SN74AHCT08Q-Q1 SGDS021D - FEBRUARY 2002 - REVISED FEBRUARY 2024 # SN74AHCT08Q-Q1 Automotive Quadruple 2-Input Positive-AND Gates ### 1 Features - Qualified for automotive applications - EPIC[™] (enhanced-performance implanted CMOS) process - Inputs are TTL-voltage compatible - Latch-up performance exceeds 250mA per JESD 17 ## 2 Applications - Combine power good signals - Combine enable signals ## 3 Description The SN74AHCT08Q-Q1 devices are quadruple 2input positive-AND gates. These devices perform the Boolean function $Y = A \times B$ or $Y = \overline{A + B}$ in positive logic. ### **Package Information** | PART NUMBER | ART NUMBER PACKAGE ⁽¹⁾ PACKAGE SIZE ⁽²⁾ | | BODY SIZE(3) | | | | |----------------|---|-----------------|-----------------|--|--|--| | | D (SOIC, 14) | 8.65mm × 6mm | 8.65mm × 3.91mm | | | | | SN74AHCT08Q-Q1 | PW (TSSOP, 14) | 5.00mm × 6.4mm | 5.00mm × 4.40mm | | | | | | BQA (WQFN, 14) | 3.00mm × 2.50mm | 3.00mm × 2.50mm | | | | - For more information, see Section 11. (1) - The package size (length × width) is a nominal value and includes pins, where applicable. - The body size (length × width) is a nominal value and does not include pins. ## **Table of Contents** | 1 Features1 | 7.3 Feature Description8 | |---|--| | 2 Applications1 | | | 3 Description1 | | | 4 Pin Configuration and Functions3 | 8.1 Application Information9 | | 5 Specifications4 | 8.2 Typical Application9 | | 5.1 Absolute Maximum Ratings4 | 8.3 Power Supply Recommendations10 | | 5.2 ESD Ratings4 | 8.4 Layout10 | | 5.3 Recommended Operating Conditions4 | | | 5.4 Thermal Information5 | 9.1 Documentation Support (Analog)11 | | 5.5 Electrical Characteristics5 | 9.2 Receiving Notification of Documentation Updates 11 | | 5.6 Switching Characteristics, V _{CC} = 5 V ± 0.5 V5 | 9.3 Support Resources11 | | 5.7 Noise Characteristics5 | 9.4 Trademarks11 | | 5.8 Operating Characteristics6 | 9.5 Electrostatic Discharge Caution11 | | 5.9 Typical Characteristics6 | 9.6 Glossary11 | | 6 Parameter Measurement Information7 | 10 Revision History11 | | 7 Detailed Description8 | | | 7.1 Overview8 | Information12 | | 7.2 Functional Block Diagram8 | | ## **4 Pin Configuration and Functions** Figure 4-1. D or PW Package, 14-Pin SOIC or TSSOP (Top View) Figure 4-2. BQA (Preview) Package, 14-Pin WQFN (Top View) **Table 4-1. Pin Functions** | PIN | | TYPE | DESCRIPTION | |----------------------------|-----|--------|--| | NAME | NO. | ITPE | DESCRIPTION | | 1A | 1 | Input | Channel 1, Input A | | 1B | 2 | Input | Channel 1, Input B | | 1Y | 3 | Output | Channel 1, Output Y | | 2A | 4 | Input | Channel 2, Input A | | 2B | 5 | Input | Channel 2, Input B | | 2Y | 6 | Output | Channel 2, Output Y | | GND | 7 | _ | Ground | | 3Y | 8 | Output | Channel 3, Output Y | | 3A | 9 | Input | Channel 3, Input A | | 3B | 10 | Input | Channel 3, Input B | | 4Y | 11 | Output | Channel 4, Output Y | | 4A | 12 | Input | Channel 4, Input A | | 4B | 13 | Input | Channel 4, Input B | | V _{CC} | 14 | _ | Positive Supply | | Thermal Pad ⁽¹⁾ | | _ | The thermal pad can be connected to GND or left floating. Do not connect to any other signal or supply | (1) BQA package only. ## **5 Specifications** ## 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |------------------|---|-----------------------------|------|-----------------------|------| | V_{CC} | Supply voltage range | | -0.5 | 7 | V | | VI | Input voltage range ⁽²⁾ | | -0.5 | 7 | V | | Vo | Output voltage range ⁽²⁾ | | -0.5 | V _{CC} + 0.5 | V | | I _{IK} | Input clamp current | V _I < 0 | | -20 | mA | | I _{OK} | Output clamp current | $V_O < 0$ or $V_O > V_{CC}$ | | ±20 | mA | | Io | Continuous output current | $V_{O} = 0$ to V_{CC} | | ±25 | mA | | | Continuous current through V _{CC} or GND | | | ±50 | mA | | T _{stg} | Storage temperature range | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## 5.2 ESD Ratings | | | | VALUE | UNIT | | |--------------------|-------------------------|--|-------|------|--| | V _(ESD) | Electrostatio discharge | Human body model (HBM), per AEC Q100-002 HBM ESD Classification Level 2 ⁽¹⁾ | ±2000 | ., | | | | Electrostatic discharge | Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C4B | ±1000 | V | | ⁽¹⁾ AEC Q100-002 indicate that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification ## **5.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |-----------------|------------------------------------|-----|-----------------|------| | V _{CC} | Supply voltage | 4.5 | 5.5 | V | | V _{IH} | High-level input voltage | 2 | | V | | V _{IL} | Low-level input voltage | | 0.8 | V | | VI | Input voltage | 0 | 5.5 | V | | Vo | Output voltage | 0 | V _{CC} | V | | I _{OH} | High-level output current | | -8 | mA | | I _{OL} | Low-level output current | | 8 | mA | | Δt/Δν | Input transition rise or fall rate | | 20 | ns/V | | T _A | Operating free-air temperature | -40 | 125 | °C | ⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI Application Report, Implications of Slow or Floating CMOS Inputs . Submit Document Feedback Copyright © 2024 Texas Instruments Incorporated ⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ### **5.4 Thermal Information** | | | | SN74AHCT08Q-Q1 | | | | |-------------------|--|-------------|----------------|---------------|------|--| | THERMAL METRIC(1) | | D
(SOIC) | PW
(TSSOP) | BQA
(WQFN) | UNIT | | | | | 14 PINS | 14 PINS | 14 PINS | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 124.6 | 113 | 88.3 | °C/W | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics ### 5.5 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CONDITIONS | V | T _A = 25°C | | | -40°C to 125°C | | UNIT | |----------------------|---|-----------------|-----------------------|-----|------|----------------|------|------| | PARAMETER | TEST CONDITIONS | V _{cc} | MIN | TYP | MAX | MIN | MAX | ONII | | V | I _{OH} = -50 μA | 4.5 V | 4.4 | 4.5 | | 4.4 | | V | | V _{OH} | I _{OH} = -8 mA | 4.5 V | 3.94 | | | 3.8 | | V | | V | I _{OL} = 50 μA | 4.5 V | | | 0.1 | | 0.1 | V | | V _{OL} | I _{OL} = 8 mA | 4.5 V | | | 0.36 | | 0.44 | V | | I _I | V _I = 5.5 V or GND | 0 V to
5.5 V | | | ±0.1 | | ±1 | μA | | Icc | V _I = V _{CC} or GND, I _O = 0 | 5.5 V | | | 2 | | 20 | μΑ | | ΔI _{CC} (1) | One input at 3.4 V,
Other inputs at V _{CC} or GND | 5.5 V | | | 1.35 | | 1.5 | mA | | C _i | V _I = V _{CC} or GND | 5 V | | 4 | 10 | | 10 | pF | ⁽¹⁾ This is the increase in supply current for each input at one of the specified TTL voltage levels, rather than 0 V or V_{CC}. ## 5.6 Switching Characteristics, $V_{CC} = 5 V \pm 0.5 V$ over recommended operating free-air temperature range (unless otherwise noted) (see Figure 6-1) | PARAMETER | FROM | TO (OUTPUT) | LOAD | Т | _A = 25°C | | -40°C to | 125°C | UNIT | |------------------|---------|-------------------------|------------------------|-----|---------------------|-----|----------|-------|-------| | | (INPUT) | (OUTPUT) | CAPACITANCE | MIN | TYP | MAX | MIN | MAX | Oitii | | t _{PLH} | A or B | V | C ₁ = 15 pF | | 5 | 6.9 | 1 | 8 | ne | | t _{PHL} | AOIB | T | OL = 15 pr | | 5 | 6.9 | 1 | 8 | ns | | t _{PLH} | A or B | V | C = 50 pE | | 5.5 | 7.9 | 1 | 9 | ns | | t _{PHL} | Aorb | Y $C_L = 50 \text{ pF}$ | C _L = 30 pr | | 5.5 | 7.9 | 1 | 9 | 115 | ### 5.7 Noise Characteristics $V_{CC} = 5 \text{ V}, C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}^{(1)}$ | | PARAMETER | SN74A | UNIT | | | |--------------------|---|-------|------|------|------| | | PARAMETER | MIN | TYP | MAX | ONII | | V _{OL(P)} | Quiet output, maximum dynamic V _{OL} | | 0.4 | 0.8 | V | | V _{OL(V)} | Quiet output, minimum dynamic V _{OL} | | -0.4 | -0.8 | V | | V _{OH(V)} | Quiet output, minimum dynamic V _{OH} | 4.4 | | | V | | V _{IH(D)} | High-level dynamic input voltage | 2 | | | V | | $V_{IL(D)}$ | Low-level dynamic input voltage | | | 0.8 | V | ⁽¹⁾ Characteristics are for surface-mount packages only. # **5.8 Operating Characteristics** V_{CC} = 5 V, T_A = 25°C | | PARAMETER | | CONDITIONS | TYP | UNIT | |----------|-------------------------------|----------|------------|-----|------| | C_{pd} | Power dissipation capacitance | No load, | f = 1 MHz | 18 | pF | # **5.9 Typical Characteristics** ### **6 Parameter Measurement Information** NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r \leq 3$ ns, $t_f \leq 3$ ns. - D. The outputs are measured one at a time with one input transition per measurement. - E. All parameters and waveforms are not applicable to all devices. Figure 6-1. Load Circuit and Voltage Waveforms ## 7 Detailed Description ### 7.1 Overview The SN74AHCT08Q-Q1 devices are quadruple 2-input positive-AND gates with low drive that will produce slow rise and fall times. This slow transition reduces ringing on the output signal. The device has TTL inputs that allow up translation from 3.3 V to 5 V. The inputs are high impedance when $V_{CC} = 0$ V. ## 7.2 Functional Block Diagram ## 7.3 Feature Description - · Slow rise and fall time on outputs allow for low-noise outputs - TTL inputs allow up translation from 3.3 V to 5 V ### 7.4 Device Functional Modes Table 7-1 is the function table for the SN74AHCT08Q-Q1. Table 7-1. Function Table (Each Gate) | INP | UTS | OUTPUT | |-----|-----|--------| | Α | В | Y | | Н | Н | Н | | L | X | L | | X | L | L | Product Folder Links: SN74AHCT08Q-Q1 ## 8 Application and Implementation #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ### 8.1 Application Information The SN74AHCT08Q-Q1 devices are low-drive CMOS devices that can be used for a multitude of bus-interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs. The TTL inputs can except voltages down to 3.3 V and translate up to 5 V. ### 8.2 Typical Application Figure 8-1. Typical Application Diagram ### 8.2.1 Design Requirements This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing. #### 8.2.2 Detailed Design Procedure - 1. Recommended input conditions: - Rise time and fall time specs: See (Δt/ΔV) in the Recommended Operating Conditions table. - Specified High and low levels: See (V_{IH} and V_{II}) in the Recommended Operating Conditions table. - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC} - 2. Recommend output conditions: - Load currents should not exceed 25 mA per output and 50 mA total for the part - Outputs should not be pulled above V_{CC} ### 8.2.3 Application Curves #### 8.3 Power Supply Recommendations The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table. Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended. If there are multiple V_{CC} pins, 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results. #### 8.4 Layout ### 8.4.1 Layout Guidelines When using multiple bit logic devices, inputs should never float. In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 8-3 shows the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} ; whichever makes more sense or is more convenient. It is generally acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, then it will disable the outputs section of the part when asserted. This will not disable the input section of the IOs, so they cannot float when disabled. #### 8.4.2 Layout Example Figure 8-3. Layout example for the SN74AHCT08Q-Q1 Product Folder Links: SN74AHCT08Q-Q1 ## 9 Device and Documentation Support ## 9.1 Documentation Support (Analog) #### 9.1.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. #### Table 9-1. Related Links | PARTS | PRODUCT FOLDER | SAMPLE & BUY | TECHNICAL DOCUMENTS | TOOLS & SOFTWARE | SUPPORT & COMMUNITY | | |----------------|----------------|--------------|---------------------|------------------|---------------------|--| | SN74AHCT08Q-Q1 | Click here | | ## 9.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 9.3 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 9.4 Trademarks EPIC™ is a trademark of Texas Instruments Incorporated. TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners. #### 9.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 9.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. #### 10 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | (| Changes from Revision C (May 2023) to Revision D (February 2024) | Page | |---|--|----------| | • | Added package size to Package Information table | 1 | | • | Updated RθJA value: D = 86 to 124.6, all values in °C/W | <u>5</u> | ### Changes from Revision B (December 2022) to Revision C (May 2023) Page ## 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: SN74AHCT08Q-Q1 www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/ | MSL rating/ | Op temp (°C) | Part marking | |-----------------------|--------|---------------|-----------------|-----------------------|------|---------------|--------------------|--------------|--------------| | | (1) | (2) | | | (3) | Ball material | Peak reflow | | (6) | | | | | | | | (4) | (5) | | | | SN74AHCT08QDRG4Q1 | Active | Production | SOIC (D) 14 | 2500 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AHCT08Q | | SN74AHCT08QDRG4Q1.A | Active | Production | SOIC (D) 14 | 2500 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AHCT08Q | | SN74AHCT08QDRQ1 | Active | Production | SOIC (D) 14 | 2500 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AHCT08Q | | SN74AHCT08QDRQ1.A | Active | Production | SOIC (D) 14 | 2500 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AHCT08Q | | SN74AHCT08QPWRG4Q1 | Active | Production | TSSOP (PW) 14 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | HB08Q | | SN74AHCT08QPWRG4Q1.A | Active | Production | TSSOP (PW) 14 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | HB08Q | | SN74AHCT08QPWRQ1 | Active | Production | TSSOP (PW) 14 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | HB08Q | | SN74AHCT08QPWRQ1.A | Active | Production | TSSOP (PW) 14 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | HB08Q | | SN74AHCT08QWBQARQ1 | Active | Production | WQFN (BQA) 14 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AHT08Q | | SN74AHCT08QWBQARQ1.A | Active | Production | WQFN (BQA) 14 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AHT08Q | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. ## PACKAGE OPTION ADDENDUM www.ti.com 23-May-2025 and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Jul-2025 ### TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74AHCT08QDRG4Q1 | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | | SN74AHCT08QDRQ1 | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | | SN74AHCT08QPWRG4Q1 | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | SN74AHCT08QPWRG4Q1 | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | SN74AHCT08QPWRQ1 | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | SN74AHCT08QWBQARQ1 | WQFN | BQA | 14 | 3000 | 180.0 | 12.4 | 2.8 | 3.3 | 1.1 | 4.0 | 12.0 | Q1 | www.ti.com 24-Jul-2025 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------------|--------------|-----------------|------|------|-------------|------------|-------------| | SN74AHCT08QDRG4Q1 | SOIC | D | 14 | 2500 | 353.0 | 353.0 | 32.0 | | SN74AHCT08QDRQ1 | SOIC | D | 14 | 2500 | 353.0 | 353.0 | 32.0 | | SN74AHCT08QPWRG4Q1 | TSSOP | PW | 14 | 2000 | 353.0 | 353.0 | 32.0 | | SN74AHCT08QPWRG4Q1 | TSSOP | PW | 14 | 2000 | 353.0 | 353.0 | 32.0 | | SN74AHCT08QPWRQ1 | TSSOP | PW | 14 | 2000 | 353.0 | 353.0 | 32.0 | | SN74AHCT08QWBQARQ1 | WQFN | BQA | 14 | 3000 | 210.0 | 185.0 | 35.0 | SMALL OUTLINE INTEGRATED CIRCUIT #### NOTES: - 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm, per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side. - 5. Reference JEDEC registration MS-012, variation AB. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. 2.5 x 3, 0.5 mm pitch PLASTIC QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. www.ti.com PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) ^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. SMALL OUTLINE PACKAGE #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. SMALL OUTLINE PACKAGE NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE PACKAGE NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. ### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated