

SN74AVC8T245 SCES517K - DECEMBER 2003 - REVISED NOVEMBER 2023

SN74AVC8T245 8-Bit Dual-Supply Bus Transceiver With Configurable Voltage **Translation and 3-State Outputs**

1 Features

- Latch-up performance exceeds 100 mA per JESD 78. Class II
- ESD protection exceeds JESD 22:
 - 8000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- Control inputs V_{IH}/V_{IL} levels are referenced to V_{CCA} voltage
- V_{CC} isolation feature if either V_{CC} input is at GND, all I/O ports are in the high-impedance state
- I_{off} supports partial power-down mode operation
- Fully configurable dual-rail design allows each port to operate over the full 1.4-V to 3.6-V powersupply range
- I/Os are 4.6-V tolerant
- Maximum data rates:
 - 170Mbps (V_{CCA} < 1.8 V or V_{CCB} < 1.8 V)
 - 320Mbps ($V_{CCA} \ge 1.8 \text{ V} \text{ and } V_{CCB} \ge 1.8 \text{ V}$)

2 Applications

- Personal electronic
- Industrial
- **Enterprise**
- **Telecom**

3 Description

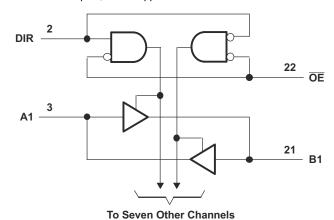
This 8-bit noninverting bus transceiver uses two separate configurable power-supply rails. SN74AVC8T245 is optimized to operate with V_{CCA} / V_{CCB} set at 1.4 V to 3.6 V. The device is operational with V_{CCA} and V_{CCB} as low as 1.2 V. The A port is designed to track V_{CCA}. V_{CCA} accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track V_{CCB}. V_{CCB} accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The SN74AVC8T245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so the buses are effectively isolated.

The SN74AVC8T245 is designed so that the control pins (DIR and \overline{OE}) are supplied by V_{CCA} .

The SN74AVC8T245 is compatible with a singlesupply system and can be replaced later with a '245 function, with minimal printed circuit board redesign.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, thus preventing damaging current backflow through the device when it is powered down.


The V_{CC} isolation feature allows both ports to be in the high-impedance state when either V_{CC} input is at GND.

To put the device into the high-impedance state during power up or power down, tie \overline{OE} to V_{CC} through a pullup resistor; the current-sinking capability of the driver determines the minimum value of the resistor.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾		
	RHL (VQFN, 24)	5.5 mm × 3.5 mm		
SN74AVC8T245	PW (TSSOP, 24)	7.8 mm × 6.4 mm		
	DGV (TVSOP, 24)	5 mm × 6.4 mm		

- For more information, see Section 10.
- (2)The package size (length × width) is a nominal value and includes pins, where applicable.

Logic Diagram (Positive Logic)

Table of Contents

1 Features	6.1 Overview
2 Applications	6.2 Functional Blo
3 Description	6.3 Feature Descr
4 Pin Configuration and Functions3	6.4 Device Function
5 Specifications4	7 Application and I
5.1 Absolute Maximum Ratings4	7.1 Application Inf
5.2 ESD Ratings4	7.2 Typical Application
5.3 Recommended Operating Conditions5	7.3 Power Supply
5.4 Thermal Information6	7.4 Layout
5.5 Electrical Characteristics6	8 Device and Docu
5.6 Switching Characteristics, V _{CCA} = 1.2 V	8.1 Documentation
5.7 Switching Characteristics, V _{CCA} = 1.5 V ± 0.1 V7	8.2 Receiving Not
5.8 Switching Characteristics, V _{CCA} = 1.8 V ± 0.15 V8	8.3 Support Resor
5.9 Switching Characteristics, V _{CCA} = 2.5 V ± 0.2 V9	8.4 Trademarks
5.10 Switching Characteristics, V _{CCA} = 3.3 V ± 0.3 V10	8.5 Electrostatic D
5.11 Operating Characteristics11	8.6 Glossary
5.12 Typical Total Static Power Consumption (I _{CCA} +	9 Revision History.
I _{CCB})11	10 Mechanical, Pac
5.13 Typical Characteristics12	Information
6 Detailed Description15	

6.1 Overview	15
6.2 Functional Block Diagram	
6.3 Feature Description	
6.4 Device Functional Modes	
Application and Implementation	
7.1 Application Information	
7.2 Typical Application	
7.3 Power Supply Recommendations	
7.4 Layout	
B Device and Documentation Support	
8.1 Documentation Support	20
8.2 Receiving Notification of Documentation Upd	lates20
8.3 Support Resources	
8.4 Trademarks	
8.5 Electrostatic Discharge Caution	20
8.6 Glossary	
Revision History	
0 Mechanical, Packaging, and Orderable	
Information	21

4 Pin Configuration and Functions

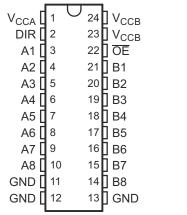


Figure 4-1. DGV or PW Package, 24-Pin TVSOP or TSSOP (Top View)

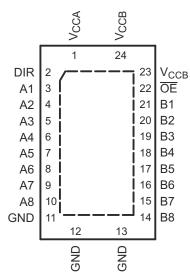


Figure 4-2. RHL Package, 24-Pin VQFN (Top View)

Table 4-1. Pin Functions

	PIN	I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
A1	3	I/O	Input/output A1. Referenced to V _{CCA} .
A2	4	I/O	Input/output A2. Referenced to V _{CCA} .
A3	5	I/O	Input/output A3. Referenced to V _{CCA} .
A4	6	I/O	Input/output A4. Referenced to V _{CCA} .
A5	7	I/O	Input/output A5. Referenced to V _{CCA} .
A6	8	I/O	Input/output A6. Referenced to V _{CCA} .
A7	9	I/O	Input/output A7. Referenced to V _{CCA} .
A8	10	I/O	Input/output A8. Referenced to V _{CCA} .
B1	21	I/O	Input/output B1. Referenced to V _{CCB} .
B2	20	I/O	Input/output B2. Referenced to V _{CCB} .
B3	19	I/O	Input/output B3. Referenced to V _{CCB} .
B4	18	I/O	Input/output B4. Referenced to V _{CCB} .
B5	17	I/O	Input/output B5. Referenced to V _{CCB} .
B6	16	I/O	Input/output B6. Referenced to V _{CCB} .
B7	15	I/O	Input/output B7. Referenced to V _{CCB} .
B8	14	I/O	Input/output B8. Referenced to V _{CCB} .
DIR	2	I	Direction-control signal
GND	11, 12, 13	_	Ground
ŌĒ	22	I	3-state output-mode enables. Pull $\overline{\text{OE}}$ high to place all outputs in 3-state mode. Referenced to V_{CCA} .
V _{CCA}	1	_	A-port supply voltage. 1.2 V ≤ V _{CCA} ≤ 3.6 V
V _{CCB}	23, 24	_	B-port supply voltage. 1.2 V ≤ V _{CCA} ≤ 3.6 V

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT	
V _{CCA} , V _{CCB}	Supply voltage		-0.5	4.6	V	
		I/O ports (A port)	-0.5	4.6		
V_{I}	Input voltage ⁽²⁾	I/O ports (B port)	-0.5	4.6	V	
		Control inputs	-0.5	4.6		
V	Voltage range applied to any output	A port	-0.5	4.6	V	
Vo	in the high-impedance or power-off state ⁽²⁾	B port	-0.5	4.6	V	
V	Voltage range applied to any output in the high or law state(2) (3)	A port	-0.5	V _{CCA} + 0.5	V	
Vo	Voltage range applied to any output in the high or low state ⁽²⁾ (3)	B port	-0.5	V _{CCB} + 0.5	V	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
Io	Continuous output current	'	-50	50	mA	
	Continuous current through V _{CCA} , V _{CCB} , or GND		-100	100	mA	
T _{stg}	Storage temperature		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±8000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V
		Machine model (MM)	±200	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Product Folder Links: SN74AVC8T245

⁽²⁾ The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

See (1) (2) (3)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT
V _{CCA}	Supply voltage				1.2	3.6	V
V _{CCB}	Supply voltage				1.2	3.6	V
			1.2 V to 1.95 V		V _{CCI} × 0.65		
V_{IH}	High-level input voltage	Data inputs	1.95 V to 2.7 V		1.6		V
	input voltage		2.7 V to 3.6 V		2		
			1.2 V to 1.95 V			V _{CCI} × 0.35	
V_{IL}	Low-level input voltage	Data inputs	1.95 V to 2.7 V			0.7	V
	input voltage		2.7 V to 3.6 V			0.8	
			1.2 V to 1.95 V		V _{CCA} × 0.65		
V_{IH}	High-level input voltage	DIR (referenced to V _{CCA})	1.95 V to 2.7 V		1.6		V
	input voltage	(referenced to veca)	2.7 V to 3.6 V		2		
			1.2 V to 1.95 V			V _{CCA} × 0.35	
V_{IL}	Low-level input voltage	DIR (referenced to V _{CCA})	1.95 V to 2.7 V			0.7	V
		(referenced to VCCA)	2.7 V to 3.6 V			0.8	
VI	Input voltage				0	3.6	V
	Outrot valta aa	Active state			0	V _{CCO}	V
V _O	Output voltage	3-state			0	3.6	V
				1.2 V		-3	
				1.4 V to 1.6 V		-6	
I _{OH}	High-level output cu	rrent		1.65 V to 1.95 V		-8	mA
				2.3 V to 2.7 V		-9	
				3 V to 3.6 V		-12	
				1.2 V		3	
				1.4 V to 1.6 V		6	
I _{OL}	Low-level output cur	rent		1.65 V to 1.95 V		8	mA
OL LOW-ICVEL OU				2.3 V to 2.7 V		9	
				3 V to 3.6 V		12	
Δt/Δν	Input transition rise	or fall rate				5	ns/V
T _A	Operating free-air te	mperature			-40	125	°C

 V_{CCI} is the V_{CC} associated with the input port. V_{CCO} is the V_{CC} associated with the output port. All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. See *Implications of Slow or* (2) Floating CMOS Inputs, SCBA004.

5.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	DGV	PW	RHL	UNIT
		24 PINS	24 PINS	24 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	116.7	93.1	36.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	48.5	36.7	32.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	62.1	48.4	15.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	7.0	93.1	0.7	°C/W
ΨЈВ	Junction-to-board characterization parameter	61.6	48.0	15.6	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	5.6	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

5.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)(2) (1)

PARAMETER		TEST CONDI	TIONS	v	V _{CCB}	T _A = 25°C			-40°C to +85°C		-40°C to +125°C		UNIT
		TEST CONDI	IIONS	V _{CCA}	▼ CCB	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
		I _{OH} = -100 μA		1.2 V to 3.6 V	1.2 V to 3.6 V				V _{CCO} - 0.2		V _{CCO} - 0.2		
		I _{OH} = -3 mA		1.2 V	1.2 V		0.95						
V _{OH}		I _{OH} = -6 mA	$V_I = V_{IH}$	1.4 V	1.4 V				1.05		1		V
		I _{OH} = -8 mA		1.65 V	1.65 V				1.2		1.2		
		I _{OH} = -9 mA		2.3 V	2.3 V				1.75		1.75		
		I _{OH} = -12 mA		3 V	3 V				2.3		2.3		
		I _{OL} = 100 μA		1.2 V to 3.6 V	1.2 V to 3.6 V					0.2		0.2	
		I _{OL} = 3 mA	1	1.2 V	1.2 V		0.15						
.,		I _{OL} = 6 mA	1, ,	1.4 V	1.4 V					0.35		0.35	.,
V _{OL}		I _{OL} = 8 mA	$V_I = V_{IL}$	1.65 V	1.65 V					0.45		0.45	V
		I _{OL} = 9 mA		2.3 V	2.3 V					0.55		0.55	
		I _{OL} = 12 mA		3 V	3 V					0.7		0.7	
Iı	Control inputs	V _I = V _{CCA} or GND		1.2 V to 3.6 V	1.2 V to 3.6 V	-0.25	±0.025	0.25	-1	1		±1	μA
	A or B			0 V	0 V to 3.6 V	-1	±0.1	1	-5	5		±5	
I _{off}	port	V_I or $V_O = 0$ to 3.6) V	0 V to 3.6 V	0 V	-1	±0.1	1	-5	5		±5	μA
I _{OZ} (3)	A or B port	$V_O = V_{CCO}$ or GNI $V_I = V_{CCI}$ or GND, $\overline{OE} = V_{IH}$	D,	3.6 V	3.6 V		±0.5	±2.5		±5		±5	μА
				1.2 V to 3.6 V	1.2 V to 3.6 V					15		15	
I _{CCA}		V _I = V _{CCI} or GND,	$I_O = 0$	0 V	3.6 V					-2		-2	μΑ
		0.12,		3.6 V	0 V					15		15	
				1.2 V to 3.6 V	1.2 V to 3.6 V					15		15	
I _{CCB}		V _I = V _{CCI} or GND,	$I_O = 0$	0 V	3.6 V					15		15	μΑ
		0.12,		3.6 V	0 V					-2		-2	
I _{CCA} +	+ I _{CCB}	V _I = V _{CCI} or GND,	I _O = 0	1.2 V to 3.6 V	1.2 V to 3.6 V					25		25	μA
Ci	Control inputs	V _I = 3.3 V or GND)	3.3 V	3.3 V		3.5			4.5			pF
C _{io}	A or B port	V _O = 3.3 V or GNI	D	3.3 V	3.3 V		6			7			pF

⁽¹⁾ V_{CCI} is the V_{CC} associated with the input port.

Product Folder Links: SN74AVC8T245

⁽²⁾ V_{CCO} is the V_{CC} associated with the output port.

⁽³⁾ For I/O ports, the parameter I_{OZ} includes the input leakage current.

5.6 Switching Characteristics, $V_{CCA} = 1.2 \text{ V}$

over recommended operating free-air temperature range, V_{CCA} = 1.2 V (see Figure 6-1)

PARAMETER	FROM	то	v	T _A = -40°C to +85°C	T _A = -40°C to +125°C	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	V _{CCB}	TYP	TYP	UNIT	
			V _{CCB} = 1.2 V	3.1	3.1		
			V _{CCB} = 1.5 V	2.6	2.6		
PLH, t _{PHL}	Α	В	V _{CCB} = 1.8 V	2.5	2.5	ns	
			V _{CCB} = 2.5 V	3	3		
			V _{CCB} = 3.3 V	3.5	3.5		
			V _{CCB} = 1.2 V	3.1	3.1		
			V _{CCB} = 1.5 V	2.7	2.7		
t _{PLH} , t _{PHL}	В	Α	V _{CCB} = 1.8 V	2.5	2.5	ns	
			V _{CCB} = 2.5 V	2.4	2.4		
			V _{CCB} = 3.3 V	2.3	2.3		
			V _{CCB} = 1.2 V				
t _{PZH} , t _{PZL}			V _{CCB} = 1.5 V	5.3			
	ŌĒ	Α	V _{CCB} = 1.8 V		5.3	ns	
			V _{CCB} = 2.5 V				
			V _{CCB} = 3.3 V				
			V _{CCB} = 1.2 V	5.1	5.1		
			V _{CCB} = 1.5 V	4	4		
t _{PZH} , t _{PZL}	ŌĒ	В	V _{CCB} = 1.8 V	3.5	3.5	ns	
			V _{CCB} = 2.5 V	3.2	3.2		
			V _{CCB} = 3.3 V	3.1	3.1		
			V _{CCB} = 1.2 V				
			V _{CCB} = 1.5 V				
e _{PHZ} , t _{PLZ}	ŌĒ	A	V _{CCB} = 1.8 V	4.8	4.8	ns	
			V _{CCB} = 2.5 V				
			V _{CCB} = 3.3 V				
			V _{CCB} = 1.2 V	4.7	4.7		
			V _{CCB} = 1.5 V	4	4		
PHZ, tPLZ	ŌĒ	В	V _{CCB} = 1.8 V	4.1	4.1	ns	
			V _{CCB} = 2.5 V	4.3	4.3		
			V _{CCB} = 3.3 V	5.1	5.1		

5.7 Switching Characteristics, V_{CCA} = 1.5 V \pm 0.1 V

over recommended operating free-air temperature range, V_{CCA} = 1.5 V ± 0.1 V (see Figure 6-1)

PARAMETER	FROM	TO (OUTPUT)	V _{CCB}	T _A = -40°C to +85°C			T _A = -40°C to +125°C			UNIT
PARAMETER	(INPUT)			MIN	TYP	MAX	MIN	TYP	MAX	ONII
			V _{CCB} = 1.2 V		2.7			3.1		
	A B		V _{CCB} = 1.5 V ± 0.1 V	0.5		5.4	0.5		14.7	
t _{PLH} , t _{PHL}		В	V _{CCB} = 1.8 V ± 0.15 V	0.5		4.6	0.5		13.3	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		4.9	0.5		13.9	
			V _{CCB} = 3.3 V ± 0.3 V	0.5		6.8	0.5		17.2	

5.7 Switching Characteristics, V_{CCA} = 1.5 V ± 0.1 V (continued)

over recommended operating free-air temperature range, V_{CCA} = 1.5 V ± 0.1 V (see Figure 6-1)

PARAMETER	FROM	то	V	$T_A = -40$ °C to +85°C			T _A = -40°C to +125°C			UNIT
PARAWETER	(INPUT)	(OUTPUT)	V _{CCB}	MIN	TYP	MAX	MIN	TYP	MAX	ONII
			V _{CCB} = 1.2 V		2.6			3.1		
			V _{CCB} = 1.5 V ± 0.1 V	0.5		5.4	0.5		14.7	
t _{PLH} , t _{PHL}	В	Α	V _{CCB} = 1.8 V ± 0.15 V	0.5		5.1	0.5		14.2	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		4.7	0.5		13.5	
			V _{CCB} = 3.3 V ± 0.3 V	0.5		4.5	0.5		13.2	
			V _{CCB} = 1.2 V		3.7			5.3		
t _{PZH} , t _{PZL}			V _{CCB} = 1.5 V ± 0.1 V	1.1		8.7	0.5		20.5	
	ŌĒ	Α	V _{CCB} = 1.8 V ± 0.15 V	1.1		8.7	0.5		20.5	ns
			V _{CCB} = 2.5 V ± 0.2 V	1.1		8.7	0.5		20.5	
			V _{CCB} = 3.3 V ± 0.3 V	1.1		8.7	0.5		20.5	
	ŌĒ		V _{CCB} = 1.2 V		4.8			5.1		ns
		В	V _{CCB} = 1.5 V ± 0.1 V	1.1		7.6	0.5		18.6	
t _{PZH} , t _{PZL}			V _{CCB} = 1.8 V ± 0.15 V	1.1		7.1	0.5		17.7	
			V _{CCB} = 2.5 V ± 0.2 V	1		5.6	0.5		15.1	
			V _{CCB} = 3.3 V ± 0.3 V	1		5.2	0.5		14.4	
			V _{CCB} = 1.2 V		3.1			4.8		
			V _{CCB} = 1.5 V ± 0.1 V	0.5		8.6	0.5		20.3	
t _{PHZ} , t _{PLZ}	ŌĒ	Α	V _{CCB} = 1.8 V ± 0.15 V	0.5		8.6	0.5		20.3	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		8.6	0.5		20.3	
			V _{CCB} = 3.3 V ± 0.3 V	0.5		8.6	0.5		20.3	
			V _{CCB} = 1.2 V		4.1			4.7		
			V _{CCB} = 1.5 V ± 0.1 V	0.5		8.4	0.5		20	
t _{PHZ} , t _{PLZ}	ŌĒ	В	V _{CCB} = 1.8 V ± 0.15 V	0.5		7.6	0.5		18.6	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		7.2	0.5		17.9	
			V _{CCB} = 3.3 V ± 0.3 V	0.5		7.8	0.5		18.9	

5.8 Switching Characteristics, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$

over recommended operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (see Figure 6-1)

PARAMETER	FROM	то	V	T _A = -4	0°C to +8	5°C	T _A = -4	0°C to +1	25°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{CCB}	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	_{PLH} , t _{PHL} A B		V _{CCB} = 1.2 V		2.5			2.5		
		V _{CCB} = 1.5 V ± 0.1 V	0.5		5.1	0.5		14.2		
t _{PLH} , t _{PHL}		V _{CCB} = 1.8 V ± 0.15 V	0.5		4.4	0.5		13	ns	
		V _{CCB} = 2.5 V ± 0.2 V	0.5		4	0.5		12.3		
		V _{CCB} = 3.3 V ± 0.3 V	0.5		3.9	0.5		12.1		
			V _{CCB} = 1.2 V		2.5			2.5		
			V _{CCB} = 1.5 V ± 0.1 V	0.5		4.6	0.5		13.3	
t _{PLH} , t _{PHL}	P _{LH} , t _{PHL} B	A	V _{CCB} = 1.8 V ± 0.15 V	0.5		4.4	0.5		13	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		3.9	0.5		12.1	
			V _{CCB} = 3.3 V ± 0.3 V	0.5		3.7	0.5		11.8	

Product Folder Links: SN74AVC8T245

5.8 Switching Characteristics, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (continued)

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (see Figure 6-1)

PARAMETER	FROM	то		T _A = -4	0°C to +8	5°C	T _A = -4	0°C to +1	25°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{CCB}	MIN	TYP	MAX	MIN	TYP	MAX	UNII
			V _{CCB} = 1.2 V		3			3		
			V _{CCB} = 1.5 V ± 0.1 V	1		6.8	0.5		17.2	
t _{PZH} , t _{PZL}	ŌĒ	A	V _{CCB} = 1.8 V ± 0.15 V	1		6.8	0.5		17.2	ns
			V _{CCB} = 2.5 V ± 0.2 V	1		6.8	0.5		17.2	
		V _{CCB} = 3.3 V ± 0.3 V	1		6.8	0.5		17.2		
			V _{CCB} = 1.2 V		4.6			4.6		
			V _{CCB} = 1.5 V ± 0.1 V	1.1		8.2	0.5		19.6	
t _{PZH} , t _{PZL}	ŌĒ	ŌĒ B	V _{CCB} = 1.8 V ± 0.15 V	1		6.7	0.5		17	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		5.1	0.5		14.2	
		V _{CCB} = 3.3 V ± 0.3 V	0.5		4.5	0.5		13.2		
			V _{CCB} = 1.2 V		2.8			2.8		
			V _{CCB} = 1.5 V ± 0.1 V	0.5		7.1	0.5		17.7	
t _{PHZ} , t _{PLZ}	ŌĒ	A	V _{CCB} = 1.8 V ± 0.15 V	0.5		7.1	0.5		17.7	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		7.1	0.5		17.7	
			V _{CCB} = 3.3 V ± 0.3 V	0.5		7.1	0.5		17.7	
			V _{CCB} = 1.2 V		3.9			3.9		
			V _{CCB} = 1.5 V ± 0.1 V	0.5		7.8	0.5		18.9	
t _{PHZ} , t _{PLZ}	ŌĒ	_	V _{CCB} = 1.8 V ± 0.15 V	0.5		6.9	0.5		17.3	_
			V _{CCB} = 2.5 V ± 0.2 V	0.5		6	0.5		15.8	
			V _{CCB} = 3.3 V ± 0.3 V	0.5		5.8	0.5		15.4	

5.9 Switching Characteristics, V_{CCA} = 2.5 V \pm 0.2 V

over recommended operating free-air temperature range, V_{CCA} = 2.5 V \pm 0.2 V (see Figure 6-1)

PARAMETER	FROM	то	V	T _A = -4	10°C to +	·85°C	$T_A = -40^\circ$	°C to +1	25°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{CCB}	MIN	TYP	MAX	MIN	TYP	MAX	UNII
			V _{CCB} = 1.2 V		2.4			2.4		
			V _{CCB} = 1.5 V ± 0.1 V	0.5		4.7	0.5		13.5	
t _{PLH} , t _{PHL}	Α	В	V _{CCB} = 1.8 V ± 0.15 V	0.5		3.9	0.5		12.1	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		3.1	0.5		10.7	
			V _{CCB} = 3.3 V ± 0.3 V	0.5		2.8	0.5		10.2	
			V _{CCB} = 1.2 V		3			3		
			V _{CCB} = 1.5 V ± 0.1 V	0.5		4.9	0.5		13.9	
t _{PLH} , t _{PHL}	В	A	V _{CCB} = 1.8 V ± 0.15 V	0.5		4	0.5		12.3	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		3.1	0.5		10.7	
			V _{CCB} = 3.3 V ± 0.3 V	0.5		2.9	0.5		10.4	
			V _{CCB} = 1.2 V		2.2			2.2		
			V _{CCB} = 1.5 V ± 0.1 V	0.5		4.8	0.5		13.7	
t _{PZH} , t _{PZL}	ŌĒ	A	V _{CCB} = 1.8 V ± 0.15 V	0.5		4.8	0.5		13.7	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		4.8	0.5		13.7	
			V _{CCB} = 3.3 V ± 0.3 V	0.5		4.8	0.5		13.7	

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

5.9 Switching Characteristics, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (continued)

over recommended operating free-air temperature range, V_{CCA} = 2.5 V \pm 0.2 V (see Figure 6-1)

PARAMETER	FROM	то	V	T _A = -4	10°C to +	85°C	T _A = -40°	°C to +1	25°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{CCB}	MIN	TYP	MAX	MIN	TYP	MAX	UNII
			V _{CCB} = 1.2 V		4.5			4.5		
			V _{CCB} = 1.5 V ± 0.1 V	1.1		7.9	0.5		19.1	
t _{PZH} , t _{PZL}	ŌĒ	В	V _{CCB} = 1.8 V ± 0.15 V	0.5		6.4	0.5		16.5	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		4.6	0.5		13.3	
		V _{CCB} = 3.3 V ± 0.3 V	0.5		4	0.5		12.3		
			V _{CCB} = 1.2 V		1.8			1.8		
			V _{CCB} = 1.5 V ± 0.1 V	0.5		5.1	0.5		14.2	
t _{PHZ} , t _{PLZ}	ŌĒ	A	V _{CCB} = 1.8 V ± 0.15 V	0.5		5.1	0.5		14.2	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		5.1	0.5		14.2	
			V _{CCB} = 3.3 V ± 0.3 V	0.5		5.1	0.5		14.2	
			V _{CCB} = 1.2 V		3.6			3.6		
t _{PHZ} , t _{PLZ}			V _{CCB} = 1.5 V ± 0.1 V	0.5		7.1	0.5		17.7	
	ŌĒ	ŌĒ B	V _{CCB} = 1.8 V ± 0.15 V	0.5		6.3	0.5		16.3	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		5.1	0.5		14.2	
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.5		3.9	0.5		12.1	

5.10 Switching Characteristics, V_{CCA} = 3.3 V ± 0.3 V

over recommended operating free-air temperature range, V_{CCA} = 3.3 V ± 0.3 V (see Figure 6-1)

PARAMETER	FROM	то	V	V _{CCB}		40°C to +	85°C	$T_A = -40$	°C to +1	25°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	Vo			TYP	MAX	MIN	TYP	MAX	UNII
			V _{CCB} =	V _{CCB} = 1.2 V		2.3			2.3		
1			V _{CCB} = 1.5	V _{CCB} = 1.5 V ± 0.1 V			4.5	0.5		13.2	
I t t	A B	V _{CCB} = 1.8	t _{PLH}	0.5		3.7	0.5		11.1	ns	
t _{PLH} , t _{PHL}	^	В В	V ± 0.15 V	t _{PHL}	0.5	·	3.3	0.5		11.1	115
		V _{CCB} = 2.5	5 V ± 0.2 V	0.5		2.9	0.5		10.4		
		V _{CCB} = 3.3	3 V ± 0.3 V	0.5		2.5	0.5		9.7		
			V _{CCB} =	= 1.2 V		3.5			3.5		
			V _{CCB} = 1.5	$V_{CCB} = 1.5 V \pm 0.1 V$			6.8	0.5		17.2	
t _{PLH} , t _{PHL} B A	Α	V _{CCB} = 1.8	V ± 0.15 V	0.5	·	3.9	0.5		12.1	ns	
		V _{CCB} = 2.5	5 V ± 0.2 V	0.5		2.8	0.5		10.2		
			V _{CCB} = 3.3	3 V ± 0.3 V	0.5		2.5	0.5		9.7	
			V _{CCB} =	= 1.2 V		2			2		
			V _{CCB} = 1.5	5 V ± 0.1 V	0.5		4	0.5		12.3	
t _{PZH} , t _{PZL}	ŌĒ	Α	V _{CCB} = 1.8	V ± 0.15 V	0.5		4	0.5		12.3	ns
			V _{CCB} = 2.5	5 V ± 0.2 V	0.5		4	0.5		12.3	
			V _{CCB} = 3.3	3 V ± 0.3 V	0.5		4	0.5		12.3	
			V _{CCB} =	= 1.2 V		4.5			4.5		
			V _{CCB} = 1.5	5 V ± 0.1 V	1.1		7.8	0.5		18.9	
t _{PZH} , t _{PZL}	ŌĒ	Ē B	V _{CCB} = 1.8 V ± 0.15 V		0.5		6.2	0.5		16.1	ns
			V _{CCB} = 2.5 V ± 0.2 V		0.5		4.5	0.5		13.2	
1			V _{CCB} = 3.3	3 V ± 0.3 V	0.5		3.9	0.5		12.3	

Product Folder Links: SN74AVC8T245

5.10 Switching Characteristics, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (continued)

over recommended operating free-air temperature range, V_{CCA} = 3.3 V ± 0.3 V (see Figure 6-1)

PARAMETER	FROM	то	V	T _A =	40°C to +	85°C	$T_A = -40$	°C to +1	25°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{CCB}	MIN	TYP	MAX	MIN	TYP	MAX	ONII
			V _{CCB} = 1.2 V		1.7			1.7		
t _{PHZ} , t _{PLZ} OE		V _{CCB} = 1.5 V ± 0.1 V	0.5		4	0.5		12.3		
	Α	V _{CCB} = 1.8 V ± 0.15 V	0.5		4	0.5		12.3	ns	
		V _{CCB} = 2.5 V ± 0.2 V	0.5		4	0.5		12.3		
			V _{CCB} = 3.3 V ± 0.3 V	0.5		4	0.5		12.3	
			V _{CCB} = 1.2 V		3.4		-	3.4		
			V _{CCB} = 1.5 V ± 0.1 V	0.5		6.9	0.5		17.4	
t _{PHZ} , t _{PLZ} OE	ŌĒ	В	V _{CCB} = 1.8 V ± 0.15 V	0.5		6	0.5		15.8	ns
			V _{CCB} = 2.5 V ± 0.2 V	0.5		4.8	0.5		13.7	
			V _{CCB} = 3.3 V ± 0.3 V	0.5		4.2	0.5		12.6	

5.11 Operating Characteristics

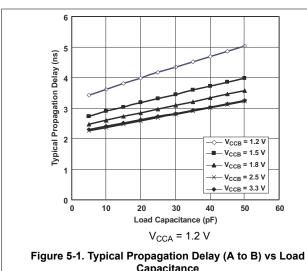
T_A = 25°C

$I_A = 25$	C								
F	PARAME	TER	TEST CONDITIONS	V _{CCA} = V _{CCB} = 1.2 V	V _{CCA} = V _{CCB} = 1.5 V	V _{CCA} = V _{CCB} = 1.8 V	$V_{CCA} = V_{CCB} = 2.5 V$	$V_{CCA} = V_{CCB} = 3.3 V$	UNIT
			CONDITIONS	TYP	TYP	TYP	TYP	TYP	
	A to B	Outputs enabled		1	1	1	1	1	
C _{pdA} (1)	AIOB	Outputs disabled	$C_L = 0,$ f = 10 MHz,	1	1	1	1	1	рF
OpdA	B to A	Outputs enabled	$t_r = t_f = 1 \text{ ns}$	12	12	12	13	14	рі
	BIOA	Outputs disabled		1	1	1	1	1	
	A to B	Outputs enabled		12	12	12	13	14	
C _{pdB} (1)	Alob	Outputs disabled	C _L = 0, f = 10 MHz,	1	1	1	1	1	рF
OpdB (1)	B to A	Outputs enabled	$t_r = t_f = 1 \text{ ns}$	1	1	1	1	1	þΓ
	BIOA	Outputs disabled		1	1	1	1	1	

⁽¹⁾ Power dissipation capacitance per transceiver

5.12 Typical Total Static Power Consumption ($I_{CCA} + I_{CCB}$)

V		V _{CCA}							
V _{CCB}	0 V	1.2 V	1.5 V 1.8 V		2.5 V	3.3 V	UNIT		
0 V	0	<0.5	<0.5	<0.5	<0.5	<0.5			
1.2 V	<0.5	<1	<1	<1	<1	1			
1.5 V	<0.5	<1	<1	<1	<1	1			
1.8 V	<0.5	<1	<1	<1	<1	<1	μA		
2.5 V	<0.5	1	<1	<1	<1	<1			
3.3 V	<0.5	1	<1	<1	<1	<1			


Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

5.13 Typical Characteristics

 $T_A = 25^{\circ}C$

Capacitance

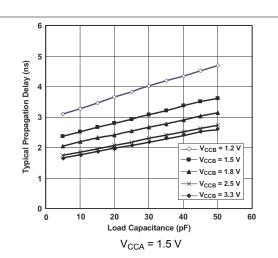


Figure 5-2. Typical Propagation Delay (A to B) vs Load Capacitance

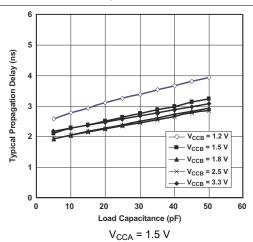


Figure 5-3. Typical Propagation Delay (A to B) vs Load Capacitance

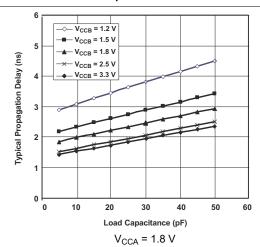


Figure 5-4. Typical Propagation Delay (A to B) vs Load Capacitance

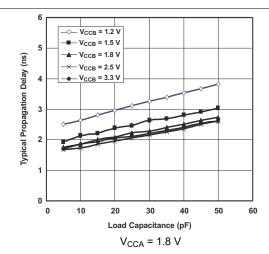


Figure 5-5. Typical Propagation Delay (A to B) vs Load Capacitance

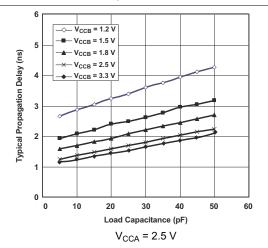
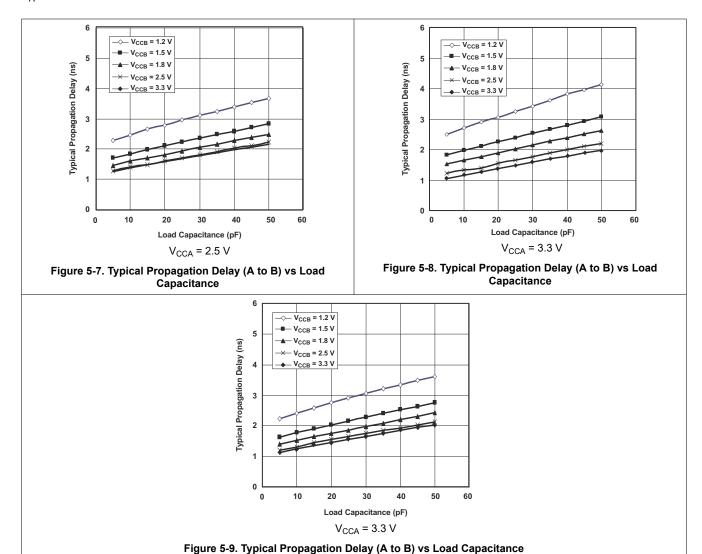
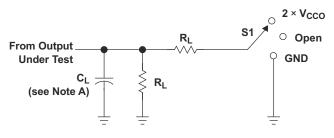
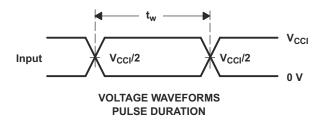



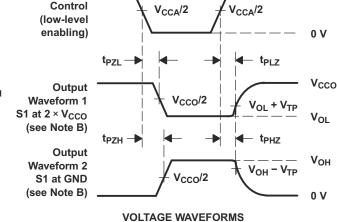
Figure 5-6. Typical Propagation Delay (A to B) vs Load Capacitance

5.13 Typical Characteristics (continued)

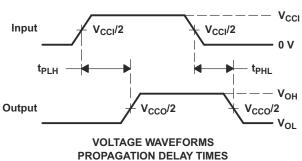

T_A = 25°C

 V_{CCA}


Parameter Measurement Information



TEST	S 1
t _{pd}	Open
t _{PLZ} /t _{PZL}	2 × V _{CCO}
t _{PHZ} /t _{PZH}	GND


LOAD CIRCUIT

V _{cco}		CL	R_L	V_{TP}
1.2 V	15	pF	2 kW	0.1 V
1.5 V ± 0	.1 V 15	pF	2 kW	0.1 V
1.8 V ± 0.	15 V 15	pF	2 kW	0.15 V
2.5 V ± 0	.2 V 15	pF	2 kW	0.15 V
3.3 V ± 0	.3 V 15	pF	2 kW	0.3 V

ENABLE AND DISABLE TIMES

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

Output

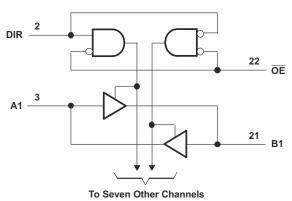
- C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z_O = 50 W, dv/dt ≥ 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

NOTES: A. C_L includes probe and jig capacitance.

- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- $\begin{array}{ll} \text{G.} & t_{PLH} \text{ and } t_{PHL} \text{ are the same as } t_{pd}. \\ \text{H.} & V_{CCI} \text{ is the } V_{CC} \text{ associated with the input port.} \end{array}$
- I. V_{CCO} is the V_{CC} associated with the output port.

Figure 6-1. Load Circuit and Voltage Waveforms

Submit Document Feedback


Copyright © 2023 Texas Instruments Incorporated

6 Detailed Description

6.1 Overview

The SN74AVC8T245 is an 8-bit, dual-supply noninverting transceiver with bidirectional voltage level translation. V_{CCA} supports pins A and the control pins (DIR and \overline{OE}), and V_{CCB} supports pins B. The A port is able to accept I/O voltages ranging from 1.2 V to 3.6 V, while the B port can accept I/O voltages from 1.2 V to 3.6 V. A high on DIR allows data transmission from A to B and a low on DIR allows data transmission from B to A when \overline{OE} is set to low. When \overline{OE} is set to high, both A and B are in the high-impedance state.

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 Fully Configurable Dual-Rail Design

The fully configurable dual-rail design allows each port to operate over the full 1.2-V to 3.6-V power-supply range. Both V_{CCA} and V_{CCB} can be supplied at any voltage between 1.2 V and 3.6 V making the device an excellent choice for translating between any of the low voltage nodes (1.2 V, 1.8 V, 2.5 V, and 3.3 V).

6.3.2 Support High-Speed Translation

SN74AVC8T245 can support high data rate application. The translated signal data rate can be up to 320Mbps when the device power supply is more than 1.8 V.

6.3.3 I_{off} Supports Partial-Power-Down Mode Operation

 $I_{\rm off}$ prevents backflow current by disabling I/O output circuits when device is in partial power-down mode. The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting current backflow into the device. The maximum leakage into or out of any input or output pin on the device is specified by $I_{\rm off}$ in the *Electrical Characteristics*.

6.3.4 Balanced High-Drive CMOS Push-Pull Outputs

A balanced output allows the device to sink and source similar currents. The high drive capability of this device creates fast edges into light loads, so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. Two outputs can be connected together for 2X stronger output drive strength. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times.

6.3.5 Vcc Isolation

The I/Os of both ports will enter a high-impedance state when one of the supplies are at GND, while the other supply is still connected to the device (IOZ shown in *Electrical Characteristics*).

Copyright © 2023 Texas Instruments Incorporated

6.4 Device Functional Modes

The SN74AVC8T245 is a voltage level transceiver that can operate from 1.2 V to 3.6 V (V_{CCA}) and 1.2 V to 3.6 V (V_{CCB}). The signal translation between 1.2 V and 3.6 V requires direction control and output enable control. When \overline{OE} is low and DIR is high, data transmission is from A to B. When \overline{OE} is low and DIR is low, data transmission is from B to A. When \overline{OE} is high, both output ports will be high-impedance.

Table 6-1. Function Table (Each 8-Bit Section)

INP	UTS	l
ŌĒ	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	Χ	All outputs Hi-

Product Folder Links: SN74AVC8T245

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

The SN74AVC8T245 device can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The SN74AVC8T245 device is an excellent choice for data transmission when direction is different. It is recommended to tie all unused I/Os to GND. The device should not have any floating I/Os when changing translation direction. The maximum data rate can be up to 320Mbps when device voltage power supply is more than 1.8 V.

7.2 Typical Application

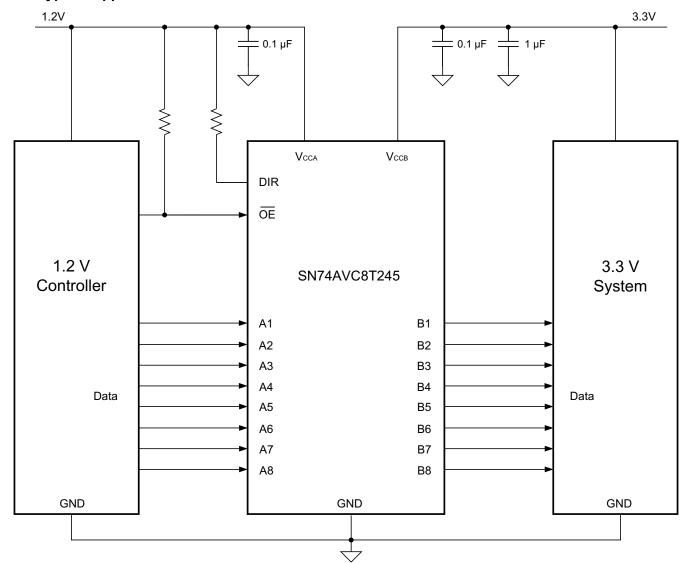


Figure 7-1. Typical Application Schematic

7.2.1 Design Requirements

For this design example, use the parameters listed in Table 7-1.

Table 7-1. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUE
Input voltage range	1.2 V to 3.6 V
Output voltage range	1.2 V to 3.6 V

7.2.2 Detailed Design Procedure

To begin the design process, determine the following:

- · Input voltage range
 - Use the supply voltage of the device that is driving the SN74AVC8T245 device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74AVC8T245 device is driving to determine the output voltage range.

7.2.3 Application Curve

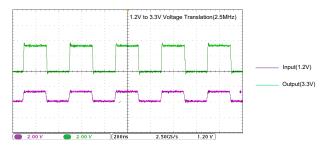


Figure 7-2. Translation Up (1.2 V to 3.3 V) at 2.5 MHz

7.3 Power Supply Recommendations

The SN74AVC8T245 device uses two separate configurable power-supply rails, V_{CCA} and V_{CCB} . V_{CCA} accepts any supply voltage from 1.2 V to 3.6 V and V_{CCB} accepts any supply voltage from 1.2 V to 3.6 V. The A port and B port are designed to track V_{CCA} and V_{CCB} , respectively, allowing for low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V and 3.3-V voltage nodes. The recommendation is to first power-up the input supply rail to help avoid internal floating while the output supply rail ramps up. However, both power-supply rails can be ramped up simultaneously.

The output-enable \overline{OE} input circuit is designed so that it is supplied by V_{CCA} and when the \overline{OE} input is high, all outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the \overline{OE} input pin must be tied to V_{CCA} through a pullup resistor and must not be enabled until V_{CCA} and V_{CCB} are fully ramped and stable. The minimum value of the pullup resistor to V_{CCA} is determined by the current-sinking capability of the driver.

7.4 Layout

7.4.1 Layout Guidelines

For device reliability, follow common printed-circuit board layout guidelines such as:

- Use bypass capacitors on power supplies.
- Use short trace lengths to avoid excessive loading.
- Place pads on the signal paths for loading capacitors or pullup resistors to adjust the signals rise and fall times, depending on the system requirements.

Product Folder Links: SN74AVC8T245

7.4.2 Layout Example

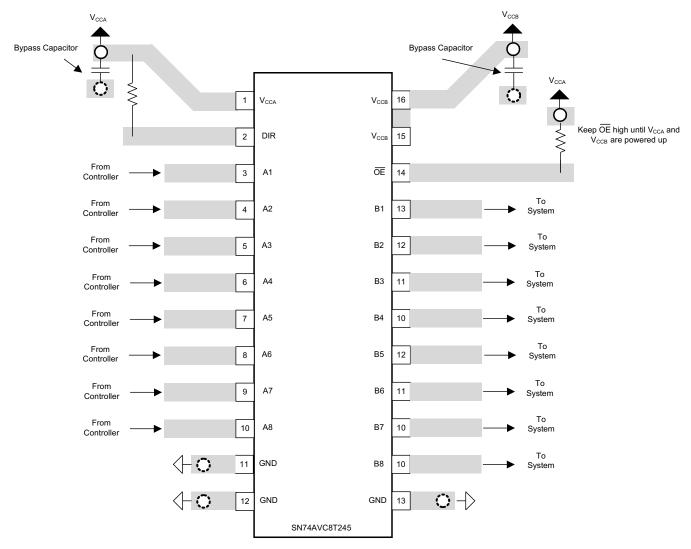


Figure 7-3. SN74AVC8T245 Layout Example

8 Device and Documentation Support

8.1 Documentation Support

8.1.1 Related Documentation

For related documentation, see the following:

Texas Instruments, Implications of Slow or Floating CMOS Inputs application note

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

•	hanges from Revision J (March 2017) to Revision K (November 2023)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the docur	ment1
•	Updated the Package Information table to include package lead size	1
•	Updated the Thermal Information table for all packages	6
С	changes from Revision I (December 2014) to Revision J (March 2017)	Page
•	Changed MAX value for Operating free-air temperature, T _A from: 85°C to: 125°C	5
•	Added values for T _A = -40°C to +125°C in Electrical Characteristics and all Switching Characteristics	cteristics tables.6
	Add Decomposite the Owner of the December Notification of Decomposite the United Services	
•	Added Documentation Support section, Receiving Notification of Documentation Updates, ar	
•	Added Documentation Support section, Receiving Notification of Documentation Updates, ar Resources section	nd Community
С		nd Community
<u>c</u>	Resources section	nd Community 20

Product Folder Links: SN74AVC8T245

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

www.ti.com 18-Jun-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
74AVC8T245RHLRG4	Active	Production	VQFN (RHL) 24	1000 LARGE T&R	Yes	(4) NIPDAU	(5) Level-2-260C-1 YEAR	-40 to 125	WE245
SN74AVC8T245DGVR	Active	Production	TVSOP (DGV) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245DGVR.A	Active	Production	TVSOP (DGV) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245DGVR.B	Active	Production	TVSOP (DGV) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245DGVRG4	Active	Production	TVSOP (DGV) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245DGVRG4.A	Active	Production	TVSOP (DGV) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245DGVRG4.B	Active	Production	TVSOP (DGV) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245PW	Active	Production	TSSOP (PW) 24	60 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245PW.B	Active	Production	TSSOP (PW) 24	60 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245PWE4	Active	Production	TSSOP (PW) 24	60 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245PWG4	Active	Production	TSSOP (PW) 24	60 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245PWR	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245PWR.A	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245PWR.B	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245PWRE4	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245PWRG4	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	WE245
SN74AVC8T245RHLR	Active	Production	VQFN (RHL) 24	1000 LARGE T&R	Yes	NIPDAU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	WE245
SN74AVC8T245RHLR.A	Active	Production	VQFN (RHL) 24	1000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	WE245
SN74AVC8T245RHLR.B	Active	Production	VQFN (RHL) 24	1000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	WE245

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

www.ti.com 18-Jun-2025

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

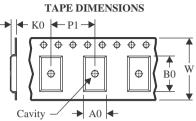
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74AVC8T245:

Automotive: SN74AVC8T245-Q1

NOTE: Qualified Version Definitions:

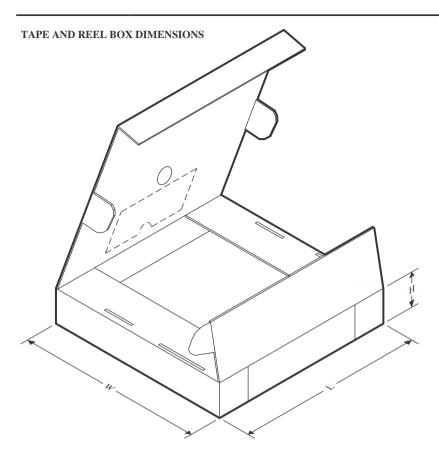

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

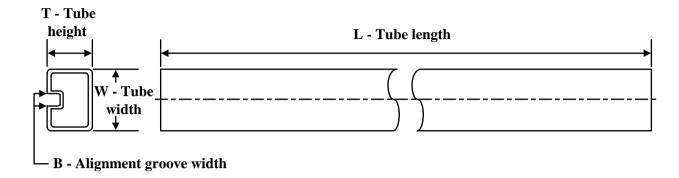
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AVC8T245DGVR	TVSOP	DGV	24	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AVC8T245DGVRG4	TVSOP	DGV	24	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AVC8T245RHLR	VQFN	RHL	24	1000	180.0	12.4	3.8	5.8	1.2	8.0	12.0	Q1

www.ti.com 24-Jul-2025


*All dimensions are nominal

Device	vice Package Type		Device Package Type Packa		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AVC8T245DGVR	TVSOP	DGV	24	2000	353.0	353.0	32.0		
SN74AVC8T245DGVRG4	TVSOP	DGV	24	2000	353.0	353.0	32.0		
SN74AVC8T245RHLR	VQFN	RHL	24	1000	210.0	185.0	35.0		

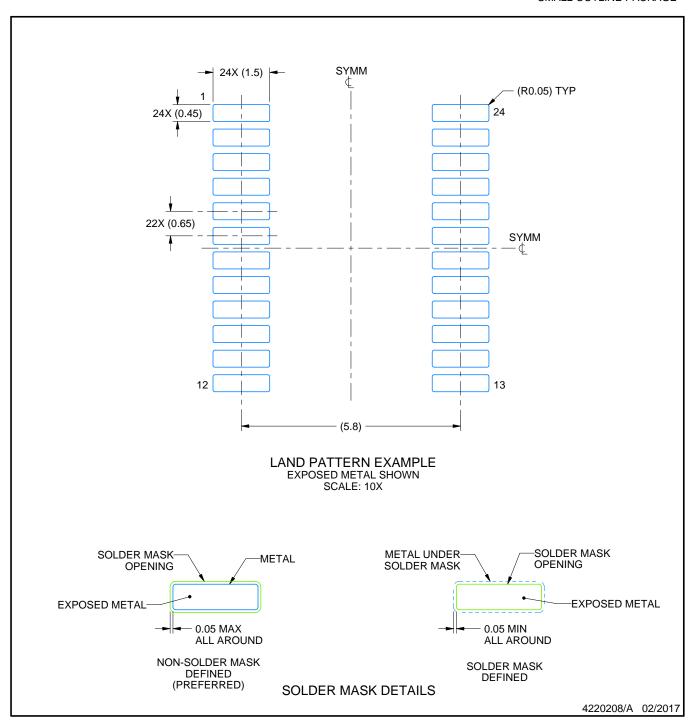
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE

*All dimensions are nominal

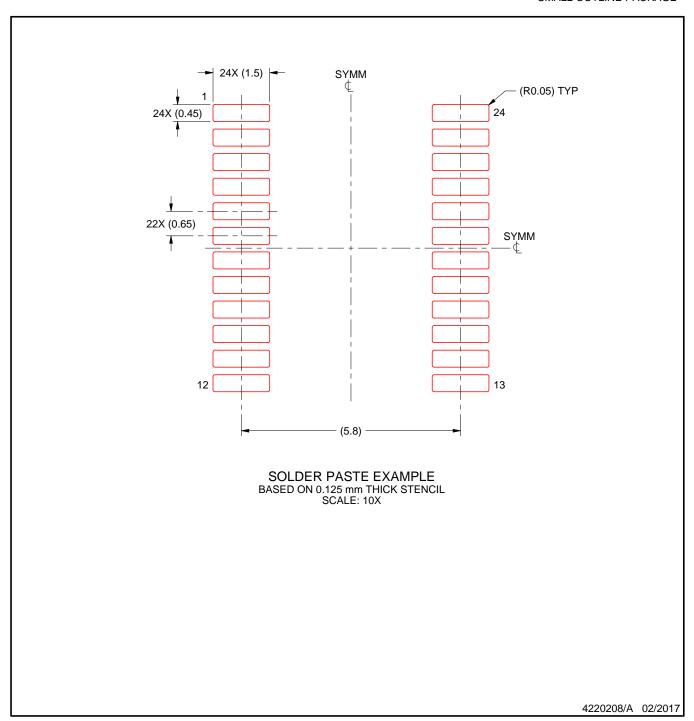
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74AVC8T245PW	PW	TSSOP	24	60	530	10.2	3600	3.5
SN74AVC8T245PW.B	PW	TSSOP	24	60	530	10.2	3600	3.5
SN74AVC8T245PWE4	PW	TSSOP	24	60	530	10.2	3600	3.5
SN74AVC8T245PWG4	PW	TSSOP	24	60	530	10.2	3600	3.5


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

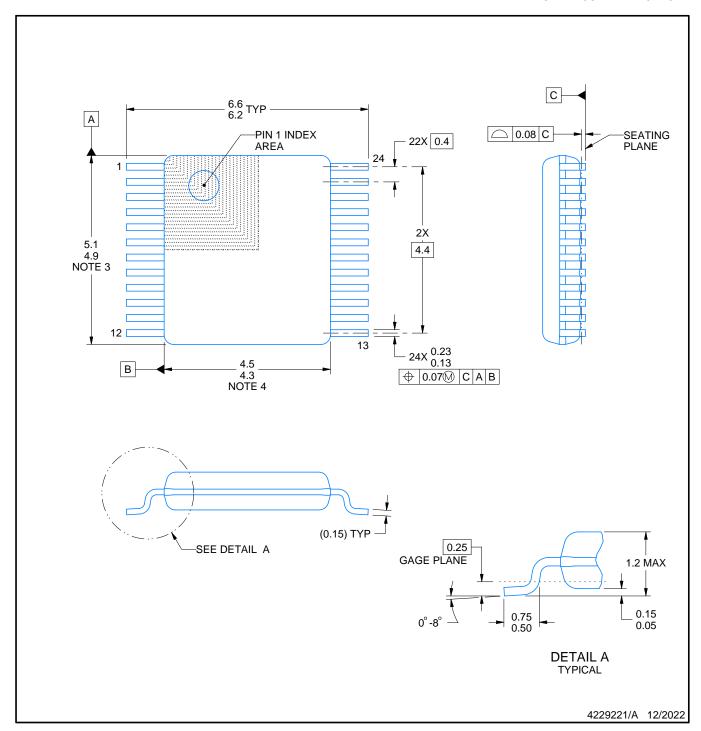
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

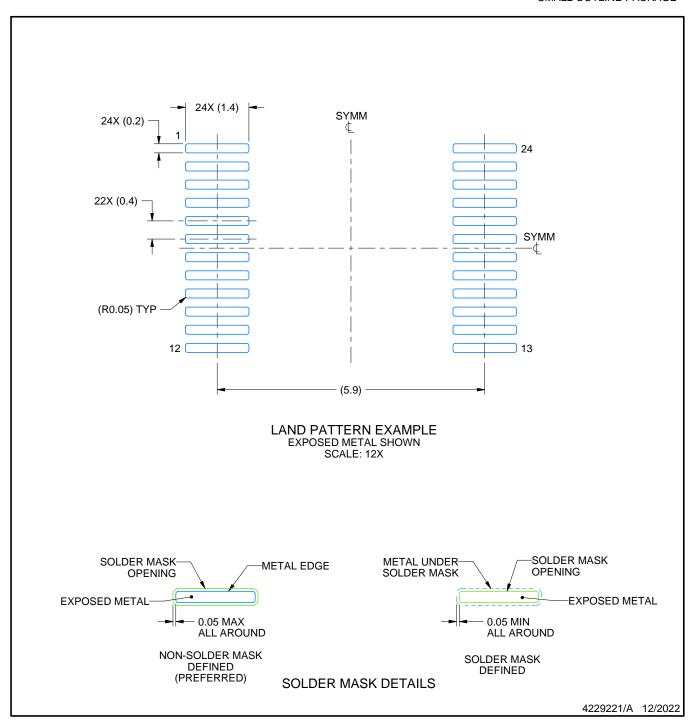
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NOTES: (continued)

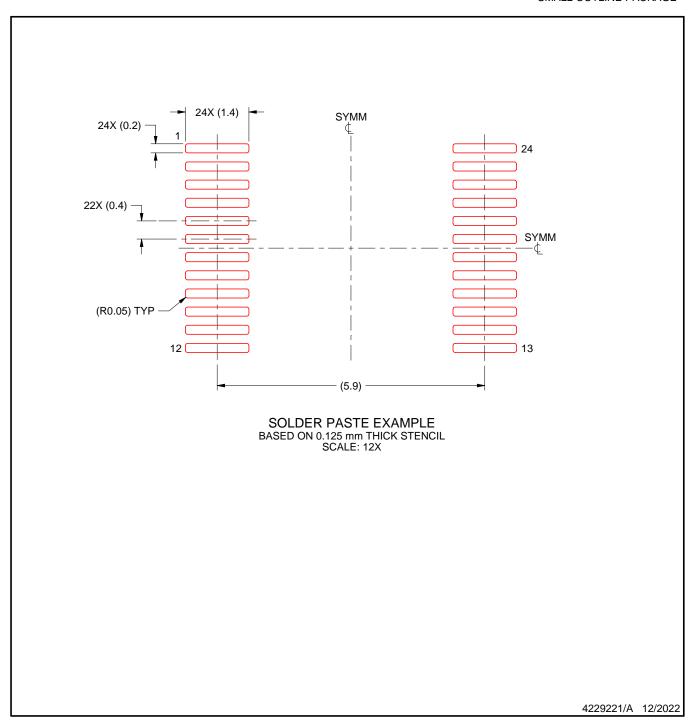
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

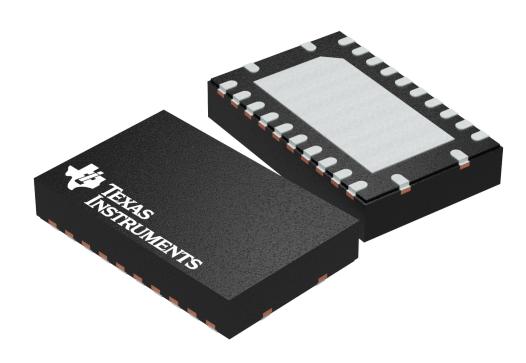
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


NOTES: (continued)

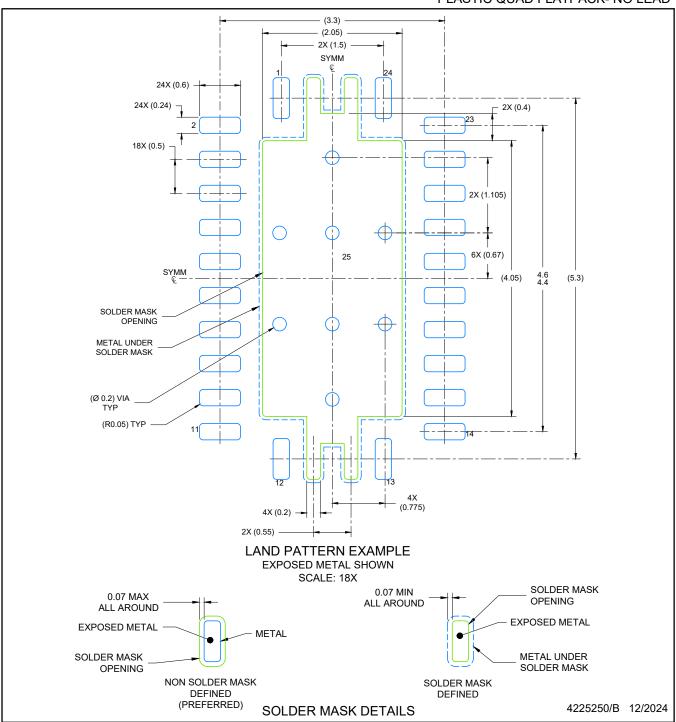
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

5.5 x 3.5 mm, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

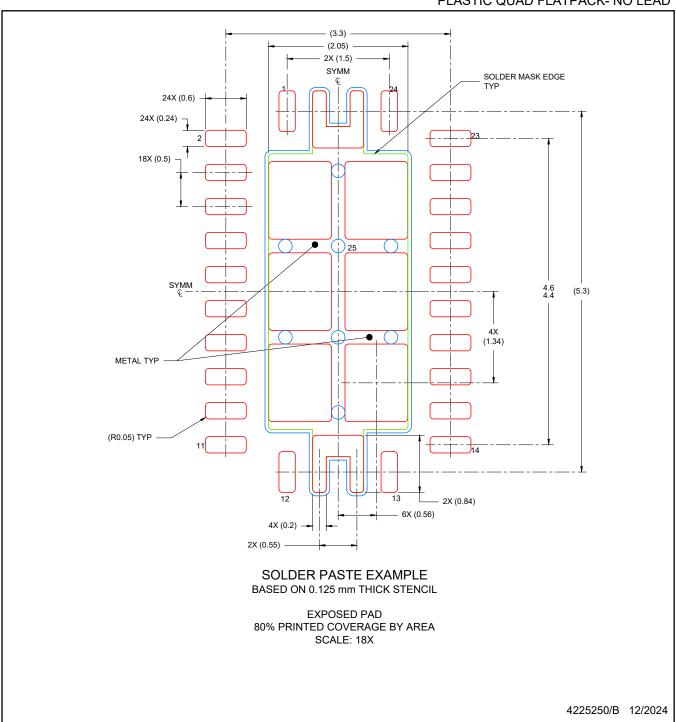
PLASTIC QUAD FLATPACK- NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

PLASTIC QUAD FLATPACK- NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK- NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated