

OPA2171-EP

SBOS735 - SEPTEMBER 2015

OPA2171-EP 36-V, Single-Supply, SOT553, General-Purpose Operational Amplifiers

Features

Supply Range: 2.7 to 36 V, ±1.35 V to ±18 V

Low Noise: 14 nV/√Hz

Low Offset Drift: ±0.3 uV/°C (Tvp)

RFI Filtered Inputs

Input Range Includes the Negative Supply

Input Range Operates to Positive Supply

Rail-to-Rail Output

Gain Bandwidth: 3 MHz

Low Quiescent Current: 475 µA per Amplifier

High Common-Mode Rejection: 120 dB (Typ)

Low-Input Bias Current: 8 pA

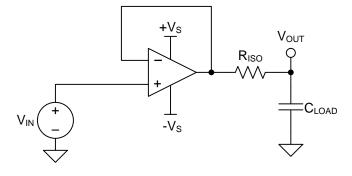
microPackage: Dual in VSSOP-8

Supports Defense, Aerospace, and Medical Applications:

Controlled Baseline

One Assembly/Test Site

One Fabrication Site


Available in Extended (–55°C to 125°C) Temperature Range

Extended Product Life Cycle

Extended Product-Change Notification

Product Traceability

Unity-Gain Buffer With R_{ISO} Stability Compensation

2 Applications

- Tracking Amplifier in Power Modules
- Merchant Power Supplies
- Transducer Amplifiers
- **Bridge Amplifiers**
- **Temperature Measurements**
- Strain Gauge Amplifiers
- **Precision Integrators**
- **Battery-Powered Instruments**
- Test Equipment

3 Description

The OPA2171-EP is a 36-V, single-supply, low-noise operational amplifier with the ability to operate on supplies ranging from 2.7 V (±1.35 V) to 36 V (±18 V). These devices are available in micro-packages and offer low offset, drift, and bandwidth with low quiescent current. The single, dual, and quad versions all have identical specifications for maximum design flexibility.

Unlike most operational amplifiers, which specified at only one supply voltage, the OPA2171-EP is specified from 2.7 to 36 V. Input signals beyond the supply rails do not cause phase reversal. The OPA2171-EP is stable with capacitive loads up to 300 pF. The input can operate 100 mV below the negative rail and within 2 V of the top rail during normal operation. Note that these devices can operate with full rail-to-rail input 100 mV beyond the top rail, but with reduced performance within 2 V of the top rail.

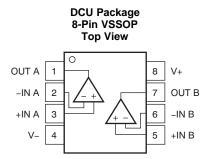
The OPA2171-EP operational amplifier is specified from -55°C to 125°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
OPA2171-EP	VSSOP (8)	2.30 mm × 2.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents


1	Features 1		7.3 Feature Description	14
2	Applications 1		7.4 Device Functional Modes	1
3	Description 1	8	Application and Implementation	10
4	Revision History2		8.1 Application Information	10
5	Pin Configuration and Functions3		8.2 Typical Application	1
6	Specifications4	9	Power Supply Recommendations	19
•	6.1 Absolute Maximum Ratings 4	10	Layout	20
	6.2 ESD Ratings		10.1 Layout Guidelines	20
	6.3 Recommended Operating Conditions		10.2 Layout Example	20
	6.4 Thermal Information	11	Device and Documentation Support	2 [,]
	6.5 Electrical Characteristics		11.1 Community Resources	2
	6.6 Typical Characteristics		11.2 Trademarks	2º
7	Detailed Description		11.3 Electrostatic Discharge Caution	2
	7.1 Overview		11.4 Glossary	2º
	7.2 Functional Block Diagram	12	Mechanical, Packaging, and Orderable Information	2 [.]

4 Revision History

DATE	REVISION	NOTES
September 2015	*	Initial release.

www.ti.com SBOS735 - SEPTEMBER 2015

5 Pin Configuration and Functions

Pin Functions

P	IN	1/0	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
+IN A	3	1	Noninverting input, channel A	
+IN B	5	1	Noninverting input, channel B	
–IN A	2	1	Inverting input, channel A	
–IN B	6	I	Inverting input, channel B	
OUT A	1	0	Output, channel A	
OUT B	7	0	Output, channel B	
V+	7	_	Positive (highest) power supply	
V-	4	_	Negative (lowest) power supply	

Copyright © 2015, Texas Instruments Incorporated

TEXAS INSTRUMENTS

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range, unless otherwise noted⁽¹⁾

			MIN	MAX	UNIT
Supply voltage			±20		V
Signal input pins	Voltage		(V-) - 0.5	(V+) + 0.5	V
	Current		-10	10	mA
Output short circuit (2)		Contir	nuous		
Junction temperature				150	°C
Storage temperature, T _{st}]		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
\/	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±4000	\/
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±750	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM MAX	UNIT
Supply voltage (V+ – V–)	4.5 (±2.25)	36 (±18)	V
Operating temperature, T _J	-55	125	°C

6.4 Thermal Information

		OPA2171-EP	
	THERMAL METRIC ⁽¹⁾	DCU (VSSOP)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	175.2	°C/W
R _{0JC(top)}	Junction-to-case(top) thermal resistance	74.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	22.2	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.6	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	22.8	°C/W
R _{0JC(bot)}	Junction-to-case(bottom) thermal resistance	N/A	°C/W

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ Short-circuit to ground, one amplifier per package.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

at $T_J = 25$ °C, $V_S = 2.7$ to 36 V, $V_{CM} = V_{OUT} = V_S / 2$, and $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, unless otherwise noted.

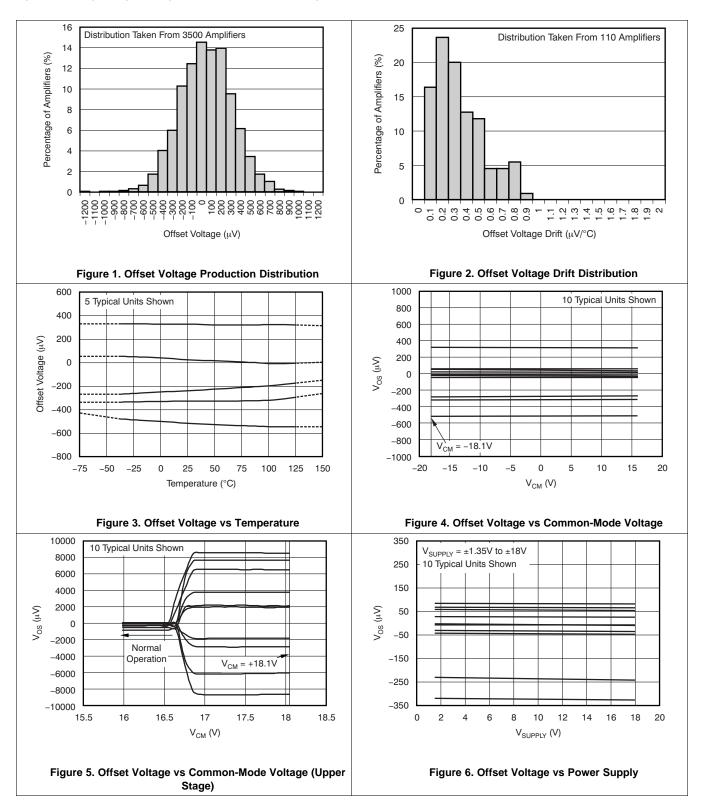
		TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET VOLTAGE						
Input offset voltage	Vos			0.25	±1.8	mV
Over temperature		$T_{J} = -55^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$		0.3	±2	mV
Drift	dV _{OS} /dT	$T_{J} = -55^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$		0.3		μV/°C
vs power supply	PSRR	$V_S = 4 \text{ to } 36 \text{ V}, T_A = -55^{\circ}\text{C to } 125^{\circ}\text{C}$		1	±5	μV/V
Channel separation, dc		dc		5		μV/V
INPUT BIAS CURRENT		•	•			
Input bias current	I _B			±8	±15	pА
Over temperature		$T_J = -55$ °C to 125°C			±4	nA
Input offset current	Ios			±4		pА
Over temperature		$T_J = -55$ °C to 125°C			±4	nA
NOISE						
Input voltage noise		f = 0.1 to 10 Hz		3		μV_{PP}
Input voltage noise density	0	f = 100 Hz		25		nV/√ Hz
input voltage noise density	e _n	f = 1 kHz		14		nV/√ Hz
INPUT VOLTAGE						
Common-mode voltage range (1)	V_{CM}		(V–) – 0.1 V		(V+) – 2 V	٧
Common-mode rejection	CMDD	$V_S = \pm 2 \text{ V}, (V-) - 0.1 \text{ V} < V_{CM} < (V+) - 2 \text{ V}, $ $T_J = -55^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	87	104		dB
ratio	CMRR	$V_S = \pm 18 \text{ V}, (V-) - 0.1 \text{ V} < V_{CM} < (V+) - 2 \text{ V},$ $T_J = -55^{\circ}\text{C}$ to 125°C	104	120		dB
INPUT IMPEDANCE						
Differential				100 3		MΩ pF
Common-mode				6 3		10 ¹² Ω pF
OPEN-LOOP GAIN						
Open-loop voltage gain	A _{OL}	$V_S = 4 \text{ to } 36 \text{ V}, (V-) + 0.35 \text{ V} < V_O < (V+) - 0.35 \text{ V}, T_J = -55^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	110	130		dB
FREQUENCY RESPONSE						
Gain bandwidth product	GBP			3.0		MHz
Slew rate	SR	G = +1		1.5		V/µs
		To 0.1%, $V_S = \pm 18 \text{ V}$, $G = +1$, 10-V step		6		μs
Settling time	t _S	To 0.01% (12 bit), $V_S = \pm 18 \text{ V}$, $G = +1$, 10-V step		10		μs
Overload recovery time		V _{IN} × Gain > V _S		2		μs
Total harmonic distortion + noise	THD+N	$G = +1, f = 1kHz, V_O = 3V_{RMS}$		0.0002%		
OUTPUT						
Voltage output swing from rail	Vo	$V_S = 5 \text{ V}, R_L = 10 \text{ k}\Omega$		30		mV
Over temperature		R_L = 10 kΩ, A_{OL} ≥ 110 dB, T_J = -55°C to 125°C	(V-) + 0.35		(V+) - 0.35	٧
Short-circuit current	I _{SC}			+25/-35		mA
Capacitive load drive	C _{LOAD}		See Typi	ical Charact	eristics	pF
Open-loop output resistance	R _O	$f = 1 \text{ MHz}, I_O = 0 \text{ A}$		150		Ω

⁽¹⁾ The input range can be extended beyond (V+) – 2 V up to V+. See *Typical Characteristics* and *Application and Implementation* for additional information.

Electrical Characteristics (continued)

at T_J = 25°C, V_S = 2.7 to 36 V, V_{CM} = V_{OUT} = V_S / 2, and R_{LOAD} = 10 k Ω connected to V_S / 2, unless otherwise noted.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	TINU
POWER SUPPLY						
Specified voltage range	Vs		2.7		36	٧
Quiescent current per amplifier	I_{Q}	I _O = 0 A		475	595	μΑ
Over temperature		$I_{O} = 0 \text{ A}, T_{J} = -55^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$			650	μA
TEMPERATURE						
Operating temperature	T_J		– 55		125	°C



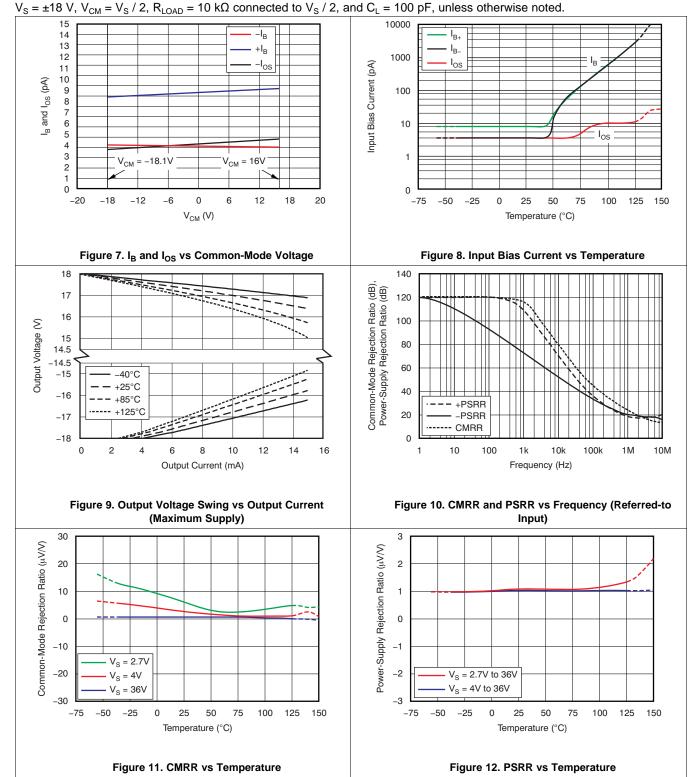
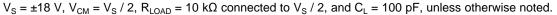
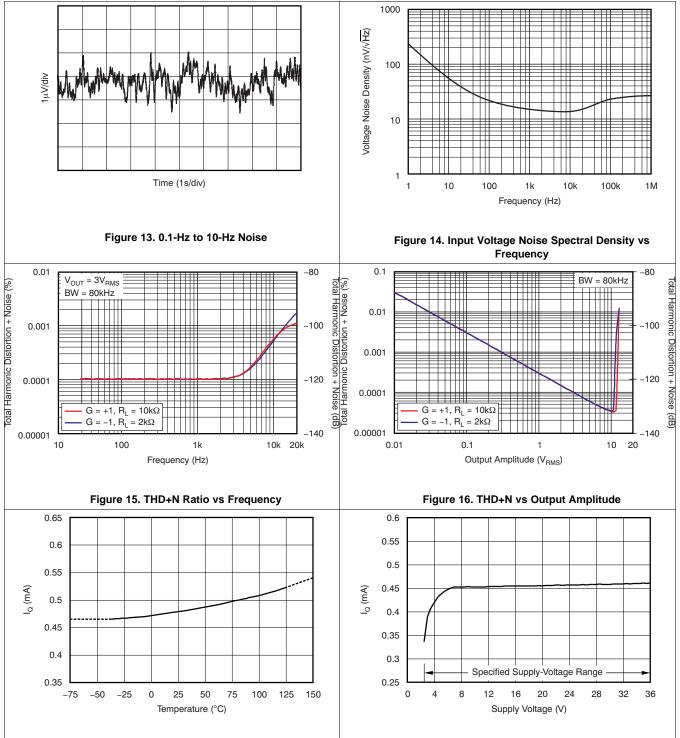
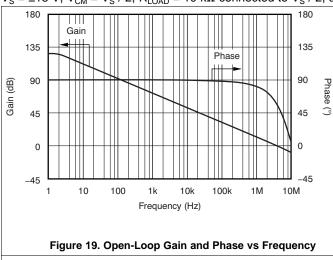

6.6 Typical Characteristics

Table 1. Characteristic Performance Measurements


DESCRIPTION	FIGURE
Offset Voltage Production Distribution	Figure 1
Offset Voltage Drift Distribution	Figure 2
Offset Voltage vs Temperature	Figure 3
Offset Voltage vs Common-Mode Voltage	Figure 4
Offset Voltage vs Common-Mode Voltage (Upper Stage)	Figure 5
Offset Voltage vs Power Supply	Figure 6
I _B and I _{OS} vs Common-Mode Voltage	Figure 7
Input Bias Current vs Temperature	Figure 8
Output Voltage Swing vs Output Current (Maximum Supply)	Figure 9
CMRR and PSRR vs Frequency (Referred-to Input)	Figure 10
CMRR vs Temperature	Figure 11
PSRR vs Temperature	Figure 12
0.1-Hz to 10-Hz Noise	Figure 13
Input Voltage Noise Spectral Density vs Frequency	Figure 14
THD+N Ratio vs Frequency	Figure 15
THD+N vs Output Amplitude	Figure 16
Quiescent Current vs Temperature	Figure 17
Quiescent Current vs Supply Voltage	Figure 18
Open-Loop Gain and Phase vs Frequency	Figure 19
Closed-Loop Gain vs Frequency	Figure 20
Open-Loop Gain vs Temperature	Figure 21
Open-Loop Output Impedance vs Frequency	Figure 22
Small-Signal Overshoot vs Capacitive Load (100-mV Output Step)	Figure 23, Figure 24
No Phase Reversal	Figure 25
Positive Overload Recovery	Figure 26
Negative Overload Recovery	Figure 27
Small-Signal Step Response (100 mV)	Figure 28, Figure 29
Large-Signal Step Response	Figure 30, Figure 31
Large-Signal Settling Time (10-V Positive Step)	Figure 32
Large-Signal Settling Time (10-V Negative Step)	Figure 33
Short-Circuit Current vs Temperature	Figure 34
Maximum Output Voltage vs Frequency	Figure 35
Channel Separation vs Frequency	Figure 36

 $V_S = \pm 18$ V, $V_{CM} = V_S / 2$, $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, and $C_L = 100$ pF, unless otherwise noted.

Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated

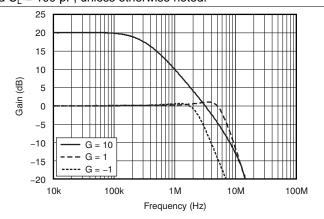
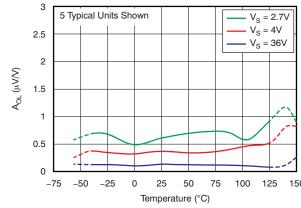

Figure 17. Quiescent Current vs Temperature

Figure 18. Quiescent Current vs Supply Voltage


www.ti.com

 $V_S = \pm 18 \text{ V}$, $V_{CM} = V_S / 2$, $R_{LOAD} = 10 \text{ k}\Omega$ connected to $V_S / 2$, and $C_L = 100 \text{ pF}$, unless otherwise noted.

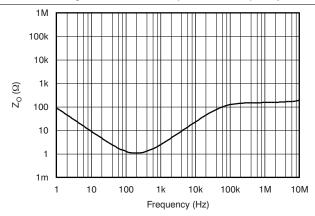
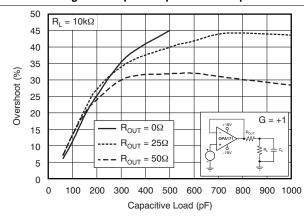
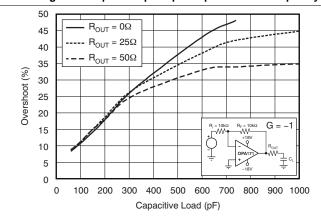
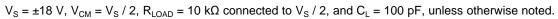
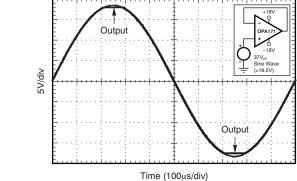



Figure 21. Open-Loop Gain vs Temperature

Figure 22. Open-Loop Output Impedance vs Frequency

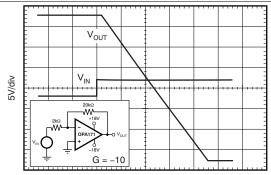

Figure 23. Small-Signal Overshoot vs Capacitive Load (100mV Output Step)

Figure 24. Small-Signal Overshoot vs Capacitive Load (100mV Output Step)

Copyright © 2015, Texas Instruments Incorporated

Time (5µs/div)

Figure 26. Positive Overload Recovery

Figure 25. No Phase Reversal

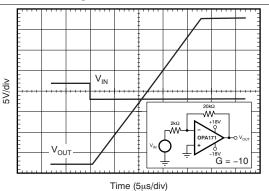


Figure 27. Negative Overload Recovery

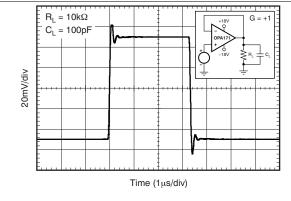


Figure 28. Small-Signal Step Response (100 mV)

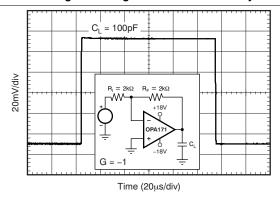


Figure 29. Small-Signal Step Response (100 mV)

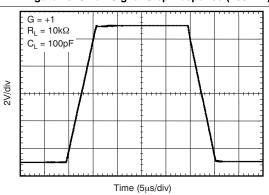
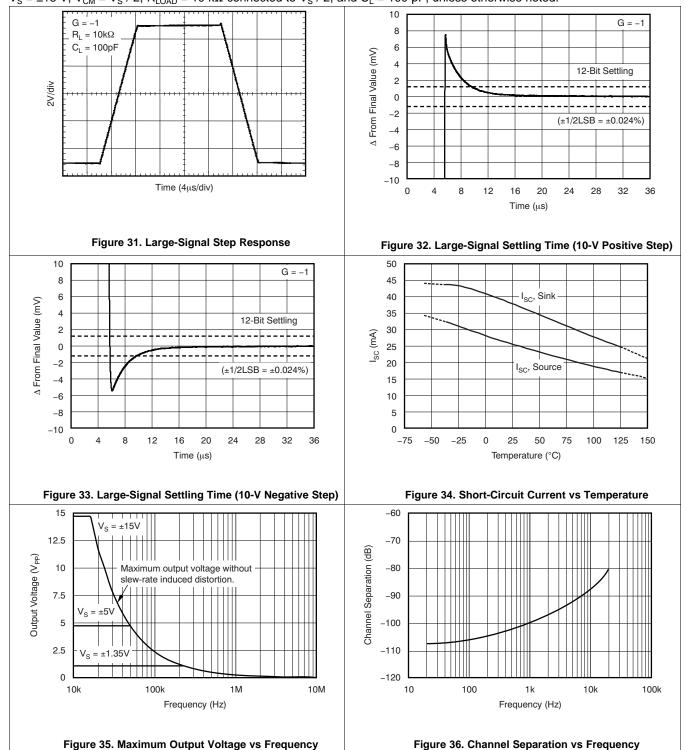
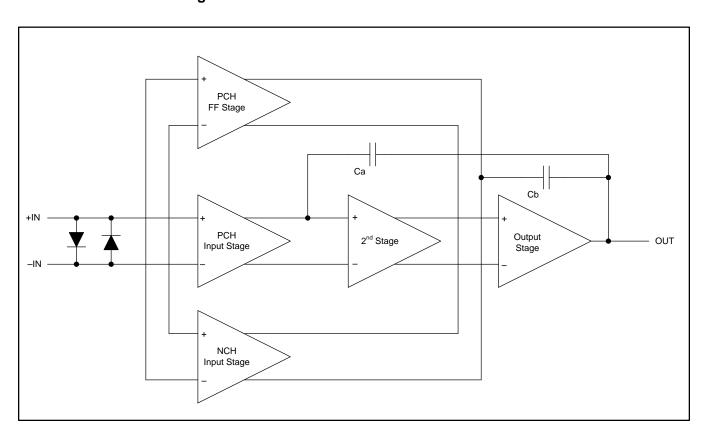



Figure 30. Large-Signal Step Response

12

 $V_S = \pm 18 \text{ V}$, $V_{CM} = V_S / 2$, $R_{LOAD} = 10 \text{ k}\Omega$ connected to $V_S / 2$, and $C_L = 100 \text{ pF}$, unless otherwise noted.

Copyright © 2015, Texas Instruments Incorporated


TEXAS INSTRUMENTS

7 Detailed Description

7.1 Overview

The OPA2171-EP operational amplifier provides high overall performance, making it ideal for many general-purpose applications. The excellent offset drift of only 2 μ V/°C provides excellent stability over the entire temperature range. In addition, the device offers very good overall performance with high CMRR, PSRR, and A_{OL}. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1- μ F capacitors are adequate.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Operating Characteristics

The OPA2171-EP amplifier is specified for operation from 2.7 to 36 V (± 1.35 to ± 18 V). Many of the specifications apply from -55° C to 125° C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in *Typical Characteristics*.

7.3.2 Phase-Reversal Protection

The OPA2171-EP has an internal phase-reversal protection. Many operational amplifiers exhibit a phase reversal when the input is driven beyond its linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The input of the OPA2171-EP prevents phase reversal with excessive common-mode voltage. Instead, the output limits into the appropriate rail. Figure 37 shows this performance.

Feature Description (continued)

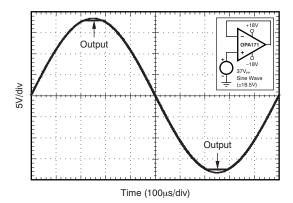


Figure 37. No Phase Reversal

7.4 Device Functional Modes

7.4.1 Common-Mode Voltage Range

The input common-mode voltage range of the OPA2171-EP extends 100 mV below the negative rail and within 2 V of the top rail for normal operation.

This device can operate with full rail-to-rail input 100 mV beyond the top rail, but with reduced performance within 2 V of the top rail. Table 2 summarizes the typical performance in this range.

Table 2. Typical Performance Range

Table 21 Typical Fortiermance Range							
PARAMETER	MIN	TYP	MAX	UNIT			
Input Common-Mode Voltage	(V+) – 2		(V+) + 0.1	٧			
Offset voltage		7		mV			
vs Temperature		12		μV/°C			
Common-mode rejection		65		dB			
Open-loop gain		60		dB			
GBW		0.7		MHz			
Slew rate		0.7		V/µs			
Noise at $f = 1kHz$		30		nV/√ Hz			

Copyright © 2015, Texas Instruments Incorporated

Product Folder Links: OPA2171-EP

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 Electrical Overstress

Designers often ask about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly.

These ESD protection diodes also provide in-circuit, input overdrive protection, as long as the current is limited to 10 mA as stated in *Absolute Maximum Ratings*. Figure 38 shows how a series input resistor may be added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and its value should be kept to a minimum in noise-sensitive applications.

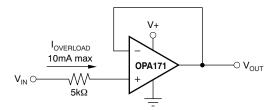


Figure 38. Input Current Protection

An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-current pulse as it discharges through a semiconductor device. The ESD protection circuits are designed to provide a current path around the operational amplifier core to prevent it from being damaged. The energy absorbed by the protection circuitry is then dissipated as heat.

When the operational amplifier connects into a circuit, the ESD protection components are intended to remain inactive and not become involved in the application circuit operation. However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there is a risk that some of the internal ESD protection circuits may be biased on, and conduct current. Any such current flow occurs through ESD cells and rarely involves the absorption device.

If there is uncertainty about the ability of the supply to absorb this current, external Zener diodes may be added to the supply pins. Select the Zener voltage such that the diode does not turn on during normal operation.

However, its Zener voltage should be low enough so that the Zener diode conducts if the supply pin begins to rise above the safe operating supply voltage level.

www.ti.com

8.2 Typical Application

Figure 39 shows a capacitive load drive solution using an isolation resistor. The OPA2171-EP device can be used capacitive loads such as cable shields, reference buffers, MOSFET gates, and diodes. The circuit uses an isolation resistor ($R_{\rm ISO}$) to stabilize the output of an op amp. $R_{\rm ISO}$ modifies the open loop gain of the system to ensure the circuit has sufficient phase margin.

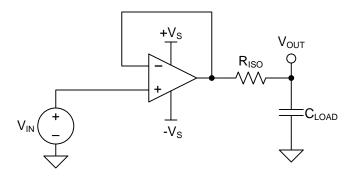


Figure 39. Unity-Gain Buffer with R_{ISO} Stability Compensation

8.2.1 Design Requirements

The design requirements are:

- Supply voltage: 30 V (±15 V)
- Capacitive loads: 100 pF, 1000 pF, 0.01 μF, 0.1 μF, and 1 μF
- Phase margin: 45° and 60°

8.2.2 Detailed Design Procedure

Figure 39 shows a unity-gain buffer driving a capacitive load. Equation 1 shows the transfer function for the circuit in Figure 39. Not shown in Figure 39 is the open-loop output resistance of the op amp, R_o.

$$T(s) = \frac{1 + C_{LOAD} \times R_{ISO} \times s}{1 + (R_o + R_{ISO}) \times C_{LOAD} \times s}$$
(1)

The transfer function in Equation 1 has a pole and a zero. The frequency of the pole (f_p) is determined by $(R_o + R_{ISO})$ and C_{LOAD} . Components R_{ISO} and C_{LOAD} determine the frequency of the zero (f_z) . A stable system is obtained by selecting R_{ISO} such that the rate of closure (ROC) between the open-loop gain (A_{OL}) and $1/\beta$ is 20 dB/decade. Figure 40 depicts the concept. The $1/\beta$ curve for a unity-gain buffer is 0 dB.

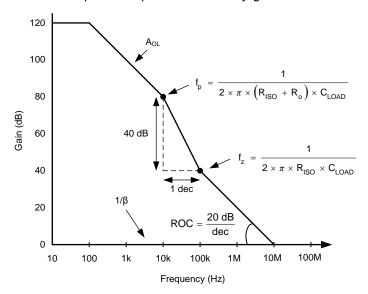


Figure 40. Unity-Gain Amplifier with R_{ISO} Compensation

Copyright © 2015, Texas Instruments Incorporated

Typical Application (continued)

ROC stability analysis is typically simulated. The validity of the analysis depends on multiple factors, especially the accurate modeling of R_o. In addition to simulating the ROC, a robust stability analysis includes a measurement of overshoot percentage and AC gain peaking of the circuit using a function generator, oscilloscope, and gain and phase analyzer. Phase margin is then calculated from these measurements. Table 3 shows the overshoot percentage and AC gain peaking that correspond to phase margins of 45° and 60°. For more details on this design and other alternative devices that can be used in place of the OPA171, refer to the Precision Design, *Capacitive Load Drive Solution using an Isolation Resistor* (TIPD128).

Table 3. Phase Margin versus Overshoot and AC Gain Peaking

PHASE MARGIN	OVERSHOOT	AC GAIN PEAKING
45°	23.3%	2.35 dB
60°	8.8%	0.28 dB

8.2.2.1 Capacitive Load and Stability

The dynamic characteristics of the OPA2171-EP have been optimized for commonly encountered operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output. The simplest way to achieve this isolation is to add a small resistor (for example, R_{OUT} equal to 50 Ω) in series with the output. Figure 41 and Figure 42 illustrate graphs of small-signal overshoot versus capacitive load for several values of R_{OUT} . Also, refer to *Applications Bulletin AB-028* (SBOA015), available for download from www.ti.com for details of analysis techniques and application circuits.

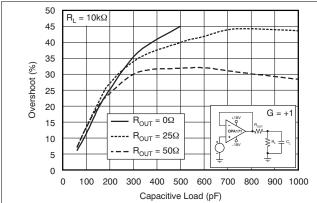


Figure 41. Small-Signal Overshoot vs Capacitive Load (100-mV Output Step)

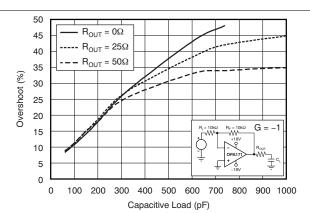


Figure 42. Small-Signal Overshoot vs Capacitive Load (100-mV Output Step)

www.ti.com

8.2.3 Application Curve

The OPA2171-EP device meets the supply voltage requirements of 30 V. The OPA2171-EP device was tested for various capacitive loads and $R_{\rm ISO}$ was adjusted to achieve an overshoot corresponding to Table 3. Figure 43 shows the test results.

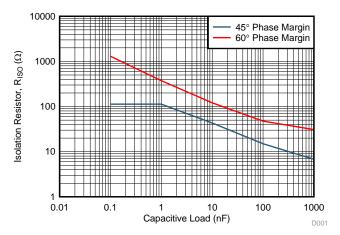


Figure 43. R_{ISO} vs C_{LOAD}

9 Power Supply Recommendations

The OPA2171-EP is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from –40°C to 125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the *Typical Characteristics* section.

CAUTION

Supply voltages larger than 40 V can permanently damage the device; see the *Absolute Maximum Ratings* table.

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For detailed information on bypass capacitor placement, see the *Layout* section.

10 Layout

10.1 Layout Guidelines

For best operational performance of the device, TI recommends good printed circuit board (PCB) layout practices. Low-loss, 0.1-µF bypass capacitors should be connected between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply applications.

10.2 Layout Example

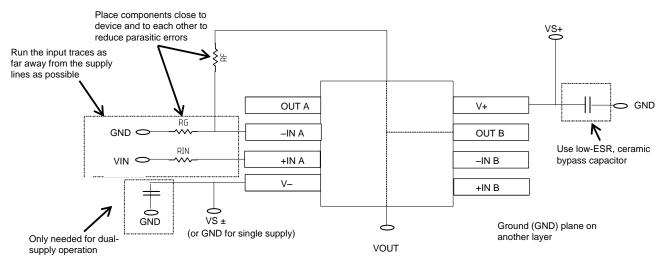


Figure 44. Operational Amplifier Board Layout for Noninverting Configuration

20

www.ti.com

11 Device and Documentation Support

11.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.2 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
OPA2171MDCUTEP	Active	Production	VSSOP (DCU) 8	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ZGAA
OPA2171MDCUTEP.A	Active	Production	VSSOP (DCU) 8	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ZGAA
V62/15605-01XE	Active	Production	VSSOP (DCU) 8	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ZGAA

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF OPA2171-EP:

Catalog: OPA2171

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 23-May-2025

Automotive : OPA2171-Q1

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

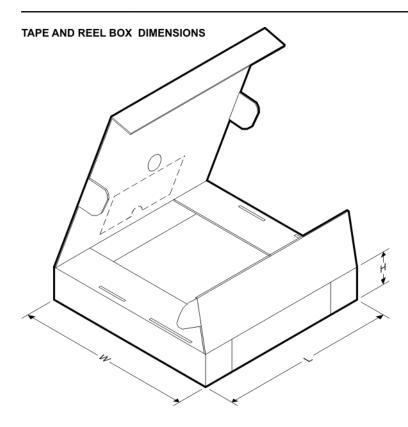
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

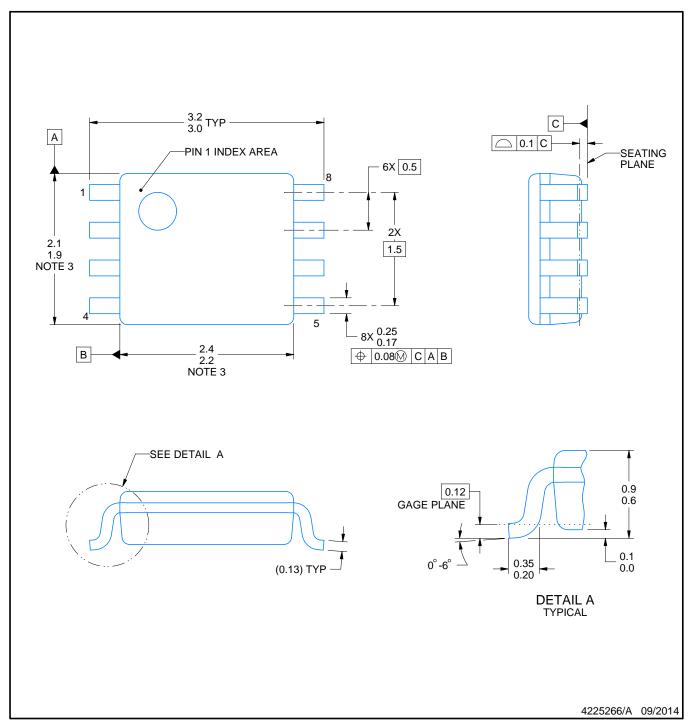


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA2171MDCUTEP	VSSOP	DCU	8	250	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

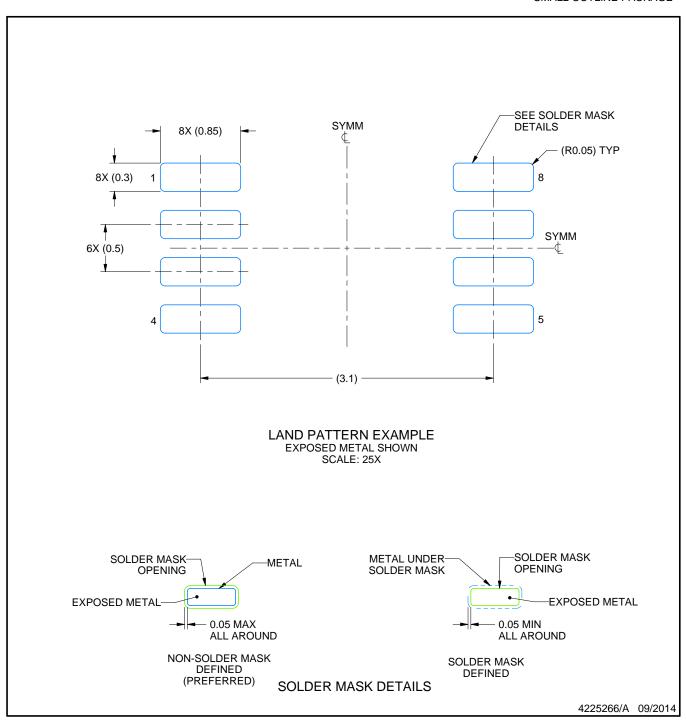


*All dimensions are nominal

ĺ	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
I	OPA2171MDCUTEP	VSSOP	DCU	8	250	202.0	201.0	28.0	

SMALL OUTLINE PACKAGE

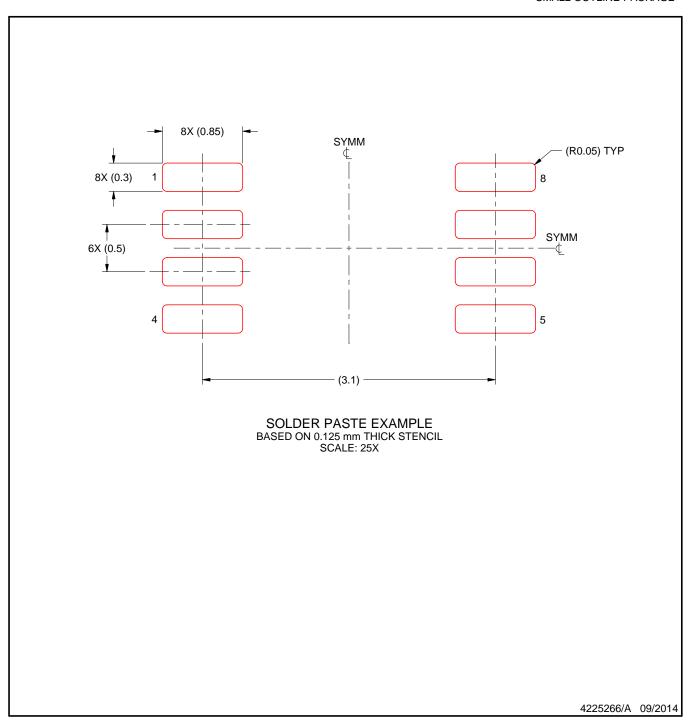
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-187 variation CA.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated