

SN74AHC4066 SCLS511A - JUNE 2003 - REVISED FEBRUARY 2024

SN74AHC4066 Quadruple Bilateral Analog Switch

1 Features

- 1V to 5.5V V_{CC} operation
- Supports mixed-mode voltage operation on all ports
- High on-off output-voltage ratio
- Low crosstalk between switches
- Individual switch controls
- Extremely low input current
- ESD protection exceeds JESD 22:
 - 2000V Human-Body Model (A114-A)
 - 200V Machine Model (A115-A)
 - 1000V Charged-Device Model (C101)

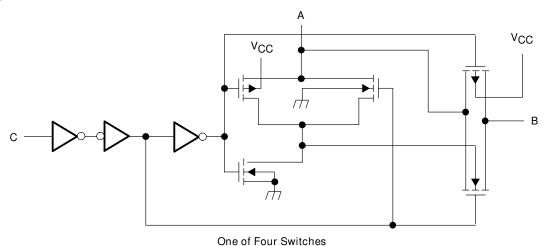
2 Applications

- Analog signal switching or multiplexing:
 - Signal gating, modulator, squelch control, demodulator, chopper, commutating switch
- Digital signal switching and multiplexing
 - Audio and video signal routing
- Transmission-gate logic implementation
- Analog-to-digital and digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain
- Motor speed control
- **Battery chargers**
- DC-DC converter

3 Description

This quadruple silicon-gate CMOS analog switch is designed for 1V to 5.5V VCC operation.

The switch is designed to handle both analog and digital signals. Each switch permits signals with amplitudes of up to 5.5V (peak) to be transmitted in either direction.


Each switch section has its own enable input control (C). A high-level voltage applied to C turns on the associated switch section.

Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾			
	D (SOIC, 14)	8.65mm × 6mm			
SN74AHC4066	PW (TSSOP, 14)	5mm × 6.4mm			
	RGY (VQFN, 14)	3.5mm × 3.5mm			

- For more information, see Section 10. (1)
- The package size (length × width) is a nominal value and includes pins, where applicable.

Copyright © 2016, Texas Instruments Incorporated

Logic Diagram, Each Switch (Positive Logic)

Table of Contents

1 Features1	6 Parameter Measurement Information
2 Applications1	7 Detailed Description14
B Description1	7.1 Overview14
4 Pin Configuration and Functions2	7.2 Functional Block Diagram14
5 Specifications3	7.3 Device Functional Modes14
5.1 Absolute Maximum Ratings3	8 Device and Documentation Support1
5.2 ESD Ratings3	8.1 Documentation Support1
5.3 Thermal Information3	8.2 Receiving Notification of Documentation Updates1
5.4 Recommended Operating Conditions4	8.3 Support Resources1
5.5 Electrical Characteristics4	8.4 Trademarks1
5.6 Switching Characteristics5	8.5 Electrostatic Discharge Caution1
5.7 Switching Characteristics5	8.6 Glossary1
5.8 Switching Characteristics6	9 Revision History1
5.9 Analog Switching Characteristics6	10 Mechanical, Packaging, and Orderable
5.10 Operating Characteristics	

4 Pin Configuration and Functions

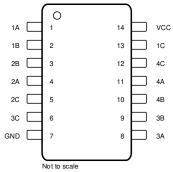


Figure 4-1. D or PW Package, 14-Pin SOIC or TSSOP (Top View)

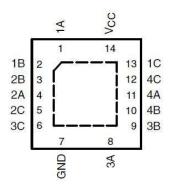


Figure 4-2. RGY Package, 14-Pin QFN (Top View)

Table 4-1. Pin Functions

P	IN	TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.	I I I PE(''	DESCRIPTION
1A	1	I/O	Switch 1 input/output
1B	2	I/O	Switch 1 output/input
2B	3	I/O	Switch 2 output/input
2A	4	I/O	Switch 2 input/output
2C	5	I	Switch 2 control
3C	6	I	Switch 3 control
GND	7	_	Ground
3A	8	I/O	Switch 3 input/output
3B	9	I/O	Switch 3 output/input
4B	10	I/O	Switch 4 output/input
4A	11	I/O	Switch 4 input/output
4C	12	I	Switch 4 control
1C	13	I	Switch 1 control
V _{CC}	14	_	Power

(1) I = input, O = output

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾		-0.5	7	V
VI	Input voltage range		-0.5	7	V
V _{IO}	Switch I/O voltage range		-0.5 to V _{CC}	+0.5	V
I _{IK}	Control-input clamp current	V ₁ < 0		-20	mA
I	I/O port diode current	$V_I < 0$ or $V_{I/O} > V_{CC}$		±50	mA
	On-state switch current	V _{I/O} = 0 to V _{CC}		±25	mA
	Continuous current through V _{CC} or GND			±50	mA
T _{stg}	Storage temperature		-60	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾		
$V_{(ESD)}$	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

5.3 Thermal Information

			N74AHC4066		
	THERMAL METRIC ⁽¹⁾	D	PW	RGY	UNIT
		14 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	127.7	150.6	91.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	81.8	78.2	91.8	°C/W
R _{0JC(bottom)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	50.0	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	84.2	93.7	66.5	°C/W
ΨЈΤ	Junction-to-top characterization parameter	39.5	24.6	20.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	83.7	93.1	66.3	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Copyright © 2024 Texas Instruments Incorporated

⁽²⁾ All voltages are with respect to ground unless otherwise specified.

⁽²⁾ JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process. CDM value for N package only.

5.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(2)

	3· (·	MIN	MAX	UNIT
V _{CC}	Supply voltage		1 (1)	5.5	V
		V _{CC} = 2V	1.5		
.,	High level input valtage, central inputs	V _{CC} = 2.3V to 2.7V	V _{CC} × 0.7		V
V _{IH}	High-level input voltage, control inputs	V _{CC} = 3V to 3.6V	V _{CC} × 0.7		V
		V _{CC} = 4.5V to 5.5V	V _{CC} × 0.7		
		V _{CC} = 2V		0.5	
	Low-level input voltage, control inputs	V _{CC} = 2.3V to 2.7V		V _{CC} × 0.3	
V _{IL}		V _{CC} = 3V to 3.6V		V _{CC} × 0.3	V
		V _{CC} = 4.5V to 5.5V		V _{CC} × 0.3	
VI	Control input voltage		0	5.5	V
V _{I/O}	Input/output voltage		0	V _{CC}	V
		V _{CC} = 2.3V to 2.7V		200	
Δt/Δν	Input transition rise and fall time	V _{CC} = 3V to 3.6V		100	ns/V
		V _{CC} = 4.5V to 5.5V		20	
T _A	Operating free-air temperature		-40	85	°C

⁽¹⁾ With supply voltages at or below 2V, the analog switch on-state resistance becomes very nonlinear. Only digital signals should be transmitted at these low supply voltages.

5.5 Electrical Characteristics

 T_A = -40 to +85 °C unless otherwise specified.

· A	PARAMETER	TEST CONDITIONS	V	-	T _A = 25°C		MIN	MAX	UNIT
	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	IVIIIN	IVIAA	UNII
		$I_T = -1 \text{mA}, V_I = 0 \text{ to}$	2.3V		38	180		225	
r _{on}	On-state switch resistance	V_{CC} , $V_C = V_{IH}$ (see Figure	3V		29	150		190	Ω
		6-1)	4.5V		21	75		100	
		I _T = -1mA	2.3V		143	500		600	
r / \	Peak on-state resistance	$V_I = V_{CC}$ to GND	3V		57	180		225	Ω
	rosiotarios	$V_C = V_{IH}$	4.5V		31	100		125	
	Difference in on-state	I _T = -1mA	2.3V		6	30		40	
Δr _{on}	resistance between	$V_I = V_{CC}$ to GND $V_C = V_{IH}$	3V		3	20		30	Ω
	switches		4.5V		2	15		20	
I _{IH} I _{IL}	Control input current	V _C = 0 or V _{CC}	5.5			±0.1		±1	μΑ
I _{s(off)}	Off-state switch leakage current	$\begin{aligned} &V_{l} = V_{CC} \text{ and } \\ &V_{O} = \text{GND, or } \\ &V_{l} = \text{GND and } \\ &V_{O} = V_{CC}, \\ &V_{C} = V_{lL} \\ &(\text{see Figure 6-2}) \end{aligned}$	5.5V			±0.1		±1	μА

Product Folder Links: SN74AHC4066

⁽²⁾ All unused inputs of the device must be held at V_{CC} or GND for proper device operation. Refer to the TI application report, *Implications* of Slow or Floating CMOS Inputs.

5.5 Electrical Characteristics (continued)

 T_A = -40 to +85 °C unless otherwise specified.

	PARAMETER	TEST CONDITIONS	V		T _A = 25°C		MIN	MAX	UNIT	
	FARAIVIETER	TEST CONDITIONS V _{CC}		MIN	TYP	MAX	IVIIIV	IVIAA	Olti	
I _{s(on)}	On-state switch leakage current	$V_I = V_{CC}$ or GND, $V_C = V_{IH}$ (see Figure 6-3)	5.5V			±0.1		±1	μА	
I _{CC}	Supply current	V _I = V _{CC} or GND	5.5V					20	μA	
C _{iC}	Control input capacitance				1.5				pF	
C _{iO}	Switch input/output capacitance				5.5				pF	
C _F	Feed-through capacitance				0.5				pF	

5.6 Switching Characteristics

over recommended operating free-air temperature range, $V_{CC} = 2.5V \pm 0.2V$ (unless otherwise noted)

	PARAMETER	FROM	то	TEST	TA	= 25°C		MIN	MAX	UNIT
	PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	MIN TYP MAX				UNII
t _{PLH} , t _{PHL}	Propagation delay time	A or B	B or A	C _L = 50pF (see Figure 6-4)		1.2	10		16	ns
t _{PZH} , t _{PZL}	Switch turn-on time	С	A or B	$C_L = 50pF$ $R_L = 1k\Omega$, (see Figure 6-5)		3.3	15		20	ns
t _{PLZ} , t _{PHZ}	Switch turn-off time	С	A or B	$C_L = 50pF$ $R_L = 1k\Omega$, (see Figure 6-5)		6	15		23	ns
t _{PLZ} , t _{PHZ}	Propagation delay time	A or B	B or A	C _L = 50pF (see Figure 6-6)		2.6	12		18	ns
t _{PLZ} , t _{PHZ}	Switch turn-on time	С	A or B	$C_L = 50pF$ $R_L = 1k\Omega$, (see Figure 6-8)		4.2	25		32	ns
t _{PLZ} , t _{PHZ}	Switch turn-off time	С	A or B	$C_L = 50pF$ $R_L = 1k\Omega$, (see Figure 6-8)		9.6	25		32	ns

5.7 Switching Characteristics

over recommended operating free-air temperature range, $V_{CC} = 3.3V \pm 0.3V$ (unless otherwise noted)

	PARAMETER	FROM TO		TEST	TEST T _A = 25			MIN	XAM V	UNIT
	PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX			UNII
t _{PLH} , t _{PHL}	Propagation delay time	A or B	B or A	C _L = 50pF (see Figure 6-4)		0.8	6		10	ns
t _{PZH} , t _{PZL}	Switch turn-on time	С	A or B	$C_L = 50 pF$ $R_L = 1 k\Omega$, (see Figure 6-5)		2.3	11		15	ns
t _{PLZ} , t _{PHZ}	Switch turn-off time	С	A or B	$C_L = 50pF$ $R_L = 1k\Omega$, (see Figure 6-5)		4.5	11		15	ns
t _{PLZ} , t _{PHZ}	Propagation delay time	A or B	B or A	C _L = 50pF (see Figure 6-6)		1.5	9		12	ns
t _{PLZ} , t _{PHZ}	Switch turn-on time	С	A or B	$C_L = 50 pF$ $R_L = 1 k\Omega$, (see Figure 6-8)		3	18		22	ns

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

5.7 Switching Characteristics (continued)

over recommended operating free-air temperature range, $V_{CC} = 3.3V \pm 0.3V$ (unless otherwise noted)

	PARAMETER	FROM	то	TO TEST T _A = 25°C MIN		MAX	UNIT			
PARAIVIETER		(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX			ONT
t _{PLZ} , t _{PHZ}	Switch turn-off time	С	A or B	$C_L = 50pF$ $R_L = 1k\Omega$, (see Figure 6-8)		7.2	18		22	ns

5.8 Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 5V ± 0.5V (unless otherwise noted)

	PARAMETER	FROM	то	TEST	T	= 25°C		MIN	MAX	UNIT
	FARAWIETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN TYP MAX		MAX			ONIT
t _{PLH} , t _{PHL}	Propagation delay time	A or B	B or A	C _L = 50pF (see Figure 6-4)		0.3	4		7	ns
t _{PZH} , t _{PZL}	Switch turn-on time	С	A or B	$C_L = 50pF$ $R_L = 1k\Omega$, (see Figure 6-5)		1.6	7		10	ns
t _{PLZ} , t _{PHZ}	Switch turn-off time	С	A or B	$C_L = 50pF$ $R_L = 1k\Omega$, (see Figure 6-5)		3.2	7		10	ns
t _{PLZ} , t _{PHZ}	Propagation delay time	A or B	B or A	C _L = 50pF (see Figure 6-6)		0.6	6		8	ns
t _{PLZ} , t _{PHZ}	Switch turn-on time	С	A or B	$C_L = 50pF$ $R_L = 1k\Omega$, (see Figure 6-8)		2.1	12		16	ns
t _{PLZ} , t _{PHZ}	Switch turn-off time	С	A or B	$C_L = 50pF$ $R_L = 1k\Omega$, (see Figure 6-8)		5.1	12		16	ns

5.9 Analog Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM	то	TEST CONDITIONS	V _{CC}	T,	(= 25°C		UNIT	
PARAIVIETER	(INPUT)	(OUTPUT)	OUTPUT)		MIN	TYP	MAX	ONIT	
_			$C_L = 50 pF, R_L = 600 \Omega$	2.3V		60			
Frequency response (switch on)	A or B	B or A	f_{in} = 1MHz (sine wave) 20log ₁₀ (V _O /V _I) = -3 dB	3V		75		MHz	
			(see Figure 6-4)	4.5V		100			
Crosstalk (between any switches)			$C_1 = 50 \text{pF}, R_1 = 600 \Omega$	2.3V		-45			
	A or B	B or A	f _{in} = 1MHz (sine wave)	3V		-45		dB	
ownerses,			(see Figure 6-4)	4.5V		-45			
			$C_1 = 50 \text{pF}, R_1 = 600 \Omega, f_{in} =$	2.3V		15			
Crosstalk (control input to signal output)	С	A or B	1MHz (sine wave)	3V		20		mV	
orginal output)			(see Figure 6-4)	4.5V		50			
			$C_1 = 50 \text{pF}, R_1 = 600 \Omega, f_{in} = 100 \Omega$			-40		dB	
Feed-through attenuation (switch off)	A or B B or A		1MHz (sine wave)	3V		-40			
(SWILCH OII)			(see Figure 6-4)	4.5V		-40			

Product Folder Links: SN74AHC4066

5.9 Analog Switching Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM	то	TEST CONDIT	IONS	V	T	λ = 25°C		UNIT
PARAMETER	(INPUT) (OUTPUT)		V _{cc}	MIN	TYP	MAX	ONII		
Sine-wave distortion			C _L = 50pF, R _L =	V _I = 2V _{p-p}	2.3V		0.1		
	A or B	B or A	10kΩ, f _{in} = 1kHz (sine wave)	V _I = 2.5V _{p-p}	3V		0.1		%
			(see Figure 6-4)	V _I = 4V _{p-p}	4.5V		0.1		

5.10 Operating Characteristics

T_A = 25°C

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance	$C_L = 50pF, f = 10MHz$	4.5	pF

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

6 Parameter Measurement Information

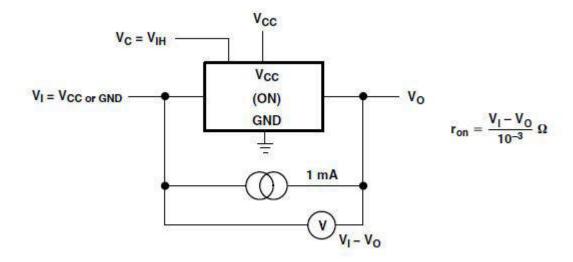


Figure 6-1. ON-State Resistance Test Circuit

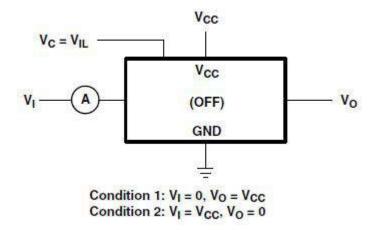


Figure 6-2. OFF-State Switch Leakage-Current Test Circuit

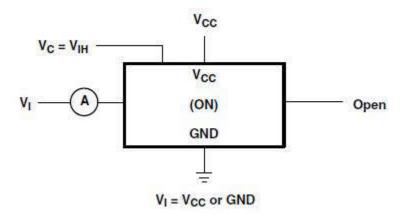


Figure 6-3. ON-State Leakage-Current Test Circuit

Product Folder Links: SN74AHC4066

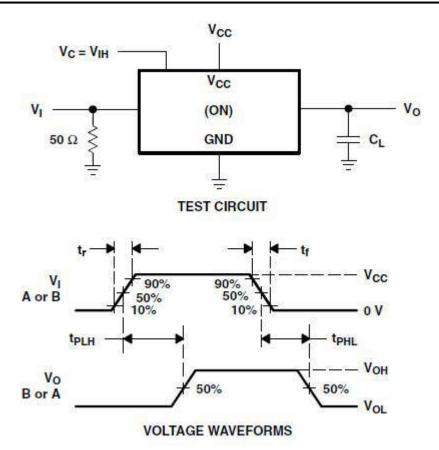


Figure 6-4. Propagation Delay Time, Signal Input to Signal Output

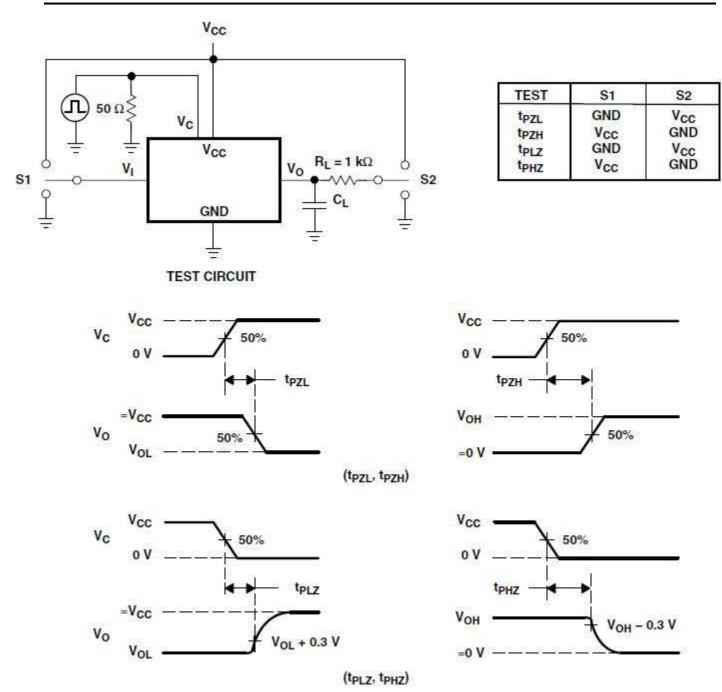


Figure 6-5. Switching Time (t_{PZL}, t_{PLZ}, t_{PZH}, t_{PHZ}), Control to Signal Output

VOLTAGE WAVEFORMS

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

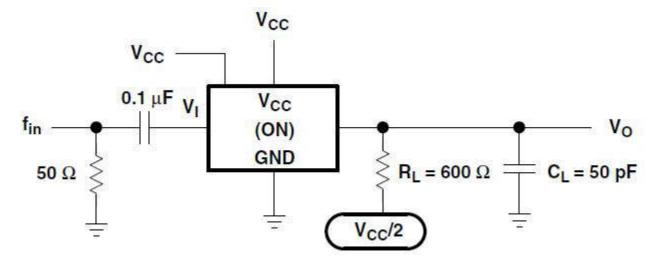


Figure 6-6. Frequency Response (Switch On)

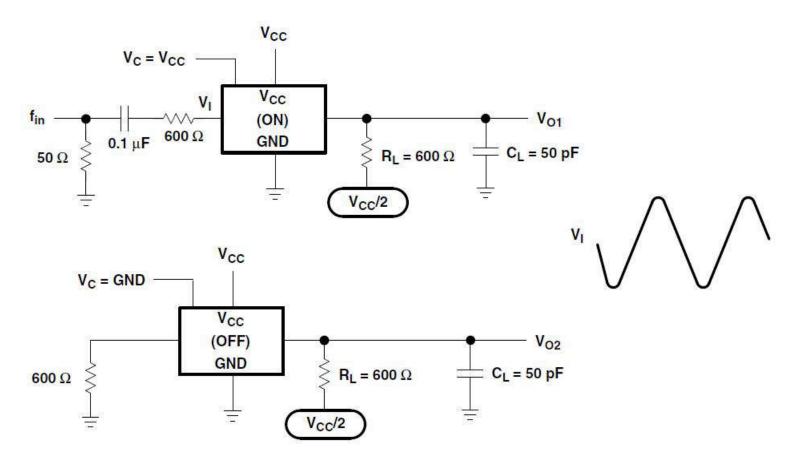


Figure 6-7. Crosstalk Between Any Two Switches

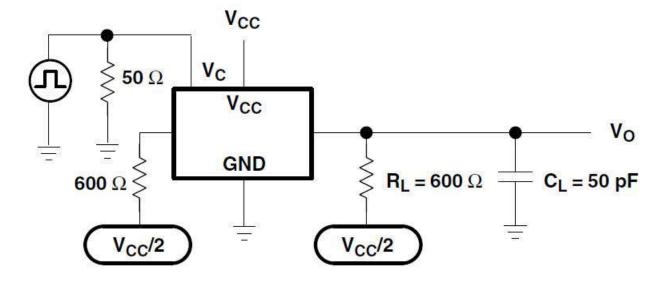


Figure 6-8. Crosstalk (Control Input - Switch Output)

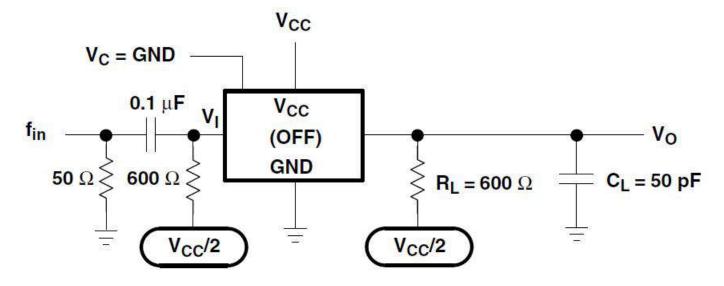
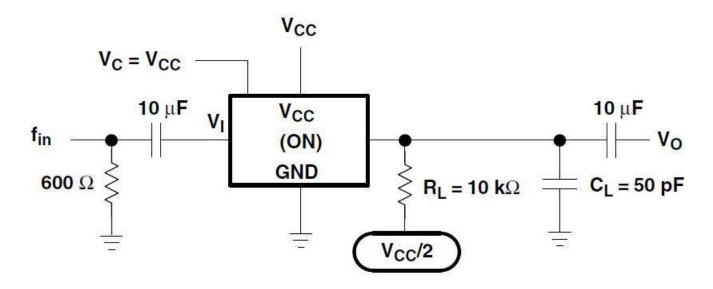
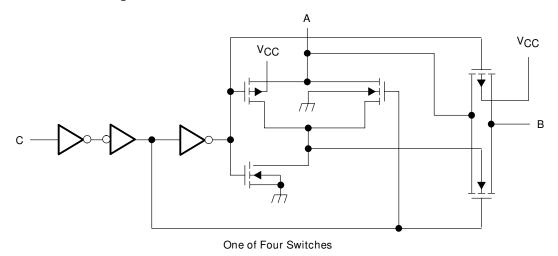


Figure 6-9. Feed-Through Attenuation (Switch Off)




Figure 6-10. Sine-Wave Distortion

7 Detailed Description

7.1 Overview

The SN74AHC4066 device is a silicon-gate CMOS quadruple analog switch designed for 1V to 6V VCC operation. It is designed to handle both analog and digital signals. Each switch permits signals with amplitudes of up to 6V (peak) to be transmitted in either direction. A high-level voltage applied to the control pin C enables the respective switch to begin propagating signals across the device.

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

Figure 7-1. Logic Diagram, Each Switch (Positive Logic)

7.3 Device Functional Modes

Table 7-1 lists the functions for the SN74AHC4066 device.

Table 7-1. Function Table (Each Switch)

INPUT CONTROL (C)	SWITCH
L	OFF
Н	ON

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

8 Device and Documentation Support

8.1 Documentation Support

8.1.1 Related Documentation

For related documentation, see the following:

Texas Instruments, Implications of Slow or Floating CMOS Inputs application notes

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (June 2003) to Revision A (February 2024)Page• Updated the data sheet to only include the D, PW, or RGY packages.1• Updated the numbering format for tables, figures, and cross-references throughout the document.1• Updated the Thermal Information3• Updated V_{CC} operation from: 2V - 5.5V to: 1V - 5.5V4

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
SN74AHC4066D	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	-40 to 85	AHC4066
SN74AHC4066DBR	NRND	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HA4066
SN74AHC4066DBR.A	NRND	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HA4066
SN74AHC4066DGVR	NRND	Production	TVSOP (DGV) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HA4066
SN74AHC4066DGVR.A	NRND	Production	TVSOP (DGV) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HA4066
SN74AHC4066DR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC4066
SN74AHC4066DR.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC4066
SN74AHC4066N	NRND	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74AHC4066N
SN74AHC4066N.A	NRND	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74AHC4066N
SN74AHC4066NSR	NRND	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC4066
SN74AHC4066NSR.A	NRND	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC4066
SN74AHC4066PW	Obsolete	Production	TSSOP (PW) 14	-	-	Call TI	Call TI	-40 to 85	HA4066
SN74AHC4066PWR	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HA4066
SN74AHC4066PWR.A	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HA4066
SN74AHC4066RGYR	Active	Production	VQFN (RGY) 14	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	HA4066
SN74AHC4066RGYR.A	Active	Production	VQFN (RGY) 14	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	HA4066

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

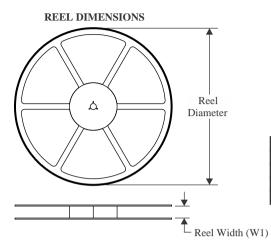
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

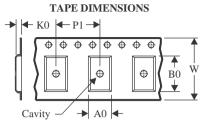
PACKAGE OPTION ADDENDUM

www.ti.com 9-Nov-2025

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

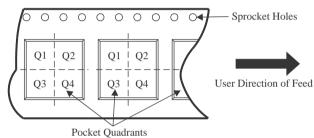
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

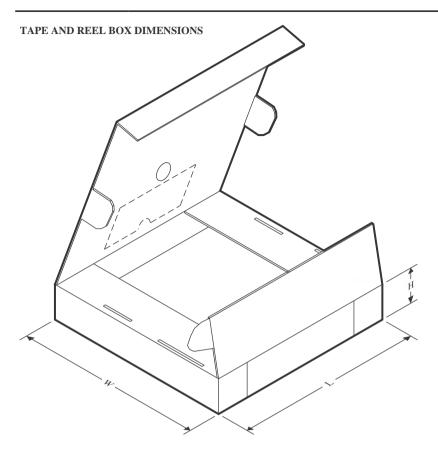
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

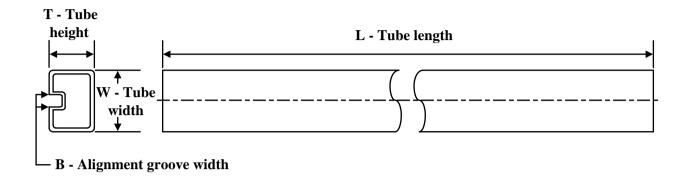
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC4066DBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74AHC4066DGVR	TVSOP	DGV	14	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74AHC4066DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74AHC4066NSR	SOP	NS	14	2000	330.0	16.4	8.1	10.4	2.5	12.0	16.0	Q1
SN74AHC4066PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AHC4066RGYR	VQFN	RGY	14	3000	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1

www.ti.com 24-Jul-2025

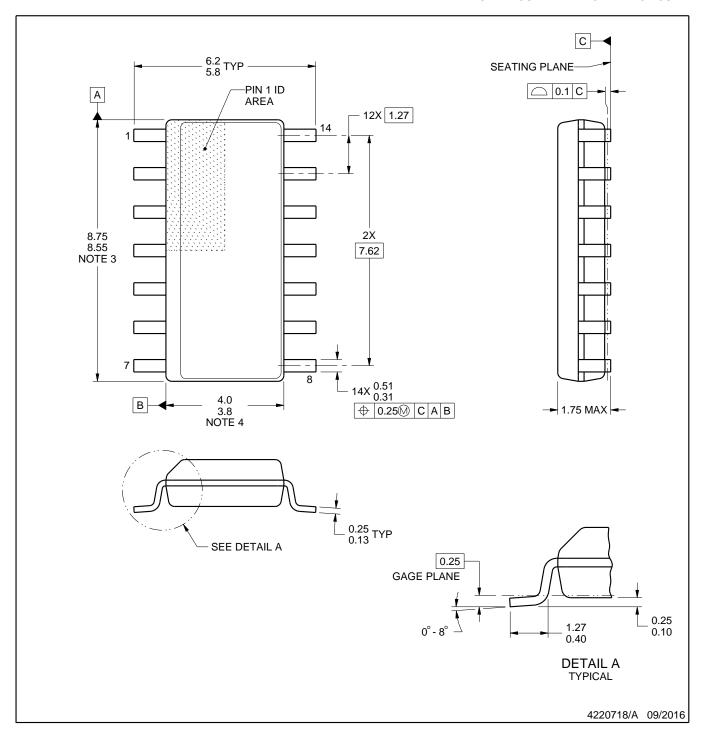

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC4066DBR	SSOP	DB	14	2000	353.0	353.0	32.0
SN74AHC4066DGVR	TVSOP	DGV	14	2000	353.0	353.0	32.0
SN74AHC4066DR	SOIC	D	14	2500	353.0	353.0	32.0
SN74AHC4066NSR	SOP	NS	14	2000	353.0	353.0	32.0
SN74AHC4066PWR	TSSOP	PW	14	2000	353.0	353.0	32.0
SN74AHC4066RGYR	VQFN	RGY	14	3000	367.0	367.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74AHC4066N	N	PDIP	14	25	506	13.97	11230	4.32
SN74AHC4066N.A	N	PDIP	14	25	506	13.97	11230	4.32

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

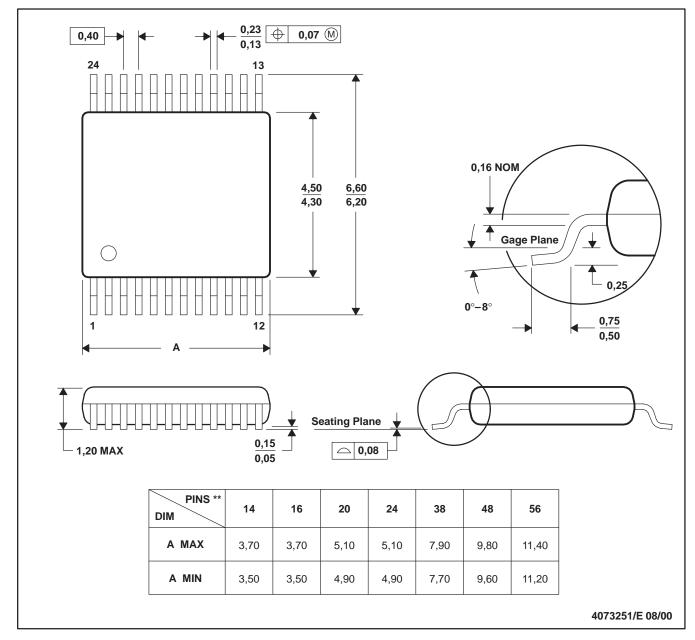
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

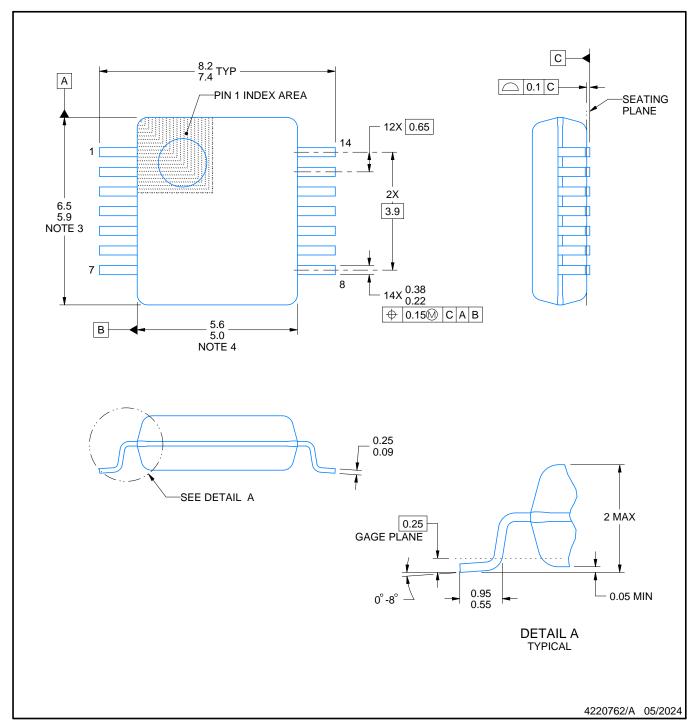
NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DGV (R-PDSO-G**)

24 PINS SHOWN

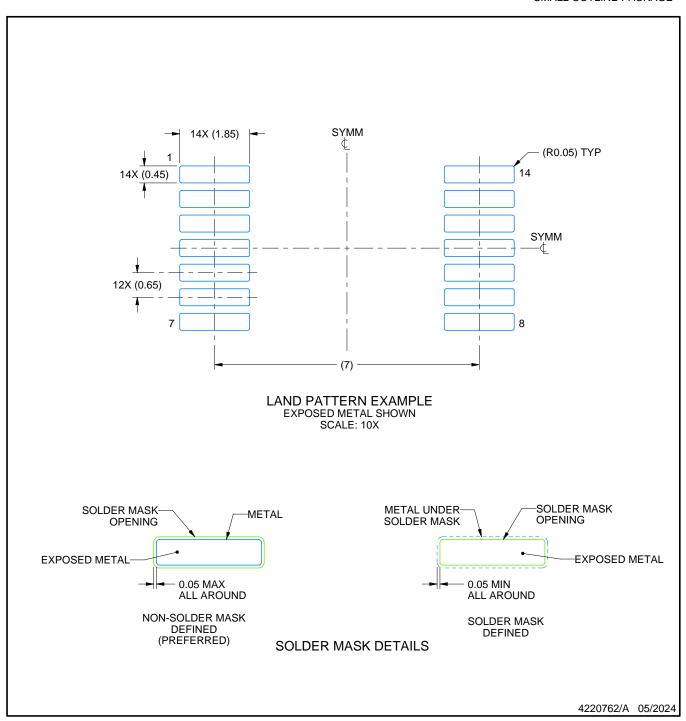
PLASTIC SMALL-OUTLINE


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

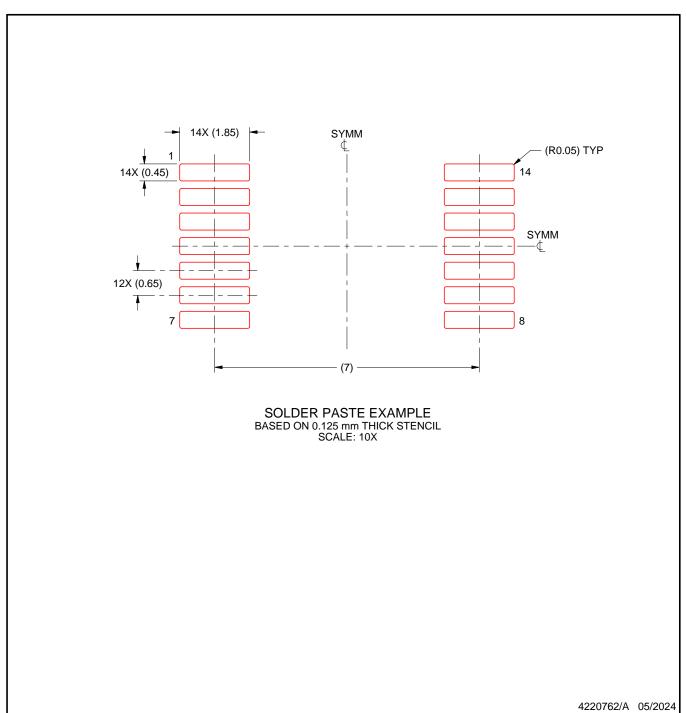
D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-150.



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

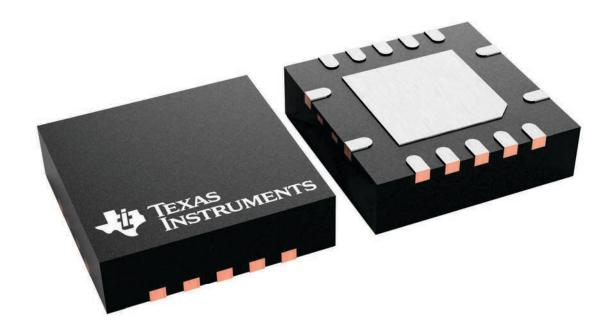
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

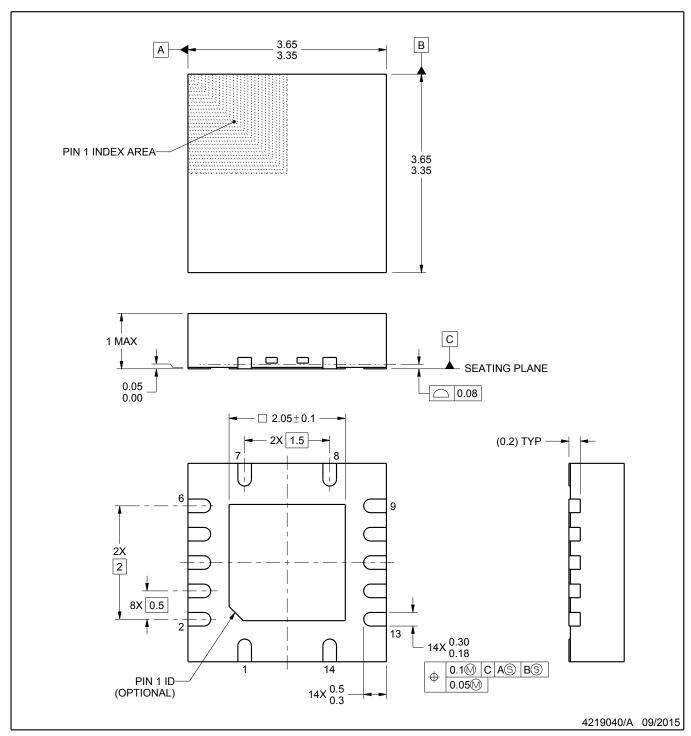
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

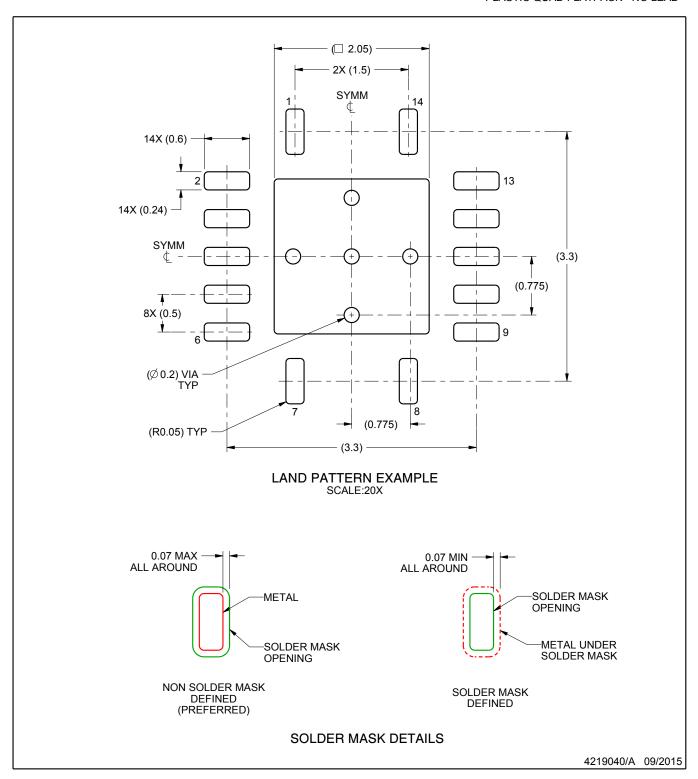
3.5 x 3.5, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

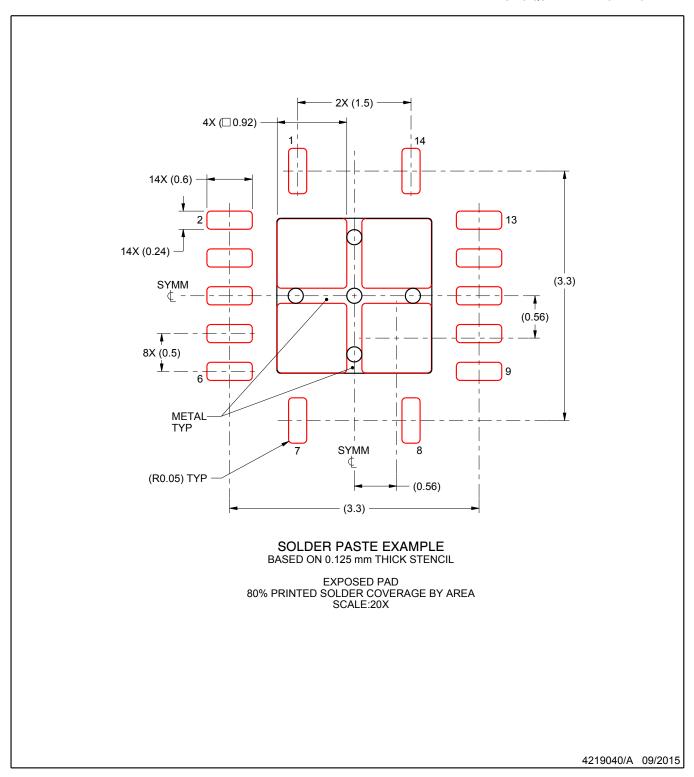
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025