







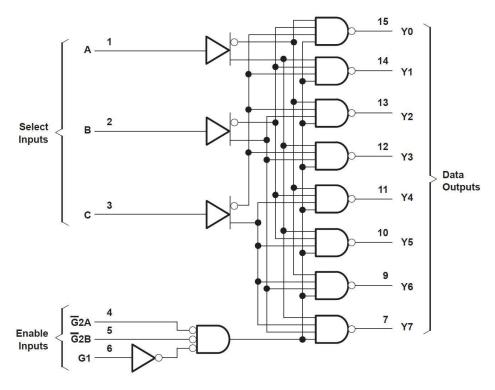

SN54AHCT138, SN74AHCT138 SCLS2660 – DECEMBER 1995 – REVISED JULY 2024

## SNx4AHCT138 3-Line to 8-Line Decoders/Demultiplexers

### **1** Features

Texas

**INSTRUMENTS** 


- Inputs are TTL-voltage compatible
- Designed specifically for high-speed memory decoders and data-transmission systems
- Incorporate three enable inputs to simplify cascading and/or data reception
- Latch-up performance exceeds 250mA per JESD 17
- ESD protection exceeds JESD 22
  - ±2000V human-body model (A114-A)
  - ±1000V charged-device model (C101)

### 2 Description

The 'AHCT138 3-line to 8-line decoders/ demultiplexers are designed to be used in highperformance memory-decoding and data-routing applications that require very short propagation-delay times. In high-performance memory systems, this decoder can be used to minimize the effects of system decoding.

| Device Information |                 |                  |                          |  |  |  |  |  |  |  |
|--------------------|-----------------|------------------|--------------------------|--|--|--|--|--|--|--|
| PART NUMBER        | PACKAGE (1)     | PACKAGE SIZE (2) | BODY SIZE <sup>(3)</sup> |  |  |  |  |  |  |  |
|                    | RGY (VQFN, 16)  | 4mm x 3.5mm      | 4mm x 3.5mm              |  |  |  |  |  |  |  |
|                    | N (PDIP, 16)    | 19.3 mm × 9.4 mm | 19.32mm x 6.35mm         |  |  |  |  |  |  |  |
|                    | D (SOIC, 16)    | 9.9 mm × 6 mm    | 9.90mm x 3.90mm          |  |  |  |  |  |  |  |
| SNx4AHCT138        | NS (SOP, 16)    | 10.2mm x 7.8mm   | 10.20mm x 5.30mm         |  |  |  |  |  |  |  |
|                    | DB (SSOP, 16)   | 6.2mm × 7.8mm    | 6.20mm x 5.30mm          |  |  |  |  |  |  |  |
|                    | PW (TSSOP , 16) | 5mm × 6.4mm      | 5.00mm x 4.40mm          |  |  |  |  |  |  |  |
|                    | DGV (TVSOP, 16) | 3.6mm x 6.4mm    | 3.6mm x 4.4mm            |  |  |  |  |  |  |  |

- (1) For more information, see Mechanical, Packaging, and Orderable Information.
- (2) The package size (length × width) is a nominal value and includes pins, where applicable
- (3) The body size (length × width) is a nominal value and does not include pins.



Logic Diagram (Positive Logic)



## **Table of Contents**

| 1 Features<br>2 Description          |                |
|--------------------------------------|----------------|
| 3 Pin Configuration and Functions    | 3              |
| 4 Specifications                     |                |
| 4.1 Absolute Maximum Ratings         | <mark>5</mark> |
| 4.2 ESD Ratings                      |                |
| 4.3 Recommended Operating Conditions |                |
| 4.4 Thermal Information              | 6              |
| 4.5 Electrical Characteristics       | <mark>6</mark> |
| 4.6 Switching Characteristics        | <mark>6</mark> |
| 4.7 Operating Characteristics        | 7              |
| 4.8 Typical Characteristics          |                |
| 5 Parameter Measurement Information  |                |
| 6 Detailed Description               |                |
| 6.1 Overview                         | 9              |
| 6.2 Functional Block Diagram         |                |
|                                      |                |

|   | 6.3 Device Functional Modes                         | 9  |
|---|-----------------------------------------------------|----|
| 7 | Application and Implementation                      |    |
|   | 7.1 Application Information                         |    |
|   | 7.2 Power Supply Recommendations                    | 13 |
|   | 7.3 Layout                                          |    |
| 8 | Device and Documentation Support                    |    |
|   | 8.1 Documentation Support                           |    |
|   | 8.2 Receiving Notification of Documentation Updates |    |
|   | 8.3 Support Resources                               | 14 |
|   | 8.4 Trademarks                                      |    |
|   | 8.5 Electrostatic Discharge Caution                 | 14 |
|   | 8.6 Glossary                                        | 14 |
| 9 | Revision History                                    |    |
|   | 0 Mechanical, Packaging, and Orderable              |    |
|   | Information                                         | 15 |
|   |                                                     |    |



## **3 Pin Configuration and Functions**

16 V<sub>CC</sub> А В 🛛 2 15 YO С[]З 14 🛛 Y1 G2A 4 13 🛛 Y2 G2B 5 12 🛛 Y3 G1 6 11 🛛 Y4 11 10 🛛 Y5 Y7 7 8 9 Y6 GND

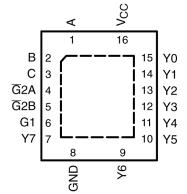
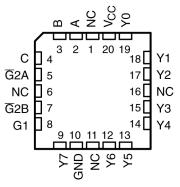
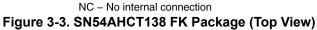





Figure 3-1. SN54AHCT138 J or W Package; SN74AHCT138 D, DB, DGV, N, NS, or PW Package (Top View)

Figure 3-2. SN74AHCT138 RGY Package (Top View)







#### Table 3-1. Pin Functions

| PIN                        |     | TYPE <sup>(1)</sup> | DESCRIPTION                 |  |
|----------------------------|-----|---------------------|-----------------------------|--|
| NAME                       | NO. |                     | DESCRIPTION                 |  |
| A                          | 1   | I                   | Input A                     |  |
| В                          | 2   | I                   | Input B                     |  |
| С                          | 3   | I                   | Input C                     |  |
| G2A                        | 4   | I                   | Strobe Input 2A, active low |  |
| G2B                        | 5   | I                   | Strobe Input 2B, active low |  |
| G1                         | 6   | I                   | Strobe Input                |  |
| Y7                         | 7   | 0                   | Output 7                    |  |
| GND                        | 8   | G                   | Ground                      |  |
| Y6                         | 9   | 0                   | Output 6                    |  |
| Y5                         | 10  | 0                   | Output 5                    |  |
| Y4                         | 11  | 0                   | Output 4                    |  |
| Y3                         | 12  | 0                   | Output 3                    |  |
| Y2                         | 13  | 0                   | Output 2                    |  |
| Y1                         | 14  | 0                   | Output 1                    |  |
| Y0                         | 15  | 0                   | Output 0                    |  |
| V <sub>CC</sub>            | 16  | Р                   | Positive Supply             |  |
| Thermal Pad <sup>(2)</sup> |     | _                   | Thermal Pad                 |  |

(1) I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power.

(2) BQB package only

Copyright © 2024 Texas Instruments Incorporated



## **4** Specifications

### 4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                               |                                            |                                      | MIN  | MAX                   | UNIT |
|-------------------------------|--------------------------------------------|--------------------------------------|------|-----------------------|------|
| V <sub>CC</sub>               | Supply voltage range                       | -0.5                                 | 7    | V                     |      |
| V <sub>I</sub> <sup>(2)</sup> | Input voltage range                        |                                      | -0.5 | 7                     | V    |
| V <sub>O</sub> <sup>(2)</sup> | Output voltage range                       |                                      | -0.5 | V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>               | Input clamp current                        | (V <sub>1</sub> < 0)                 |      | -20                   | mA   |
| I <sub>ОК</sub>               | Output clamp current                       | $(V_O < 0 \text{ or } V_O > V_{CC})$ |      | ±20                   | mA   |
| lo                            | Continuous output current                  | $(V_{O} = 0 \text{ to } V_{CC})$     |      | ±25                   | mA   |
|                               | Continuous current through $V_{CC}$ or GND |                                      | ±75  | mA                    |      |
| T <sub>stg</sub>              | Storage temperature range                  |                                      | -65  | 150                   | °C   |

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

### 4.2 ESD Ratings

|                    |                         |                                                                                | VALUE | UNIT |
|--------------------|-------------------------|--------------------------------------------------------------------------------|-------|------|
|                    |                         | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>              | ±2000 |      |
| V <sub>(ESD)</sub> | Electrostatic discharge | Charged device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | ±1000 | V    |

(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process

### **4.3 Recommended Operating Conditions**

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                 |                                    | SN54AH | SN54AHCT138         SN74AHCT138           MIN         MAX         MIN         MA |     | SN74AHCT138     |      |
|-----------------|------------------------------------|--------|----------------------------------------------------------------------------------|-----|-----------------|------|
|                 |                                    | MIN    |                                                                                  |     | MAX             | UNIT |
| V <sub>CC</sub> | Supply voltage                     | 1.5    | 5.5                                                                              | 1.5 | 5.5             | V    |
| V <sub>IH</sub> | High-level input voltage           | 2      |                                                                                  | 2   |                 | V    |
| VIL             | Low-level input voltage            |        | 0.8                                                                              |     | 0.8             | V    |
| VI              | Input voltage                      | 0      | 5.5                                                                              | 0   | 5.5             | V    |
| Vo              | Output voltage                     | 0      | V <sub>CC</sub>                                                                  | 0   | V <sub>CC</sub> | V    |
| I <sub>он</sub> | High-level output current          |        | -8                                                                               |     | -8              | mA   |
| I <sub>OL</sub> | Low-level output current           |        | 8                                                                                |     | 8               | mA   |
| Δt/Δv           | Input transition rise or fall rate |        | 20                                                                               |     | 20              | ns/V |
| T <sub>A</sub>  | Operating free-air temperature     | -55    | 125                                                                              | -40 | 85              | °C   |

 All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.



### **4.4 Thermal Information**

|                               |                                        | SN74AHCT138    |            |         |                       |         |               |               |      |
|-------------------------------|----------------------------------------|----------------|------------|---------|-----------------------|---------|---------------|---------------|------|
| THERMAL METRIC <sup>(1)</sup> |                                        | DGV<br>(TVSOP) | - D (SOIC) |         | DB<br>(SSOP) N (PDIP) |         | PW<br>(TSSOP) | RGY<br>(VQFN) | UNIT |
|                               |                                        | 16 PINS        | 16 PINS    | 16 PINS | 16 PINS               | 16 PINS | 16 PINS       | 16 PINS       |      |
| R <sub>θJA</sub>              | Junction-to-ambient thermal resistance | 120            | 93.8       | 82      | 67                    | 64      | 135.9         | 39            | °C/W |

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application (1) report.

### 4.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER                       |                                                     |                 | T <sub>A</sub> = 25°C SI |     |      | SN54AH | CT138             | SN74AHCT138 |      | UNIT |
|---------------------------------|-----------------------------------------------------|-----------------|--------------------------|-----|------|--------|-------------------|-------------|------|------|
| PARAMETER                       | TEST CONDITIONS                                     | V <sub>cc</sub> | MIN                      | TYP | MAX  | MIN    | MAX               | MIN         | MAX  | UNIT |
| M                               | I <sub>OH</sub> = −50 mA                            | 4 5 V           | 4.4                      | 4.5 |      | 4.4    |                   | 4.4         |      | V    |
| V <sub>OH</sub>                 | I <sub>OH</sub> = −8 mA                             | 45V             | 3.94                     |     |      | 3.8    |                   | 3.8         |      | v    |
| M                               | I <sub>OL</sub> = 50 mA                             | 45V             |                          |     | 0.1  |        | 0.1               |             | 0.1  | V    |
| V <sub>OL</sub>                 | I <sub>OL</sub> = 8 mA                              | 450             |                          |     | 0.36 |        | 0.5               |             | 0.44 | v    |
| I <sub>I</sub>                  | V <sub>I</sub> = 5.5 V or GND                       | 0 V to 5.5 V    |                          |     | ±0.1 |        | ±1 <sup>(1)</sup> |             | ±1   | mA   |
| I <sub>CC</sub>                 | $V_{I} = V_{CC} \text{ or }$<br>GND, $I_{O} = 0$    | 5.5 V           |                          |     | 4    |        | 40                |             | 40   | mA   |
| ΔI <sub>CC</sub> <sup>(2)</sup> | One input at 3.4 V, Other inputs at $V_{CC}$ or GND | 5.5 V           |                          |     | 1.35 |        | 1.5               |             | 1.5  | mA   |
| C <sub>i</sub>                  | V <sub>I</sub> = V <sub>CC</sub> or GND             | 5 V             |                          | 2   | 10   |        |                   |             | 10   | pF   |

(1)

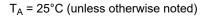
On products compliant to MIL-PRF-38535, this parameter is not production tested at  $V_{CC}$  = 0 V. This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or  $V_{CC}$ . (2)

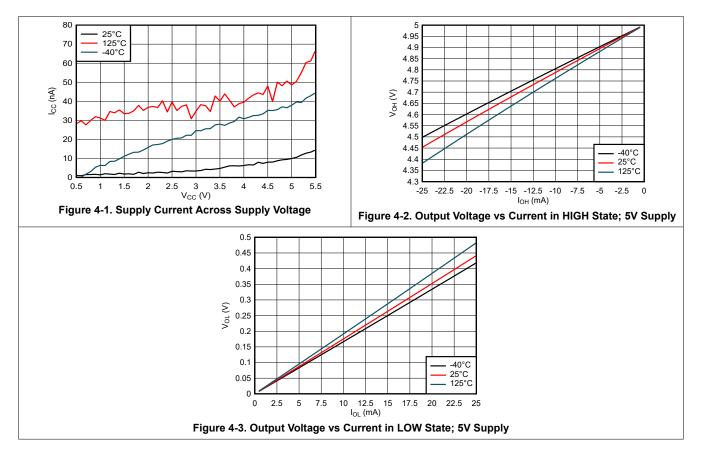
### 4.6 Switching Characteristics

over recommended operating free-air temperature range,  $V_{CC}$  = 5 V ± 0.5 V (unless otherwise noted) (see Figure 5-1)

|                  | FROM      | то                        | LOAD                   | T,                     | T <sub>A</sub> = 25°C |                       | SN54AH           | ICT138                | SN74AH | CT138 |      |    |
|------------------|-----------|---------------------------|------------------------|------------------------|-----------------------|-----------------------|------------------|-----------------------|--------|-------|------|----|
| PARAMETER        | (INPUT)   | (OUTPUT)                  | CAPACITANCE            | MIN                    | TYP                   | MAX                   | MIN              | MAX                   | MIN    | MAX   | UNIT |    |
| t <sub>PLH</sub> | – A, B, C | Any Y                     | C <sub>1</sub> = 15 pF |                        | 7.6 <sup>(1)</sup>    | 10.4 <mark>(1)</mark> | 1 <sup>(1)</sup> | 12 <mark>(1)</mark>   | 1      | 12    | ns   |    |
| t <sub>PHL</sub> | A, D, C   | Ally f                    |                        |                        | 7.6 <sup>(1)</sup>    | 10.4 <mark>(1)</mark> | 1 <sup>(1)</sup> | 12 <mark>(1)</mark>   | 1      | 12    | 115  |    |
| t <sub>PLH</sub> | - G1      | Any Y                     | C <sub>L</sub> = 15 pF |                        | 6.6 <sup>(1)</sup>    | 9.1 <mark>(1)</mark>  | 1 <sup>(1)</sup> | 10.5 <mark>(1)</mark> | 1      | 10.5  | ne   |    |
| t <sub>PHL</sub> |           | Ally f                    |                        |                        | 6.6 <sup>(1)</sup>    | 9.1 <mark>(1)</mark>  | 1 <sup>(1)</sup> | 10.5 <mark>(1)</mark> | 1      | 10.5  | ns   |    |
| t <sub>PLH</sub> | G2A, G2B  | Any Y                     | C <sub>1</sub> = 15 pF |                        | 7 <sup>(1)</sup>      | 9.6 <mark>(1)</mark>  | 1 <sup>(1)</sup> | 11 <sup>(1)</sup>     | 1      | 11    | 20   |    |
| t <sub>PHL</sub> | GZA, GZD  | Ally f                    | CL - 15 pr             |                        | 7 <sup>(1)</sup>      | 9.6 <mark>(1)</mark>  | 1 <sup>(1)</sup> | 11 <sup>(1)</sup>     | 1      | 11    | ns   |    |
| t <sub>PLH</sub> | A, B, C   | Any Y                     | C <sub>L</sub> = 50 pF |                        | 8.1                   | 11.4                  | 1                | 13                    | 1      | 13    | ns   |    |
| t <sub>PHL</sub> | A, D, C   | Ally f                    | CL - 50 pr             |                        | 8.1                   | 11.4                  | 1                | 13                    | 1      | 13    | 115  |    |
| t <sub>PLH</sub> | C1        | Any V                     | C = 50 pF              |                        | 7.1                   | 10.1                  | 1                | 11.5                  | 1      | 11.5  | 20   |    |
| t <sub>PHL</sub> | G1 Any Y  | Any $C_L = 50 \text{ pF}$ | $C_L = 50 \text{ pF}$  | C <sub>L</sub> = 50 pF |                       | 7.1                   | 10.1             | 1                     | 11.5   | 1     | 11.5 | ns |
| t <sub>PLH</sub> | G2A, G2B  | Any Y                     | C = 50 pE              |                        | 7.5                   | 10.6                  | 1                | 12                    | 1      | 12    | 20   |    |
| t <sub>PHL</sub> | GZA, GZD  |                           | C <sub>L</sub> = 50 pF |                        | 7.5                   | 10.6                  | 1                | 12                    | 1      | 12    | ns   |    |

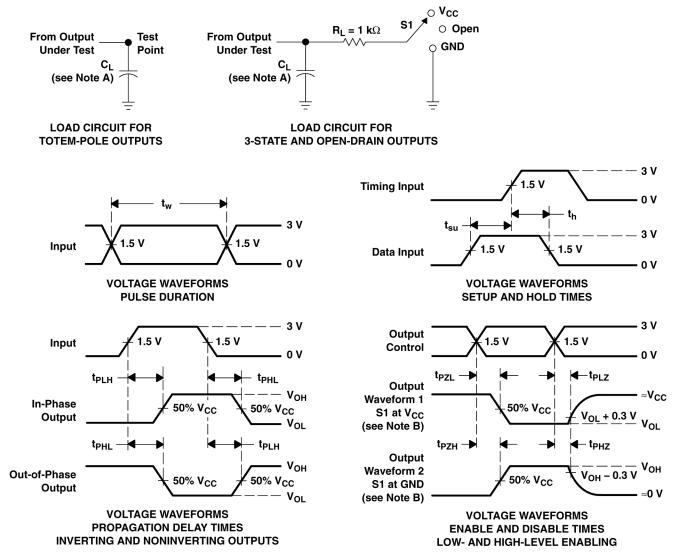
(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.





### 4.7 Operating Characteristics

 $V_{CC} = 5 V, T_A = 25^{\circ}C$ 

|                 | PARAMETER                     | TEST     | CONDITIONS | TYP | UNIT |
|-----------------|-------------------------------|----------|------------|-----|------|
| C <sub>pd</sub> | Power dissipation capacitance | No load, | f = 1 MHz  | 14  | pF   |


### **4.8 Typical Characteristics**







### **5** Parameter Measurement Information



- A. C<sub>L</sub> includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>0</sub> = 50  $\Omega$ , t<sub>r</sub>  $\leq$  3 ns, t<sub>f</sub>  $\leq$  3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

#### Figure 5-1. Load Circuit and Voltage Waveforms

| TEST                               | S1              |
|------------------------------------|-----------------|
| t <sub>PLH</sub> /t <sub>PHL</sub> | Open            |
| t <sub>PLZ</sub> /t <sub>PZL</sub> | V <sub>CC</sub> |
| t <sub>PHZ</sub> /t <sub>PZH</sub> | GND             |
| Open Drain                         | V <sub>CC</sub> |



### 6 Detailed Description

### 6.1 Overview

When employed with high-speed memories utilizing a fast enable circuit, the delay times of this decoder and the enable time of the memory usually are less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

The conditions at the binary-select inputs and the three enable inputs select one of eight output lines. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

#### 6.2 Functional Block Diagram

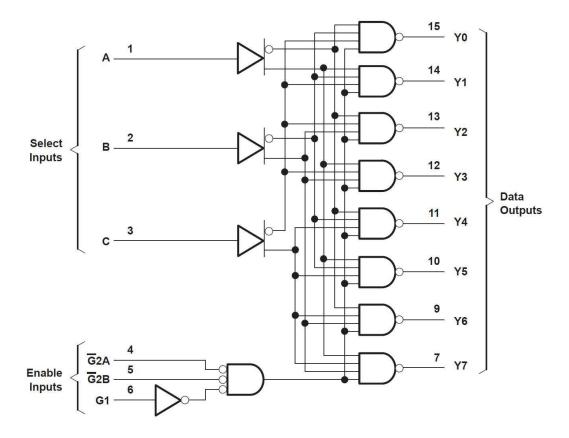



Figure 6-1. Logic Diagram (Positive Logic)

### 6.3 Device Functional Modes

|                             | Table 6-1. Function Table |     |   |   |   |         |    |    |    |    |    |    |    |  |
|-----------------------------|---------------------------|-----|---|---|---|---------|----|----|----|----|----|----|----|--|
| ENABLE INPUTS SELECT INPUTS |                           |     |   |   |   | OUTPUTS |    |    |    |    |    |    |    |  |
| G1                          | G2A                       | G2B | С | В | Α | Y0      | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 |  |
| Х                           | Н                         | Х   | Х | Х | Х | Н       | Н  | Н  | Н  | Н  | Н  | Н  | Н  |  |
| Х                           | Х                         | Н   | Х | Х | Х | Н       | Н  | Н  | Н  | Н  | Н  | Н  | Н  |  |
| L                           | Х                         | Х   | Х | Х | Х | Н       | н  | Н  | Н  | Н  | Н  | Н  | н  |  |
| н                           | L                         | L   | L | L | L | L       | н  | Н  | Н  | Н  | Н  | Н  | н  |  |
| н                           | L                         | L   | L | L | Н | н       | L  | Н  | Н  | Н  | Н  | Н  | н  |  |
| н                           | L                         | L   | L | Н | L | Н       | н  | L  | Н  | Н  | Н  | Н  | н  |  |
| Н                           | L                         | L   | L | Н | Н | Н       | Н  | Н  | L  | Н  | Н  | Н  | н  |  |

#### Table 6-1. Function Table

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback 9

| ENABLE INPUTS SELECT INPUTS |     |     |   |   | OUTPUTS |    |    |    |    |    |    |    |    |
|-----------------------------|-----|-----|---|---|---------|----|----|----|----|----|----|----|----|
| G1                          | G2A | G2B | С | В | A       | Y0 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 |
| н                           | L   | L   | Н | L | L       | н  | Н  | Н  | н  | L  | Н  | н  | н  |
| Н                           | L   | L   | Н | L | Н       | Н  | Н  | Н  | Н  | Н  | L  | Н  | н  |
| Н                           | L   | L   | Н | Н | L       | Н  | Н  | Н  | Н  | Н  | Н  | L  | н  |
| Н                           | L   | L   | Н | Н | Н       | Н  | Н  | Н  | Н  | Н  | Н  | Н  | L  |

### Table 6-1. Function Table (continued)





## 7 Application and Implementation

#### Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

#### 7.1 Application Information

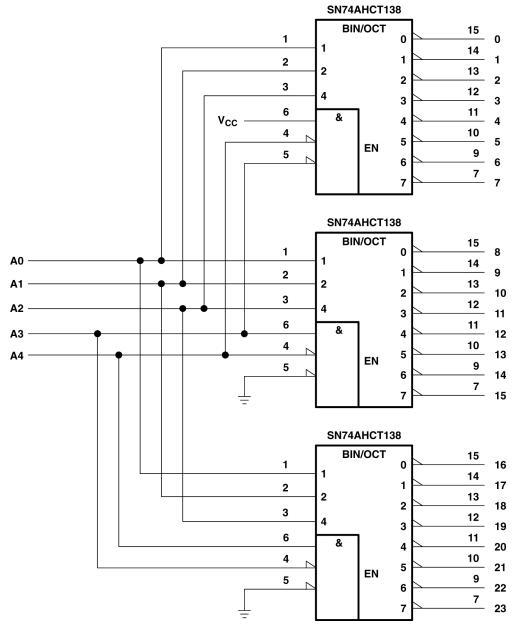



Figure 7-1. 24-Bit Decoding Scheme



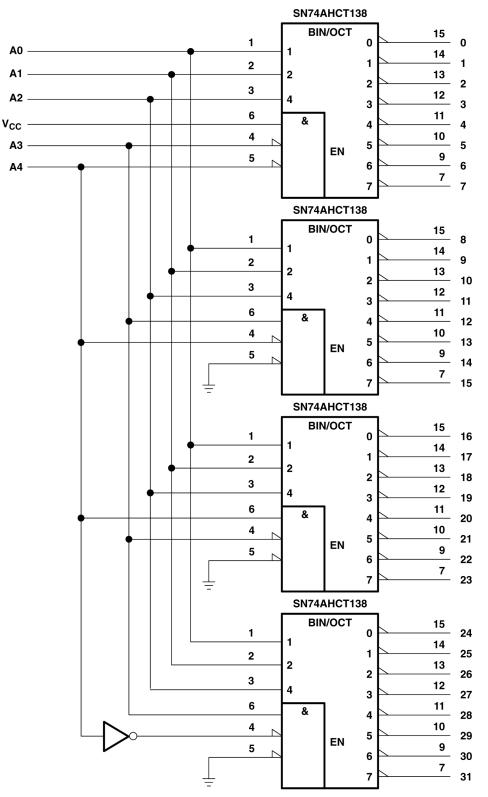



Figure 7-2. 32-Bit Decoding Scheme



### 7.2 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each  $V_{CC}$  terminal should have a good bypass capacitor to prevent power disturbance. A 0.1µF capacitor is recommended for this device. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. The 0.1µF and 1µF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

#### 7.3 Layout

#### 7.3.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices, inputs must never be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or  $V_{CC}$ , whichever makes more sense for the logic function or is more convenient.



### 8 Device and Documentation Support

### 8.1 Documentation Support

#### 8.1.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

| PARTS       | PRODUCT FOLDER | SAMPLE & BUY | TECHNICAL<br>DOCUMENTS | TOOLS &<br>SOFTWARE | SUPPORT &<br>COMMUNITY |
|-------------|----------------|--------------|------------------------|---------------------|------------------------|
| SN54AHCT138 | Click here     | Click here   | Click here             | Click here          | Click here             |
| SN74AHCT138 | Click here     | Click here   | Click here             | Click here          | Click here             |

#### Table 8-1. Related Links

### 8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

#### 8.3 Support Resources

TI E2E<sup>™</sup> support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

#### 8.4 Trademarks

TI E2E<sup>™</sup> is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

#### 8.5 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### 8.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

### **9 Revision History**

| С | hanges from Revision N (April 2024) to Revision O (July 2024) | Page |
|---|---------------------------------------------------------------|------|
| • | Updated RθJA value: D = 73 to 93.8, all values in °C/W        | 6    |

| С | hanges from Revision M (July 2003) to Revision N (April 2024)                                                                                                                                            | Page           |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| • | Added Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, De Functional Modes, Application and Implementation section, Device and Documentation Support section |                |
|   | Mechanical, Packaging, and Orderable Information section                                                                                                                                                 | 1              |
| • | Deleted references to machine model                                                                                                                                                                      | 1              |
| • | Updated RθJA value: PW = 108 to 135.9, all values in °C/W                                                                                                                                                | <mark>6</mark> |



## 10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



## PACKAGING INFORMATION

| Orderable part number | Status<br>(1) | Material type (2) | Package   Pins   | Package qty   Carrier | <b>RoHS</b><br>(3) | Lead finish/<br>Ball material<br>(4) | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking<br>(6)                       |
|-----------------------|---------------|-------------------|------------------|-----------------------|--------------------|--------------------------------------|----------------------------|--------------|-------------------------------------------|
| 5962-9851701Q2A       | Active        | Production        | LCCC (FK)   20   | 55   TUBE             | No                 | SNPB                                 | N/A for Pkg Type           | -55 to 125   | 5962-<br>9851701Q2A<br>SNJ54AHCT<br>138FK |
| 5962-9851701QEA       | Active        | Production        | CDIP (J)   16    | 25   TUBE             | No                 | SNPB                                 | N/A for Pkg Type           | -55 to 125   | 5962-9851701QE<br>A<br>SNJ54AHCT138J      |
| 5962-9851701QFA       | Active        | Production        | CFP (W)   16     | 25   TUBE             | No                 | SNPB                                 | N/A for Pkg Type           | -55 to 125   | 5962-9851701QF<br>A<br>SNJ54AHCT138W      |
| SN74AHCT138D          | Obsolete      | Production        | SOIC (D)   16    | -                     | -                  | Call TI                              | Call TI                    | -40 to 85    | AHCT138                                   |
| SN74AHCT138DBR        | Active        | Production        | SSOP (DB)   16   | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM         | -40 to 85    | HB138                                     |
| SN74AHCT138DBR.A      | Active        | Production        | SSOP (DB)   16   | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM         | -40 to 85    | HB138                                     |
| SN74AHCT138DGVR       | Active        | Production        | TVSOP (DGV)   16 | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM         | -40 to 85    | HB138                                     |
| SN74AHCT138DGVR.A     | Active        | Production        | TVSOP (DGV)   16 | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM         | -40 to 85    | HB138                                     |
| SN74AHCT138DR         | Active        | Production        | SOIC (D)   16    | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM         | -40 to 85    | AHCT138                                   |
| SN74AHCT138DR.A       | Active        | Production        | SOIC (D)   16    | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM         | -40 to 85    | AHCT138                                   |
| SN74AHCT138N          | Active        | Production        | PDIP (N)   16    | 25   TUBE             | Yes                | NIPDAU                               | N/A for Pkg Type           | -40 to 85    | SN74AHCT138N                              |
| SN74AHCT138N.A        | Active        | Production        | PDIP (N)   16    | 25   TUBE             | Yes                | NIPDAU                               | N/A for Pkg Type           | -40 to 85    | SN74AHCT138N                              |
| SN74AHCT138NSR        | Active        | Production        | SOP (NS)   16    | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM         | -40 to 85    | AHCT138                                   |
| SN74AHCT138NSR.A      | Active        | Production        | SOP (NS)   16    | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM         | -40 to 85    | AHCT138                                   |
| SN74AHCT138PW         | Obsolete      | Production        | TSSOP (PW)   16  | -                     | -                  | Call TI                              | Call TI                    | -40 to 85    | HB138                                     |
| SN74AHCT138PWR        | Active        | Production        | TSSOP (PW)   16  | 2000   LARGE T&R      | Yes                | NIPDAU   SN                          | Level-1-260C-UNLIM         | -40 to 85    | HB138                                     |
| SN74AHCT138PWR.A      | Active        | Production        | TSSOP (PW)   16  | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM         | -40 to 85    | HB138                                     |
| SN74AHCT138RGYR       | Active        | Production        | VQFN (RGY)   16  | 3000   LARGE T&R      | Yes                | NIPDAU                               | Level-2-260C-1 YEAR        | -40 to 85    | HB138                                     |
| SN74AHCT138RGYR.A     | Active        | Production        | VQFN (RGY)   16  | 3000   LARGE T&R      | Yes                | NIPDAU                               | Level-2-260C-1 YEAR        | -40 to 85    | HB138                                     |
| SNJ54AHCT138FK        | Active        | Production        | LCCC (FK)   20   | 55   TUBE             | No                 | SNPB                                 | N/A for Pkg Type           | -55 to 125   | 5962-<br>9851701Q2A<br>SNJ54AHCT<br>138FK |



#### www.ti.com

29-May-2025

| Orderable part number | Status<br>(1) | Material type (2) | Package   Pins | Package qty   Carrier | <b>RoHS</b> (3) | Lead finish/<br>Ball material<br>(4) | MSL rating/<br>Peak reflow<br>(5) | Op temp (°C) | Part marking<br>(6)                       |
|-----------------------|---------------|-------------------|----------------|-----------------------|-----------------|--------------------------------------|-----------------------------------|--------------|-------------------------------------------|
| SNJ54AHCT138FK.A      | Active        | Production        | LCCC (FK)   20 | 55   TUBE             | No              | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-<br>9851701Q2A<br>SNJ54AHCT<br>138FK |
| SNJ54AHCT138J         | Active        | Production        | CDIP (J)   16  | 25   TUBE             | No              | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-9851701QE<br>A<br>SNJ54AHCT138J      |
| SNJ54AHCT138J.A       | Active        | Production        | CDIP (J)   16  | 25   TUBE             | No              | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-9851701QE<br>A<br>SNJ54AHCT138J      |
| SNJ54AHCT138W         | Active        | Production        | CFP (W)   16   | 25   TUBE             | No              | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-9851701QF<br>A<br>SNJ54AHCT138W      |
| SNJ54AHCT138W.A       | Active        | Production        | CFP (W)   16   | 25   TUBE             | No              | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-9851701QF<br>A<br>SNJ54AHCT138W      |

<sup>(1)</sup> **Status:** For more details on status, see our product life cycle.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.



www.ti.com

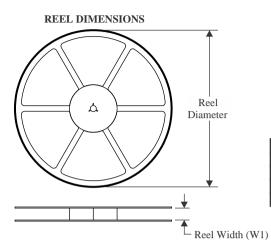
## PACKAGE OPTION ADDENDUM

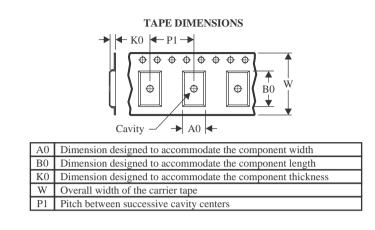
29-May-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

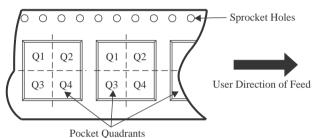
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF SN54AHCT138, SN74AHCT138 :


- Catalog : SN74AHCT138
- Enhanced Product : SN74AHCT138-EP, SN74AHCT138-EP
- Military : SN54AHCT138
- NOTE: Qualified Version Definitions:
  - Catalog TI's standard catalog product
  - Enhanced Product Supports Defense, Aerospace and Medical Applications
  - Military QML certified for Military and Defense Applications




TEXAS


NSTRUMENTS

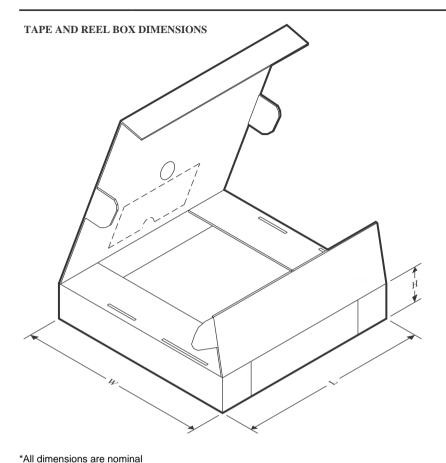
### TAPE AND REEL INFORMATION





#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| *All dimensions are nominal | _               |                    |      |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN74AHCT138DBR              | SSOP            | DB                 | 16   | 2000 | 330.0                    | 16.4                     | 8.35       | 6.6        | 2.4        | 12.0       | 16.0      | Q1               |
| SN74AHCT138DGVR             | TVSOP           | DGV                | 16   | 2000 | 330.0                    | 12.4                     | 6.8        | 4.0        | 1.6        | 8.0        | 12.0      | Q1               |
| SN74AHCT138DR               | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| SN74AHCT138DR               | SOIC            | D                  | 16   | 2500 | 330.0                    | 12.4                     | 3.75       | 3.75       | 1.15       | 8.0        | 12.0      | Q1               |
| SN74AHCT138DR               | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| SN74AHCT138NSR              | SOP             | NS                 | 16   | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |
| SN74AHCT138PWR              | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| SN74AHCT138PWR              | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| SN74AHCT138RGYR             | VQFN            | RGY                | 16   | 3000 | 330.0                    | 12.4                     | 3.8        | 4.3        | 1.5        | 8.0        | 12.0      | Q1               |

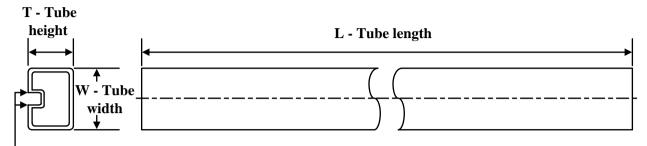


www.ti.com

# PACKAGE MATERIALS INFORMATION

23-May-2025




|                 | ) — — — — — — — — — — — — — — — — — — — | · · · · · · · · · · · · · · · · · · · |      |      |             |            | ·           |
|-----------------|-----------------------------------------|---------------------------------------|------|------|-------------|------------|-------------|
| Device          | Package Type                            | Package Drawing                       | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
| SN74AHCT138DBR  | SSOP                                    | DB                                    | 16   | 2000 | 356.0       | 356.0      | 35.0        |
| SN74AHCT138DGVR | TVSOP                                   | DGV                                   | 16   | 2000 | 356.0       | 356.0      | 35.0        |
| SN74AHCT138DR   | SOIC                                    | D                                     | 16   | 2500 | 353.0       | 353.0      | 32.0        |
| SN74AHCT138DR   | SOIC                                    | D                                     | 16   | 2500 | 340.5       | 336.1      | 32.0        |
| SN74AHCT138DR   | SOIC                                    | D                                     | 16   | 2500 | 353.0       | 353.0      | 32.0        |
| SN74AHCT138NSR  | SOP                                     | NS                                    | 16   | 2000 | 356.0       | 356.0      | 35.0        |
| SN74AHCT138PWR  | TSSOP                                   | PW                                    | 16   | 2000 | 353.0       | 353.0      | 32.0        |
| SN74AHCT138PWR  | TSSOP                                   | PW                                    | 16   | 2000 | 356.0       | 356.0      | 35.0        |
| SN74AHCT138RGYR | VQFN                                    | RGY                                   | 16   | 3000 | 356.0       | 356.0      | 35.0        |

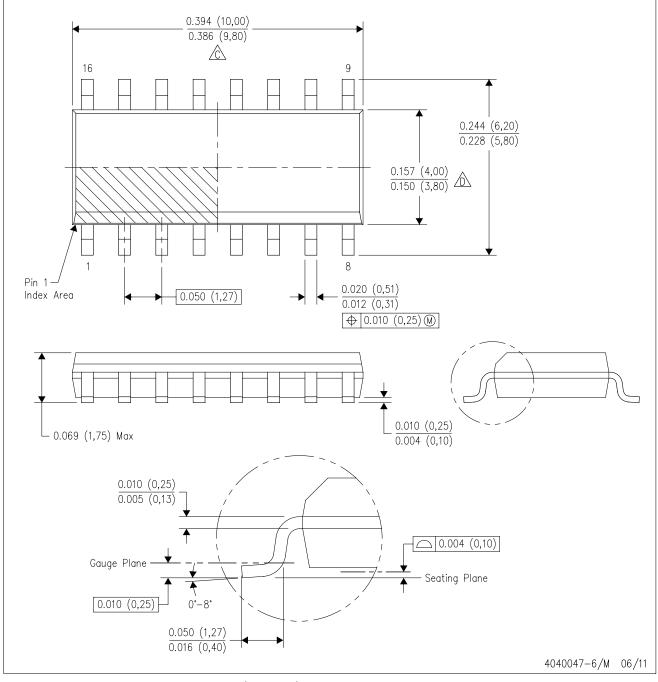
## TEXAS INSTRUMENTS

www.ti.com

23-May-2025

### TUBE




## - B - Alignment groove width

| *All dimensions | are nominal |
|-----------------|-------------|
|-----------------|-------------|

| Device           | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | Τ (μm) | B (mm) |
|------------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| 5962-9851701Q2A  | FK           | LCCC         | 20   | 55  | 506.98 | 12.06  | 2030   | NA     |
| 5962-9851701QFA  | W            | CFP          | 16   | 25  | 506.98 | 26.16  | 6220   | NA     |
| SN74AHCT138N     | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| SN74AHCT138N     | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| SN74AHCT138N.A   | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| SN74AHCT138N.A   | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| SNJ54AHCT138FK   | FK           | LCCC         | 20   | 55  | 506.98 | 12.06  | 2030   | NA     |
| SNJ54AHCT138FK.A | FK           | LCCC         | 20   | 55  | 506.98 | 12.06  | 2030   | NA     |
| SNJ54AHCT138W    | W            | CFP          | 16   | 25  | 506.98 | 26.16  | 6220   | NA     |
| SNJ54AHCT138W.A  | W            | CFP          | 16   | 25  | 506.98 | 26.16  | 6220   | NA     |

D (R-PDSO-G16)

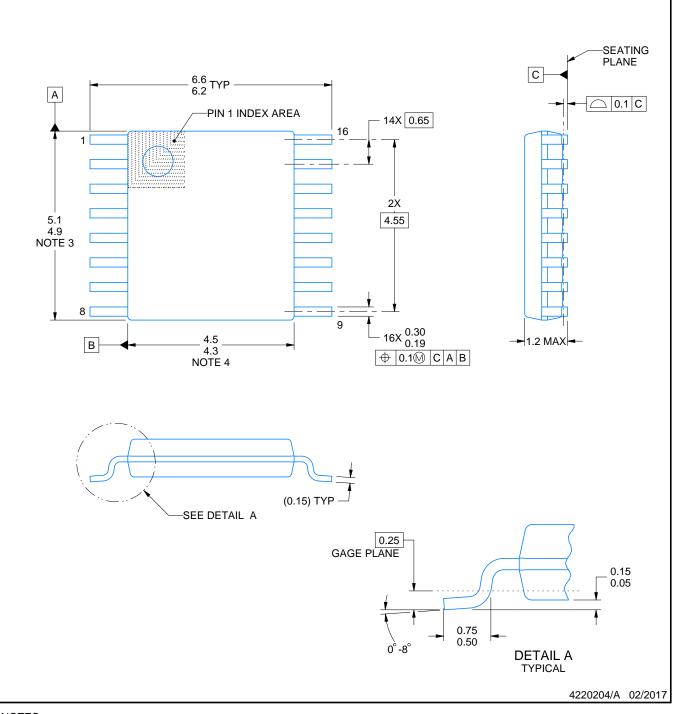
PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.




# **PW0016A**



# **PACKAGE OUTLINE**

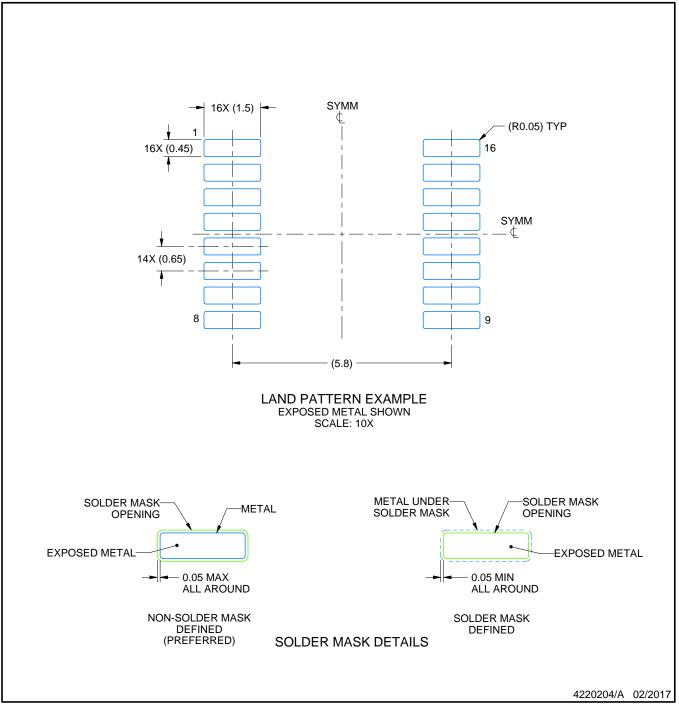
## TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.




# PW0016A

# **EXAMPLE BOARD LAYOUT**

## TSSOP - 1.2 mm max height

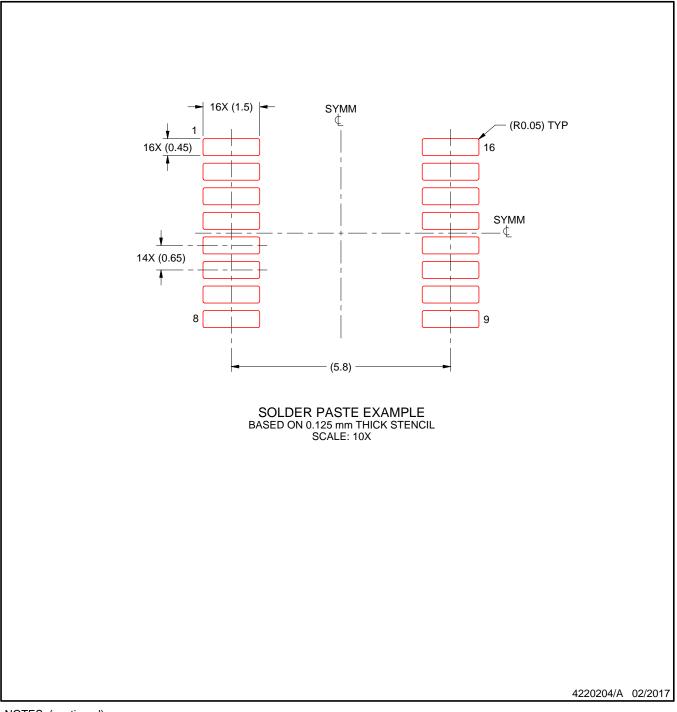
SMALL OUTLINE PACKAGE



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




# PW0016A

# **EXAMPLE STENCIL DESIGN**

## TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

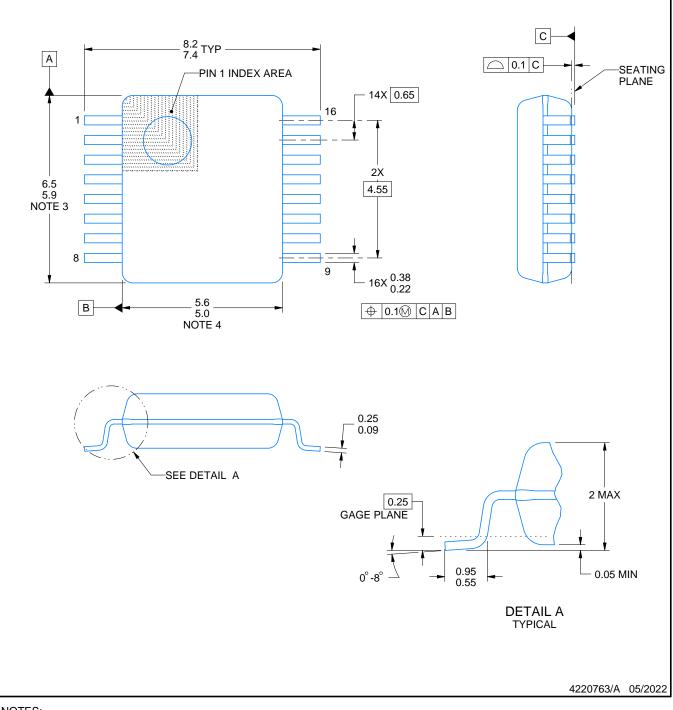


NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.



<sup>8.</sup> Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


# **DB0016A**



# **PACKAGE OUTLINE**

## SSOP - 2 mm max height

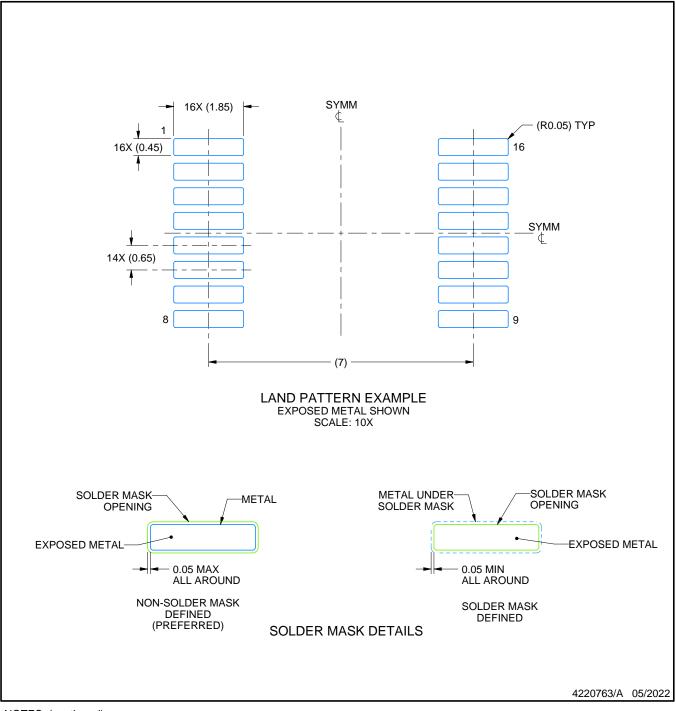
SMALL OUTLINE PACKAGE



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-150.




# DB0016A

# **EXAMPLE BOARD LAYOUT**

## SSOP - 2 mm max height

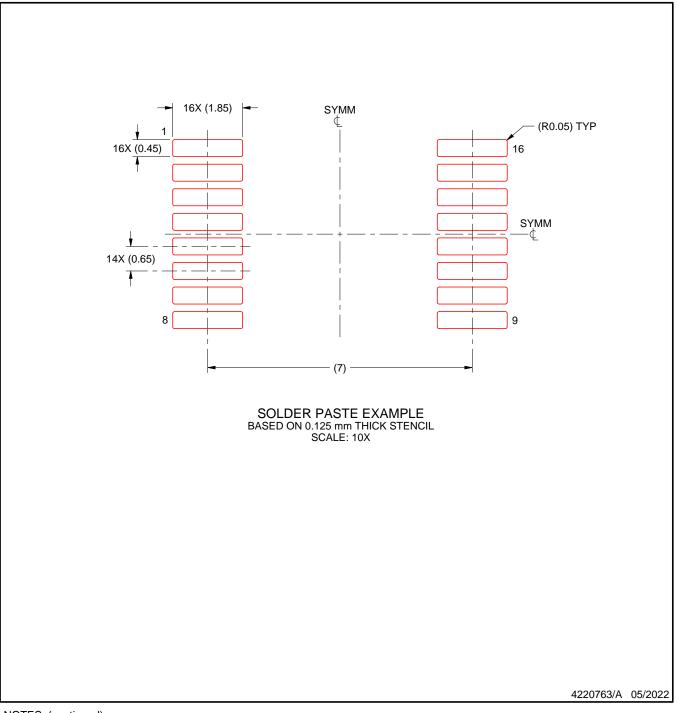
SMALL OUTLINE PACKAGE



NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




# DB0016A

# **EXAMPLE STENCIL DESIGN**

## SSOP - 2 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.



<sup>7.</sup> Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

## MECHANICAL DATA

### PLASTIC SMALL-OUTLINE PACKAGE

#### 0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 $\bigcirc$ Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS \*\* 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

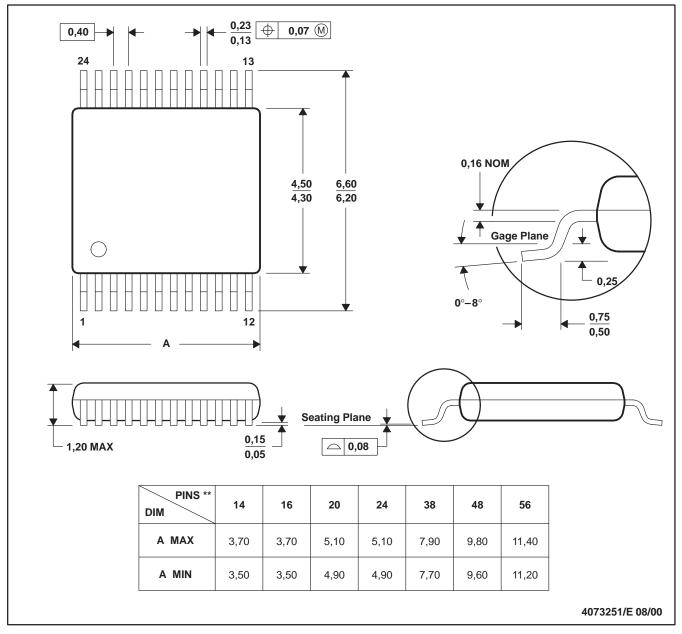
NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G\*\*)

**14-PINS SHOWN** 

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.




## **MECHANICAL DATA**

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

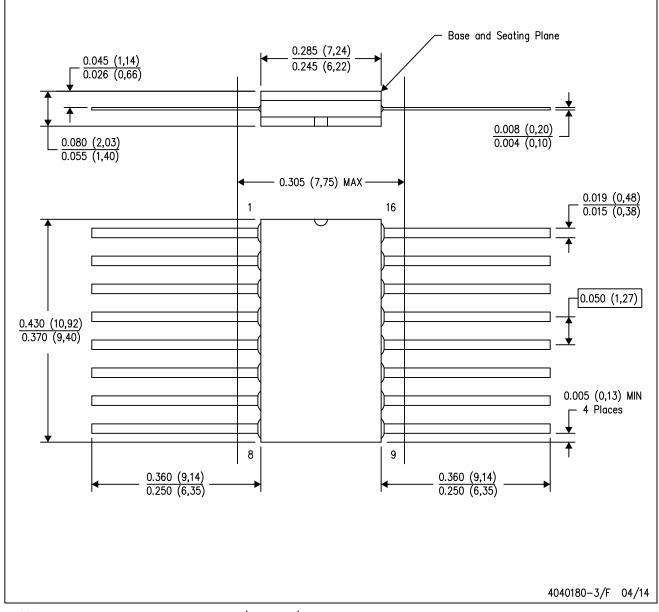
### DGV (R-PDSO-G\*\*)

24 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194



W (R-GDFP-F16)

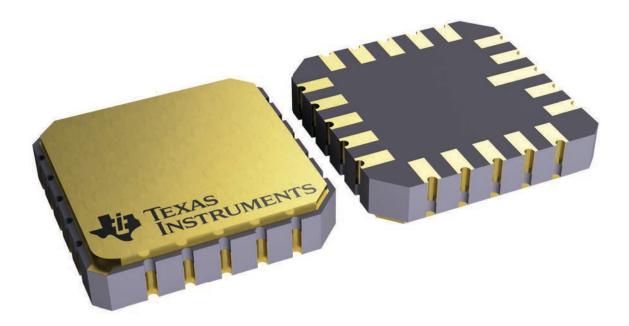
CERAMIC DUAL FLATPACK



- NOTES: A. All linear dimensions are in inches (millimeters).
  - B. This drawing is subject to change without notice.
  - C. This package can be hermetically sealed with a ceramic lid using glass frit.
  - D. Index point is provided on cap for terminal identification only.
  - E. Falls within MIL STD 1835 GDFP2-F16



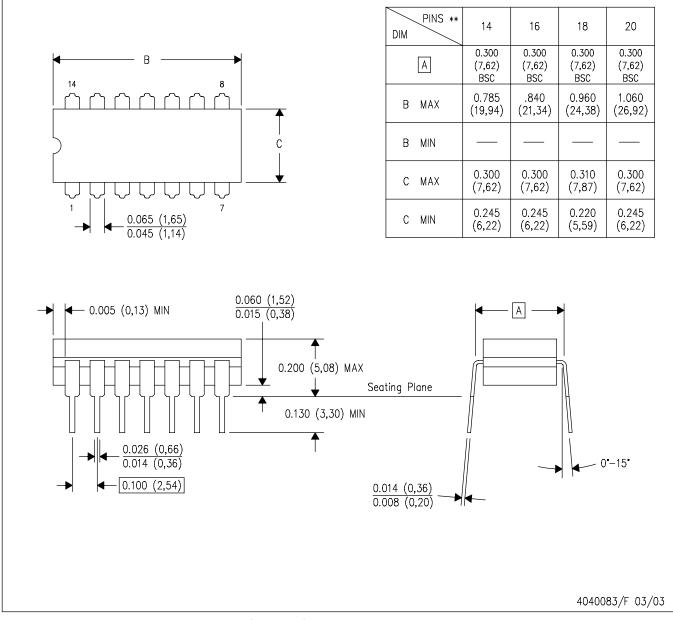
# FK 20


## 8.89 x 8.89, 1.27 mm pitch

# **GENERIC PACKAGE VIEW**

## LCCC - 2.03 mm max height

LEADLESS CERAMIC CHIP CARRIER


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

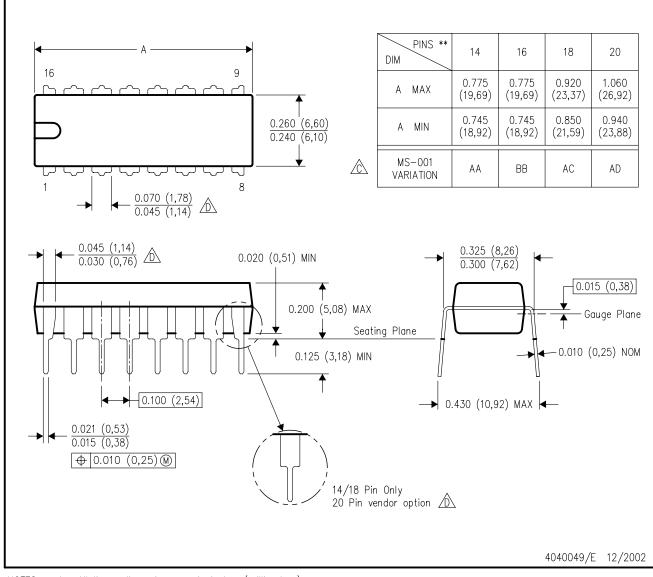




J (R-GDIP-T\*\*) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



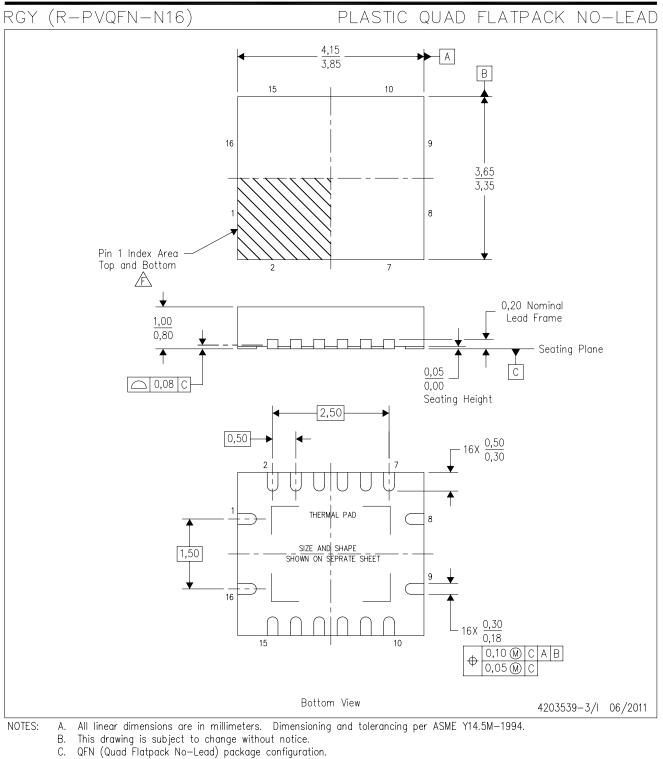

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

## N (R-PDIP-T\*\*)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN




NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- $\triangle$  The 20 pin end lead shoulder width is a vendor option, either half or full width.



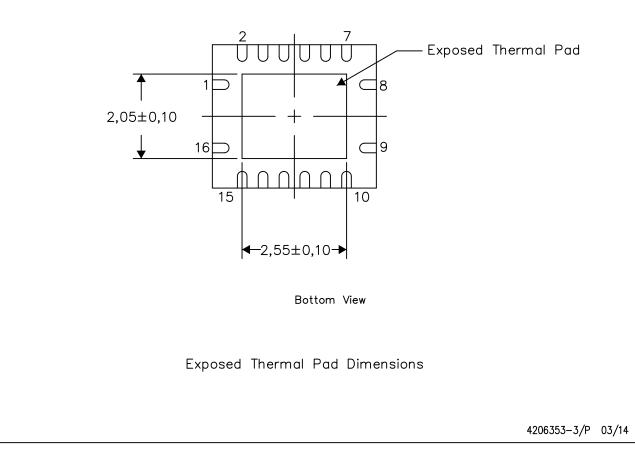
## **MECHANICAL DATA**



- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- Ε. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Æ Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
- The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

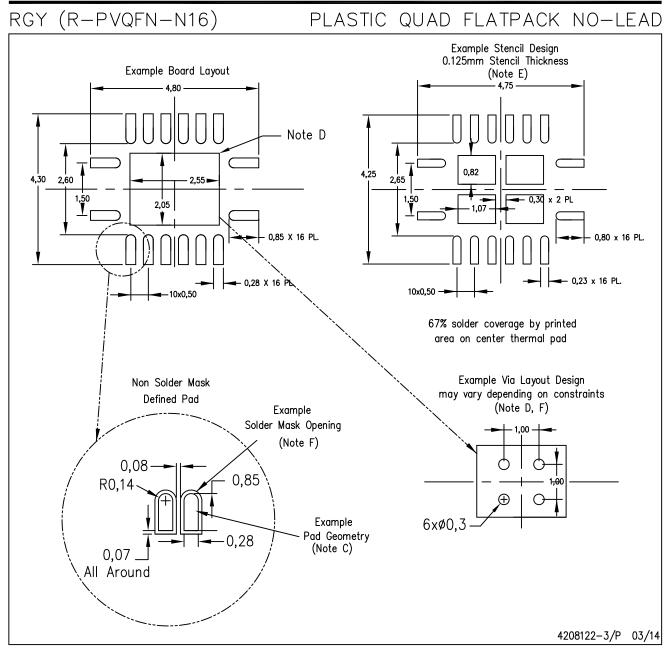


## RGY (R-PVQFN-N16)


## PLASTIC QUAD FLATPACK NO-LEAD

#### THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



#### NOTE: All linear dimensions are in millimeters





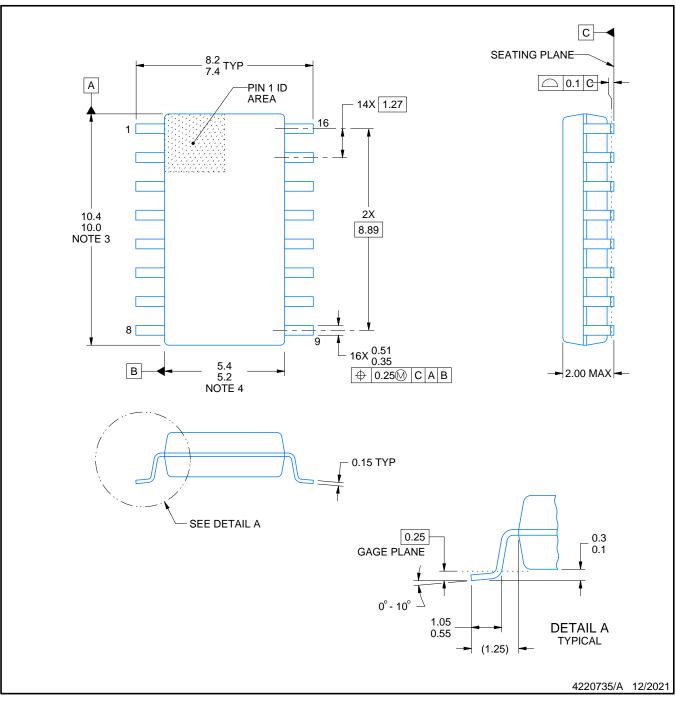
NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.

D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <a href="http://www.ti.com">http://www.ti.com</a>.

- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.




# **NS0016A**



## **PACKAGE OUTLINE**

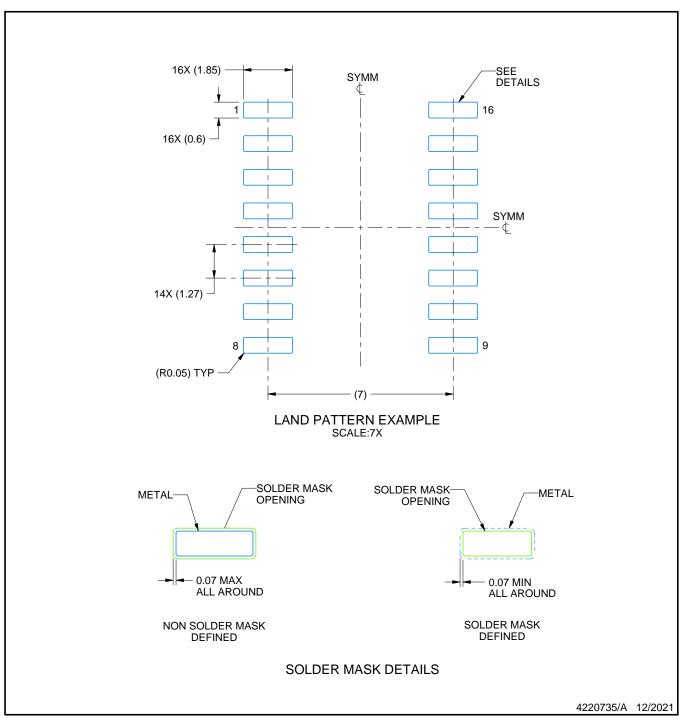
SOP - 2.00 mm max height

SOP



#### NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
   This drawing is subject to change without notice.
   This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.




# NS0016A

# **EXAMPLE BOARD LAYOUT**

## SOP - 2.00 mm max height

SOP



NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



# NS0016A

# **EXAMPLE STENCIL DESIGN**

## SOP - 2.00 mm max height

SOP



NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.



### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated