

INA145

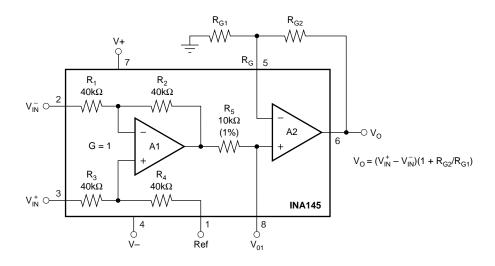
For most current data sheet and other product information, visit www.burr-brown.com

Programmable Gain DIFFERENCE AMPLIFIER

FEATURES

- DIFFERENTIAL GAIN = 1V/V TO 1000V/V: Set with External Resistors
- LOW QUIESCENT CURRENT: 570µA
- WIDE SUPPLY RANGE: Single Supply: 4.5V to 36V Dual Supplies: ±2.25V to ±18V
- HIGH COMMON-MODE VOLTAGE: +8V at V_S = +5V ±28V at V_S = ±15V
- LOW GAIN ERROR: 0.01%
- HIGH CMR: 86dBSO-8 PACKAGE

APPLICATIONS


- CURRENT SHUNT MEASUREMENTS
- SENSOR AMPLIFIER
- DIFFERENTIAL LINE RECEIVER
- BATTERY POWERED SYSTEMS

DESCRIPTION

The INA145 is a precision, unity-gain difference amplifier consisting of a precision op amp and on-chip precision resistor network. Two external resistors set the gain from 1V/V to 1000V/V. The input common-mode voltage range extends beyond the positive and negative rails.

On-chip precision resistors are laser-trimmed to achieve accurate gain and high common-mode rejection. Excellent TCR tracking of these resistors assures continued high precision over temperature.

The INA145 is available in the SO-8 surface-mount package specified for the extended industrial temperature range, -40°C to +85°C.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111

Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS: $V_S = \pm 2.25V$ to $\pm 18V$

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$

At $T_A = +25^{\circ}C$, G = 1, $R_L = 10k\Omega$ connected to ground and ref pin connected to ground unless otherwise noted.

				INA145UA			
PARAMETER		CONDITION	MIN	TYP	MAX	UNITS	
OFFSET VOLTAGE, V _O Input Offset Voltage vs Temperature vs Power Supply vs Time Offset Voltage, V ₀₁	V _{OS} V _{OS} /∆T PSRR	RTI(1, 2) $V_{CM} = V_{O} = 0V$ $V_{S} = \pm 1.35V \text{ to } \pm 18V$ RTI(1, 2)	Se	±0.2 ee Typical Cur ±20 ±0.3 ±0.4	±1 ve ±60	mV μV/V μV/mo mV	
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Over Temperature	V _{CM} CMRR	$(V_{IN}+) - (V_{IN}-) = 0V, V_O = 0V$ $V_{CM} = 2(V-) \text{ to } 2(V+) - 2V, R_S = 0\Omega$ $V_S = \pm 15V$	2(V–) 76 70	86 80	2(V+) -2	V dB dB	
INPUT BIAS CURRENT ⁽²⁾ Bias Current Offset Current	I _B	$V_{CM} = V_S/2$		±50 ±5		nA nA	
INPUT IMPEDANCE Differential (non-inverting input) Differential (inverting input) Common-Mode				80 27 40		kΩ kΩ kΩ	
Voltage Noise, f = 0.1Hz to 10Hz Voltage Noise Density, f = 1kHz	e _n	RTI ^(1, 3)		2 90		μVp-p nV/√Hz	
GAIN Gain Equation Initial ⁽¹⁾ Gain Error vs Temperature vs Temperature		$\begin{aligned} R_L &= 100k\Omega, \ V_O = (V-)+0.15 \ to \ (V+)-1, \ G = 1 \\ R_L &= 100k\Omega, \ V_O = (V-)+0.25 \ to \ (V+)-1, \ G = 1 \\ R_L &= 10k\Omega, \ V_O = (V-)+0.3 \ to \ (V+)-1.25, \ G = 1 \\ R_L &= 10k\Omega, \ V_O = (V-)+0.5 \ to \ (V+)-1.25, \ G = 1 \end{aligned}$	C	$\begin{array}{c} G = 1 \text{ to } 1000 \\ G = 1 + R_{G2}/R_G \\ 1 \\ \pm 0.01 \\ \pm 2 \\ \pm 0.01 \\ \pm 2 \end{array}$	±0.1 ±10 ±10 ±0.1 ±10	V/V V/V % ppm/°C % ppm/°C	
Nonlinearity FREQUENCY RESPONSE		$R_L = 10k\Omega$, $V_O = (V-)+0.3$ to $(V+)-1.25$, $G = 1$		±0.0002	±0.005	% of FS	
Small Signal Bandwidth Slew Rate Settling Time, 0.1% 0.01% Overload Recovery		G = 1 G = 10 G = 1, 10V Step G = 1, 10V Step 50% Input Overload		500 50 0.45 40 90 40		kHz kHz V/μs μs μs μs	
OUTPUT, V _O Voltage Output Over Temperature Over Temperature Short-Circuit Current Capacitive Load		R_L = 100k Ω , G = 1 R_L = 100k Ω , G = 1 R_L = 10k Ω , G = 1 R_L = 10k Ω , G = 1 Continuous to Common Stable Operation	(V-) + 0.15 (V-) + 0.25 (V-) + 0.3 (V-) + 0.5	±15 1000	(V+) - 1 (V+) - 1 (V+) - 1.25 (V+) - 1.25	V V V mA pF	
POWER SUPPLY Specified Voltage Range, Dual Suppl Operating Voltage Range Quiescent Current Over Temperature	lies	$V_{IN} = 0, I_{O} = 0$	±2.25 ±1.35	±570	±18 ±18 ±700 ± 800	V V μΑ μΑ	
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance	$ heta_{\sf JA}$		-40 -55 -55	150	+85 +125 +125	,0 ,0 ,0 ,0 ,0	

NOTES: (1) Referred to input pins (V_{IN}^+) , A and $V_{IN}^-)$, A and A and

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

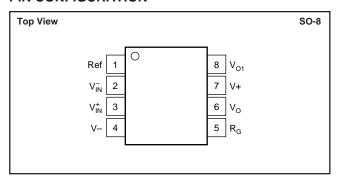
SPECIFICATIONS: $V_S = +5V$ Single Supply

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$

At T_A = +25°C, G = 1, R_L = 10k Ω connected to ground and ref pin connected to 2.5V unless otherwise noted.

			INA145UA			
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS	
OFFSET VOLTAGE, V _O Input Offset Voltage V _{OS} vs Temperature ΔV _{OS} /ΔT vs Power Supply Rejection Ratio PSRR vs Time Offset Voltage, V ₀₁	RTI(1, 2) $V_{CM} = V_{O} = 2.5V$ $V_{S} = \pm 1.35V \text{ to } \pm 18V$ RTI(1, 2)	S	±0.35 ee Typical Curv ±20 ±0.3 ±0.55	±1 /e ±60	mV μV/°C μV/mo mV	
INPUT VOLTAGE RANGE Common-Mode Voltage Range ⁽³⁾ V _{CM} Common-Mode Rejection Ratio CMRR Over Temperature	V_{IN} + - V_{IN} - = 0V, V_{O} = 2.5V V_{CM} = -2.5V to +5.5V, R_{S} = 0 Ω	-2.5 76	86 80	5.5	V dB dB	
INPUT BIAS CURRENT ⁽²⁾ Bias Current I _B Offset Current I _{OS}			±50 ±5		nA nA	
INPUT IMPEDANCE Differential (non-inverting input) Differential (inverting input) Common-Mode			80 27 40		kΩ kΩ kΩ	
$\begin{tabular}{lll} \textbf{NOISE} \\ \textbf{Voltage Noise}, f = 0.1 \text{Hz to } 10 \text{Hz} \\ \textbf{Voltage Noise Density}, f = 1 \text{kHz} \\ \end{tabular}$	RTI(1, 4)		2 90		μVp-p nV/√ Hz	
GAIN Gain Equation Initial ⁽¹⁾ Gain Error vs Temperature vs Temperature Nonlinearity	$R_L = 100k\Omega$, $V_O = 0.15V$ to 4V, $G = 1$ $R_L = 100k\Omega$, $V_O = 0.25V$ to 4V, $G = 1$ $R_L = 10k\Omega$, $V_O = 0.3V$ to 3.75V, $G = 1$ $R_L = 10k\Omega$, $V_O = 0.5V$ to 3.75V, $G = 1$ $R_L = 10k\Omega$, $V_O = +0.3$ to $+3.75$, $G = 1$		$ \begin{vmatrix} G = 1 \text{ to } 1000 \\ G = 1 + R_{G2}/R_G \\ 1 \\ \pm 0.01 \\ \pm 2 \\ \pm 0.01 \\ \pm 2 \\ \pm 0.001 \end{vmatrix} $	±0.1 ±10 ±0.1 ±10 ±0.005	V/V V/V V/V % ppm/°C % ppm/°C % of FS	
FREQUENCY RESPONSE Small Signal Bandwidth Slew Rate Settling Time, 0.1% 0.01% Overload Recovery	G = 0.1 G = 1 G = 1, 10V Step G = 1, 10V Step 50% Input Overload		500 50 0.45 40 90 40		kHz kHz V/μs μs μs μs	
OUTPUT, V _O Voltage Output Over Temperature Over Temperature Short-Circuit Current Capacitive Load	$\begin{array}{c} R_L = 100 k \Omega, \ G = 1 \\ R_L = 100 k \Omega, \ G = 1 \\ R_L = 10 k \Omega, \ G = 1 \\ R_L = 10 k \Omega, \ G = 1 \\ \hline \\ Continuous \ to \ Common \\ Stable \ Operation \end{array}$	0.15 0.25 0.3 0.5	±15 1000	4 4 3.75 3.75	V V V MA pF	
POWER SUPPLY Specified Voltage Range, Single Supply Operating Voltage Range Quiescent Current Over Temperature	V _{IN} = 0, I _O = 0	+4.5 +2.7	550	+36 +36 700 800	V V μΑ μΑ	
		-40 -55 -55	150	+85 +125 +125	°C °C °C °C	

NOTES: (1) Referred to input pins $(V_{IN}+$ and $V_{IN}-$), Gain = 1V/V. Specified with $10k\Omega$ in feedback of A2. (2) Input offset voltage specification includes effects of amplifier's input bias and offset currents. (3) Common-mode voltage range with single supply is $2(V+)-2V-V_{REF}$ to $-V_{REF}$. (4) Includes effects of input current noise and thermal noise contribution of resistor network.


AMPLIFIER A1, A2 PERFORMANCE

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$

At $T_A = +25^{\circ}C$, G = 1, $R_L = 10k\Omega$ connected to ground and ref pin connected to ground unless otherwise noted.

PARAMETER		CONDITION	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE, V _O Input Offset Voltage vs Temperature	V _{OS} ∆V _{OS} /∆T	RTI(1, 2) $V_S = \pm 15V, V_{CM} = V_O = 0V$		±0.5 ±1		mV μV/°C
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio	V _{CM} CMRR	V_{IN} + - V_{IN} - = 0V, V_{O} = 0V V_{CM} = (V-) to (V+) -1		(V–) to (V+) –1 90		V dB
OPEN-LOOP GAIN Open Loop Gain	A _{OL}			110		dB
INPUT BIAS CURRENT ⁽²⁾ Bias Current Offset Current	I _B I _{OS}			±50 ±5		nA nA
RESISTOR AT A1 OUTPUT, V ₀₁ Initial Error Temperature Drift Coefficient				10 ±0.2 ±50		kΩ % ppm/°C

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Supply Voltage, V+ to V	36V
Signal Input Terminals, Voltage	
Current	±1mA
Output Short Circuit (to ground)	Continuous
Operating Temperature	
Storage Temperature	55°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+240°C

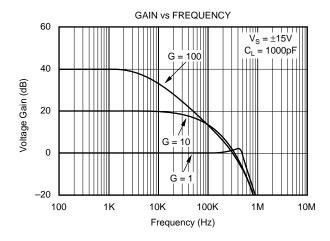
NOTE: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

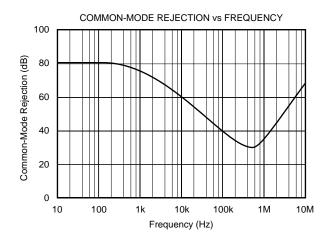
This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

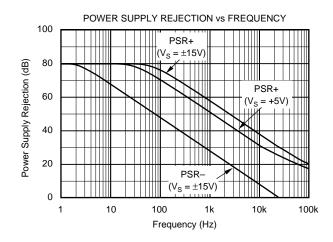
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

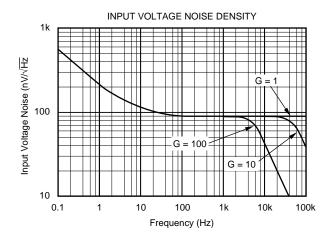
PACKAGE/ORDERING INFORMATION

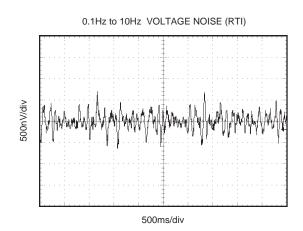

PRODUCT	RODUCT PACKAGE		SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ⁽¹⁾	TRANSPORT MEDIA	
INA145UA	SO-8	182	-40°C to +85°C	INA145UA "	INA145UA INA145UA/2K5	Rails Tape and Reel	

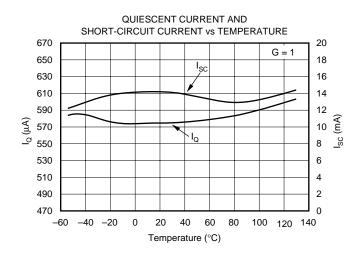

NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "INA145UA/2K5" will get a single 2500-piece Tape and Reel.

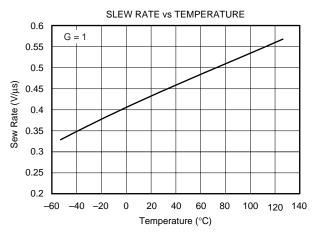


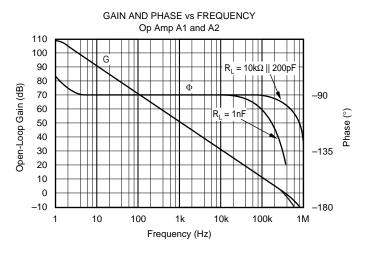

TYPICAL PERFORMANCE CURVES

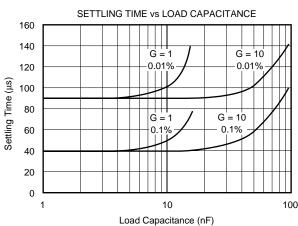

At $T_A = +25^{\circ}C$, $V_S = \pm 15V$, G = 1, $R_L = 10k\Omega$ connected to ground and Ref pin connected to ground, unless otherwise noted.

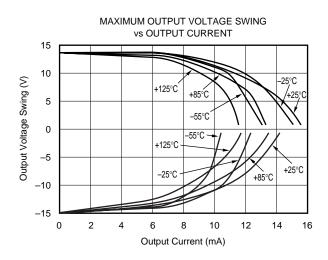


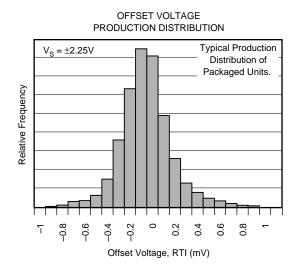


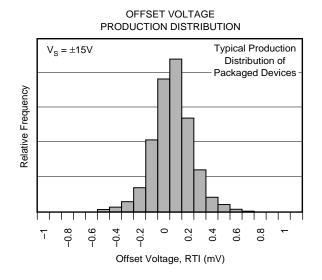


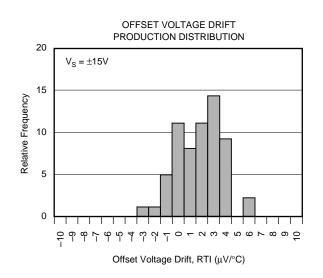


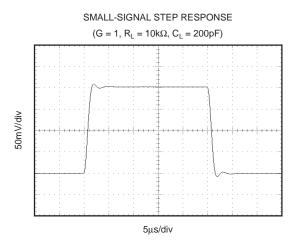

TYPICAL PERFORMANCE CURVES (Cont.)

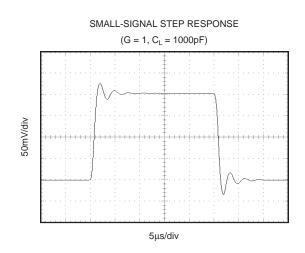

At T_A = +25°C, V_S = ±15V, G = 1, R_L = 10k Ω connected to ground and Ref pin connected to ground, unless otherwise noted.

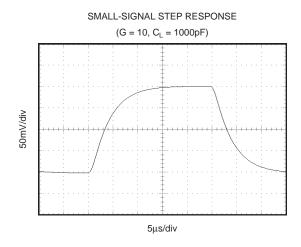


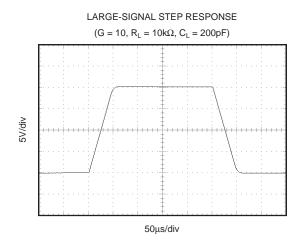







TYPICAL PERFORMANCE CURVES (Cont.)


At T_A = +25°C, V_S = ±15V, G = 1, R_L = 10k Ω connected to ground and Ref pin connected to ground, unless otherwise noted.



APPLICATION INFORMATION

The INA145 is a programmable gain difference amplifier consisting of a gain of 1 difference amplifier and a programmable-gain output buffer stage. Basic circuit connections are shown in Figure 1. Power supply bypass capacitors should be connected close to pins 4 and 7, as shown. The amplifier is programmable in the range of G=1 to G=1000 with two external resistors.

The output of A1 is connected to the noninverting input of A2 through a $10k\Omega$ resistor which is trimmed to $\pm 1\%$ absolute accuracy. The A2 input is available for applications such as a filter or a precision current source. See application figures for examples.

OPERATING VOLTAGE

The INA145 is fully specified for supply voltages from $\pm 2.25 \text{V}$ to $\pm 18 \text{V}$, with key parameters guaranteed over the temperature range -40°C to $+85^{\circ}\text{C}$. The INA145 can be operated with single or dual supplies, with excellent performance. Parameters that vary significantly with operating voltage, load conditions, or temperature are shown in the typical performance curves.

SETTING THE GAIN

The gain of the INA145 is set by using two external resistors, R_{G1} and R_{G2} , according to the equation:

$$G = 1 + R_{G2}/R_{G1}$$

For a total gain of 1, A2 is connected as a buffer amplifier with no $R_{G1}.$ A feedback resistor, $R_{G2}=10k\Omega,$ should be used in the buffer connection. This provides bias current cancellation (in combination with internal $R_5)$ to assure specified offset voltage performance. Commonly used values are shown in the table of Figure 1. Resistor values for other gains should be chosen to provide a $10k\Omega$ parallel resistance.

COMMON-MODE RANGE

The input resistors of the INA145 provides an input common-mode range that extends well beyond the power supply rails. Exact range depends on the power supply voltage and the voltage applied to the Ref terminal (pin 1). To assure proper operation, the voltage at the non-inverting input of A1 (an internal node) must be within its linear operating range. Its voltage is determined by the simple 1:1 voltage divider between pin 3 and pin 1. This voltage must be between V- and a

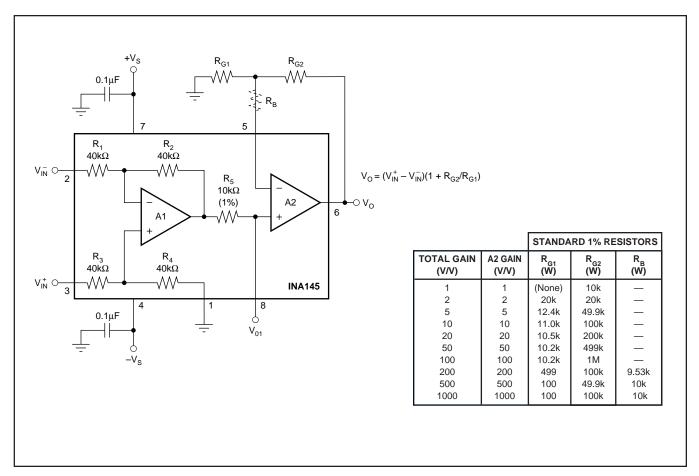


FIGURE 1. Basic Circuit Connections.

OFFSET TRIM

The INA145 is laser-trimmed for low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the offset voltage. A voltage applied to the Ref terminal will be summed with the output signal. This can be used to null offset voltage. To maintain good common-mode rejection, the source impedance of a signal applied to the Ref terminal should be less than 10Ω and a resistor added to the positive input terminal should be 10 times that, or 100Ω . Alternatively, the trim voltage can be buffered with an op amp such as the OPA277.

INPUT IMPEDANCE

The input impedance of the INA145 is determined by the input resistor network and is approximately $40k\Omega.$ The source impedance at the two input terminals must be nearly equal to maintain good common-mode rejection. A 5Ω mismatch in impedance between the two inputs will cause the typical common-mode rejection to be degraded to approximately 72dB. Figure 7 shows a common application measuring power supply current through a shunt resistor. The source impedance of the shunt resistor, $R_{\rm S}$, is balanced by an equal compensation resistor, $R_{\rm C}$.

Source impedances greater than 300Ω are not recommended, even if they are perfectly matched. Internal resistors are laser trimmed for accurate ratios, not to absolute values. Adding equal resistors greater than 300Ω can cause a mismatch in the total resistor ratios, degrading CMR.

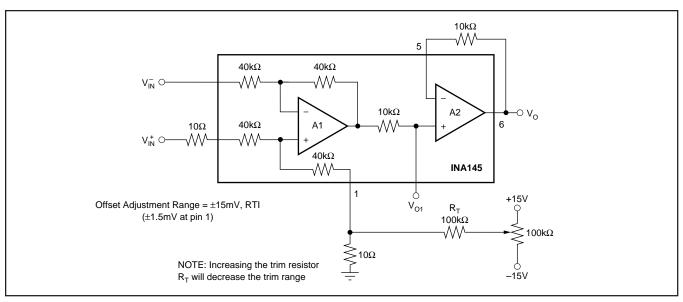


FIGURE 2. Optional Offset Trim Circuit.

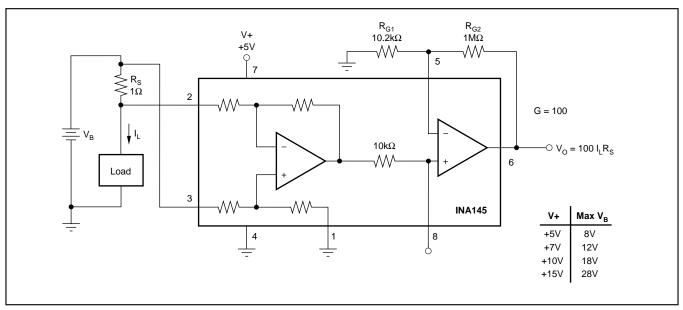
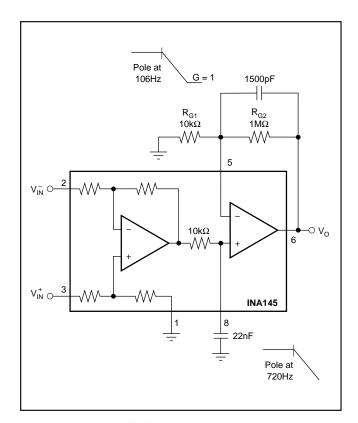



FIGURE 3. Measuring Current with Shunt Resistor.

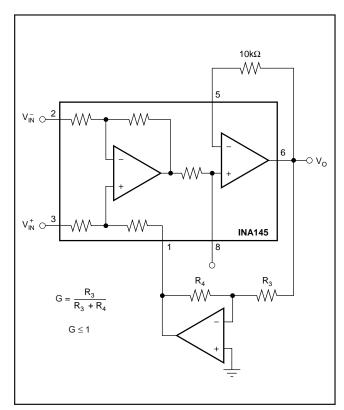


FIGURE 4. Noise Filtering.

FIGURE 5. Creating Gains Less Than Unity.

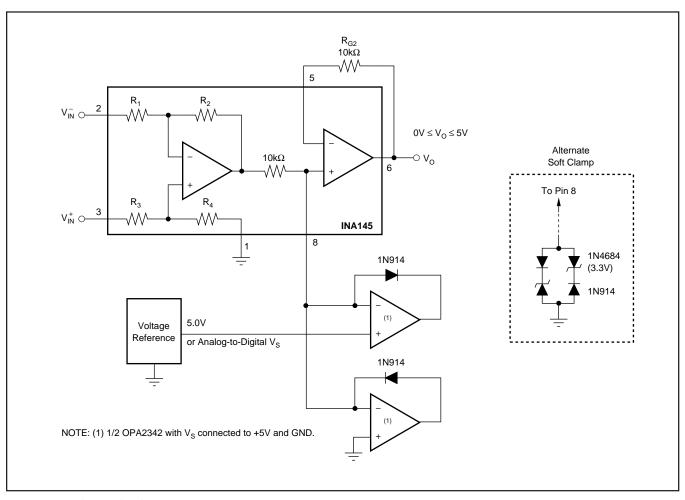


FIGURE 6. Clamp Circuits.

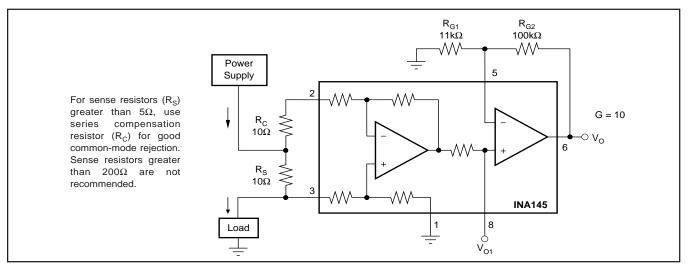


FIGURE 7. Current Monitor, G = 1.

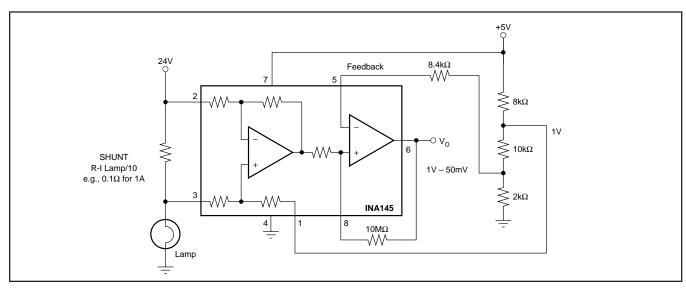


FIGURE 8. Comparator Output with Optional Hysteresis Application to Sense Lamp Burn-Out.

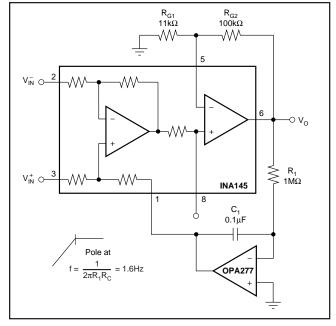


FIGURE 9. AC Coupling (DC Restoration).

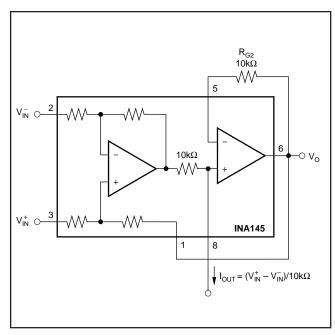


FIGURE 10. Precision Current Source.

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
INA145UA	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	-40 to 85	INA 145UA
INA145UA/2K5	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-	INA 145UA
INA145UA/2K5.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	INA 145UA

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

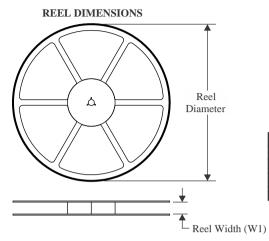
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

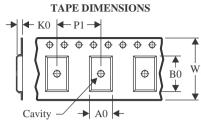
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

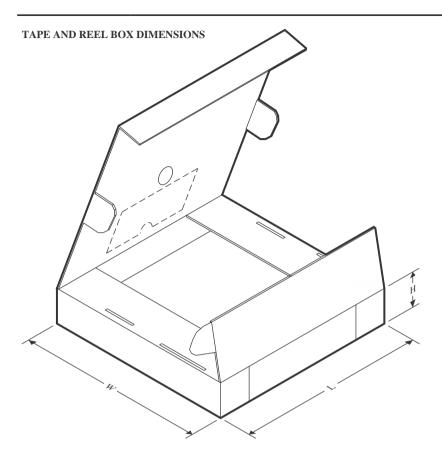

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Sep-2024

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
INA145UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 25-Sep-2024

*All dimensions are nominal

Device	Package Type	age Type Package Drawing		SPQ	Length (mm)	Width (mm)	Height (mm)	
INA145UA/2K5	SOIC	D	8	2500	356.0	356.0	35.0	

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated