

SN74LS07

SDLS021D -MAY 1990-REVISED APRIL 2016

SN74LS07 Hex Buffers and Drivers With Open-Collector High-Voltage Outputs

Features

- Convert TTL Voltage Levels to MOS Levels
- High Sink-Current Capability
- Input Clamping Diodes Simplify System Design
- Open-Collector Driver for Indicator Lamps and Relays

2 Applications

- **AV Receivers**
- Audio Docks: Portable
- Blu-ray Players and Home Theaters
- MP3 Players or Recorders
- Personal Digital Assistants (PDA)
- Power: Telecom/Server AC/DC Supply: Single Controller: Analog and Digital
- Solid-State Drives (SSD): Client and Enterprise
- TVs: LCD, Digital, and High-Definition (HDTV)
- Tablets: Enterprise
- Video Analytics: Server
- Wireless Headsets, Keyboards, and Mice

3 Description

These hex buffers and drivers feature high-voltage open-collector outputs to interface with high-level circuits or for driving high-current loads. They are also characterized for use as buffers for driving TTL inputs. The SN74LS07 devices have a rated output voltage of 30 V. The maximum sink current is 40 mA.

These circuits are compatible with most TTL families. Inputs are diode-clamped to minimize transmissionline effects, which simplifies design. Typical power dissipation is 140 mW, and average propagation delay time is 12 ns.

Device Information(1)

PART NUMBER	PACKAGE (PINS)	BODY SIZE (NOM)
SN74LS07D	SOIC (14)	8.65 mm × 3.90 mm
SN74LS07DB	SSOP (14)	6.20 mm × 5.30 mm
SN74LS07N	PDIP (14)	19.30 mm × 6.35 mm
SN74LS07NS	SO (14)	10.30 mm × 5.30 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

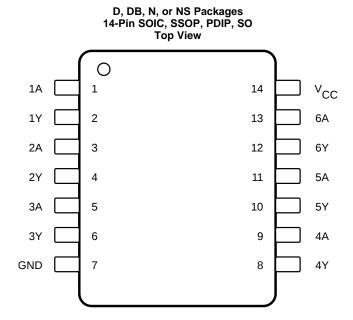
Logic Diagram (Positive Logic)

Copyright © 2016 Texas Instruments Incorporated

Table of Contents

1 2	Features	9	8.3 Feature Description
3	Description	•	9.1 Application Information
4 5	Revision History		9.2 Typical Application
6	Specifications4	10	Power Supply Recommendations
	6.1 Absolute Maximum Ratings 4	11	Layout 10
	6.2 ESD Ratings		11.1 Layout Guidelines 1
	6.3 Recommended Operating Conditions		11.2 Layout Example 1
	6.4 Thermal Information	12	Device and Documentation Support 1
	6.5 Electrical Characteristics		12.1 Documentation Support 1
	6.6 Switching Characteristics		12.2 Community Resource
	6.7 Typical Characteristics		12.3 Trademarks 1
7	Parameter Measurement Information 6		12.4 Electrostatic Discharge Caution 1
8	Detailed Description		12.5 Glossary
U	8.1 Overview	13	Mechanical, Packaging, and Orderable
	8.2 Functional Block Diagram 7		Information 1

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (February 2004) to Revision D

Page

5 Pin Configuration and Functions

Pin Functions

	PIN	1/0	DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1	1A	I	Input 1
2	1Y	0	Output 1
3	2A	I	Input 2
4	2Y	0	Output 2
5	3A	1	Input 3
6	3Y	0	Output 3
7	GND	_	Ground pin
8	4Y	0	Output 4
9	4A	I	Input 4
10	5Y	0	Output 5
11	5A	1	Input 5
12	6Y	0	Output 6
13	6A	I	Input 6
14	V _{CC}	_	Power pin

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
V_{CC}	Supply voltage		7	٧
VI	Input voltage ⁽²⁾		7	V
Vo	Output voltage ⁽²⁾⁽³⁾		30	V
TJ	Operating virtual junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to GND.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	\/
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	4.75	5	5.25	V
V _{IH}	High-level input voltage	2			V
V _{IL}	Low-level input voltage			0.8	V
V _{OH}	High-level output voltage			30	V
I _{OL}	Low-level output current			40	mA
T _A	Operating free-air temperature	0		70	°C

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

6.4 Thermal Information

			SN7	4LS07		
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DB (SSOP)	N (PDIP)	NS (SO)	UNIT
		14 PINS	14 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	85.2	97.4	50.2	82.8	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	43.5	49.8	37.5	40.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	39.7	44.5	30	41.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	10.9	16.5	22.3	12.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	39.4	44	29.9	41.1	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽³⁾ This is the maximum voltage that should be applied to any output when it is in the off state.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST	CONDITIONS ⁽¹⁾	MIN	TYP	MAX	UNIT
V _{IK}	$V_{CC} = MIN, I_I = -12 \text{ mA}$				-1.5	V
I _{OH}	V _{CC} = MIN, V _{IH} = 2 V	V _{OH} = 30 V			0.25	mA
V	\/ MINI \/ 0.0 \/	I _{OL} = 16 mA			0.4	V
V_{OL}	$V_{CC} = MIN, V_{IL} = 0.8 V$	$I_{OL} = MAX^{(2)}$			0.7	V
I _I	$V_{CC} = MAX, V_I = 7 V$				1	mA
I _{IH}	$V_{CC} = MAX, V_I = 2.4 V$				20	μΑ
I_{IL}	$V_{CC} = MAX$, $V_I = 0.4 V$				-0.2	mA
I _{CCH}	V _{CC} = MAX				14	mA
I _{CCL}	V _{CC} = MAX				45	mA

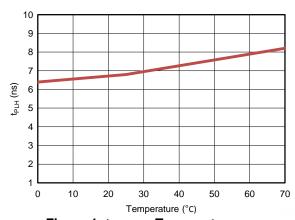
⁽¹⁾ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

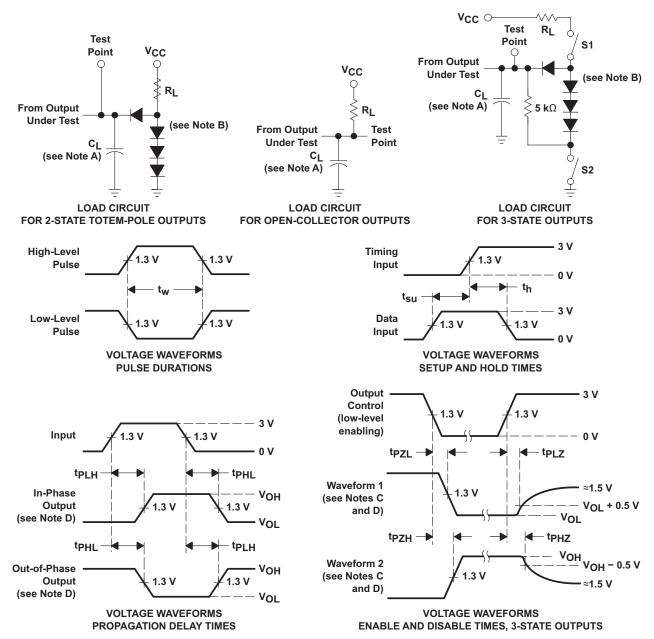
6.6 Switching Characteristics

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C} \text{ (see Figure 2)}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	۸	V	D 440 O C 45 pF		6	10	
t _{PHL}	A	Ţ	$R_L = 110 \Omega, C_L = 15 pF$		19	30	ns

6.7 Typical Characteristics




Figure 1. t_{PLH} vs. Temperature

Copyright © 1990–2016, Texas Instruments Incorporated Product Folder Links: SN74LS07

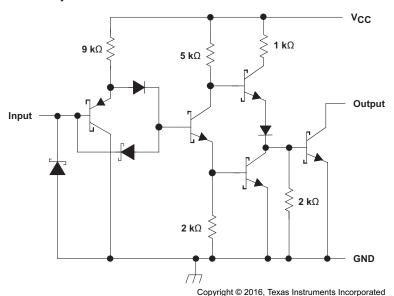
⁽²⁾ $I_{OL} = 40 \text{ mA}$

TEXAS INSTRUMENTS

7 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. All diodes are 1N3064 or equivalent.
- C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- D. S1 and S2 are closed for t_{PLH}, t_{PHL}, t_{PHZ}, and t_{PLZ}; S1 is open and S2 is closed for t_{PZH}; S1 is closed and S2 is open for t_{PZI}.
- E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
- F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50~\Omega$, $t_f \leq$ 1.5 ns, $t_f \leq$ 2.6 ns.
- G. The outputs are measured one at a time, with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms



8 Detailed Description

8.1 Overview

The outputs of the SN74LS07 device are open-collector and can be connected to other open-collector outputs to implement active-low wired-OR or active-high wired-AND functions. The maximum sink current for the SN74LS07 is 40 mA.

Inputs can be driven from 2.5-V, 3.3-V (LVTTL), or 5-V (CMOS) devices. This feature allows the use of this device as translators in a mixed-system environment.

Resistor values shown are nominal.

Figure 3. Schematic (Gate)

8.2 Functional Block Diagram

Copyright © 2016 Texas Instruments Incorporated

8.3 Feature Description

- Allows for up translation
 - Inputs accept voltages to 5.25 V
 - Outputs accept voltages to 30 V
- High Sink-Current Capability
 - Up to 40 mA

8.4 Device Functional Modes

Table 1 lists the functions of this device.

Table 1. Function Table

INPUT A	OUTPUT Y
Н	Hi-Z
L	L

Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LS07 device is a high-drive, open-drain CMOS device that can be used for a multitude of buffer-type functions. It can produce 40 mA of drive current at 5 V. Therefore, this device is ideal for driving multiple inputs. The inputs are 5.25-V tolerant and outputs are 30-V tolerant.

9.2 Typical Application

Multiple channels of the SN74LS07 device can be used to create a positive AND logic function, as shown in Figure 4. Additionally, the SN74LS07 device can be used to drive an LED by sinking up to 40 mA, which may be more than the previous stage can sink.

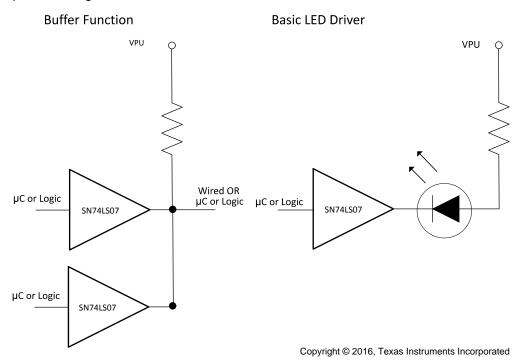


Figure 4. Typical Application Diagram

9.2.1 Design Requirements

Ensure that the inputs are in a known state as defined by VIH and VIL noted in Recommended Operating Conditions, or else the outputs may be in an unknown state.

Product Folder Links: SN74LS07

9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - For specified high and low level, see V_{IH} and V_{IL} in Recommended Operating Conditions.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.25 V.
- 2. Recommend Output Conditions
 - Load currents must not exceed 40 mA per output.
 - Outputs must not be pulled above 30 V.

Submit Documentation Feedback

Typical Application (continued)

9.2.3 Application Curve

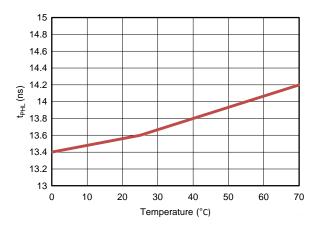


Figure 5. t_{PHL} vs Temperature

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating indicated in *Recommended Operating Conditions*.

Each V_{CC} pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor; if there are multiple V_{CC} pins, then TI recommends either a 0.01- μ F or 0.022- μ F capacitor for each power pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1- μ F and a 1- μ F capacitor are commonly used in parallel. The bypass capacitor must be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices, inputs must never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 6 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver.

11.2 Layout Example

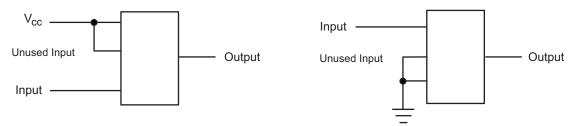


Figure 6. Layout Diagram

Copyright © 1990–2016, Texas Instruments Incorporated Product Folder Links: SN74LS07

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the followign:

Implications of Slow or Floating CMOS Inputs, SCBA004

12.2 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com

31-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74LS07D	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS07
SN74LS07D.A	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS07
SN74LS07DBR	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS07
SN74LS07DBR.A	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS07
SN74LS07DBRG4	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS07
SN74LS07DR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS07
SN74LS07DR.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS07
SN74LS07DRE4	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS07
SN74LS07N	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS07N
SN74LS07N.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS07N
SN74LS07NSR	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS07
SN74LS07NSR.A	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS07
SN74LS07NSRG4	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS07

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

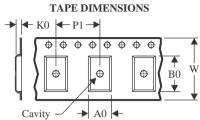
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 31-Oct-2025

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

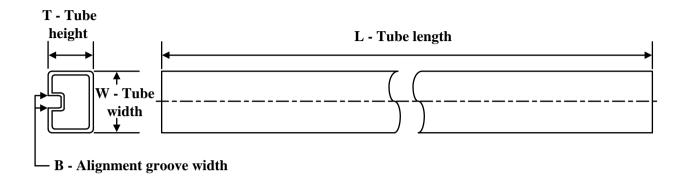
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS07DBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74LS07DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LS07NSR	SOP	NS	14	2000	330.0	16.4	8.1	10.4	2.5	12.0	16.0	Q1

www.ti.com 24-Jul-2025

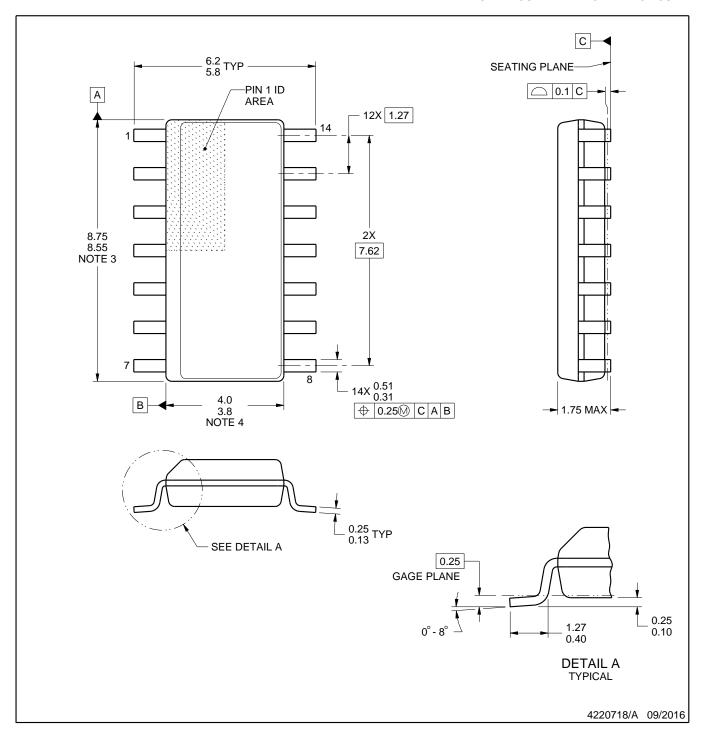

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74LS07DBR	SSOP	DB	14	2000	353.0	353.0	32.0	
SN74LS07DR	SOIC	D	14	2500	353.0	353.0	32.0	
SN74LS07NSR	SOP	NS	14	2000	353.0	353.0	32.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LS07D	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS07D.A	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS07N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS07N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS07N.A	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS07N.A	N	PDIP	14	25	506	13.97	11230	4.32

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

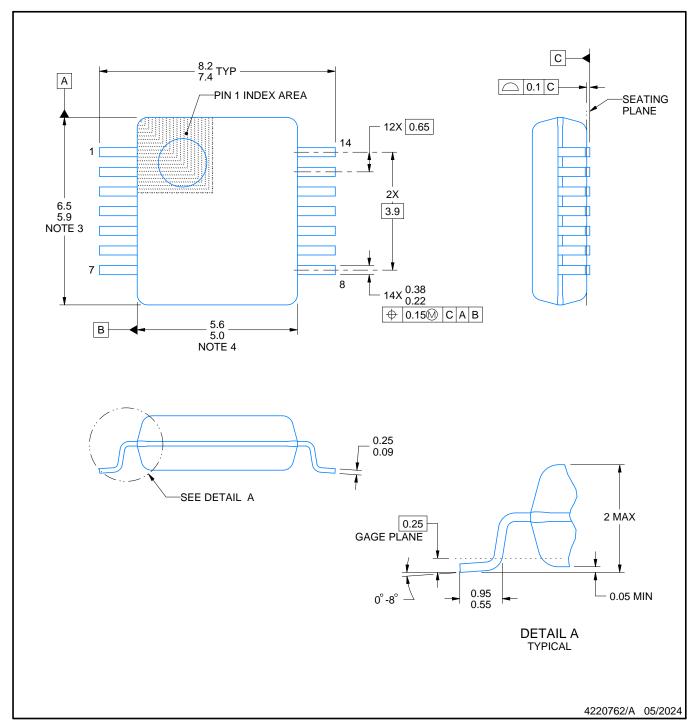
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

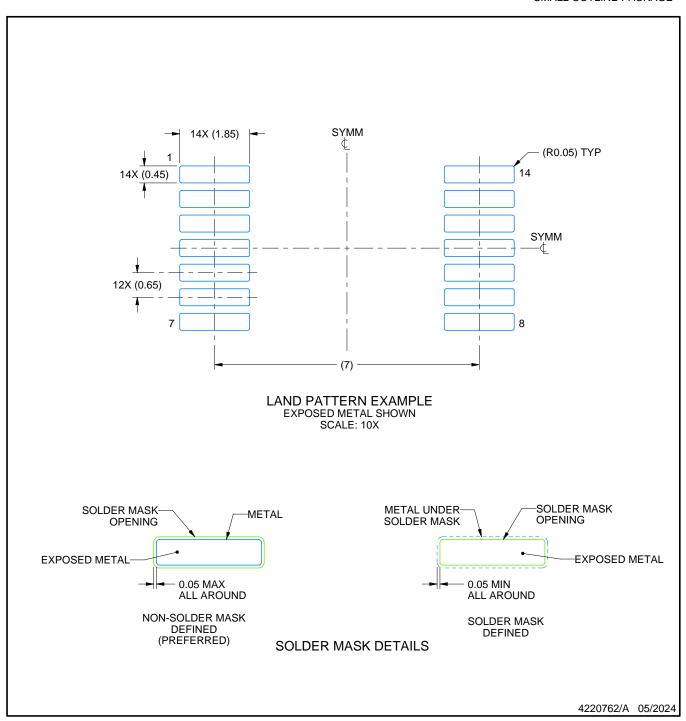
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

SMALL OUTLINE PACKAGE

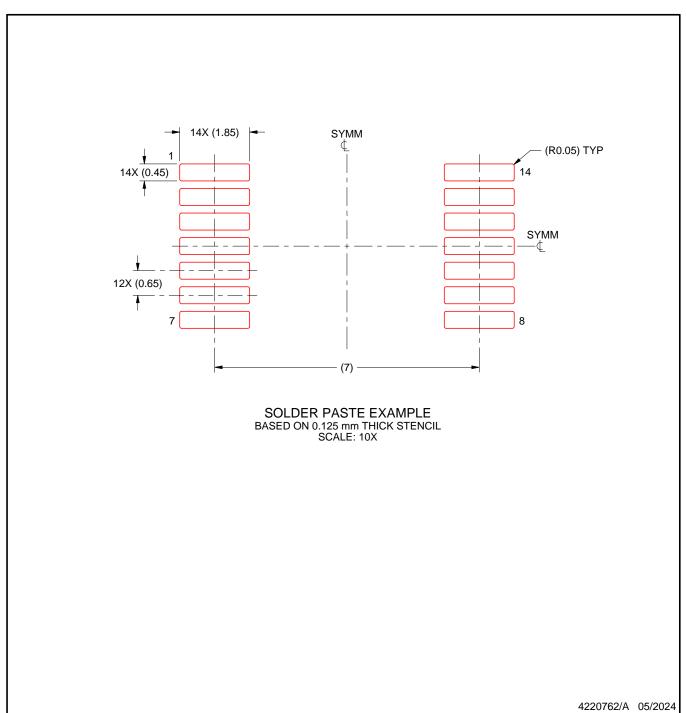
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-150.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025