SCES610 - OCTOBER 2004

•	2-V to 5.5-V V _{CC} Operation Max t _{pd} of 15 ns at 5 V		V PACKAGE VIEW)
٠	Schmitt-Trigger Inputs Allow for Slow Input Rise/Fall Time	T/C [1 A [2	24 V _{CC}
•	Polarity Control for Y Outputs Selects True or Complementary Logic	В [] 3 D1 [] 4	22 N 21 Y1
•	Typical V _{OLP} (Output Ground Bounce) <0.8 V at V _{CC} = 3.3 V, T _A = 25°C	D2 [5 D3 [6	20 Y2 19 Y3
•	Typical V _{OHV} (Output V _{OH} Undershoot) >2.3 V at V _{CC} = 3.3 V, T _A = 25°C	D4 [] 7 D5 [] 8 D6 [] 9	18 Y4 17 Y5 16 Y6
•	I _{off} Supports Partial-Power-Down Mode Operation	D7 [10 D8 [11	15 Y7 14 Y8
•	Supports Mixed-Mode Voltage Operation on All Ports	GND [12	13 OE
	Latak Un Danfanna an Europada 050 m A Dan		

- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22

 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

The SN74LV8151 is a 10-bit universal Schmitt-trigger buffer with 3-state outputs, designed for 2-V to 5.5-V V_{CC} operation. The logic control (T/\overline{C}) pin allows the user to configure Y1 to Y8 as noninverting or inverting outputs. When T/\overline{C} is high, the Y outputs are noninverted (true logic), and when T/\overline{C} is low, the Y outputs are inverted (complementary logic).

When output-enable (\overline{OE}) input is low, the device passes data from Dn to Yn. When \overline{OE} is high, the Y outputs are in the high-impedance state. The path A to P is a simple Schmitt-trigger buffer, and the path B to N is a simple Schmitt-trigger inverter.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

T _A PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	PDIP – NT	Tube	SN74LV8151NT	SN74LV8151NT
–40°C to 85°C		Tube	SN74LV8151PW	1)/0454
	TSSOP – PW	Tape and reel	SN74LV8151PWR	LV8151

ORDERING INFORMATION

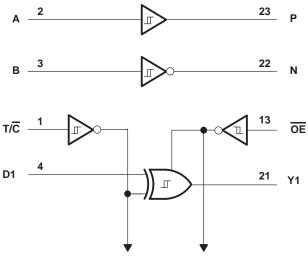
[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2004, Texas Instruments Incorporated

SN74LV8151 **10-BIT UNIVERSAL SCHMITT-TRIGGER BUFFER** WITH 3-STATE OUTPUTS SCES610 - OCTOBER 2004


FUNCTION TABLES

INPUT A	OUTPUT P
L	L
Н	Н

INPUT B	OUTPUT N
L	Н
Н	L

	INPUTS		OUTPUT
OE	T/C	D	Y
L	L	L	Н
L	L	Н	L
L	Н	L	L
L	Н	Н	Н
Н	Х	Х	Z

logic diagram

To Seven Other Channels

SCES610 - OCTOBER 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	
Output voltage range, V _O (see Notes 1 and 2)0	.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–20 mA
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±35 mA
Continuous current through V _{CC} or GND	±70 mA
Package thermal impedance, θ_{JA} (see Note 3): NT package	
(see Note 4): PW package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. This value is limited to 5.5 V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51-3.

4. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES610 - OCTOBER 2004

recommended operating conditions (see Note 5)

			Vcc	MIN	MAX	UNIT	
VCC	Supply voltage			2	5.5	V	
			2 V	1.5			
.,	High-level input voltage		2.3 V to 2.7 V	V _{CC} × 0.7		.,	
VIH			3 V to 3.6 V	$V_{CC} \times 0.7$		V	
		4.5 V to 5.5 V	$V_{CC} \times 0.7$				
			2 V		0.5		
.,			2.3 V to 2.7 V		$V_{CC} \times 0.3$.,	
VIL	Low-level input voltage		3 V to 3.6 V		$V_{CC} \times 0.3$	V	
		4.5 V to 5.5 V		$V_{CC} \times 0.3$			
VI	Input voltage			0	5.5	V	
		High or low state		0	VCC		
Vo	Output voltage	3-state		0	5.5	V	
		•	2 V		-50	μΑ	
	High-level output current		2.3 V to 2.7 V		-2	mA	
ЮН			3 V to 3.6 V		-6		
		4.5 V to 5.5 V		-12			
			2 V		50	μΑ	
			2.3 V to 2.7 V		2		
IOL	Low-level output current		3 V to 3.6 V		6	mA	
			4.5 V to 5.5 V		12		
			2.3 V to 2.7 V		200		
		T/\overline{C} , \overline{OE} inputs	3 V to 3.6 V		100	ns/V	
Δt/Δv			4.5 V to 5.5 V		20		
	Input transition rise or fall rate		2.3 V to 2.7 V		4		
		A, B, D inputs	3 V to 3.6 V		3	ms/V	
			4.5 V to 5.5 V	1	2		
TA	Operating free-air temperature			-40	85	°C	

NOTES: 5. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74LV8151 **10-BIT UNIVERSAL SCHMITT-TRIGGER BUFFER** WITH 3-STATE OUTPUTS SCES610 - OCTOBER 2004

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
VT		2.5 V			1.75		
Positive-going input	A, B, and D inputs	3.3 V			2.31	V	
threshold voltage		5 V			3.5		
Vт		2.5 V	0.75				
Negative-going input	A, B, and D inputs	3.3 V	0.99			V	
VT+ Positive-going input threshold voltage VT- Negative-going input threshold voltage ΔVT Hysteresis (VT+ - VT-) /OH /OL		5 V	1.5				
۸۷۳		2.5 V	0.25		1		
Hysteresis	A, B, and D inputs	3.3 V	0.33		1.32	V	
$(V_{T+} - V_{T-})$		5 V	0.5		2		
	I _{OH} = -50 μA	2 V to 5.5 V	V _{CC} – 0.1			N	
	$I_{OH} = -2 \text{ mA}$	2.3 V	2				
VOH	$I_{OH} = -6 \text{ mA}$	3 V	2.48			V	
	I _{OH} = -12 mA	4.5 V	3.8				
	I _{OL} = 50 μA	2 V to 5.5 V			0.1		
	I _{OL} = 2 mA	2.3 V			0.4	v	
VOL	I _{OL} = 6 mA	3 V			0.44		
	I _{OL} = 12 mA	4.5 V			0.55		
l	V _I = 5.5 V or GND	0 to 5.5 V			±1	μΑ	
I _{OZ}	$V_{O} = V_{CC}$ or GND	5.5 V			±5	μΑ	
ICC	$V_{I} = V_{CC} \text{ or GND}, I_{O} = 0$	5.5 V			20	μΑ	
loff	V_{I} or $V_{O} = 0$ to 5.5 V	0			5	μA	
		3.3 V		3		_	
Ci	$V_I = V_{CC}$ or GND	5 V		3		pF	
2		3.3 V		5		_	
Co	$V_{O} = V_{CC}$ or GND	5 V		5		pF	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

switching characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

DADAMETER	FROM	то	LOAD	T _A = 25°C			
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	TYP	MIN	MAX	UNIT
	A or B	P or N		22	1	45	ns
^t pd	D	Y		23	1	49	
	T/C		C _L = 15 pF	24	1	50	
t _{en}	ŌĒ	Y		12	1	25	ns
^t dis	OE	Y		11	1	20	ns
	A or B	P or N	C _L = 50 pF	26	1	52	
^t pd	D	V		28	1	57	ns
	T/C	Y		29	1	58	
^t en	OE	Y		15	1	30	ns
^t dis	OE	Y		15	1	26	ns

SCES610 - OCTOBER 2004

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

	FROM	то	LOAD	T _A = 25°C			
PARAMETER	(INPUT) (OUTPUT)		CAPACITA NCE	ТҮР	MIN	MAX	UNIT
	A or B	P or N	C _L = 15 pF	14	1	26	
^t pd	D	Y		15	1	29	ns
	T/C			16	1	30	
ten	OE	Y		9	1	16	ns
^t dis	OE	Y		8	1	14	ns
	A or B	P or N	C= 50 pF	17	1	32	ns
^t pd	D	Y		18	1	34	
·	T/C			20	1	36	
t _{en}	OE	Y		11	1	20	ns
^t dis	OE	Y		11	1	18	ns

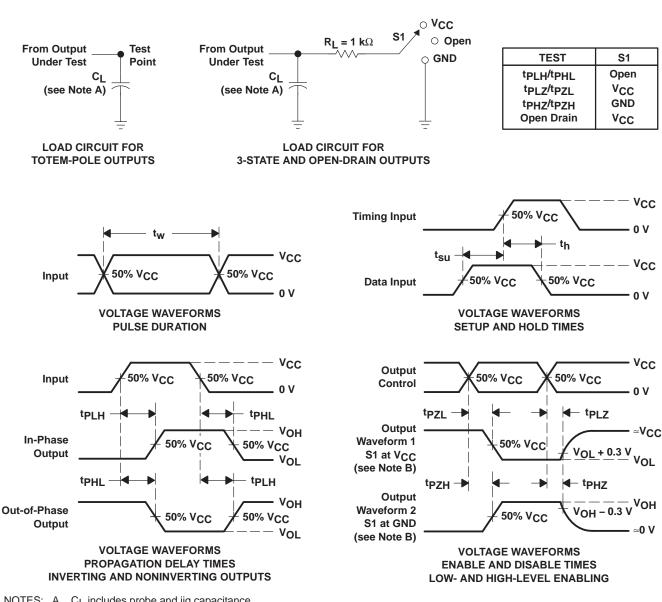
switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

	FROM TO (INPUT) C.	то	LOAD	T _A = 25°C			
PARAMETER		CAPACITA NCE	TYP	MIN	MAX	UNIT	
	A or B	P or N	C _L = 15 pF	9	1	15	
^t pd	D	Y		10	1	16	ns
	T/C			11	1	17	
ten	OE	Y		6	1	10.5	ns
^t dis	OE	Y		6	1	10	ns
	A or B	P or N	С _L = 50 рF	11	1	18	
^t pd	D	N.		12	1	20	ns
	T/C	Y		13	1	21	
ten	OE	Y		8	1	12.5	ns
^t dis	OE	Y		8	1	11.5	ns

noise characteristics, V_{CC} = 3.3 V, C_L = 50 pF (see Note 6)

	PARAMETER		T _A = 25°C		
			TYP	MAX	UNIT
VOL(P)	Quiet output, maximum dynamic V _{OL}		0.6		V
VOL(V)	Quiet output, minimum dynamic V _{OL}		-0.6		V
VOH(V)	Quiet output, minimum dynamic V _{OH}		2.9		V
VIH(D)	High-level dynamic input voltage	2.31			V
V _{IL(D)}	Low-level dynamic input voltage			0.99	V

NOTE 6: Characteristics are for surface-mount packages only.


SN74LV8151 **10-BIT UNIVERSAL SCHMITT-TRIGGER BUFFER** WITH 3-STATE OUTPUTS SCES610 - OCTOBER 2004

operating characteristics, T_A = 25°C

	PARAMETER	TEST CONDITIONS	V _{CC}	TYP	UNIT
C _{pd}	Power dissipation capacitance	C. No lood f 1 MUIT	3.3 V	15	рF
		$C_L = No load, f = 1 MHz$	5 V	16	

SCES610 - OCTOBER 2004

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: $PRR \le 1$ MHz, $Z_O = 50 \Omega$, $t_f \le 3$ ns, $t_f \le 3$ ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. tPHL and tPLH are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ MSL rating/		Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74LV8151DGVR	Active	Production	TVSOP (DGV) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV8151
SN74LV8151DGVR.A	Active	Production	TVSOP (DGV) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV8151
SN74LV8151DW	Obsolete	Production	SOIC (DW) 24	-	-	Call TI	Call TI	-40 to 85	LV8151
SN74LV8151DWR	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV8151
SN74LV8151DWR.A	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV8151
SN74LV8151PW	Obsolete	Production	TSSOP (PW) 24	-	-	Call TI	Call TI	-40 to 85	LV8151
SN74LV8151PWR	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV8151
SN74LV8151PWR.A	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV8151
SN74LV8151PWR.B	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	-	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV8151
SN74LV8151PWRE4	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV8151

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

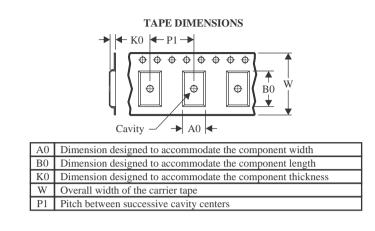
www.ti.com

PACKAGE OPTION ADDENDUM

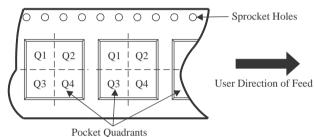
24-Jul-2025

and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



Texas


STRUMENTS

TAPE AND REEL INFORMATION

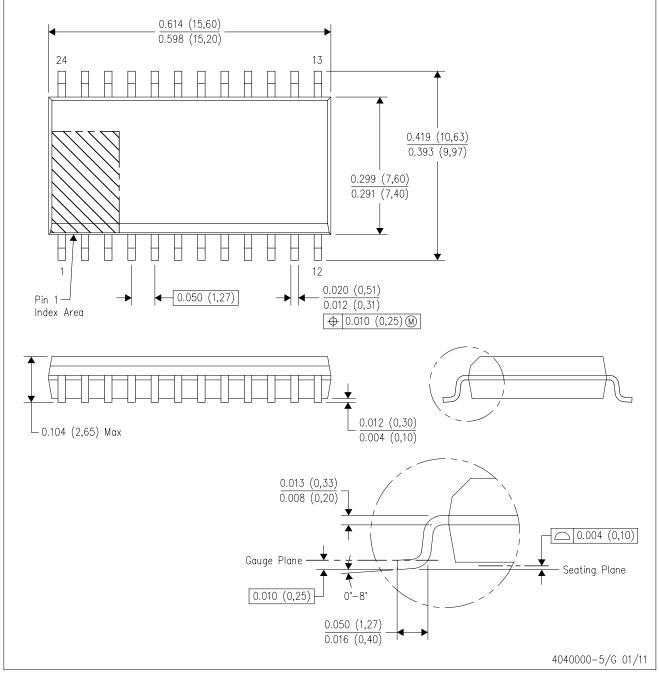
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	-	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV8151DGVR	TVSOP	DGV	24	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV8151DWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Jul-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV8151DGVR	TVSOP	DGV	24	2000	353.0	353.0	32.0
SN74LV8151DWR	SOIC	DW	24	2000	350.0	350.0	43.0

DW (R-PDSO-G24)

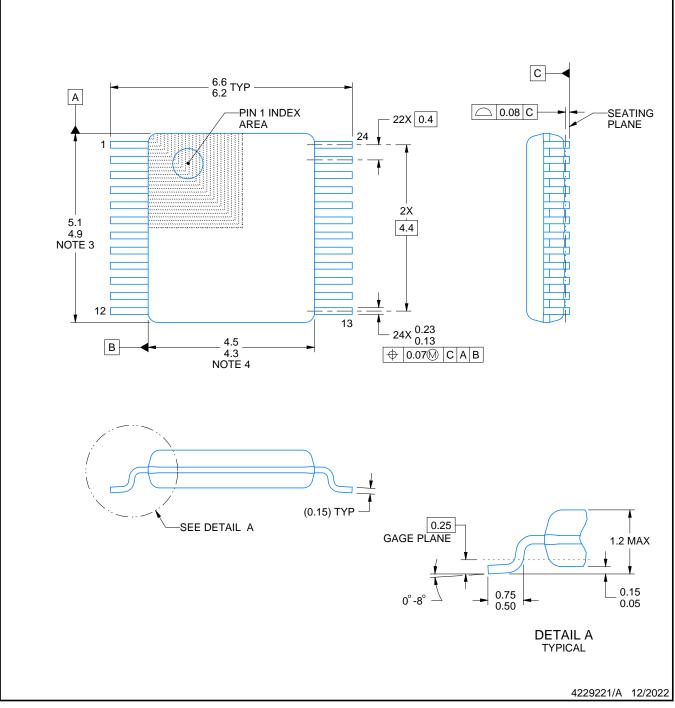
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AD.


DGV0024A

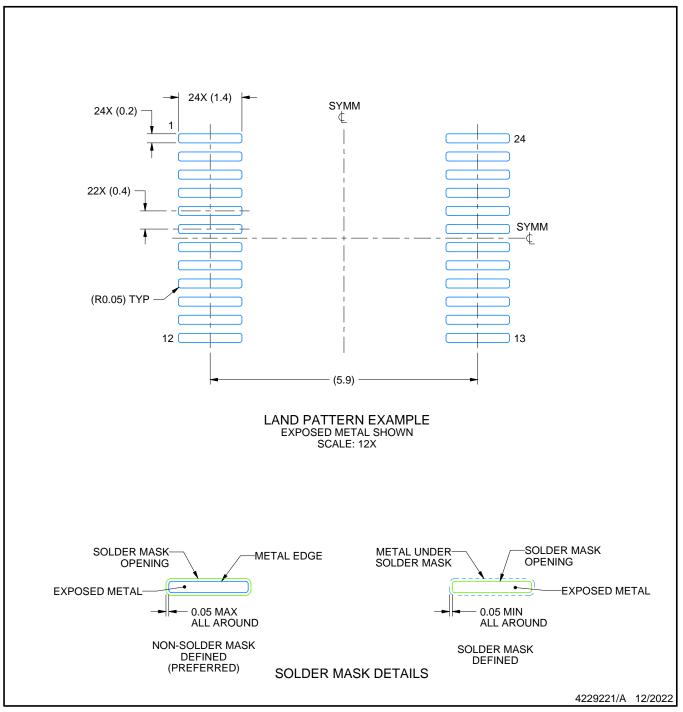
PACKAGE OUTLINE

TVSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



DGV0024A

EXAMPLE BOARD LAYOUT

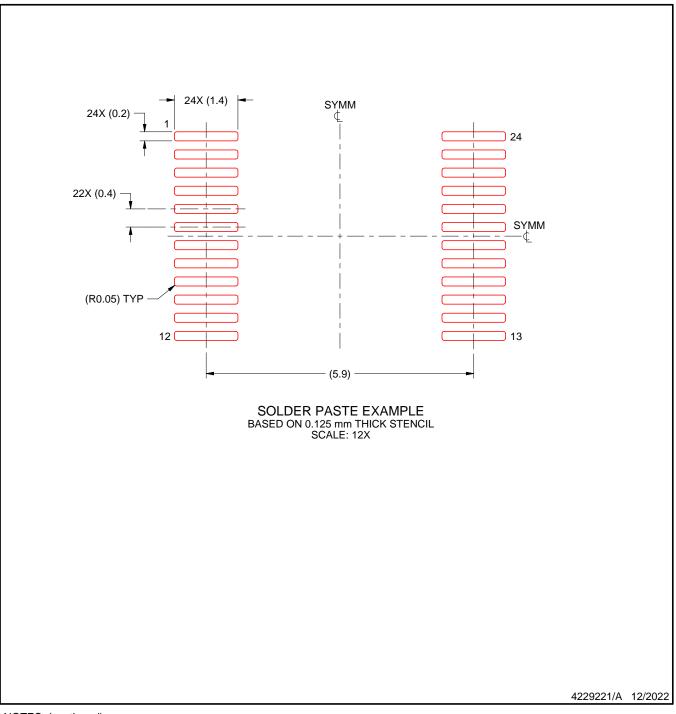
TVSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGV0024A

EXAMPLE STENCIL DESIGN

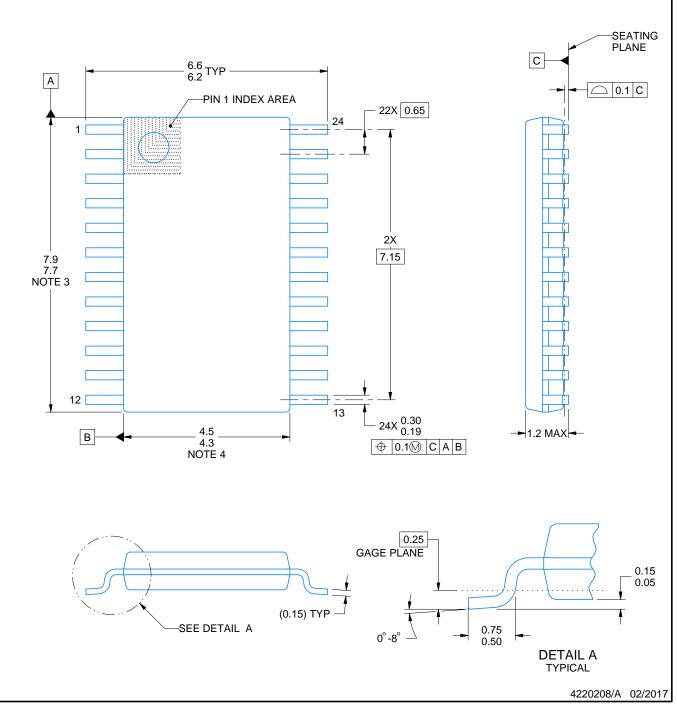
TVSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.


PW0024A

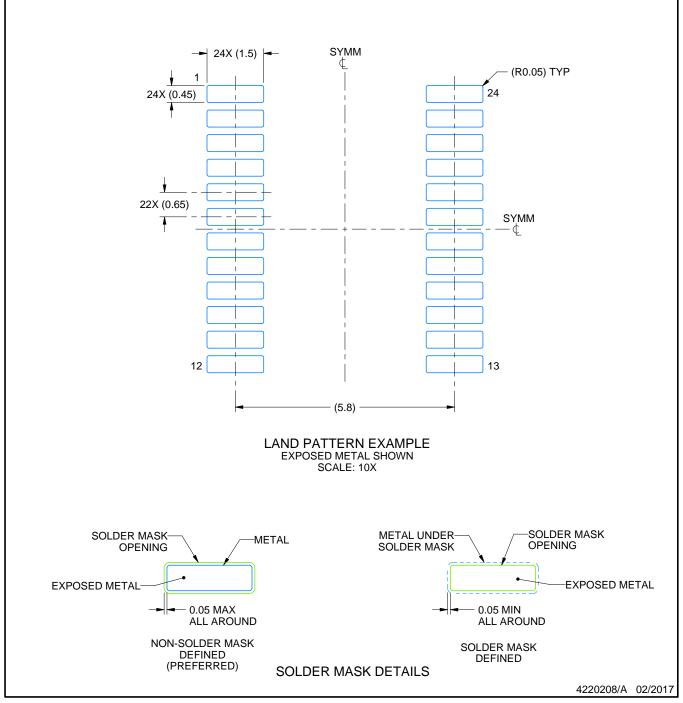
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0024A

EXAMPLE BOARD LAYOUT

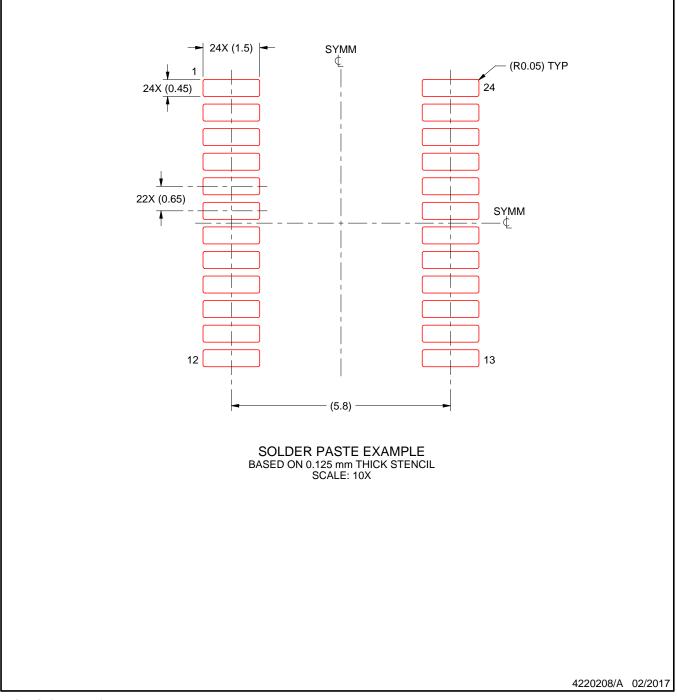
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0024A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated