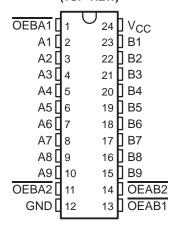
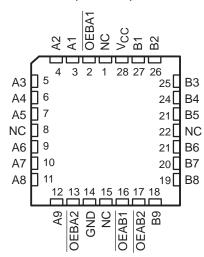
SCBS201E - FEBRUARY 1991 - REVISED JULY 1998

- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- High-Impedance State During Power Up and Power Down
- High-Drive Outputs (–32-mA I_{OH}, 64-mA I_{OL})
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB) Packages, and Thin Shrink Small-Outline (PW), Ceramic Chip Carriers (FK), Plastic (NT), and Ceramic (JT) DIPs

description


The 'ABT863 devices are 9-bit transceivers designed for asynchronous communication between data buses. The control-function implementation allows for maximum flexibility in timing.

These devices allow noninverted data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic levels at the output-enable (OEAB and OEBA) inputs.


The outputs are in the high-impedance state during power up and power down. The outputs remain in the high-impedance state while the device is powered down.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

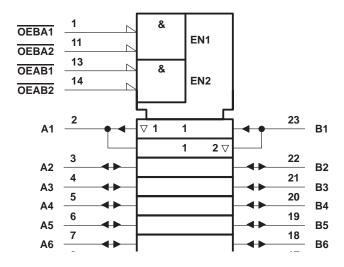
SN54ABT863 . . . JT PACKAGE SN74ABT863 . . . DB, DW, NT, OR PW PACKAGE (TOP VIEW)

SN54ABT863 . . . FK PACKAGE (TOP VIEW)

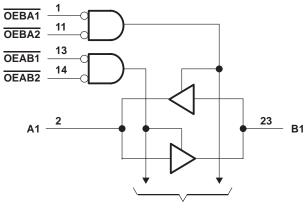
NC - No internal connection

The SN54ABT863 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT863 is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC-IIB is a trademark of Texas Instruments Incorporated.

FUNCTION TABLE


	INP	UTS		OPERATION
OEAB1	OEAB2	OEBA1	OEBA2	OPERATION
L	L	L	L	Latch A and B
L	L	Н	Χ	A to B
L	L	Χ	Н	Alob
Н	Χ	L	L	B to A
Х	Н	L	L	BIOA
Н	Χ	Н	Х	
Н	Χ	Χ	Н	Isolation
Х	Н	Χ	Н	1501411011
Х	Н	Н	X	

logic symbol†

logic diagram (positive logic)

To Eight Other Channels

Pin numbers shown are for the DB, DW, JT, NT, and PW packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)0.5 V to 7 V
Voltage range applied to any output in the high or pov	ver-off state, V _O –0.5 V to 5.5 V
Current into any output in the low state, IO: SN54AB	Г863 96 mA
SN74AB	Г863 128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ_{JA} (see Note 2): DB p	ackage104°C/W
DW p	backage 81°C/W
NT pa	ackage 67°C/W
PW p	ackage 120°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

SN54ABT863, SN74ABT863 9-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS201E - FEBRUARY 1991 - REVISED JULY 1998

recommended operating conditions (see Note 3)

			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2	2	2		V
V _{IL}	IL Low-level input voltage					0.8	V
VI	Input voltage				0	VCC	V
IOH	High-level output current		4	-24		-32	mA
loL	Low-level output current		3	48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	30/	5		5	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCBS201E - FEBRUARY 1991 - REVISED JULY 1998

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DAF		TEOT 001	DITIONS	Т	A = 25°C	;	SN54A	BT863	SN74A	BT863		
PAR	RAMETER	TEST CONI	DITIONS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNIT	
٧ıĸ		V _{CC} = 4.5 V,	I _I = -18 mA			-1.2		-1.2		-1.2	V	
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5			
\/a	$V_{CC} = 5 V$		$I_{OH} = -3 \text{ mA}$	3			3		3		v	
VOH		V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$	2			2				V	
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2			
VOL		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V	
		VCC = 4.0 V	I _{OL} = 64 mA			0.55*				0.55	•	
V _{hys}					100						mV	
lj .	Control inputs	$V_{CC} = 0 \text{ to } 5.5 \text{ V},$				±1		±1		±1	μА	
-1	A or B ports	$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V},$				±20		±20		±20	μα .	
lozpu		$\frac{V_{CC}}{OE} = 0$ to 2.1 V, $V_{O} = 0$				±50		±50**		±50	μΑ	
lozpd		$\frac{V_{CC}}{OE} = 2.1 \text{ V to } 0, V_{O} = 0$			±50		±50**		±50	μΑ		
lozH‡		$\frac{V_{CC}}{OE} = 2.1 \text{ V to } 5.5 \text{ V, } V_{O} = 2.7 \text{ V,}$				10	, C	10		10	μΑ	
lozL [‡]		$\frac{V_{CC}}{OE} = 2.1 \text{ V to } 5.5 \text{ V, V}$	/ _O = 0.5 V,			-10	A00	-10		-10	μΑ	
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100*	4			±100	μΑ	
ICEX		V _{CC} = 5.5 V, V _O = 5.5 V	Outputs high			50		50		50	μΑ	
I _O §		$V_{CC} = 5.5 V,$	V _O = 2.5 V	-50	-100	-225	-50	-225	-50	-225	mA	
		V _{CC} = 5.5 V,	Outputs high		1	250		250		250	μΑ	
ICC	A or B ports	$I_O = 0$,	Outputs low		24	30		38		38	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled		0.5	250		250		250	μΑ	
	Doto innuto	V _{CC} = 5.5 V, One input at 3.4 V,	Outputs enabled			1.5		1.5		1.5		
ΔICC¶	Data inputs	Other inputs at V _{CC} or GND	Outputs disabled			0.05		0.05		0.05	mA	
	Control inputs	$V_{CC} = 5.5 \text{ V}$, One inpu Other inputs at V_{CC} or				1.5		1.5		1.5		
Ci	Control inputs	V _I = 2.5 V or 0.5 V			4						pF	
C _{io}	A or B ports	V _O = 2.5 V or 0.5 V			7						pF	

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

^{**} On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] The parameters I_{OZH} and I_{OZL} include the input leakage current.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[¶] This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

SN54ABT863, SN74ABT863 9-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS201E - FEBRUARY 1991 - REVISED JULY 1998

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			SN54A	BT863	SN74ABT863		UNIT
	(IIII O1)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A or B	B or A	1	2.6	4.1	1	77	1	5.7	no
tPHL		BULA	1	2.3	3.3	1	3.9	1	3.9	ns
^t PZH	<u> </u>	B or A	1	3.2	4.3	1,	5.4	1	5.5	no
t _{PZL}	OEAB or OEBA		1	3.3	4.4	3	5.5	1	5.4	ns
^t PHZ	<u> </u>	B or A	2.5	4.8	6	2.5	6.8	2.5	6.7	ns
t _{PLZ}	OEAB or OEBA		1.5	4.4	5.9	1.5	7.8	1.5	6.9	

SCBS201E - FEBRUARY 1991 - REVISED JULY 1998

PARAMETER MEASUREMENT INFORMATION

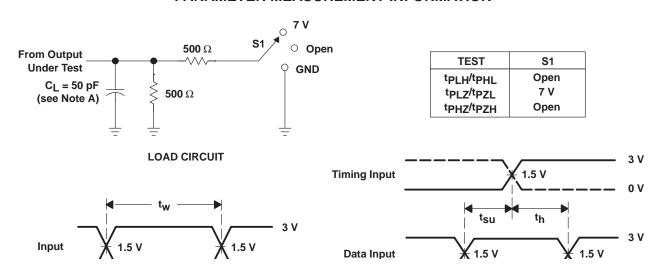


Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74ABT863DW	Active	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT863
SN74ABT863DW.B	Active	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT863
SN74ABT863DWR	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT863
SN74ABT863DWR.B	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT863

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

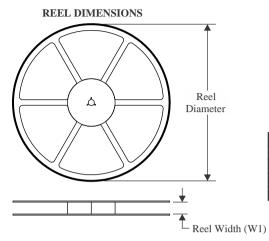
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

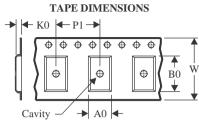
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

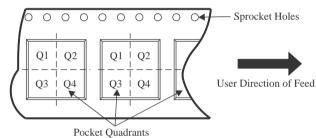
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

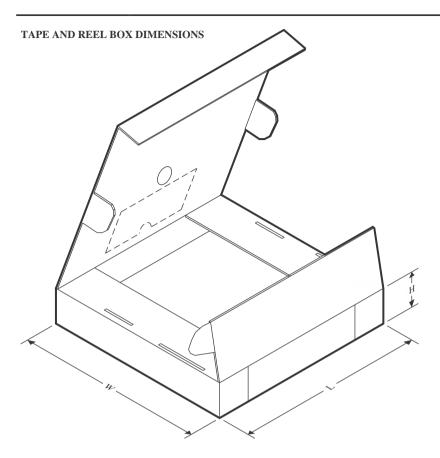

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025


TAPE AND REEL INFORMATION

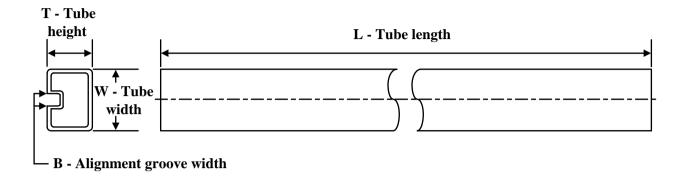
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ABT863DWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

www.ti.com 23-May-2025

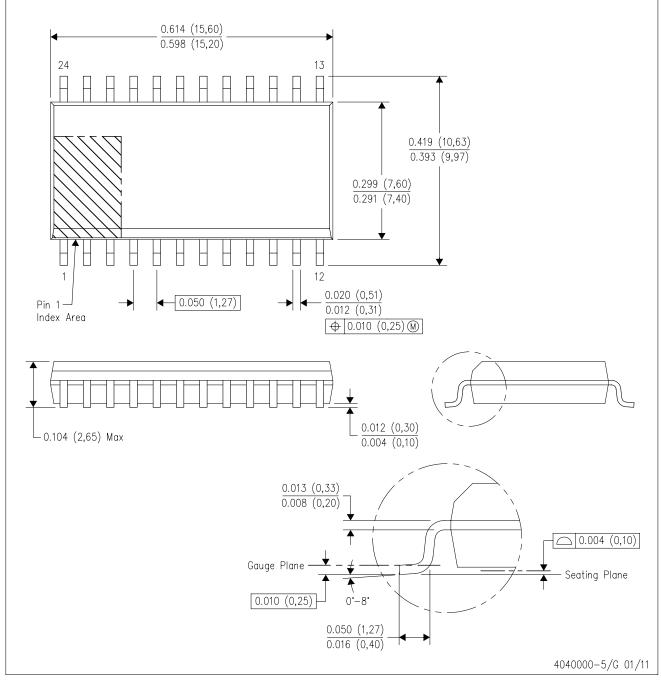

*All dimensions are nominal

Device		Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74ABT863DV	۷R	SOIC	DW	24	2000	350.0	350.0	43.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE

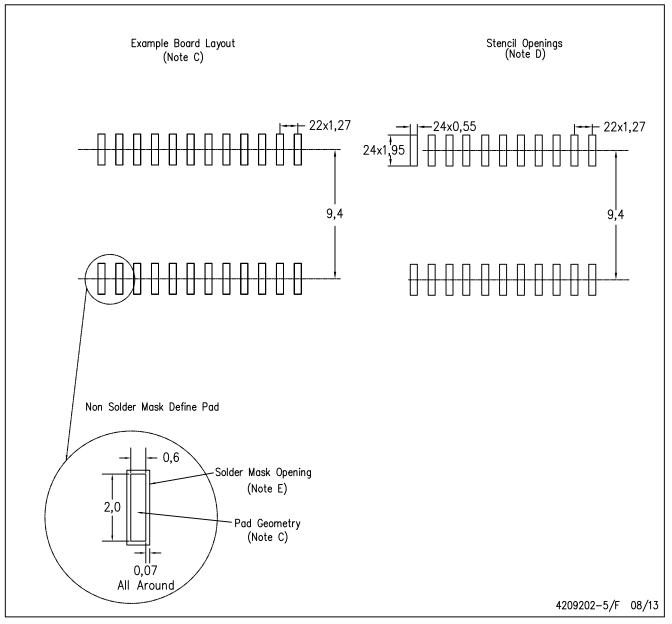


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74ABT863DW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74ABT863DW.B	DW	SOIC	24	25	506.98	12.7	4826	6.6

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025