3	4	5	6
Α	1Y1	NC	1 OE	2 OE	NC	1A1
В	1Y3	1Y2	NC	NC	1A2	1A3
С	2Y1	1Y4	V _{CC}	V _{CC}	1A4	2A1
D	2Y3	2Y2	GND	GND	2A2	2A3
E	3Y1	2Y4	GND	GND	2A4	3A1
F	3Y3	3Y2	GND	GND	3A2	3A3
G	4Y1	3Y4	V _{CC}	V _{CC}	3A4	4A1
Н	4Y3	4Y2	NC	NC	4A2	4A3
J	4Y4	NC	4 OE	3 OE	NC	4A4


(1) NC - No internal connection

FUNCTION TABLE (EACH 4-BIT BUFFER)

INPL	JTS	OUTPUT
ŌĒ	Α	Y
L	Н	Н
L	L	L
Н	X	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for the DGG, DGV, DL, and WD packages.

SCBS142U-MAY 1992-REVISED OCTOBER 2013

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	7	V
Vo	Voltage range applied to any output in the hi	gh-impedance or power-off state ⁽²⁾	-0.5	7	\ /
Vo	Voltage range applied to any output in the hi	gh state ⁽²⁾	-0.5	V _{CC} + 0.5	V
	Comment into any autout in the law state	SN54LVTH16244A		96	V
I _O	Current into any output in the low state	SN74LVTH16244A		128	V
	C	SN54LVTH16244A		48	V
I _O	Current into any output in the high state (3)	SN74LVTH16244A		64	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
		DGG package		70	
		DGV package		58	
θ_{JA}	Package thermal impedance (4)	DL package		63	°C/W
		GQL/ZQL package		42	
		GRD/ZRD package		36	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS(1)

			SN54LVTH	16244A	SN74LVTH	16244A	UNIT
			MIN	MAX	MIN	MAX	UNII
V_{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V_{IH}	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage			5.5		5.5	V
I _{OH}	High-level output current			-25		-32	mA
I _{OL}	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\Delta t/\Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		- 55	125	-40	125	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

The current flows only when the output is in the high state and $V_O > V_{CC}$.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)(1)

PARA	AMETER	TEST CO	ONDITIONS	SN54L\	/TH162	44A		C to 85 VTH162		-40°	ommende C to 1250 VTH1624	C	UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
V _{IK}		V _{CC} = 2.7 V,	I _I = -18 mA			-1.2			-1.2			-1.2	V
		V _{CC} = 2.7 V to 3.6 V,	$I_{OL} = -100 \mu A$	V _{CC} - 0.2			V _{CC} - 0.2			V _{CC} - 0.2			
V_{OH}		V _{CC} = 2.7 V,	$I_{OH} = -8 \text{ mA}$	2.4					2.4			2.4	V
		V _{CC} = 3 V	I _{OH} = -24 mA	2									
		V _{CC} = 3 V	$I_{OH} = -32 \text{ mA}$						2			2	
		V _{CC} = 2.7 V	I _{OL} = 100 μA			0.2			0.2			0.2	
		V _{CC} = 2.7 V	I _{OL} = 24 mA			0.5			0.5			0.5	
\/			I _{OL} = 16 mA			0.4			0.4			0.4	V
V_{OL}		V _{CC} = 3 V	I _{OL} = 32 mA			0.5			0.5			0.5	V
		V _{CC} = 3 V	I _{OL} = 48 mA			0.55							
			I _{OL} = 64 mA						0.55			0.55	
		$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	$V_1 = 5.5 \text{ V}$			50			10			10	
l ₁	Control inputs	V _{CC} = 3.6 V,	$V_{I} = V_{CC}$ or GND			±1	±1			±1			μA
	Data	V _{CC} = 3.6 V	$V_I = V_{CC}$			1			1			1	•
	inputs	V _{CC} = 3.6 V	V _I = 0			- 5			- 5			- 5	
$I_{\rm off}$		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V				±100			±100			μΑ
		V _{CC} = 3 V	$V_1 = 0.8 \ V$	75					75			75	
I _{I(hold)}	Data	V _{CC} = 3 V	V _I = 2 V	-75					-75			-75	μA
·I(noid)	inputs	$V_{CC} = 3.6 V^{(2)},$	$V_1 = 0 \text{ to } 3.6 \text{ V}$						500 -750			500 -750	μ
I _{OZH}		V _{CC} = 3.6 V,	V _O = 3 V			5			5			5	μA
I _{OZL}		V _{CC} = 3.6 V,	$V_0 = 0.5 \text{ V}$			- 5			- 5			- 5	μΑ
I _{OZPU}		$\frac{V_{CC}}{OE} = 0 \text{ to } 1.5 \text{ V}, V_{C}$ $\frac{V_{CC}}{OE} = \text{don't care}$	$_{0}$ = 0.5 V to 3 V,			±100 ⁽	±100			±100			μA
I _{OZPD}		$\frac{V_{CC}}{OE} = 1.5 \text{ V to } 0, V_{CC}$	_O = 0.5 V to 3 V,			±100(3)	±100			±100			μA
		V _{CC} = 3.6 V,	Outputs high			0.19			0.19			0.19	
I_{CC}		$I_0 = 0$,	Outputs low			5			5			5	mA
		$V_I = V_{CC}$ or GND	Outputs disabled			0.19			0.19			0.19	
ΔI _{CC} ⁽⁴⁾		V _{CC} = 3 V to 3.6 V, V, Other inputs at V _{CC}	One input at V _{CC} – 0.6 or GND			0.2			0.2			0.2	mA
Ci		V _I = 3 V or 0 V			4			4			4		pF
C _o		V _O = 3 V or 0 V			9			9			9		pF

All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

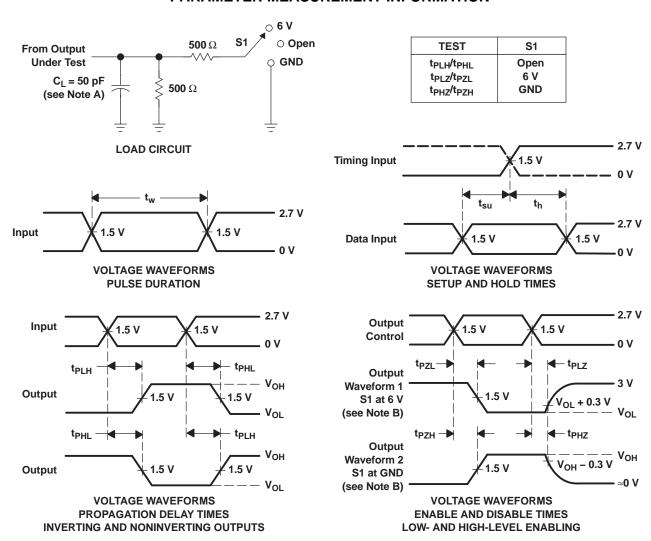
On products compliant to MIL-PRF-38535, this parameter does not apply.

This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

SCBS142U-MAY 1992-REVISED OCTOBER 2013

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)⁽¹⁾


	FROM	то	S	N54LV	TH16244	A			0°C to 8				-40	commer 0°C to 1 ILVTH1	25C		
PARAMETER	(INPUT)	(OUTPUT)	V _{CC} = 3.3 V ± 0.3 V V _{CC} = 2.7 V		$V_{CC} = 3.3 \text{ V} \\ \pm 0.3 \text{ V}$		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V			V _{CC} = 2.7 V		UNIT			
			MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
t _{PLH}	^	Υ	1.1	4.4		4.6	1.2	2.3	3.2		3.7	1.2	2.3	4.4		4.6	
t _{PHL}	A	ĭ	1.1	3.6		3.9	1.2	2	3.2		3.7	1.2	2	3.6		3.9	ns
t _{PZH}	- OE	Υ	1.1	4.6		5.4	1.2	2.6	4		5	1.2	2.6	4.6		5.4	
t _{PZL}	OE .	ĭ	1.1	5.4		6.2	1.2	2.7	4		5	1.2	2.7	5.4		6.2	ns
t _{PHZ}	ŌĒ	Υ	1.6	5.7		6.2	2.2	3.3	4.5		5	2.2	3.3	5.7		6.2	
t_{PLZ}	OE .	T	1.2	5		4.7	2	3.1	4.2		4.4	2	3.1	5		4.7	ns
t _{sk(LH)}									0.5					0.5			no
t _{sk(HL)}									0.5					0.5			ns

⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

Submit Documentation Feedback

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_r \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SCBS142U -MAY 1992-REVISED OCTOBER 2013

REVISION HISTORY

CI	hanges from Revision T (November 2006) to Revision U	Page
•	Updated document to new TI data sheet format - no specification changes	1
•	Removed ordering information.	1
•	Updated operating temperature range.	5

Submit Documentation Feedback

11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
5962-9668501QXA	Active	Production	CFP (WD) 48	15 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9668501QX A SNJ54LVTH16244 AWD
5962-9668501VXA	Active	Production	CFP (WD) 48	15 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9668501VX A SNV54LVTH16244 AWD
74LVTH16244ADGGRE4	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A
74LVTH16244ADGGRG4	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A
74LVTH16244ADGVRG4	Active	Production	TVSOP (DGV) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LL244A
74LVTH16244ADGVRG4.B	Active	Production	TVSOP (DGV) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LL244A
74LVTH16244ADLR1G4	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A
74LVTH16244ADLR1G4.B	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A
SN74LVTH16244ADGGR	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A
SN74LVTH16244ADGGR.B	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A
SN74LVTH16244ADGVR	Active	Production	TVSOP (DGV) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LL244A
SN74LVTH16244ADGVR.B	Active	Production	TVSOP (DGV) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LL244A
SN74LVTH16244ADL	Active	Production	SSOP (DL) 48	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A
SN74LVTH16244ADL.B	Active	Production	SSOP (DL) 48	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A
SN74LVTH16244ADLG4	Active	Production	SSOP (DL) 48	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A
SN74LVTH16244ADLR	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A
SN74LVTH16244ADLR.B	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A
SNJ54LVTH16244AWD	Active	Production	CFP (WD) 48	15 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9668501QX A SNJ54LVTH16244 AWD

⁽¹⁾ Status: For more details on status, see our product life cycle.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

(2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

(3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

(4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LVTH16244A, SN54LVTH16244A-SP, SN74LVTH16244A:

Catalog: SN74LVTH16244A, SN54LVTH16244A

Enhanced Product: SN74LVTH16244A-EP, SN74LVTH16244A-EP

Military: SN54LVTH16244A

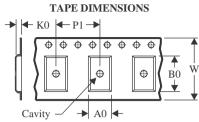
Space: SN54LVTH16244A-SP

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025


- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

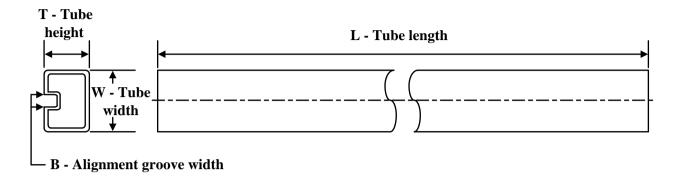
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74LVTH16244ADGVRG4	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
74LVTH16244ADLR1G4	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1
SN74LVTH16244ADGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74LVTH16244ADGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74LVTH16244ADLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

www.ti.com 24-Jul-2025

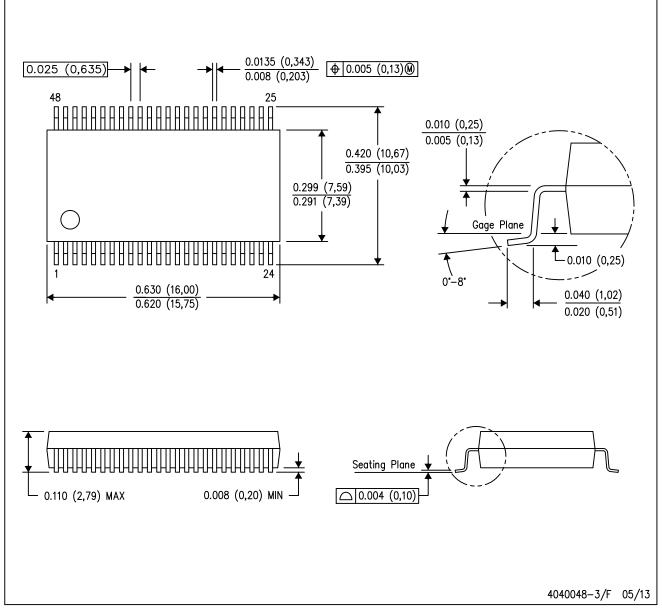

*All dimensions are nominal

7 iii dinicrisions die nomina									
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)		
74LVTH16244ADGVRG4	TVSOP	DGV	48	2000	353.0	353.0	32.0		
74LVTH16244ADLR1G4	SSOP	DL	48	1000	356.0	356.0	53.0		
SN74LVTH16244ADGGR	TSSOP	DGG	48	2000	356.0	356.0	45.0		
SN74LVTH16244ADGVR	TVSOP	DGV	48	2000	353.0	353.0	32.0		
SN74LVTH16244ADLR	SSOP	DL	48	1000	356.0	356.0	53.0		

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE



*All dimensions are nominal

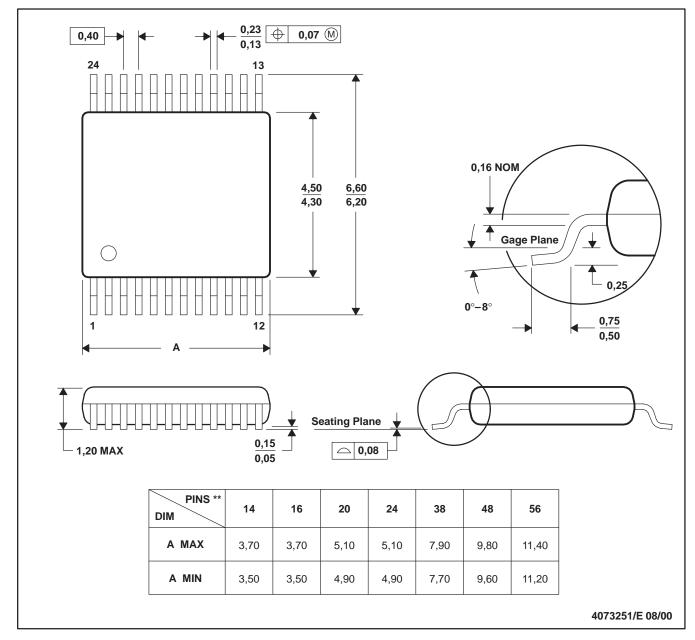
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LVTH16244ADL	DL	SSOP	48	25	473.7	14.24	5110	7.87
SN74LVTH16244ADL.B	DL	SSOP	48	25	473.7	14.24	5110	7.87
SN74LVTH16244ADLG4	DL	SSOP	48	25	473.7	14.24	5110	7.87

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

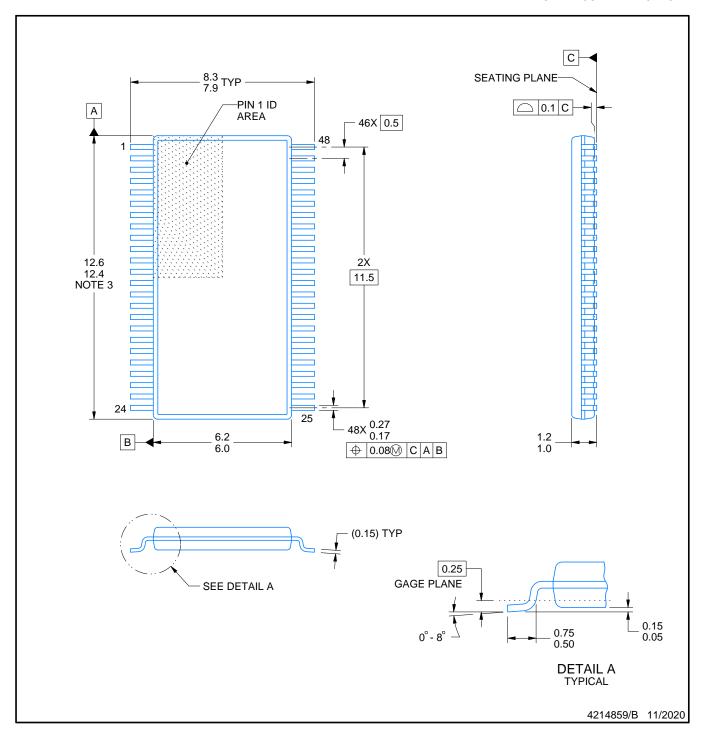

PowerPAD is a trademark of Texas Instruments.

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

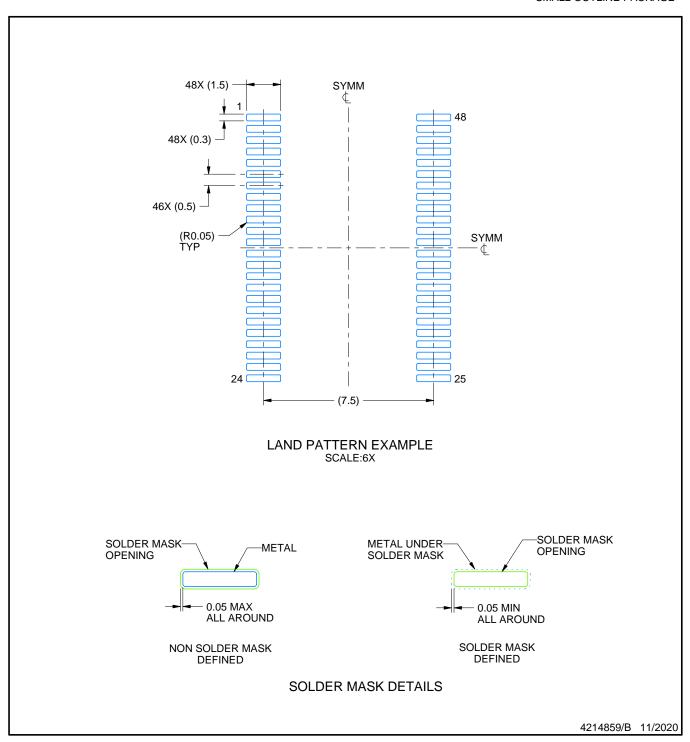

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

SMALL OUTLINE PACKAGE

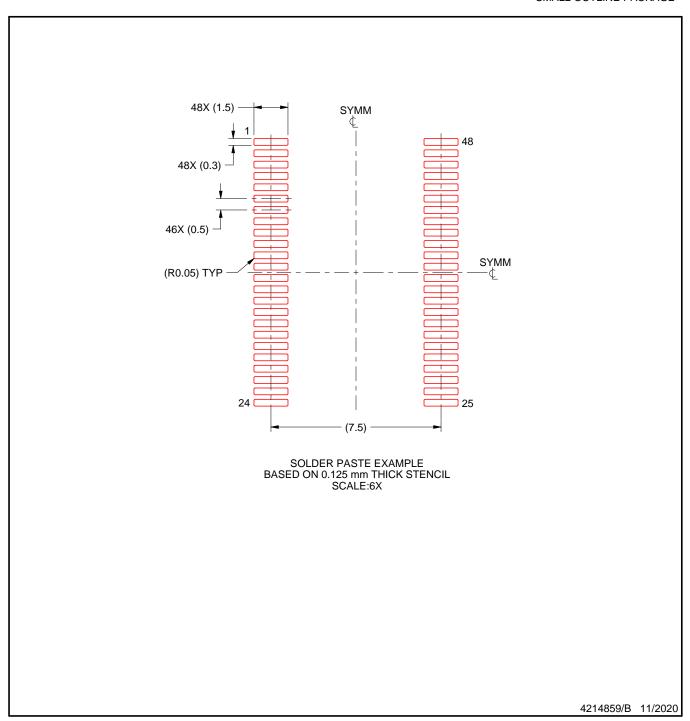
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

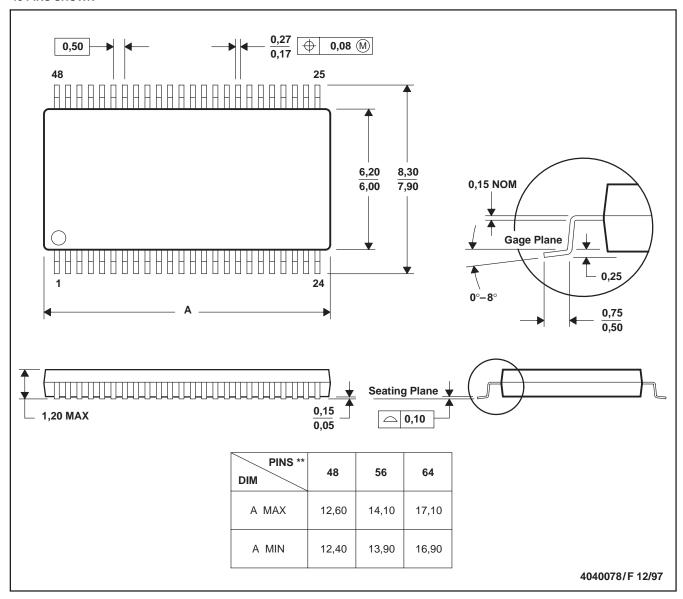


NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)


- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

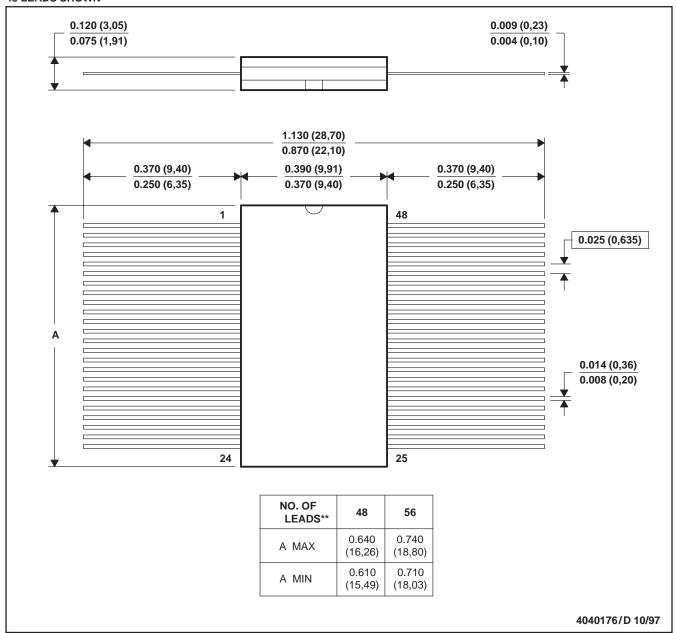
DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

WD (R-GDFP-F**)

CERAMIC DUAL FLATPACK

48 LEADS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only
- E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA

GDFP1-F56 and JEDEC MO-146AB

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025