SCLS329G - MARCH 1996 - REVISED JANUARY 2000

2LE

25

24

•	Members of the Texas Instruments <i>Widebus</i> ™ Family <i>EPIC</i> ™ (Enhanced-Performance Implanted	SN54AHC16373 WD PACKAGE SN74AHC16373 DGG, DGV, OR DL PACKAGE (TOP VIEW)
	CMOS) Process	
•	Operating Range 2-V to 5.5-V V _{CC}	1Q1 2 47 1D1
•	Distributed V _{CC} and GND Pins Minimize	1Q2 [_{3 46}] 1D2
	High-Speed Switching Noise	GND [] 4 45] GND
	Flow-Through Architecture Optimizes PCB	1Q3 🛛 5 44 🖸 1D3
	Layout	1Q4 🛛 6 43 🖸 1D4
٠	Latch-Up Performance Exceeds 250 mA Per	
	JESD 17	1Q5 8 41 1D5
•	ESD Protection Exceeds 2000 V Per	
-	MIL-STD-883, Method 3015; Exceeds 200 V	
	Using Machine Model (C = 200 pF, R = 0)	1Q7 [] _{11 38} [] 1D7 1Q8 [] _{12 37} [] 1D8
•	Package Options Include Plastic Shrink	2Q1 [13 36] 2D1
	Small-Outline (DL), Thin Shrink	2Q2 [14 35] 2D2
	Small-Outline (DGG), and Thin Very	GND [] 15 34]] GND
	Small-Outline (DGV) Packages and 380-mil	2Q3 [16 33] 2D3
	Fine-Pitch Ceramic Flat (WD) Package	2Q4 [17 32] 2D4
	Using 25-mil Center-to-Center Spacings	V_{CC} $\begin{bmatrix} 18 & 31 \end{bmatrix}$ V_{CC}
مامح	vintion	2Q5 [_{19 30}] 2D5
aesc	ription	2Q6 [₂₀ ₂₉] 2D6
	The 'AHC16373 devices are 16-bit transparent	GND 21 28 GND
	D-type latches with 3-state outputs designed	2Q7 2 22 27 2 77
	specifically for driving highly capacitive or	2 <u>Q8</u> [] _{23 26}] 2D8

D-type latches with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

These devices can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54AHC16373 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74AHC16373 is characterized for operation from -40° C to 85° C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

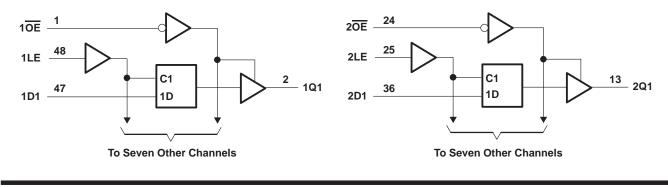
EPIC and Widebus are trademarks of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2000, Texas Instruments Incorporated

SCLS329G - MARCH 1996 - REVISED JANUARY 2000

	(each 8-bit latch)										
	OUTPUT										
OE	LE	D	Q								
L	Н	Н	н								
L	Н	L	L								
L	L	Х	Q ₀								
Н	Х	Х	Z								


FUNCTION TABLE

logic symbol[†]

			-	
1 <mark>OE</mark>	1	1EN		
1LE	48	C3		
2 <mark>0E</mark>	24	2EN		
	25			
2LE		C4		
1D1	47	3D 1 \	7 2	- 1Q1
1D2	46		3	- 1Q2
1D2	44	<u> </u>	- 5	- 1Q3
1D3	43	<u> </u>	6	– 1Q4
1D4	41		8	– 1Q5
1D5	40		9)
	38		- 11	- 1Q6
1D7	37		12	- 1Q7
1D8	36		13	- 1Q8
2D1	35	4D 2 \	14	- 2Q1
2D2	33	ļ	16	– 2Q2
2D3	32	ļ	17	– 2Q3
2D4	30	ļ	- 19	- 2Q4
2D5	29	ļ	20	- 2Q5
2D6	27	l	22	- 2Q6
2D7	26	·	23	– 2Q7
2D8		1		– 2Q8

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCLS329G - MARCH 1996 - REVISED JANUARY 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

	o 7 V 0.5 V 0 mA 0 mA 5 mA 5 mA 5 mA °C/W °C/W °C/W
Storage temperature range, T _{stg} –65°C to 1	50°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 3)

			SN54AH	C16373	SN74AH0	216373	UNIT			
			MIN	MAX	MIN	MAX	UNIT			
Vcc	Supply voltage		2	5.5	2	5.5	V			
		$V_{CC} = 2 V$	1.5		1.5					
VIH	High-level input voltage	$V_{CC} = 3 V$	2.1		2.1		V			
		$V_{CC} = 5.5 V$	3.85		3.85					
		$V_{CC} = 2 V$		0.5		0.5				
VIL	Low-level input voltage	$V_{CC} = 3 V$		0.9		0.9	V			
		V _{CC} = 5.5 V		1.65		1.65				
VI	Input voltage		0	5.5	0	5.5	V			
Vo	Output voltage		0 <	Vcc	0	Vcc	V			
		$V_{CC} = 2 V$	C)	-50		-50	μA			
ЮН	High-level output current	V_{CC} = 3.3 V ± 0.3 V	202	-4		-4	mA			
		$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$	24	-8		-8	mA			
		$V_{CC} = 2 V$		50		50	μΑ			
IOL	Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4		4	A			
		V_{CC} = 5 V ± 0.5 V		8		8	mA			
A#/A.	lanut transition rise or fell rate	V_{CC} = 3.3 V ± 0.3 V		100		100	20/1			
Δt/Δv	Input transition rise or fall rate	V_{CC} = 5 V ± 0.5 V		20		20	ns/V			
Т _А	Operating free-air temperature		-55	125	-40	85	°C			

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCLS329G - MARCH 1996 - REVISED JANUARY 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vee	Τ,	ן = 25°C	;	SN54AH0	C16373	SN74AHC	16373	UNIT
FARAINETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		2 V	1.9			1.9		1.9		
	I _{OH} = -50 μA	3 V	2.9			2.9		2.9		
VOH		4.5 V	4.4			4.4		4.4		V
	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		2.48		
	$I_{OH} = -8 \text{ mA}$	4.5 V	3.94			3.8	-M	3.8		
		2 V			0.1		0.1		0.1	
	I _{OL} = 50 μA	3 V			0.1	-0	0.1		0.1	
V _{OL}		4.5 V			0.1	40	0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36	na	0.5		0.44	
	I _{OL} = 8 mA	4.5 V			0.36	<i>b</i> 0	0.5		0.44	
Ц	$V_{I} = V_{CC} \text{ or } GND$	0 V to 5.5 V			±0.1	Y	±1*		±1	μΑ
loz	$V_{O} = V_{CC} \text{ or GND},$ $V_{I} = V_{IL} \text{ or } V_{IH}$	5.5 V			±0.25		±2.5		±2.5	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, I_{O} = 0$	5.5 V			4		40		40	μA
Ci	$V_I = V_{CC}$ or GND	5 V		2.5	10				10	pF
Co	$V_{O} = V_{CC} \text{ or } GND$	5 V		4						pF

* On products compliant to MIL-PRF-38535, this parameter is not production tested at V_{CC} = 0 V.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

		T _A = 25°C		SN54AHC16373		SN74AHC16373		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tw	Pulse duration, LE high	5		5	S.M	5		ns
t _{su}	Setup time, data before LE \downarrow	4		4		4		ns
th	Hold time, data after LE \downarrow	1		\$ 1		1		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

		T _A = 2	T _A = 25°C		C16373	SN74AHC16373		UNIT
			MAX	MIN	мах	MIN	MAX	UNIT
tw	Pulse duration, LE high	5		5	N.N	5		ns
t _{su}	Setup time, data before LE \downarrow	4		4		4		ns
t _h	Hold time, data after LE \downarrow	1		হ প		1		ns

SCLS329G - MARCH 1996 - REVISED JANUARY 2000

switching characteristics over recommended operating free-air temperature range,
V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD	ТА	= 25°C	;	SN54AHC	16373	SN74AH0	16373												
FARAIVIETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT											
^t PLH	D	Q	Ci = 15 pF		7.3*	13*	1*	15*	1	15	ns											
^t PHL	D	Q	C _L = 15 pF		7.3*	13*	1*	15*	1	15	115											
^t PLH	LE	Q	C _I = 15 pF		7*	13*	1*	15*	1	15	ns											
^t PHL	LL		CL = 13 pr		7*	13*	1**	15*	1	15	115											
^t PZH	OE	Q	C _L = 15 pF		7.3*	13*	1*	15*	1	15	ns											
^t PZL	OE	ý	CL = 13 pr		7.3*	13*	1*	15*	1	15	115											
^t PHZ	OE	Q	C _I = 15 pF		10*	14*	1*	16*	1	16	ns											
^t PLZ	OE	~	~	~	~	~	3			10*	14*	1* 🗸	16*	1	16	110						
^t PLH	D	Q	CL = 50 pF		9.8	14	(C)	16	1	16	ns											
^t PHL	D	ý	0L = 30 pi		9.8	14	\mathcal{T}_{i}	16	1	16	115											
^t PLH	LE	Q	C _L = 50 pF		9.5	14.5	x 1	16.5	1	16.5	ns											
^t PHL	LL	ý	0L = 30 pi		9.5	14.5	1	16.5	1	16.5	115											
^t PZH		Q	C _L = 50 pF		9.3	14.9	1	16	1	16	ns											
tPZL	OE	Q	0L = 20 hr		8	14.9	1	16	1	16	115											
^t PHZ	OE	Q	$C_{\rm L} = 50 \rm pE$		10.4	15.5	1	17	1	17	ns											
tPLZ	UE	Ÿ	Q		Q	Q	Q		Q	Q	Q C _L = 50 pF	0L = 30 pr	Ο_ 30 με	0L = 30 pi		11.6	15.5	1	17	1	17	113
t _{sk(o)}			CL = 50 pF			1.5**				1.5	ns											

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

** On products compliant to MIL-PRF-38535, this parameter does not apply.

switching characteristics over recommended operating free-air temperature range,
V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD	Тд	(= 25°C	;	SN54AHC	16373	SN74AHC	C16373	LINUT						
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT						
^t PLH	D	Q	C _L = 15 pF		5*	8.2*	1*	9.5*	1	9.5							
^t PHL	D	Q	CL = 15 pr		5*	8.2*	1*	9.5*	1	9.5	ns						
^t PLH	LE	Q	C _L = 15 pF		4.9*	8.5*	1*	9.5*	1	9.5	ns						
^t PHL	LC	Q	CL = 15 pr		4.9*	8.5*	1*	9.5*	1	9.5	115						
^t PZH	OE	Q	C _I = 15 pF		5.5*	9.1*	1*	10*	1	10	ns						
^t PZL	ÛE	y y	CL = 15 pr		5.5*	9.1*	1*	10*	1	10	115						
^t PHZ	OE	0	C _I = 15 pF		5*	9.5*	1*	10*	1	10	ns						
^t PLZ	ÛE	Q	Q	~	~	3	3	×			5*	9.5*	1*	10*	1	10	113
^t PLH	D	Q	$C_{I} = 50 pF$		6.5	9.2	10	10.5	1	10.5	ns						
^t PHL	D	ý	0L = 30 pi		6.5	9.2	70	10.5	1	10.5	115						
^t PLH	LE	Q	C ₁ = 50 pF		6.4	9.5	A 1	10.5	1	10.5	ns						
^t PHL	LL	ý	0L = 30 bi		6.4	9.5	1	10.5	1	10.5	115						
^t PZH	OE	Q	$C_{I} = 50 pF$		6	10.1	1	11.5	1	11.5	ns						
^t PZL	UE	2	0L = 30 pr		6	10.1	1	11.5	1	11.5	115						
^t PHZ	OE	Q	$C_{1} = 50 pF$		6.5	10.5	1	11.5	1	11.5	ns						
^t PLZ	UE		CL = 20 PP			7.5	10.5	1	11.5	1	11.5	115					
^t sk(o)			C _L = 50 pF			1**				1	ns						

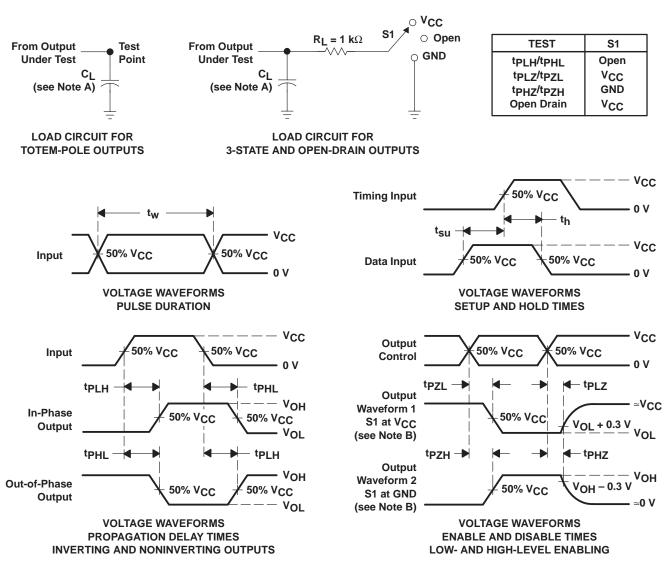
* On products compliant to MIL-PRF-38535, this parameter is not production tested.

** On products compliant to MIL-PRF-38535, this parameter does not apply.

SN54AHC16373, SN74AHC16373 16-BIT TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS SCLS329G – MARCH 1996 – REVISED JANUARY 2000

noise characteristics, V_{CC} = 5 V, C_L = 50 pF, T_A = 25^{\circ}C (see Note 4)

DADAMETED	SN74	UNIT		
FARAIVIETER	MIN	TYP	MAX	UNIT
Quiet output, maximum dynamic V _{OL}		0.34	0.8	V
Quiet output, minimum dynamic V _{OL}		-0.1	-0.8	V
Quiet output, minimum dynamic V _{OH}		4.6		V
High-level dynamic input voltage	3.5			V
Low-level dynamic input voltage			1.5	V
	Quiet output, minimum dynamic V _{OL} Quiet output, minimum dynamic V _{OH} High-level dynamic input voltage	PARAMETER MIN Quiet output, maximum dynamic V _{OL} Quiet output, minimum dynamic V _{OL} Quiet output, minimum dynamic V _{OH} High-level dynamic input voltage 3.5	PARAMETER MIN TYP Quiet output, maximum dynamic V _{OL} 0.34 Quiet output, minimum dynamic V _{OL} -0.1 Quiet output, minimum dynamic V _{OH} 4.6 High-level dynamic input voltage 3.5	MINTYPMAXQuiet output, maximum dynamic VOL0.340.8Quiet output, minimum dynamic VOL-0.1-0.8Quiet output, minimum dynamic VOH4.6-0.1High-level dynamic input voltage3.5-0.1


NOTE 4: Characteristics are for surface-mount packages only.

operating characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd} Power dissipation capacitance	No load, f = 1 MHz	21	рF

SCLS329G - MARCH 1996 - REVISED JANUARY 2000

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f \leq 3 ns, t_f \leq 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74AHC16373DGGR	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC16373
SN74AHC16373DGGR.A	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC16373
SN74AHC16373DGGR.B	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	-	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC16373
SN74AHC16373DGVR	Active	Production	TVSOP (DGV) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HE373
SN74AHC16373DGVR.A	Active	Production	TVSOP (DGV) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HE373
SN74AHC16373DL	Obsolete	Production	SSOP (DL) 48	-	-	Call TI	Call TI	-40 to 85	AHC16373
SN74AHC16373DLR	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC16373
SN74AHC16373DLR.A	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC16373

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

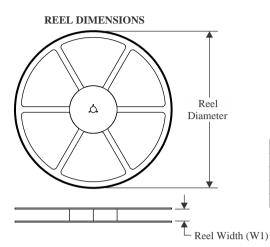
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

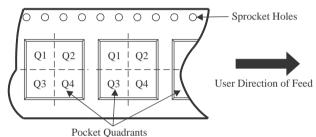
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

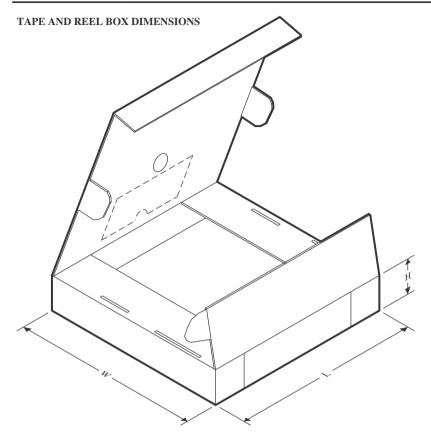


Texas


STRUMENTS

TAPE AND REEL INFORMATION

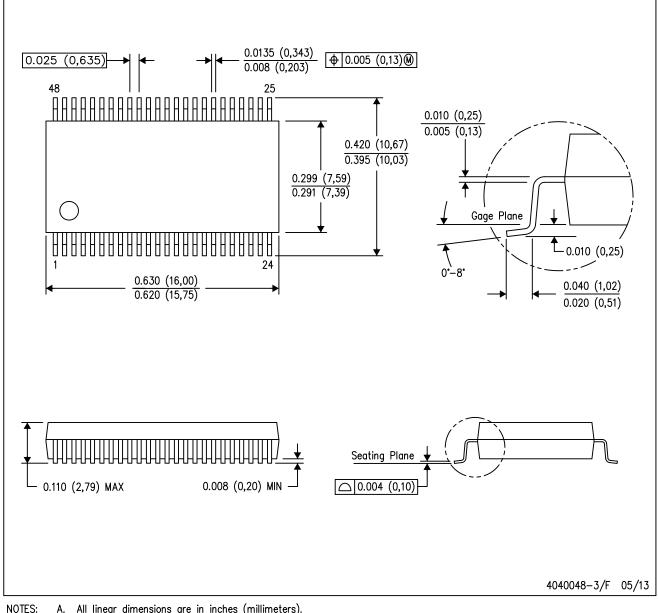
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC16373DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74AHC16373DGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74AHC16373DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Jul-2025



*All dimensions are nominal

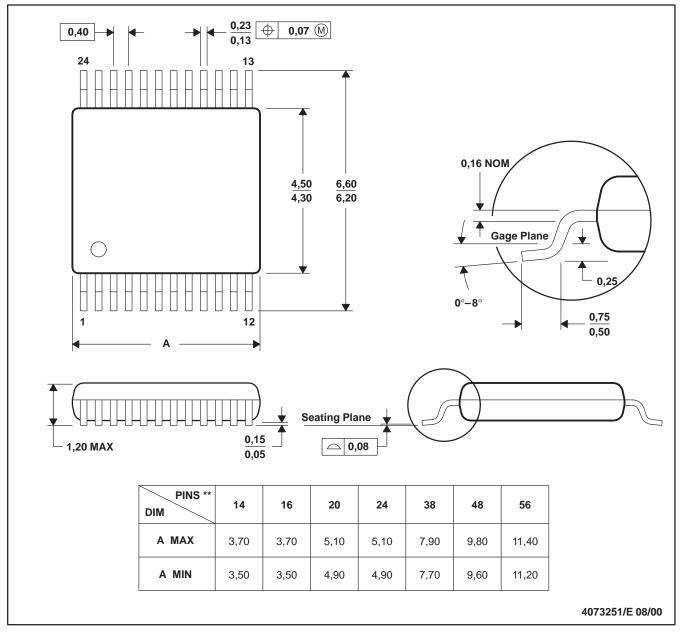
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC16373DGGR	TSSOP	DGG	48	2000	356.0	356.0	45.0
SN74AHC16373DGVR	TVSOP	DGV	48	2000	353.0	353.0	32.0
SN74AHC16373DLR	SSOP	DL	48	1000	356.0	356.0	53.0

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

PACKAGE OUTLINE

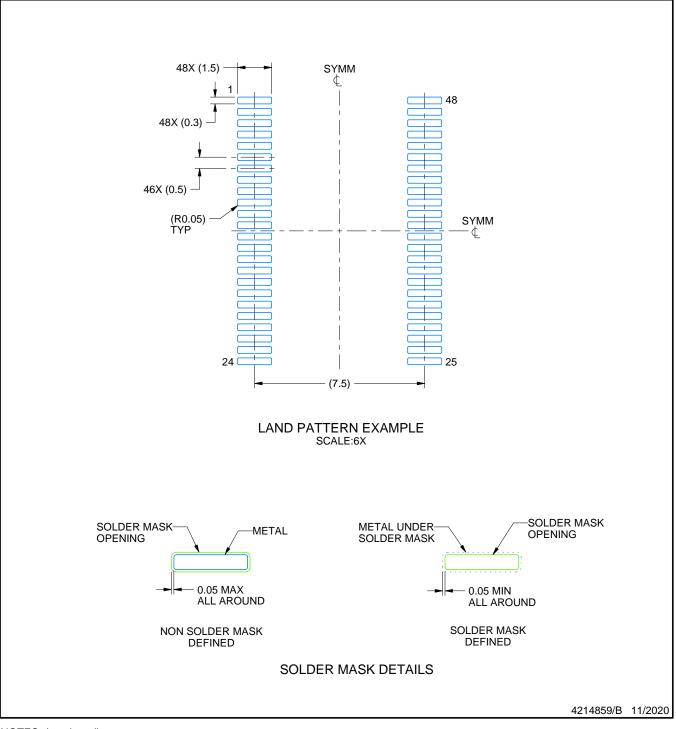
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153.


DGG0048A

DGG0048A

EXAMPLE BOARD LAYOUT

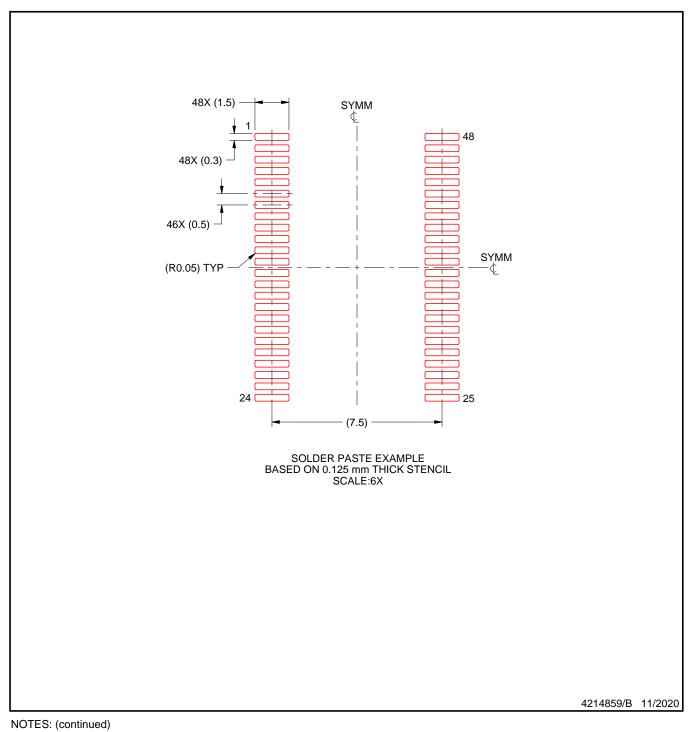
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGG0048A

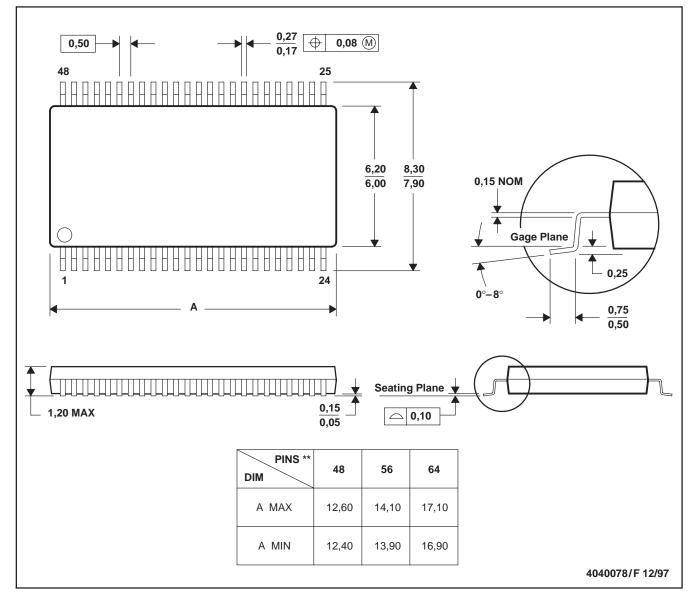
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate

design recommendations. 8. Board assembly site may have different recommendations for stencil design.


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated