SN74AC16-Q1 SCAS966B - FEBRUARY 2024 - REVISED JULY 2024 # SN74AC16-Q1 Automotive Hex Inverters With Schmitt-Trigger Inputs and Open-Drain Outputs ### 1 Features - AEC-Q100 qualified for automotive applications: - Device temperature grade 1: -40°C to +125°C - Device HBM ESD classification level 2 - Device CDM ESD classification level C4B - Wide operating range of 1.5V to 6V - Continuous 24mA output drive at 5V - Supports up to 75mA output drive at 5V in short bursts - All inputs and outputs include positive and negative clamp diodes - Output clamp diodes provide protection for driving inductive loads such as relays - Maximum t_{pd} of 7.7ns at 5V, 50pF load # 2 Applications - Control indicator LEDs - Drive low-voltage relay coils - Wired-OR with open-drain outputs # 3 Description SN74AC16-Q1 independent contains inverters with Schmitt-trigger inputs and open-drain outputs. ### **Package Information** | PART NUMBER | PACKAGE ⁽¹⁾ | PACKAGE SIZE ⁽²⁾ | BODY SIZE(3) | | | | | |-------------|------------------------|-----------------------------|--------------|--|--|--|--| | SN74AC16-Q1 | PW (TSSOP, 16) | 6.4mm × 5mm | 4.4mm × 5mm | | | | | | 3N/4AC10-Q1 | BQA (WQFN, 16) | 3mm × 2.5mm | 3mm × 2.5mm | | | | | - For more information, see Section 11. - The package size (length × width) is a nominal value and includes pins, where applicable - The body size (length × width) is a nominal value and does not include pins. Logic Diagram (Positive Logic) # **Table of Contents** | 1 Features1 | 7.4 Device Functional Modes | 9 | |---------------------------------------|-----------------------------------------------------|------| | 2 Applications | 8 Application and Implementation | . 11 | | 3 Description | 8.1 Application Information | .11 | | 4 Pin Configuration and Functions3 | 8.2 Typical Application | | | 5 Specifications4 | 8.3 Power Supply Recommendations | .14 | | 5.1 Absolute Maximum Ratings4 | 8.4 Layout | | | 5.2 ESD Ratings4 | 9 Device and Documentation Support | | | 5.3 Recommended Operating Conditions4 | 9.1 Receiving Notification of Documentation Updates | .16 | | 5.4 Thermal Information5 | 9.2 Support Resources | | | 5.5 Electrical Characteristics5 | 9.3 Trademarks | .16 | | 5.6 Switching Characteristics6 | 9.4 Electrostatic Discharge Caution | .16 | | 5.7 Typical Characteristics6 | 9.5 Glossary | .16 | | 6 Parameter Measurement Information8 | 10 Revision History | | | 7 Detailed Description9 | 11 Mechanical, Packaging, and Orderable | | | 7.1 Overview9 | Information | 16 | | 7.2 Functional Block Diagram9 | 11.1 Tape and Reel Information | .17 | | 7.3 Feature Description9 | 11.2 Mechanical Data | | # **4 Pin Configuration and Functions** Figure 4-1. SN74AC16-Q1 PW Package, 14-Pin TSSOP (Top View) Figure 4-2. BQA Package, 14-Pin WQFN (Top View) **Table 4-1. Pin Functions** | PIN NAME NO. | | TVDE(1) | DESCRIPTION | |----------------------------|----|---------------------|--------------------------------------------------------------------------------------------------------| | | | TYPE ⁽¹⁾ | DESCRIPTION | | 1A | 1 | I | Channel 1 input | | 1Y | 2 | 0 | Channel 1 output | | 2A | 3 | I | Channel 2 input | | 2Y | 4 | 0 | Channel 2 output | | 3A | 5 | I | Channel 3 input | | 3Y | 6 | 0 | Channel 3 output | | GND | 7 | G | Ground | | 4Y | 8 | 0 | Channel 4 output | | 4A | 9 | I | Channel 4 input | | 5Y | 10 | 0 | Channel 5 output | | 5A | 11 | I | Channel 5 input | | 6Y | 12 | 0 | Channel 6 output | | 6A | 13 | I | Channel 6 input | | V _{CC} | 14 | Р | Positive supply | | Thermal pad ⁽²⁾ | | _ | The thermal pad can be connected to GND or left floating. Do not connect to any other signal or supply | ⁽¹⁾ Signal Types: I = Input, O = Output, I/O = Input or Output, P = Power, G = Ground ⁽²⁾ BQA Package only. # **5 Specifications** ### **5.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |------------------|----------------------------------------------------------|-------------------------------------------------------------------|------|------------------------|------| | V _{CC} | Supply voltage range | | -0.5 | 7 | V | | VI | Input voltage range ⁽²⁾ | | -0.5 | V _{CC} + 0.5V | V | | Vo | Output voltage range ⁽²⁾ | | -0.5 | V _{CC} + 0.5V | V | | I _{IK} | Input clamp current | $V_{I} < -0.5V \text{ or } V_{I} > V_{CC} + 0.5V$ | | ±20 | mA | | I _{OK} | Output clamp current | V _O < -0.5V or V _O > V _{CC} + 0.5V | | ±50 | mA | | Io | Continuous output current | $V_O = 0$ to V_{CC} | | 50 | mA | | | Continuous output current through V _{CC} or GND | | | ±200 | mA | | TJ | Junction temperature | | | 150 | °C | | T _{stg} | Storage temperature | | -65 | 150 | °C | ⁽¹⁾ Operation outside the *Absolute Maximum Ratings* may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If briefly operating outside the *Recommended Operating Conditions* but within the *Absolute Maximum Ratings*, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime. ### 5.2 ESD Ratings | | | | VALUE | UNIT | |---------------|-----------|----------------------------------------------------------------------------------------|-------|------| | Electrostatic | | Human body model (HBM), per AEC Q100-002 HBM ESD Classification Level 2 ⁽¹⁾ | ±2000 | | | V(ECD) | discharge | Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C4B | ±1000 | V | ⁽¹⁾ AEC Q100-002 indicate that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. ### **5.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | Specification | Description | Condition | MIN | MAX | UNIT | |-----------------|--------------------------------|--------------------------------|-----|-----------------|------| | V _{CC} | Supply voltage | Supply voltage | 1.5 | 6 | V | | VI | Input Voltage | Input Voltage | 0 | V _{cc} | V | | Vo | Output Voltage | Output Voltage | 0 | V _{CC} | V | | | | V _{CC} = 1.8V | | 1 | mA | | | Low lovel output ourrent | V _{CC} = 2.5V | | 2 | mA | | I _{OL} | Low-level output current | V _{CC} = 3V | | 12 | mA | | | | V _{CC} = 4.5V to 5.5V | | 24 | mA | | T _A | Operating free-air temperature | Operating free-air temperature | -40 | 125 | °C | Product Folder Links: SN74AC16-Q1 ⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ### **5.4 Thermal Information** | PACKAGE | PINS | THERMAL METRIC ⁽¹⁾ | | | THERMAL METRIC ⁽¹⁾ | | | UNIT | |------------|------|-------------------------------|-----------------------|------------------|-------------------------------|-----------------|-----------------------|------| | PACKAGE | FINO | R _{0JA} | R _{0JC(top)} | R _{0JB} | Ψ_{JT} | Ψ _{ЈВ} | R _{0JC(bot)} | ONII | | PW (TSSOP) | 14 | 148 | 81.1 | 104.5 | 22.2 | 103.0 | N/A | °C/W | | BQB (WQFN) | 14 | 93.4 | 96.4 | 62.8 | 12.5 | 62.5 | 39.7 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note. ### 5.5 Electrical Characteristics over operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CONDITIONS | V | -40°C | -40°C to 125°C | | | |-----------------|-------------------------------------------------|-----------------|-------|----------------|------|------| | PARAMETER | TEST CONDITIONS | V _{cc} | MIN | TYP | MAX | UNIT | | | | 1.5V | 0.61 | 0.89 | 1.17 | | | | | 1.8V | 0.72 | 1.03 | 1.33 | | | | | 2.5V | 0.8 | 1.29 | 1.61 | | | V_{T+} | Positive-going input threshold voltage | 3V | 0.8 | 1.8 | 2.2 | V | | | | 4.5V | 1.5 | 2.6 | 3.2 | | | | | 5V | 1.5 | | 3.55 | | | | | 5.5V | 1.6 | 3.2 | 3.9 | | | | | 1.5V | 0.26 | 0.48 | 0.7 | | | | | 1.8V | 0.37 | 0.54 | 0.70 | | | | | 2.5V | 0.5 | 0.7 | 0.84 | | | V _{T-} | Negative-going input threshold voltage | 3V | 0.5 | 0.8 | 1.2 | V | | | | 4.5V | 0.9 | 1.4 | 1.8 | | | | | 5V | 1.0 | | 2.05 | | | | | 5.5V | 1.1 | 1.8 | 2.3 | | | | | 1.5V | 0.11 | 0.41 | 0.83 | V | | | | 1.8V | 0.28 | 0.49 | 0.83 | | | | | 2.5V | 0.3 | 0.60 | 0.83 | | | ΔV_{T} | Hysteresis (V _{T+} - V _{T-}) | 3V | 0.3 | 1 | 1.2 | | | | | 4.5V | 0.4 | 1.2 | 1.4 | | | | | 5V | 0.5 | | | | | | | 5.5V | 0.5 | 1.4 | 1.6 | | | | | 1.5V | | | 0.1 | | | | | 1.8V | | | 0.1 | | | | I = 50A | 2.5V | | | 0.1 | | | | $I_{OL} = 50\mu A$ | 3V | | 0.002 | 0.1 | | | | | 4.5V | | 0.001 | 0.1 | | | | | 5.5V | | 0.001 | 0.1 | | | . | I _{OL} = 1mA | 1.8V | | | 0.36 | ., | | V _{OL} | I _{OL} = 2mA | 2.5V | | | 0.5 | V | | | I _{OL} = 4mA | 3V | | | 0.5 | | | | I _{OL} = 12mA | 3V | | | 0.5 | | | | I _{OL} = 24mA | 4.5V | | | 0.5 | | | | I _{OL} = 24mA | 5.5V | | | 0.5 | | | | I _{OL} = 75mA | 5.5V | | | 1.65 | | | | I _{OL} = 50mA | 5.5V | | | 1.65 | | ### 5.5 Electrical Characteristics (continued) over operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CONDITIONS | V | -40°C | | UNIT | | |-----------------|-----------------------------------------|-----------------|-------|-----|------|------| | PARAMETER | PARAMETER TEST CONDITIONS | V _{cc} | MIN | TYP | MAX | ONIT | | I _I | V _I = 5.5V or GND | 0V to 5.5V | | | ±1 | μA | | I _{OZ} | V _O = 5.5V or GND | 0V to 5.5V | | | ±5 | μA | | Icc | $V_I = V_{CC}$ or GND, $I_O = 0$ | 5.5V | | | 20 | μA | | C _I | V _I = V _{CC} or GND | 5V | | 9 | | pF | | Co | V _O = V _{CC} or GND | 5V | | 15 | | pF | | C _{PD} | C _L = 50pF, F = 1MHz | 5V | | 60 | | pF | ### **5.6 Switching Characteristics** C_L = 50pF; over operating free-air temperature range; typical values measured at T_A = 25°C (unless otherwise noted). See *Parameter Measurement Information*. | PARAMETER | FROM (INPUT) | TO (OUTPUT) | V | -40°C to 125°C | | | UNIT | |------------------|--------------|-------------|-----------------|----------------|-----|------|------| | PARAMETER | PROW (INPUT) | 10 (001701) | V _{cc} | MIN | TYP | MAX | UNII | | | | | 1.5V | | | 27.2 | ns | | | | | 1.8V | | | 17.7 | ns | | t _{PLZ} | Α | Y | 2.5V | | | 8.2 | ns | | | | | 3.3V | | | 6.3 | ns | | | | | 5V | | | 4.5 | ns | | | | A Y | 1.5V | | | 30.9 | ns | | | | | 1.8V | | | 20.2 | ns | | t _{PZL} | Α | | 2.5V | | | 13.4 | ns | | | | | 3.3V | | | 11 | ns | | | | | 5V | | | 7.7 | ns | ## 5.7 Typical Characteristics T_A = 25°C (unless otherwise noted) Figure 5-2. Supply Current Across Input Voltage 3.3V and 5.0V Supply # 5.7 Typical Characteristics (continued) T_A = 25°C (unless otherwise noted) # **6 Parameter Measurement Information** Phase relationships between waveforms were chosen arbitrarily for the examples listed in the following table. All input pulses are supplied by generators having the following characteristics: PRR \leq 1MHz, $Z_O = 50\Omega$, $t_t < 2.5$. The outputs are measured individually with one input transition per measurement. | TEST | S1 | R _L | C _L | ΔV | V _{cc} | |-------------------------------------|--------|----------------|----------------|-------|-----------------| | t _{PLZ} , t _{PZL} | CLOSED | 1kΩ | 50 pF | 0.15V | ≤ 2.5V | | t _{PLZ} , t _{PZL} | CLOSED | 1kΩ | 50 pF | 0.3V | > 2.5V | (1) C_L includes probe and test-fixture capacitance. Figure 6-1. Load Circuit for Open-Drain Outputs - (1) t_{PLZ} is the same as t_{dis} . - (2) t_{PZL} is the same as t_{en}. Figure 6-2. Voltage Waveforms Propagation Delays Submit Document Feedback Copyright © 2024 Texas Instruments Incorporated ### 7 Detailed Description ### 7.1 Overview The SN74AC16-Q1 hex inverters provide the logic function $Y = \overline{A}$. ### 7.2 Functional Block Diagram Logic Diagram (Positive Logic) ### 7.3 Feature Description ### 7.3.1 Open-Drain CMOS Outputs This device includes open-drain CMOS outputs. Open-drain outputs can only drive the output low. When in the high logical state, open-drain outputs will be in a high-impedance state. The drive capability of this device may create fast edges into light loads, so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times. When placed into the high-impedance state, the output will neither source nor sink current, with the exception of minor leakage current as defined in the *Electrical Characteristics* table. In the high-impedance state, the output voltage is not controlled by the device and is dependent on external factors. If no other drivers are connected to the node, then this is known as a floating node and the voltage is unknown. A pull-up resistor can be connected to the output to provide a known voltage at the output while it is in the high-impedance state. The value of the resistor will depend on multiple factors, including parasitic capacitance and power consumption limitations. Typically, a $10k\Omega$ resistor can be used to meet these requirements. Unused open-drain CMOS outputs should be left disconnected. ### 7.3.2 CMOS Schmitt-Trigger Inputs This device includes inputs with the Schmitt-trigger architecture. These inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics* table from the input to ground. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings* table, and the maximum input leakage current, given in the *Electrical Characteristics* table, using Ohm's law $(R = V \div I)$. The Schmitt-trigger input architecture provides hysteresis as defined by ΔV_T in the *Electrical Characteristics* table, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the inputs with slow transitioning signals will increase dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, please see *Understanding Schmitt Triggers*. ### 7.4 Device Functional Modes Table 7-1 lists the function modes of the SN74AC16-Q1. **Table 7-1. Function Table** | INPUTS ⁽¹⁾ | OUTPUTS | |-----------------------|---------| | Α | Y | | L | Z | Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback Table 7-1. Function Table (continued) | INPUTS ⁽¹⁾ | OUTPUTS | |-----------------------|---------| | Α | Y | | Н | L | (1) H = High Voltage Level, L = Low Voltage Level ## 8 Application and Implementation ### **Note** Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ### **8.1 Application Information** In this application, an open-drain inverter is used to drive a low voltage relay coil as shown in Figure 8-1. The high drive strength of the SN74AC16-Q1 allows direct driving of the relay coil. When the open-drain output of the device is set to the high-impedance mode, the current from the coil cannot change to zero as fast as the output can, so the output positive clamp diode provides a safe path for that current until it dissipates. A typical coil current and diode current are plotted in Figure 8-2, showing the normal diode current behavior while driving an inductive load. ### 8.2 Typical Application Figure 8-1. Typical Application Block Diagram ### 8.2.1 Design Requirements ### 8.2.1.1 Power Considerations Ensure the desired supply voltage is within the range specified in the Recommended Operating Conditions. The supply voltage sets the device's electrical characteristics of the device as described in the Electrical Characteristics section. The positive voltage supply must be capable of sourcing current equal to the maximum static supply current, I_{CC}, listed in the Electrical Characteristics, and any transient current required for switching. The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the SN74AC16-Q1 plus the maximum supply current, I_{CC}, listed in the Electrical Characteristics, and any transient current required for switching. The logic device can only sink as much current that can be sunk into its ground connection. Ensure the maximum total current through GND listed in the Absolute Maximum Ratings is not exceeded. The SN74AC16-Q1 can drive a load with a total capacitance less than or equal to 50pF while still meeting all of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to exceed 50pF. The SN74AC16-Q1 can drive a load with total resistance described by $R_1 \ge V_0 / I_0$, with the output voltage and current defined in the *Electrical Characteristics* table with V_{OL}. When outputting in the HIGH state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the V_{CC} pin. Total power consumption can be calculated using the information provided in CMOS Power Consumption and Cpd Calculation. Thermal increase can be calculated using the information provided in *Thermal Characteristics of Standard Linear* and Logic (SLL) Packages and Devices. ### CAUTION The maximum junction temperature, T_{J(max)} listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the Absolute Maximum Ratings. These limits are provided to prevent damage to the device. Product Folder Links: SN74AC16-Q1 12 ### 8.2.1.2 Input Considerations Input signals must cross $V_{t-(min)}$ to be considered a logic LOW, and $V_{t+(max)}$ to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the *Absolute Maximum Ratings*. Unused inputs must be terminated to either V_{CC} or ground. The unused inputs can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input will be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The drive current of the controller, leakage current into the SN74AC16-Q1 (as specified in the *Electrical Characteristics*), and the desired input transition rate limits the resistor size. A $10k\Omega$ resistor value is often used due to these factors. The SN74AC16-Q1 has no input signal transition rate requirements because it has Schmitt-Trigger inputs. Another benefit to having Schmitt-Trigger inputs is the ability to reject noise. Noise with a large enough amplitude can still cause issues. To know how much noise is too much, please refer to the $\Delta V_{T(min)}$ in the *Electrical Characteristics*. This hysteresis value will provide the peak-to-peak limit. Unlike what happens with standard CMOS inputs, Schmitt-Trigger inputs can be held at any valid value without causing huge increases in power consumption. The typical additional current caused by holding an input at a value other than V_{CC} or ground is plotted in the *Typical Characteristics*. Refer to the *Feature Description* section for additional information regarding the inputs for this device. ### 8.2.1.3 Output Considerations The ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the V_{OL} specification in the *Electrical Characteristics*. Open-drain outputs can be connected together directly to produce a wired-AND configuration or for additional output drive strength. Unused outputs can be left floating. Do not connect outputs directly to V_{CC} or ground. Refer to the Feature Description section for additional information regarding the outputs for this device. ### 8.2.2 Detailed Design Procedure - Add a decoupling capacitor from V_{CC} to GND. The capacitor needs to be placed physically close to the device and electrically close to both the V_{CC} and GND pins. An example layout is shown in the *Layout* section. - 2. Ensure the capacitive load at the output is ≤ 50pF. This is not a hard limit; by design, however, it will optimize performance. This can be accomplished by providing short, appropriately sized traces from the SN74AC16-Q1 to one or more of the receiving devices. - 3. Ensure the resistive load at the output is larger than $(V_{CC} / I_{O(max)})\Omega$. Doing this will prevent the maximum output current from the *Absolute Maximum Ratings* from being violated. Most CMOS inputs have a resistive load measured in M Ω ; much larger than the minimum calculated previously. - 4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however, can be calculated using the steps provided in the application report, *CMOS Power Consumption and Cpd Calculation*. Copyright © 2024 Texas Instruments Incorporated ### 8.2.3 Application Curves Figure 8-2. Application Curve ### 8.3 Power Supply Recommendations The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Section 5.3. Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, $0.1\mu F$ is recommended; if there are multiple V_{CC} pins, then $0.01\mu F$ or $0.022\mu F$ is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A $0.1\mu F$ and a $1\mu F$ are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results. ### 8.4 Layout ### 8.4.1 Layout Guidelines When using multiple-bit logic devices, inputs should never float. In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 8-3 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the output section of the part when asserted. This will not disable the input section of the IOs, so they cannot float when disabled. ### 8.4.2 Layout Example Figure 8-3. Example Layout for the SN74AC16-Q1 ### 9 Device and Documentation Support ### 9.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 9.2 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. ### 9.3 Trademarks TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners. ### 9.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### 9.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. ### 10 Revision History | С | changes from Revision A (July 2024) to Revision B (July 2024) | Page | |--------|------------------------------------------------------------------------------------------------------|------| | • | Added BQA package to Package Information table, Pin Configuration and Functions se Information table | | | •
_ | Added body size to Package Information table | 1 | | С | Changes from Revision * (February 2024) to Revision A (July 2024) | Page | | _ | Changed from Advance Information to Production Data | | # 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: SN74AC16-Q1 # 11.1 Tape and Reel Information # TAPE DIMENSIONS KO P1 BO W Cavity A0 | Α0 | Dimension designed to accommodate the component width | |----|---| | B0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | | | | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width W1
(mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | PSN74AC16PWRQ1 | TSSOP | PW | 14 | 3000 | 330 | 12 | 6.90 | 5.60 | 1.60 | 8 | 12 | Q1 | | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | PSN74AC16PWRQ1 | TSSOP | PW | 14 | 3000 | 356 | 356 | 35 | ### 11.2 Mechanical Data ### **MECHANICAL DATA** PWP (R-PDSO-G14) PowerPAD™ PLASTIC SMALL OUTLINE NOTES: - All linear dimensions are in millimeters. - This drawing is subject to change without notice. - Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side. - This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. - Falls within JEDEC MO-153 ### PowerPAD is a trademark of Texas Instruments. ### THERMAL PAD MECHANICAL DATA PWP (R-PDSO-G14) PowerPAD™ SMALL PLASTIC OUTLINE ### THERMAL INFORMATION This PowerPAD $^{\mathbf{m}}$ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com. The exposed thermal pad dimensions for this package are shown in the following illustration. Exposed Thermal Pad Dimensions 4206332-2/AO 01/16 NOTE: A. All linear dimensions are in millimeters PowerPAD is a trademark of Texas Instruments Submit Document Feedback Copyright © 2024 Texas Instruments Incorporated ### LAND PATTERN DATA ### NOTES: - All linear dimensions are in millimeters. - This drawing is subject to change without notice. - Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. www.ti.com 23-May-2025 ### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking | |-----------------------|--------|---------------|-----------------|-----------------------|------|-------------------------------|----------------------------|--------------|--------------| | | (1) | (2) | | | (3) | (4) | (5) | | (6) | | SN74AC16PWRQ1 | Active | Production | TSSOP (PW) 14 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AC16Q | | SN74AC16PWRQ1.A | Active | Production | TSSOP (PW) 14 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AC16Q | | SN74AC16WBQARQ1 | Active | Production | WQFN (BQA) 14 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AC16Q | | SN74AC16WBQARQ1.A | Active | Production | WQFN (BQA) 14 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AC16Q | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ### OTHER QUALIFIED VERSIONS OF SN74AC16-Q1: ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE OPTION ADDENDUM** www.ti.com 23-May-2025 • Catalog : SN74AC16 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product ### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated