SN74CB3T3257 4-Bit 1-of-2 FET Multiplexer/Demultiplexer 2.5V/3.3V Low-Voltage Bus Switch With 5V-Tolerant Level Shifter ### 1 Features - Output voltage translation tracks V_{CC} - Supports mixed-mode signal operation on all data I/O ports - 5V input down to 3.3V output level shift with $3.3V V_{CC}$ - 5V/3.3V input down to 2.5V output level shift with 2.5V V_{CC} - 5V-tolerant I/Os with device powered up or powered down - Bidirectional data flow with near-zero propagation - Low ON-state resistance (r_{on}) characteristics (r_{on} = - Low input/output capacitance minimizes loading $(C_{io(OFF)} = 5pF typ)$ - Data and control inputs provide undershoot clamp - Low power consumption ($I_{CC} = 20\mu A \text{ max}$) - V_{CC} operating range from 2.3V to 3.6V - Data I/Os support 0V to 5V signaling levels (0.8V, 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, 5V) - Control inputs can be driven by TTL or 5V/3.3V CMOS outputs - I_{off} supports partial-power-down mode operation - Latch-up performance exceeds 250mA per JESD - ESD performance tested per JESD 22 - 2000V human-body model (A114-B, Class II) - 1000V charged-device model (C101) ### 2 Applications - Supports digital applications: - Level translation - USB interface - Memory interleaving - Bus isolation - Designed for low-power portable equipment ### 3 Description The SN74CB3T3257 is a high-speed TTL-compatible FET multiplexer/demultiplexer with low ON-state resistance (r_{on}), allowing for minimal propagation delay. The device fully supports mixed-mode signal operation on all data I/O ports by providing voltage translation that tracks V_{CC}. The SN74CB3T3257 supports systems using 5V TTL, 3.3V LVTTL, and 2.5V CMOS switching standards, as well as userdefined switching levels. This device is fully specified for partial-power-down applications using Ioff. The Ioff feature verifies that damaging current does not backflow through the device when the device is powered down. The device has isolation during power off. #### **Package Information** | PART NUMBER | PACKAGE (1) | BODY SIZE (NOM) | |------------------|-------------|-----------------| | SN74CBTLV3257PW | TSSOP (16) | 5.00mm × 4.40mm | | SN74CBTLV3257DGV | TVSOP (16) | 3.60mm × 4.40mm | For all available packages, see the orderable addendum at the end of the datasheet. #### **Device Information** | INP | UTS | INPUT/OUTPUT A | FUNCTION | | | |-----|-----|----------------|------------------|--|--| | ŌĒ | S | INFOI/OUTFOIA | FUNCTION | | | | L | L | B1 | A port = B1 port | | | | L | Н | B2 | A port = B2 port | | | | Н | X | Z | Disconnect | | | If the input high voltage (V_{IH}) level is greater than or equal to V_{CC} + 1V, and less than or equal to 5.5 V, the output high voltage (V_{OH}) level will #### Typical DC Voltage Translation Characteristics ## **Table of Contents** | 1 Features | 1 | 7.1 Overview | 10 | |--------------------------------------|---|---|------------------| | 2 Applications | 1 | 7.2 Functional Block Diagram | 10 | | 3 Description | | 7.3 Feature Description | 11 | | 4 Pin Configuration and Functions | | 7.4 Device Functional Modes | | | 5 Specifications | 4 | 8 Application and Implementation | 13 | | 5.1 Absolute Maximum Ratings | | 8.1 Application Information | 1 <mark>3</mark> | | 5.2 ESD Ratings | | 8.2 Typical Application | | | 5.3 Recommended Operating Conditions | | 8.3 Power Supply Recommendations | | | 5.4 Thermal Information | | 8.4 Layout | | | 5.5 Electrical Characteristics | 6 | 9 Device and Documentation Support | 16 | | 5.6 Switching Characteristics 85C | 7 | 9.1 Documentation Support | | | 5.7 Typical Characteristics | | 10 Revision History | | | 6 Parameter Measurement Information | | 11 Mechanical, Packaging, and Orderable | | | 7 Detailed Description | | Information | 17 | # **4 Pin Configuration and Functions** # DGV OR PW PACKAGE (TOP VIEW) Figure 4-1. DGV or PW Package, 16 PinTVSOP, and TSSOP (Top View) **Table 4-1. Pin Functions** | PIN | | | DESCRIPTION | | | |-----------------|--------------|-----|---------------------------|--|--| | NAME | TVSOP, TSSOP | I/O | DESCRIPTION | | | | 1A | 4 | I/O | Channel 1 out/in common | | | | 1B1 | 2 | I/O | Channel 1 in/out 1 | | | | 1B2 | 3 | I/O | Channel 1 in/out 2 | | | | 2A | 7 | I/O | Channel 2 out/in common | | | | 2B1 | 5 | I/O | Channel 2 in/out 1 | | | | 2B2 | 6 | I/O | Channel 2 in/out 2 | | | | 3A | 9 | I/O | Channel 3 out/in common | | | | 3B1 | 11 | I/O | Channel 3 in/out 1 | | | | 3B2 | 10 | I/O | Channel 3 in/out 2 | | | | 4A | 12 | I/O | Channel 4 out/in common | | | | 4B1 | 14 | I/O | Channel 4 in/out 1 | | | | 4B2 | 13 | I/O | Channel 4 in/out 2 | | | | GND | 8 | _ | Ground | | | | ŌĒ | 15 | I | Output Enable, active low | | | | S | 1 | I | Select | | | | V _{CC} | 16 | _ | Power | | | ### 5 Specifications ### 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |--|---|------|-----|------| | V _{CC} | Supply voltage ⁽²⁾ | -0.5 | 7 | V | | V _{IN} | Control input voltage ^{(2) (3)} | -0.5 | 7 | V | | V _{I/O} | Voltage range applied to any output in the high-impedance or power-off state ^{(2) (3) (4)} | -0.5 | 7 | V | | I _{IK} | Control input clamp current V _{IN} < 0 | -50 | | mA | | I _{I/O} | I/O port diode current V _{I/O} < 0 | -50 | | mA | | I _{I/O} | On-state switch current ⁽⁵⁾ V _{I/O} = 0 to V _{CC} | -128 | 128 | mA | | | Continuous current through V _{CC} or GND | -100 | 100 | mA | | T _J | Junction temperature | | 150 | С | | Storage
temperature, T _{stg} | | -65 | 150 | С | - Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - All voltages are with respect to ground unless otherwise specified. - The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. (3) - V_I , V_O are used to denote specific conditions for $V_{I/O}$. - (5) I_{I} , I_{O} are used to denote specific conditions for $I_{I/O}$. ### 5.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|--|-------|------| | | | Human body model (HBM), per ANSI/
ESDA/JEDEC JS-001, all pins ⁽¹⁾ | ±2000 | | | V _(ESD) | Electrostatic discharge | Charged device model (CDM), per
JEDEC specification JESD22-C101, all
pins ⁽²⁾ | ±1000 | V | - JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process. - JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process. ### 5.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | NOM MAX | UNIT | |------------------|---|--------------------------------|-----|---------|------| | V _{CC} | Supply voltage | | 2.3 | 3.6 | V | | V _{I/O} | Switch input or output voltage | | 0 | 5.5 | V | | V _{IH} | High-level input voltage, control input | V _{CC} = 2.3V to 2.7V | 1.7 | 5.5 | V | | V _{IH} | High-level input voltage, control input | V _{CC} = 2.7V to 3.6V | 2 | 5.5 | V | | V _{IL} | Low-level input voltage, control input | V _{CC} = 2.3V to 2.7V | 0 | 0.7 | V | | V _{IL} | Low-level input voltage, control input | V _{CC} = 2.7V to 3.6V | 0 | 0.8 | V | | T _A | Operating free-air temperature | | -40 | 85 | °C | All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the Implications of Slow or Floating CMOS Inputs application note. Product Folder Links: SN74CB3T3257 ### **5.4 Thermal Information** | THERMAL METRIC (1) | | SN74CB | | | |--------------------|--|---------|---------|------| | | | DGV | PW | UNIT | | | | 16 PINS | 16 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 120 | 129.1 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note. ### **5.5 Electrical Characteristics** Over operating free-air temperature range | PARAMETER | | TEST CONDITIONS | | | | | TYP | MAX | UNIT | |----------------------|---|---------------------|---|--|----------------|-----|-----|------|------| | SIGNA | L INPUTS (V _{IS}) AND OUTPUTS | S (Vos) | | | | | | | | | | | V _{CC} V | V _{I/o} V or li or
VIN | I _O mA or Vo
or VIN | TA | | | | | | r _{ON} | ON-state switch resistance | 2.3, TYP at
2.5V | V _I = 0 V | I _O = 24 mA | -40°C to +85°C | | 5 | 8 | Ω | | r _{ON} | ON-state switch resistance | 2.3, TYP at
2.5V | V _I = 0 V | I _O = 16 mA | -40°C to +85°C | | 5 | 8 | Ω | | r _{ON} | ON-state switch resistance | 3, TYP at 3.3V | V _I = 0 V | I _O = 64 mA | –40°C to +85°C | | 5 | 7 | Ω | | r _{ON} | ON-state switch resistance | 3, TYP at 3.3V | V _I = 0 V | I _O = 32 mA | –40°C to +85°C | | 5 | 7 | Ω | | loff | Power down switch leakage current | 0 | V _I = 0 V | $0 \le V_0 \le 5.5 \text{ V}$ | -40°C to +85°C | -10 | | 10 | μΑ | | loz | Switch OFF leakage current | 3.6 | V _I = 0 V, Vin =
Vcc or GND | $0 \le V_0 \le 5.5 \text{ V}$ | -40°C to +85°C | -10 | | 10 | μΑ | | II | ON-state switch leakage current | 3.6 | V _I = Vcc-0.7 to 5.5V | V _{IN} = V _{CC} or
GND | -40°C to +85°C | -20 | | 20 | μΑ | | II | ON-state switch leakage current | 3.6 | V _I = 0.7 to
Vcc-0.7 | V _{IN} = V _{CC} or
GND | -40°C to +85°C | | | -40 | μΑ | | I _{II} | ON-state switch leakage current | 3.6 | V _I = 0 to 0.7V | V _{IN} = V _{CC} or
GND | -40°C to +85°C | -5 | | 5 | μΑ | | I _{IN} | Control input current | 3.6 | $Vcc \le V_{IN} \le 5.5$
or $Vin = 0V$ | | -40°C to +85°C | -10 | | 10 | μA | | I _{CC} | Supply current | 3.6 | V _I = Vcc or
GND, li/o = 0 | V _{IN} = V _{CC} or
GND | -40°C to +85°C | | | 20 | μΑ | | I _{CC} | Supply current | 3.6 | V _I = 5.5V, li/o
= 0 | V _{IN} = V _{CC} or
GND | -40°C to +85°C | | | 20 | μΑ | | ΔI _{CC} | Quiescent Device Current w.r.t Control inputs | 3 to 3.6V | V _{IN} = Vcc -
0.6V | Other inputs at 0/VCC | -40°C to +85°C | | | 300 | μΑ | | Cı | Control input capacitance | 3.3 | V _{IN} = Vcc or
GND | | 25°C | | 3 | | pF | | C _{io(off)} | A port: Switch input/output capacitance | 3.3 | V _I = 5.5V,
3.3V, 0V | V _{IN} = 0/Vcc s.t
switch is off | 25°C | | 8 | | pF | | C _{io(on)} | A port: Switch input/output capacitance | 3.3 | V _I = 5.5V or
3.3V | V _{IN} = 0/Vcc s.t
switch is on | 25°C | | 6 | | pF | | C _{io(on)} | A port: Switch input/output capacitance | 3.3 | V _I = 0V | V _{IN} = 0/Vcc s.t
switch is on | 25°C | | 16 | | pF | | C _{io(off)} | B port: Switch input/output capacitance | 3.3 | V _I = 5.5V,
3.3V, 0V | V _{IN} = 0/Vcc s.t
switch is off | 25°C | | 5 | | рF | | C _{io(on)} | B port: Switch input/output capacitance | 3.3 | V _I = 5.5V or
3.3V | V _{IN} = 0/Vcc s.t
switch is on | 25°C | | 4 | | pF | | C _{io(on)} | B port: Switch input/output capacitance | 3.3 | V _I = 0V | V _{IN} = 0/Vcc s.t
switch is on | 25°C | | 16 | | pF | | V _{ik} | Clamp voltage | 3 | I _I = -18mA | | -40°C to +85°C | | | -1.2 | V | Product Folder Links: SN74CB3T3257 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated ### 5.6 Switching Characteristics 85C over operating free-air temperature range (unless otherwise noted)⁽¹⁾ (2) (3) | | PARAMETER WITH TEST CONDITIONS | FROM
(INPUT) | TO (OUTPUT) | V _{cc} | MIN | NOM MAX | UNIT | |---------------------|--|-----------------|-------------|-----------------|-----|---------|------| | t _{pd} | $R_L = 1G\Omega$, $C_L = 30$ pF, $V_{load} = 0$ V. Calculated Tpd with switch resistance*CL | A or B | B or A | 2.5 V ± 0.2 V | | 0.15 | ns | | t _{pd} | $R_L = 1G\Omega$, $C_L = 50$ pF, $V_{load} = 0$ V. Calculated Tpd with switch resistance*CL | A or B | B or A | 3.3 V ± 0.3 V | | 0.25 | ns | | t _{en} | ZL: R_L = 250 Ω , C_L = 30pF, V_{load} = VCC,
ZH: RL = 500 Ω , CL = 30pF, V_{load} = GND, 50ohm termination at input | OE | A or B | 2.5 V ± 0.2 V | 1 | 10.4 | ns | | t _{en} | ZL: R_L = 250 Ω , C_L = 50pF, V_{load} = V_{CC}
ZH: RL = 500 Ω , CL = 50pF, Vload = GND,
50ohm termination at input | OE | A or B | 3.3 V ± 0.3 V | 1 | 8.3 | ns | | t _{dis} | LZ: $R_L = 250\Omega$, $C_L = 30pF$, $V_{load} = V_{CC}$, $V_{\blacktriangle} = 0.15V$;
HZ: $RL = 500\Omega$, $CL = 30pF$, $V_{load} = GND$, $V_{load} = 0.15V$; 500hm termination at input | OE | A or B | 2.5 V ± 0.2 V | 1 | 7.4 | ns | | t _{dis} | LZ: R_L = 250 Ω , C_L = 50pF, V_{load} = V_{CC} , V_{\blacktriangle} = 0.3V;
HZ: RL = 500 Ω , CL = 50pF, V_{load} = GND, V_{\blacktriangle} = 0.3V; 50ohm termination at input | OE | A or B | 3.3 V ± 0.3 V | 1 | 8 | ns | | t _{pd(s)} | $R_L = 500\Omega$, $C_L = 30$ pF, $V_{load} = 0$ V. Vinput = 3.6V domain. 50ohm termination at input | s | А | 2.5 V ± 0.2 V | | 13.4 | ns | | t _{pd(s)} | $R_L = 500\Omega$, $C_L = 50pF$, $V_{load} = 0V$. Vinput = 5.5V domain. 50ohm termination at input | s | А | 3.3 V ± 0.3 V | | 10.1 | ns | | t _{en(s)} | ZL: R_L = 250 Ω , C_L = 30pF, V_{load} = VCC,
ZH: RL = 500 Ω , CL = 30pF, V_{load} = GND; 50ohm termination at input | S | В | 2.5 V ± 0.2 V | 1 | 13 | ns | | t _{en(s)} | ZL: R_L = 250 Ω , C_L = 50pF, V_{load} = V_{CC}
ZH: RL = 500 Ω , CL = 50pF, V_{load} = GND; 50ohm termination at input | S | В | 3.3 V ± 0.3 V | 1 | 10.1 | ns | | t _{dis(s)} | LZ: R_L = 250 Ω , C_L = 30pF, V_{load} = V_{CC} , V_{\blacktriangle} = 0.15V;
HZ: RL = 500 Ω , CL = 30pF, V_{load} = V_{load} = V_{load} = V_{load} = 0.15V; 50ohm termination at input | S | В | 2.5 V ± 0.2 V | 1 | 9.1 | ns | | t _{dis(s)} | LZ: R_L = 250 Ω , C_L = 50pF, V_{load} = V_{CC} , V_{\blacktriangle} = 0.3V;
HZ: RL = 500 Ω , CL = 50pF, V_{load} = GND, V_{\blacktriangle} = 0.3V; 50ohm termination at input | S | В | 3.3 V ± 0.3 V | 1 | 8.3 | ns | ⁽¹⁾ t_{pd} is the slower of t_{PLH} or t_{PHL} . The propagation delay is calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impednace). ⁽²⁾ t_{en} is the slower of t_{PZL} or t_{PZH} . ⁽³⁾ t_{dis} is the slower of t_{PLZ} or t_{PHZ} . #### **5.7 Typical Characteristics** #### **OUTPUT VOLTAGE HIGH** Figure 5-1. V_{OH} Values #### **6 Parameter Measurement Information** | TEST | V _{CC} | S1 | R _L | VI | CL | V_{Δ} | |------------------------------------|---|--------------|------------------------------|------------------------------|----------------|-----------------| | t _{pd(s)} | $\begin{array}{c} \textbf{2.5 V} \pm \textbf{0.2 V} \\ \textbf{3.3 V} \pm \textbf{0.3 V} \end{array}$ | Open
Open | 500 Ω
500 Ω | 3.6 V or GND
5.5 V or GND | 30 pF
50 pF | | | t _{PLZ} /t _{PZL} | $\begin{array}{c} \textbf{2.5 V} \pm \textbf{0.2 V} \\ \textbf{3.3 V} \pm \textbf{0.3 V} \end{array}$ | | 500 Ω
500 Ω | GND
GND | 30 pF
50 pF | 0.15 V
0.3 V | | t _{PHZ} /t _{PZH} | $\begin{array}{c} \textbf{2.5 V} \pm \textbf{0.2 V} \\ \textbf{3.3 V} \pm \textbf{0.3 V} \end{array}$ | Open
Open | 500 Ω 500 Ω | 3.6 V
5.5 V | 30 pF
50 pF | 0.15 V
0.3 V | NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns. - $\ensuremath{\mathsf{D}}.$ The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - F. t_{PZL} and t_{PZH} are the same as t_{en} . - G. t_{PLH} and t_{PHL} are the same as t_{pd(s)}. The tpd propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance). - H. All parameters and waveforms are not applicable to all devices. Figure 6-1. Test Circuit and Voltage Waveforms Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback ### 7 Detailed Description #### 7.1 Overview The SN74CB3T3257 is a high-speed TTL-compatible FET multiplexer/demultiplexer with low ON-state resistance (r_{on}), allowing for minimal propagation delay. The device fully supports mixed-mode signal operation on all data I/O ports by providing voltage translation that tracks V_{CC} . The SN74CB3T3257 supports systems using 5V TTL, 3.3V LVTTL, and 2.5V CMOS switching standards, as well as user-defined switching levels (see Typical DC Voltage Translation Characteristics). The SN74CB3T3257 is a 4-bit 1-of-2 multiplexer/demultiplexer with a single output-enable (\overline{OE}) input. The select (S) input controls the data path of the multiplexer/demultiplexer. When \overline{OE} is low, the multiplexer/demultiplexer is enabled, and the A port is connected to the B port, allowing bidirectional data flow between ports. When \overline{OE} is high, the multiplexer/demultiplexer is disabled, and a high-impedance state exists between the A and B ports. This device is fully specified for partial-power-down applications using I_{off}. The I_{off} feature verifies that damaging current does not backflow through the device when the device is powered down. The device has isolation during power off. To confirm the high-impedance state during power up or power down, tie \overline{OE} to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. ### 7.2 Functional Block Diagram If the input high voltage (V_{IH}) level is greater than or equal to V_{CC} + 1V, and less than or equal to 5.5 V, the output high voltage (V_{OH}) level will be equal to approximately the V_{CC} voltage level. Figure 7-1. Typical DC Voltage-Translation Characteristics Product Folder Links: SN74CB3T3257 Figure 7-2. Logic Diagram (Positive Logic) - (1) Gate voltage (V_G) is approximately equal to V_{CC} + V_T when the switch is ON and V_I > V_{CC} + V_T. - (2) EN is the internal enable signal applied to the switch. Figure 7-3. Simplified Schematic, Each FET Switch (SW) #### 7.3 Feature Description The SN74CB3T3257 features 5Ω switch connection between ports, allowing for low signal loss across the switch. Rail-to-rail switching on data I/O allows for full voltage swing outputs. I_{off} supports partial-power-down mode operation, protecting the chip from voltages at output ports when it is not powered on. Latch-up performance exceeds 250mA per JESD 17. Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback ### 7.4 Device Functional Modes Table 7-1 shows the functional modes of SN74CBTLV3257. **Table 7-1. Function Table** | INP | JTS | FUNCTION | |-----|-----|------------------| | ŌĒ | S | FUNCTION | | L | L | A port = B1 port | | L | Н | A port = B2 port | | Н | X | Disconnect | Product Folder Links: SN74CB3T3257 ### 8 Application and Implementation #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ### **8.1 Application Information** The SN74CB3T3257 is used to multiplex and demultiplex up to 4 channels simultaneously in a 2:1 configuration. The application shown here is a 4-bit bus, multiplexed between two devices. The $\overline{\text{OE}}$ and S pins are used to control the chip from the bus controller. This is a generic example, and can apply to many situations. If an application requires less than 4 bits, tie the A side to either high or low on unused channels. ### 8.2 Typical Application Figure 8-1. Typical Application of the SN74CBTLV3257 #### 8.2.1 Design Requirements - 1. Recommended Input Conditions: - For specified high and low levels, see V_{IH} and V_{IL} in Section 5.3. - Inputs and outputs are overvoltage tolerant slowing them to go as high as 4.6V at any valid V_{CC}. - 2. Recommended Output Conditions: - Load currents must not exceed ±128mA per channel. - 3. Frequency Selection Criterion: - · Maximum frequency tested is 200MHz. - Added trace resistance/capacitance can reduce maximum frequency capability; use layout practices as directed in Section 8.4. #### 8.2.2 Detailed Design Procedure The 4-bit bus is connected directly to the 1A, 2A, 3A, and 4A ports (known as the xA port) on the SN74CBTLV3257. This splits into two busses, out of the xB1 and xB2 ports. When S is high, xB2 is the active bus, and when S is low, xB1 is the active bus. This means that Device 2 is connected to the bus controller when S is high, and Device 1 is connected to the bus controller when S is low. This setup is useful when two devices are hard coded with the same address and only one bus is available. The $\overline{\text{OE}}$ connection can be used to disconnect all devices from the bus controller if necessary. The 0.1μF capacitor on V_{CC} is a decoupling capacitor and must be placed as close as possible to the device. #### 8.2.3 Application Performance Plots Figure 8-2. Data Output Voltage vs Data Input Voltage Product Folder Links: SN74CB3T3257 #### 8.3 Power Supply Recommendations The power supply can be any voltage between the minimum and maximum supply voltage rating listed in the Section 5.3 table. Each V_{CC} terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a $0.1\mu F$ bypass capacitor is recommended. If multiple pins are labeled V_{CC} , then a $0.01\mu F$ or $0.022\mu F$ capacitor is recommended for each V_{CC} because the V_{CC} pins are tied together internally. For devices with dual-supply pins operating at different voltages, for example V_{CC} and V_{DD} , a $0.1\mu F$ bypass capacitor is recommended for each supply pin. To reject different frequencies of noise, use multiple bypass capacitors in parallel. Capacitors with values of $0.1\mu F$ and $1\mu F$ are commonly used in parallel. The bypass capacitor must be installed as close to the power terminal as possible for best results. #### 8.4 Layout #### 8.4.1 Layout Guidelines Reflections and matching are closely related to the loop antenna theory but are different enough to be discussed separately from the theory. When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners. Figure 8-3 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections. #### 8.4.2 Layout Example Figure 8-3. Trace Example ### 9 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. ### 9.1 Documentation Support #### **Related Documentation** For related documentation see the following: - Texas Instruments, Implications of Slow or Floating CMOS Inputs - Texas Instruments, Selecting the Right Texas Instruments Signal Switch ### 9.1.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 9.1.2 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. ### 9.1.3 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 9.1.4 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. Product Folder Links: SN74CB3T3257 ### 10 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. ### | DATE | REVISION | NOTES | | | | | |--------------|----------|-----------------|--|--|--|--| | October 2003 | * | Initial Release | | | | | ### 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback www.ti.com 17-Jun-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking | |-----------------------|----------|---------------|------------------|-----------------------|------|-------------------------------|----------------------------|--------------|--------------| | | (1) | (2) | | | (3) | (4) | (5) | | (6) | | SN74CB3T3257DGVR | Active | Production | TVSOP (DGV) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | KS257 | | SN74CB3T3257DGVR.B | Active | Production | TVSOP (DGV) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | KS257 | | SN74CB3T3257DGVRG4 | Active | Production | TVSOP (DGV) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | KS257 | | SN74CB3T3257DGVRG4.B | Active | Production | TVSOP (DGV) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | KS257 | | SN74CB3T3257PW | Obsolete | Production | TSSOP (PW) 16 | - | - | Call TI | Call TI | -40 to 85 | KS257 | | SN74CB3T3257PWR | Active | Production | TSSOP (PW) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | KS257 | | SN74CB3T3257PWR.A | Active | Production | TSSOP (PW) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | KS257 | | SN74CB3T3257PWR.B | Active | Production | TSSOP (PW) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | KS257 | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE OPTION ADDENDUM** www.ti.com 17-Jun-2025 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Jul-2025 ### TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74CB3T3257DGVR | TVSOP | DGV | 16 | 2000 | 330.0 | 12.4 | 6.8 | 4.0 | 1.6 | 8.0 | 12.0 | Q1 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Jul-2025 ### *All dimensions are nominal | | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---|------------------|--------------|-----------------|------|------|-------------|------------|-------------| | I | SN74CB3T3257DGVR | TVSOP | DGV | 16 | 2000 | 353.0 | 353.0 | 32.0 | ### DGV (R-PDSO-G**) ### 24 PINS SHOWN #### **PLASTIC SMALL-OUTLINE** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 SMALL OUTLINE PACKAGE #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. SMALL OUTLINE PACKAGE NOTES: (continued) - 6. Publication IPC-7351 may have alternate designs. - 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE PACKAGE NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated