

SN74LV4T125 SCLS749C - FEBRUARY 2014 - REVISED JUNE 2022

SN74LV4T125 Single Power Supply Quadruple Buffer Translator GATE With 3-State **Output CMOS Logic Level Shifter**

1 Features

- Single-Supply Voltage Translator at 5.0-V, 3.3-V, 2.5-V, and 1.8-V V_{CC}
- Operating Range of 1.8 V to 5.5 V
- **Up Translation**
 - 1.2 V⁽¹⁾ to 1.8 V at 1.8-V V_{CC}
 - 1.5 V⁽¹⁾ to 2.5 V at 2.5-V V_{CC}
 - 1.8 V⁽¹⁾ to 3.3 V at 3.3-V V_{CC}
 - 3.3 V to 5.0 V at 5.0-V V_{CC}
- **Down Translation**
 - 3.3 V to 1.8 V at 1.8-V V_{CC}
 - 3.3 V to 2.5 V at 2.5-V V_{CC}
 - 5.0 V to 3.3 V at 3.3-V V_{CC}
- Logic Output is Referenced to V_{CC}
- Characterized up to 50 MHz at 3.3-V V_{CC}
- 5.5 V Tolerance on Input Pins
- –40°C to 125°C Operating Temperature Range
- Pb-Free Packages Available: SC-70 (RGY)
 - $-3.5 \times 3.5 \times 1 \text{ mm}$
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Supports Standard Logic Pinouts
- Ioff Support Partial-Power-Down Mode Operation
- CMOS Output B Compatible with AUP125, LVC125 1

2 Applications

- **Tablet**
- Smartphone
- Personal Computer
- **Industrial Automotive**

3 Description

SN74LV4T125 is a low-voltage CMOS buffer gate that operates at a wider voltage range for portable, telecom, industrial, and automotive applications. The output level is referenced to the supply voltage and is able to support 1.8-V, 2.5-V, 3.3-V, and 5-V CMOS levels.

The input is designed with a lower threshold circuit to match 1.8-V input logic at V_{CC} = 3.3 V and can be used in 1.8 V to 3.3 V level-up translation. In addition, the 5-V tolerant input pins enable down translation (for example, 3.3 V to 2.5 V output at V_{CC} = 2.5 V). The wide V_{CC} range of 1.8 V to 5.5 V allows the generation of desired output levels to connect to controllers or processors.

The SN74LV4T125 device is designed with currentdrive capability of 8 mA to reduce line reflections, overshoot, and undershoot caused by high-drive outputs.

Device Information

PART NUMBER (1)	PACKAGE	BODY SIZE (NOM)
SN74LV4T125	PW (TSSOP, 14)	5.00 mm x 4.40 mm
SIN/4LV41125	RGY (VQFN, 14)	3.50 mm x 3.50 mm

For all available packages, see the orderable addendum at the end of the data sheet.

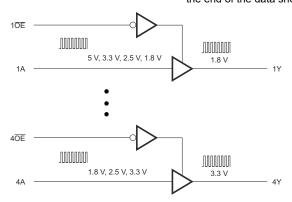
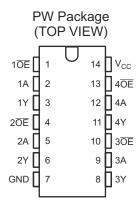


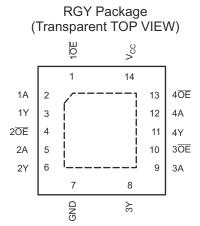
Figure 3-1. Simplified Application Diagram

Refer the V_{IH}/V_{IL} and output drive for lower V_{CC} condition.

Table of Contents

ıa		Contonts	
1 Features	1	8.2 Functional Block Diagram	10
2 Applications	1	8.3 Feature Description	10
3 Description	1	8.4 Device Functional Modes	11
4 Revision History	2	9 Applications and Implementation	12
5 Pin Configuration and Functions	3	9.1 Application Information	
Pin Functions		9.2 Typical Application	
6 Specifications	4	10 Power Supply Recommendations	13
6.1 Absolute Maximum Ratings	4	11 Layout	
6.2 ESD Ratings	4	11.1 Layout Guidelines	14
6.3 Recommended Operating Conditions	<mark>5</mark>	11.2 Layout Example	
6.4 Thermal Information		12 Device and Documentation Support	15
6.5 Electrical Characteristics	6	12.1 Documentation Support	15
6.6 Switching Characteristics	<mark>7</mark>	12.2 Receiving Notification of Documentation Upo	dates15
6.7 Noise Characteristics	8	12.3 Support Resources	
6.8 Operating Characteristics	8	12.4 Trademarks	
6.9 Typical Characteristics	8	12.5 Electrostatic Discharge Caution	15
7 Parameter Measurement Information	9	12.6 Glossary	
8 Detailed Description	10	13 Mechanical, Packaging, and Orderable	
8.1 Overview	10	Information	15
4 Revision History			
NOTE: Page numbers for previous revisions ma	y differ f	rom page numbers in the current version.	
Changes from Revision B (March 2014) to Re	evision (C (June 2022)	Page
		- \	


Changes from Revision B (March 2014) to Revision C (June 2022)	Page
I _{off} Support Partial-Power-Down Mode Operation to Features	1
 Updated the numbering format for tables, figures, and cross-references throughout the d 	
Added ESD Ratings table, Receiving Notification of Documentation Updates section, and section	• •
Changes from Revision A (March 2014) to Revision B (September 2014)	Page
Updated Features.	1
Updated Pin Functions table.	
 Added ESD Ratings table, Thermal Information table, Typical Characteristics section, Pin Functions section, Detailed Description section, Power Supply Recommendations section 	n, Layout section,
Receiving Notification of Documentation Updates section, and Community Resources se	
Updated Detailed Design Procedure section.	13
Changes from Revision * (February 2014) to Revision A (March 2014)	Page
Updated 1 page preview document to full version.	1


Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

5 Pin Configuration and Functions

Pin Functions

P	IN	TYPE (1)	DESCRIPTION
NO.	NAME	ITPE("	DESCRIPTION
1	1 OE	I	Enable 1
2	1A	I	Input 1
3	1Y	0	Output 1
4	2 OE	I	Enable 2
5	2A	I	Input 2
6	2Y	0	Output 2
7	GND	_	Ground Pin
8	3Y	0	Output 3
9	3A	I	Input 3
10	3 OE	I	Enable 3
11	4Y	0	Output 4
12	4A	I	Input 4
13	4 OE	I	Enable 4
14	V _{CC}	_	Power Pin

⁽¹⁾ I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

	-		MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7.0	V
VI	Input voltage range ⁽²⁾		-0.5	7.0	V
\/	Voltage range applied to a	Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾			V
Vo	Voltage range applied to any output in the high or low state ⁽²⁾			V _{CC} + 0.5	v
I _{IK}	Input clamp current	V ₁ < 0		-20	mA
I _{OK}	Output clamp current	$V_O < 0$ or $V_O > V_{CC}$		±50	mA
Io	Continuous output current			±35	mA
	Continuous current through	Continuous current through V _{CC} or GND			
TJ	Junction temperature	Junction temperature			°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge	Machine Model (MM), per JEDEC specification	±200	V
		Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 (2)	±1000]

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		1.6	5.5	V
VI	Input voltage		0	5.5	V
\ <u>/</u>	Output voltage	High or Low State	0	V _{CC}	V
Vo	Output voltage	H-Z	0	V _{CC}	V
		V _{CC} = 1.8 V		-3	
	High level output current	V _{CC} = 2.5 V		-5	mΛ
Іон	High-level output current	V _{CC} = 3.3 V		-8	mA
		V _{CC} = 5.0 V		-16	
	Law law law day a sumant	V _{CC} = 1.8 V		3	
		V _{CC} = 2.5 V		5	mA
I _{OL}	Low-level output current	V _{CC} = 3.3 V		8	ША
		V _{CC} = 5.0 V		16	
		V _{CC} = 1.6 V to 2.0 V		20	
A 4 / A > .	Input transition vice or fell rate	V _{CC} = 2.3 V to 2.7 V		20	ns/V
Δt/Δv	Input transition rise or fall rate	V _{CC} = 3 V or 3.6 V		20	IIS/V
		V _{CC} = 4.5 V to 5.0 V		20	
T _A	Operating free-air temperature		-40	125	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

6.4 Thermal Information

		SN74L	SN74LV4T125		
	THERMAL METRIC ⁽¹⁾	PW	RGY	UNIT	
		14 PINS	14 PINS		
R _{0JA}	Junction-to-ambient thermal resistance	126.9	52.9		
R _{0JCtop}	Junction-to-case (top) thermal resistance	54.2	67.8		
R _{θJB}	Junction-to-board thermal resistance	68.6	29.0	°C/\\	
ΨЈТ	Junction-to-top characterization parameter	7.5	2.6	°C/W	
ΨЈВ	Junction-to-board characterization parameter	68.0	29.1		
R _{0JCbot}	Junction-to-case (bottom) thermal resistance	_	9.3		

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETED	TEST SOURITIONS	V.	T _A = 25°C MIN TYP MAX		$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ MIN MAX		
	PARAMETER	TEST CONDITIONS	V _{cc}					UNIT
			V _{CC} = 1.65 V to 1.9 V	0.95		1		
	High-level input		V _{CC} = 2.3 V to 2.7 V	1.1		1.2		.,
V _{IH}	voltage		V _{CC} = 3 V to 3.6 V	1.3		1.35		V
			V _{CC} = 4.5 V to 5.0 V	2		2		
			V _{CC} = 1.65 V to 1.9 V		0.5	5	0.5	
	Low-level input		V _{CC} = 2.3 V to 2.77 V		0.	7	0.6	.,
V _{IL}	voltage		V _{CC} = 3 V to 3.6 V		0.8	5	0.75	V
			V _{CC} = 4.5 V to 5.5 V		0.9	9	0.85	
		I _{OH} = –50 μA	V _{CC} = 1.65 V to 5.5 V	V _{CC} - 0.1		V _{CC} - 0.1		V
		I _{OH} = –2 mA	V _{CC} = 1.65 V	1.4		1.35		V
		I _{OH} = -3 mA	V _{CC} = 2.3 V	2.05		2.0		V
	High-level output	I _{OH} = –5 mA		2.7		2.6		
/ _{OH}	voltage	I _{OH} = -8 mA	V _{CC} = 3.0 V	2.6		2.5		V
		I _{OH} = -8 mA		3.7		3.6		
		I _{OH} = -16 mA	V _{CC} = 4.5 V	3.8		3.7		V
		I _{OH} = -16 mA	V _{CC} = 5.0 V	4.4		4.3		V
		I _{OL} = 50 μA	V _{CC} = 1.65 V to 5.5 V		0.	1	0.1	V
			V _{CC} = 1.65 V		0.	1	0.1	
		I _{OH} = 2 mA	V _{CC} = 1.8 V		0.:	2	0.3	V
			V _{CC} = 2.3 V		0	2	0.3	
		I _{OH} = 3 mA	V _{CC} = 2.5 V		0.2	5	0.3	V
oL/	Low-level output	I _{OH} = 5 mA			0.3	5	0.4	
OL	voltage	I _{OH} = 8 mA	V _{CC} = 3.0 V		0.4	1	0.45	V
		I _{OH} = 8 mA	V _{CC} = 3.3 V		0.4	5	0.5	V
		I _{OH} = 8 mA			0.5)	0.55	
		I _{OH} = 16 mA	V _{CC} = 4.5 V		0.5	5	0.55	V
		I _{OH} = 16 mA	V _{CC} = 5.0 V		0.5	5	0.55	V
ı	Input leakage current	V _I =0 V or V _{CC}	V _{CC} = 0 V, 1.8 V, 2.5 V, 3.3 V, 5.5 V		±0.	1	±1	μA
			V _{CC} = 5.0 V			2	20	
	Static supply	$V_I = 0 \text{ V or } V_{CC}$	V _{CC} = 3.3 V			2	20	
CC	current	I _O = 0; open on loading	V _{CC} = 2.5 V			2	20	μA
			V _{CC} = 1.8 V			2	20	
M	Additional static	One input at 0.3 V or 3.4 V Other inputs at 0 or V _{CC} , I _O = 0	V _{CC} = 5.5 V		1.3		1.5	шЛ
Δl _{CC}	supply current	One input at 0.3 V or 1.1 V Other inputs at 0 or V_{CC} , $I_O = 0$	V _{CC} = 1.8 V		1.5		1.5	μA
ΟZ	Off-state (High Impedance State) Output Current	V _O = V _{CC} or GND	V _{CC} = 5.5 V		±0.2	5	±2.5	μA
off	Partial power down current	V _O or V _I = 0 to 5.5 V	V _{CC} = 0 V		0.	5	5	μΑ
) _i	Input capacitance	V _I = V _{CC} or GND	V _{CC} = 3.3 V		1.6	1.6		pF
Ç ₀	Output capacitance	V _O = V _{CC} or GND	V _{CC} = 3.3 V		4.8	4.8		pF

6.6 Switching Characteristics

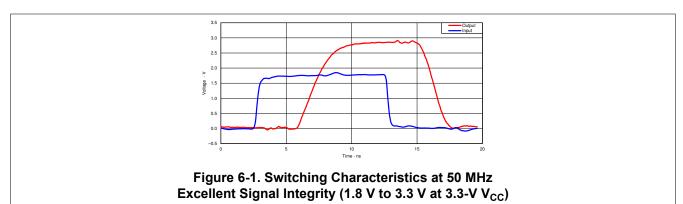
over operating free-air temperature range (unless otherwise noted) (see Figure 7-1)

PARAMETER	FROM	то	FREQUENCY	V	CL		T _A = 25°C		T _A = -	65°C to 12	5°C	UNIT				
PARAMETER	(INPUT)	(OUTPUT)	(TYP)	V _{cc}	C _L	MIN	TYP	MAX	MIN	TYP	MAX	UNII				
				5.0 V	15 pF		2.8	3.2		3	3.5					
			DC to 50 MHz	3.0 V	30 pF		3	3.5		3	4.5	ns				
			DC to 50 MHz	3.3 V	15 pF		4	4.5		5	5.5	115				
	Any In	Y		3.5 V	30 pF		5	5.5		5.5	6.5					
pd	Ally III	'	DC to 50 MHz	2.5 V	15 pF		5.5	6.5		7	7.5	ns				
			DC to 30 WH IZ	2.5 V	30 pF		6.5	7		7.5	8.5	115				
			DC to 30 MHz	1.8 V	15 pF		10	11		11	12	ns				
			DC 10 30 WHZ	1.0 V	30 pF		11	12		12.5	13	113				
				5.0 V	15 pF		3.5	4		3.5	4					
			DC to 50 MHz	3.0 V	30 pF		3.8	4.2		4	4.5	ns				
			DC 10 30 WH 12	3.3 V	15 pF		5	5.8		5.8	6.1	113				
	ŌĒ	Y		3.5 V	30 pF		5.5	6		5.7	6.5					
PZH		'	DC to 50 MHz	2.5 V	15 pF		7.5	8		8.5	9	ns				
			DC to 30 WHZ	2.5 V	30 pF		8	8.5		9	9.5	113				
			DC to 30 MHz	1.8 V	15 pF		14.5	15		15.5	16.5	ns				
			DC to 30 WHZ	1.0 V	30 pF		15.5	16		16	17	113				
	ŌĒ					5.0 V	15 pF		3	3.5		3.5	4			
		Y	DC to 50 MHz	3.0 V	30 pF		3.5	4		4	4.5	ns				
t				33V	15 pF		5.3	5.6		6	6.2	119				
				0.0 V	30 pF		5.8	6.2		7	7.5					
PZL				17 25 V	15 pF		8	8.5		9	9.5	ns				
				2.5 V	30 pF		9	9.5		10.5	11					
				DC to 30 MHz 1 8 V	15 pF		17	17.5		18	18.5					
				DC to 30 WHZ	1.0 V	30 pF		18	18.5		19	20	113			
								5.0 V	15 pF		3	3.5		3.5	4	
			DC to 50 MHz		30 pF		3.5	4		4	4.5	ns				
				DC 10 30 WI 12	3.3 V	15 pF		3.5	4		4.5	5	115			
	ŌĒ	Y		3.5 V	30 pF		5	6		6.5	7					
PHZ	OL	'	DC to 50 MHz	2.5 V	15 pF		5.5	6		6	6.5	ns				
			DC to 30 Wil 12	2.5 V	30 pF		7.5	8		8	9	115				
			DC to 30 MHz	1.8 V	15 pF		7.5	8		8	8.5	ns				
			DC to 30 Wil iz	1.0 V	30 pF		11	12		12	13	115				
				5.0 V	15 pF		2	2.5		2	2.7					
			DC to 50 MHz	J.0 V	30 pF		2	3		2	3.2	ns				
			DC 10 30 WI 12	3.3 V	15 pF		2.3	2.8		2.5	3.2	115				
	ŌĒ	Y		3.5 V	30 pF		2.8	3.2		3.3	4					
PLZ	J.	'	DC to 50 MHz	2.5 V	15 pF		3.3	3.8		3.8	4.2	ns				
			DO 10 30 WII 12	2.5 V	30 pF		4	4.3		4.2	5	119				
			DC to 30 MHz	1.8 V	15 pF		5	5.5		5	5.7	ne				
			DO 10 30 IVITIZ	1.0 V	30 pF		6.5	7		7	8.5	ns				
sk	Any In	Y	DC to 50 MHz	5.0 V to	15 pF				1		1	ns				
on.	Ally III		DC to 20 MU	2.5 V	15 5				•							
			DC to 30 MHz	1.8 V	15 pF											

6.7 Noise Characteristics

 $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}^{(1)}$

	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.4	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.3	-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		3		V
V _{IH(D)}	High-level dynamic input voltage	2.31			V
V _{IL(D)}	Low-level dynamic input voltage			0.99	V

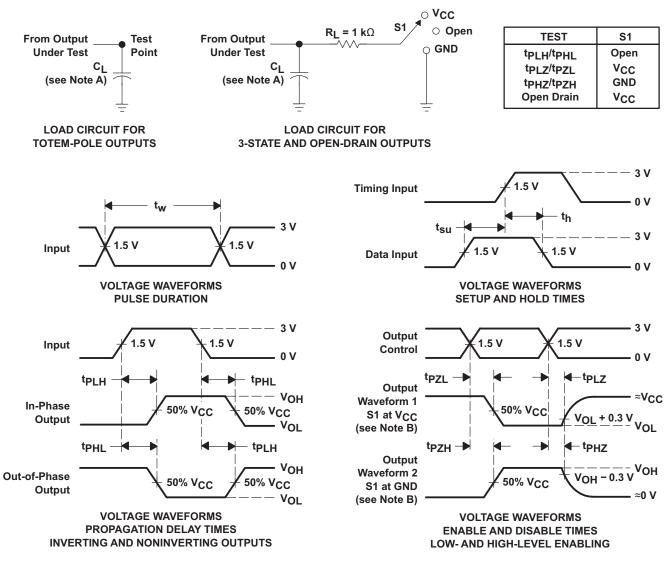

(1) Characteristics are for surface-mount packages only.

6.8 Operating Characteristics

 V_{CC} = 5 V, T_A = 25°C

PARAMETER		TEST CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance	C _L = 50 pF, f = 10 MHz	16	pF

6.9 Typical Characteristics



Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

7 Parameter Measurement Information

7.1

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 7-1. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

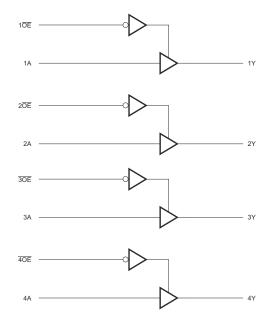
The SN74LVxTxx family was created to allow up- or down-voltage translation with only one power rail. The family has over-voltage tolerant inputs that allow down translation from up to 5.5 V to the V_{CC} level that can be as low as 1.8 V. The family SN74LVxTxx also has a lowered switching threshold that allows it to translate up to the V_{CC} level that can be as high as 5.5 V.

8.1.1 Translating Down

Using these parts to translate down is very simple. Because the inputs are tolerant to 5.5 V at any valid V_{CC} , they can be used to down translate. The input can be any level above V_{CC} up to 5.5 V and the output will equal the V_{CC} level, which can be as low as 1.8 V. One important advantage to down translating using this part is that the I_{CC} current will remain less than or equal to the specified value.

Down translation possibilities with SN74LVxTxx:

- With 1.8-V V_{CC} from 2.5 V, 3.3 V, or 5 V down to 1.8 V.
- With 2.5-V V_{CC} from 3.3 V or 5 V down to 2.5 V.
- With 3.3-V V_{CC} from 5 V down to 3.3 V.


8.1.2 Translating Up

Using the SN74LVxTxx family to translate up is very simple. The input switching threshold is lowered so the high level of the input voltage can be much lower than a typical CMOS V_{IH} . For instance, If the V_{CC} is 3.3 V then the typical CMOS switching threshold would be V_{CC} / 2 or 1.65 V. This means the input high level must be at least $V_{CC} \times 0.7$ or 2.31 V. On the LVxT devices the input threshold for 3.3-V V_{CC} is approximately 1 V. This allows a signal with a 1.8-V V_{IH} to be translated up to the V_{CC} level of 3.3 V.

Up translation possibilities with SN74LVxTxx:

- With 2.5-V V_{CC} from 1.8 V to 2.5 V.
- With 3.3-V V_{CC} from 1.8 V or 2.5 V to 3.3 V.
- With 5-V V_{CC} From 2.5 V or 3.3 V to 5 V.

8.2 Functional Block Diagram

8.3 Feature Description

This part is a single supply buffer that is capable up or down translation. The output will equal V_{CC} while the input can vary from 1.2 V to 5.5 V.

Up Translation Mode:

- 1.2 V to 1.8 V at 1.8-V V_{CC}
- 1.5 V to 2.5 V at 2.5-V V_{CC}
- 1.8 V to 3.3 V at 3.3-V V_{CC}
- 3.3 V to 5.0 V at 5.0-V V_{CC}

Down Translation Mode:

- 3.3 V to 1.8 V at 1.8-V V_{CC}
- 3.3 V to 2.5 V at 2.5-V V_{CC}
- 5.0 V to 3.3 V at 3.3-V V_{CC}

8.4 Device Functional Modes

This device performs the function of a buffer where input logic level equals the output logic level, while providing buffering and drive to the output. The SN74LV4T125 device will also translate voltages up or down while performing this function.

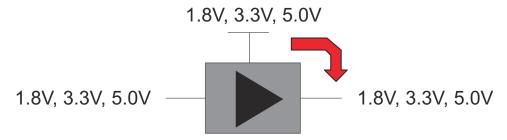
Table 8-1. Function Table (Each Buffer)

INPL	OUTPUT (2)	
ŌĒ	Α	Y
L	Н	Н
L	L	L
Н	Х	Z

Table 8-2. Supply $V_{CC} = 3.3 \text{ V}$

INPI (Lower Le	OUTPUT (V _{CC} CMOS)			
Α	Y			
V _{IH} (min)	V _{OH} (min) = 2.9 V			
V _{IL} (max	V _{OL} (max) = 0.2 V			

- (1) H = High Voltage Level, L = Low Voltage Level, X = Do not Care, Z = High Impedance
- (2) H = Driving High, L = Driving Low, Z = High Impedance State


9 Applications and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

Based upon the lower-threshold circuit design of the LVxT family, the LVxT family also supports level translation. For level translation up and down, the LVxT family requires only a single power supply.

Standard Logic Mode 1.8V, 3.3V

9.2 Typical Application

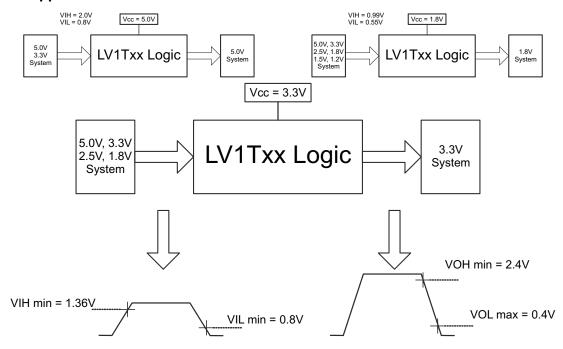


Figure 9-1. Switching Thresholds for 1.8 V to 3.3 V Translation

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. The input threshold levels are lowered to allow for up translation. At 5 V the device has equivalent TTL input levels.

9.2.2 Detailed Design Procedure

- 1. Recommended input conditions:
 - Rise time and fall time specifications. See (Δt/ΔV) in Recommended Operating Conditions table.
 - Specified high and low levels. See (V_{IH} and V_{IL}) in *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommend output conditions:
 - Load currents should not exceed 35 mA per output and 70 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

9.2.3 Application Curves

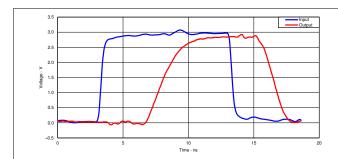


Figure 9-2. Switching Characteristics at 50 MHz Excellent Signal Integrity (3.3 V to 3.3 V at 3.3-V V_{CC})

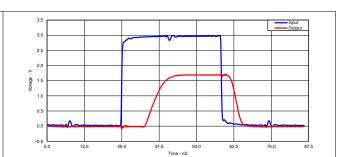


Figure 9-3. Switching Characteristics at 15 MHz Excellent Signal Integrity (3.3 V to 1.8 V at 1.8-V V_{CC})

10 Power Supply Recommendations

The power supply can be any voltage between the Min and Max supply voltage rating located in the *Recommended Operating Conditions*.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended. If there are multiple V_{CC} pins, then 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified in Figure 11-1 are the rules that must be observed under all circumstances.

All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient.

It is generally acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin it will disable the outputs section of the part when asserted. This will not disable the input section of the IOs so they also cannot float when disabled.

11.2 Layout Example

Figure 11-1. Layout Diagram

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Additional Product Selection

DEVICE	PACKAGE	DESCRIPTION
SN74LV1T00	DCK, DBV	2-Input Positive-NAND Gate
SN74LV1T02	DCK, DBV	2-Input Positive-NOR Gate
SN74LV1T04	DCK, DBV	Inverter Gate
SN74LV1T08	DCK, DBV	2-Input Positive-AND Gate
SN74LV1T34	DCK, DBV, DRL	Single Buffer Gate
SN74LV1T14	DCK, DBV	Single Schmitt-Trigger Inverter Gate
SN74LV1T32	DCK, DBV	2-Input Positive-OR Gate
SN74LV1T86	DCK, DBV	Single 2-Input Exclusive-Or Gate
SN74LV1T125	DCK, DBV, DRL	Single Buffer Gate with 3-state Output
SN74LV1T126	DCK, DBV, DRL	Single Buffer Gate with 3-state Output
SN74LV4T125	RGY, PW	Quadruple Bus Buffer Gate With 3-State Outputs

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 24-Jul-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74LV4T125PWR	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	LV4T125
SN74LV4T125PWR.A	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV4T125
SN74LV4T125PWR.B	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	-	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV4T125
SN74LV4T125RGYR	Active	Production	VQFN (RGY) 14	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVT125
SN74LV4T125RGYR.A	Active	Production	VQFN (RGY) 14	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVT125
SN74LV4T125RGYRG4	Active	Production	VQFN (RGY) 14	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVT125
SN74LV4T125RGYRG4.A	Active	Production	VQFN (RGY) 14	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVT125

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

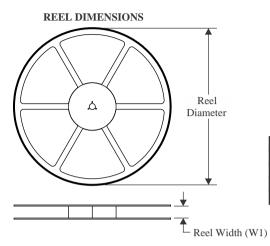
www.ti.com 24-Jul-2025

OTHER QUALIFIED VERSIONS OF SN74LV4T125:

Automotive: SN74LV4T125-Q1

● Enhanced Product : SN74LV4T125-EP

NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

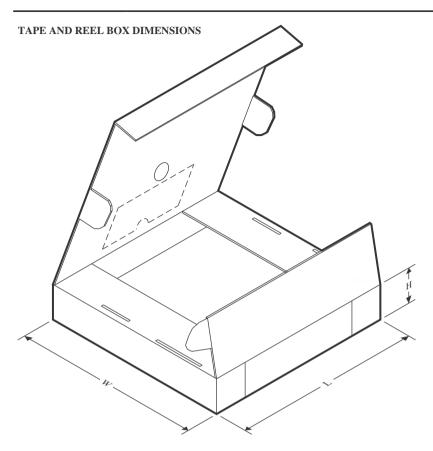

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2025

TAPE AND REEL INFORMATION

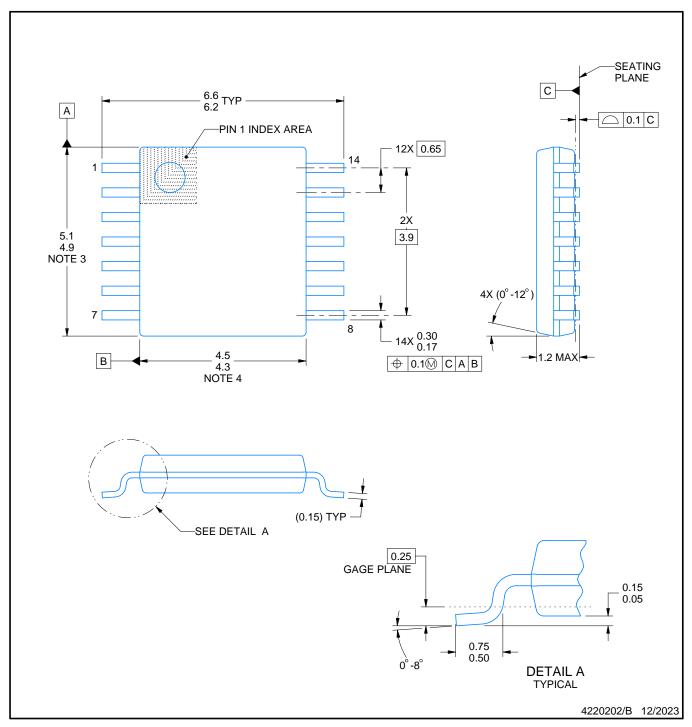
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV4T125PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV4T125PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV4T125RGYR	VQFN	RGY	14	3000	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1
SN74LV4T125RGYRG4	VQFN	RGY	14	3000	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1

www.ti.com 3-Aug-2025

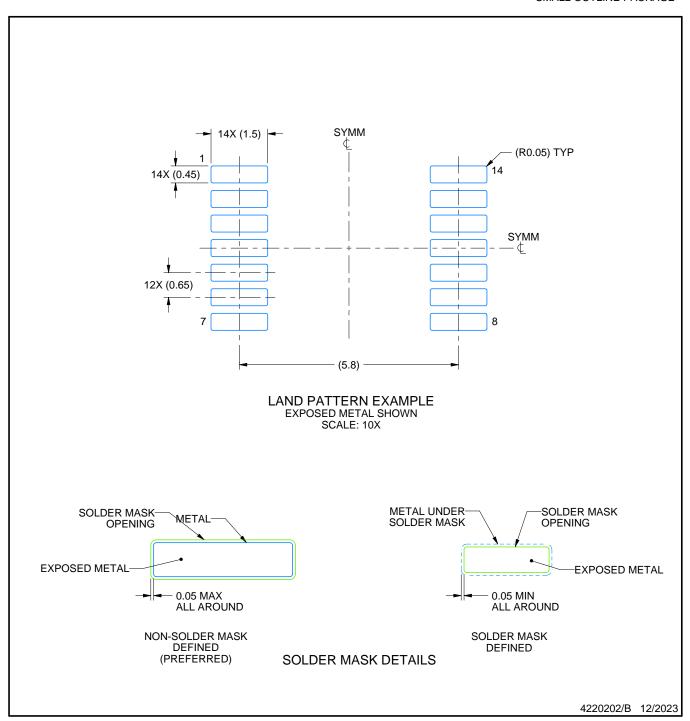


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV4T125PWR	TSSOP	PW	14	2000	353.0	353.0	32.0
SN74LV4T125PWR	TSSOP	PW	14	2000	356.0	356.0	35.0
SN74LV4T125RGYR	VQFN	RGY	14	3000	360.0	360.0	36.0
SN74LV4T125RGYRG4	VQFN	RGY	14	3000	360.0	360.0	36.0

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

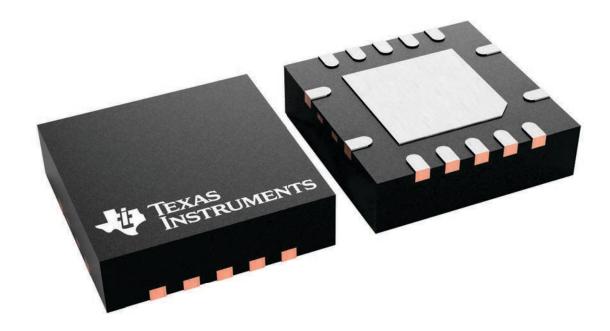

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

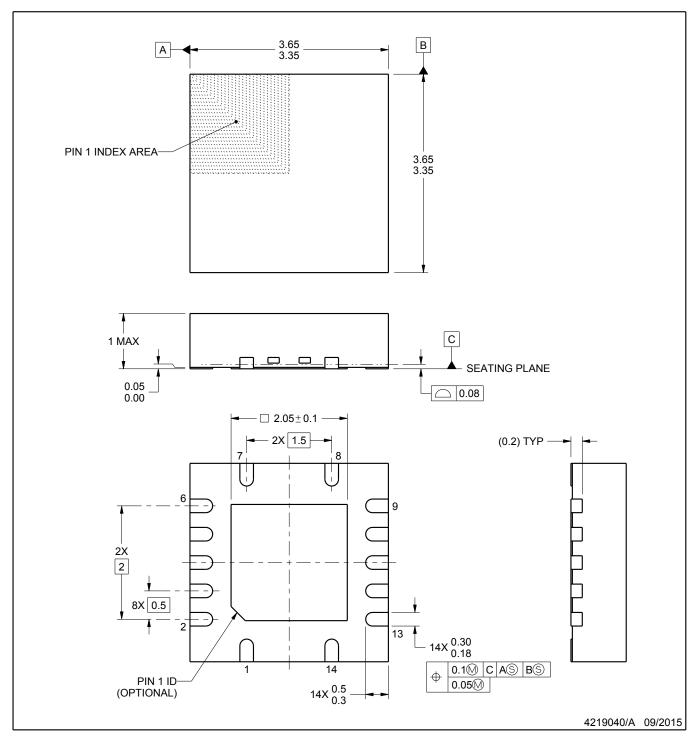
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

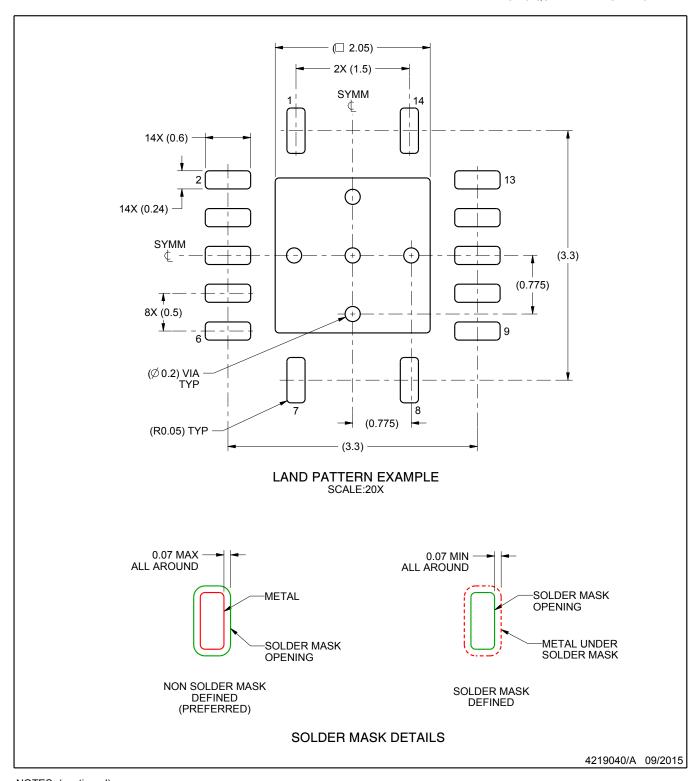

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

3.5 x 3.5, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

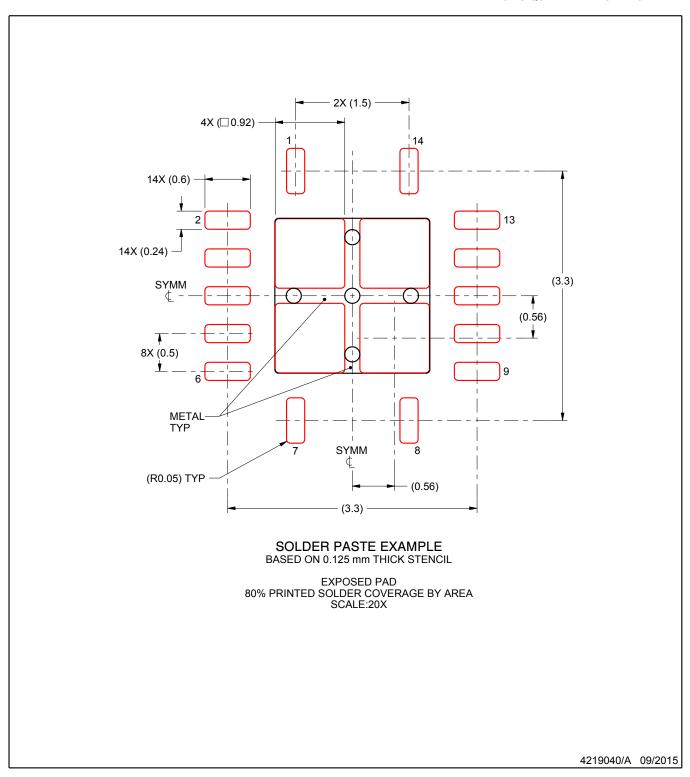
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated