



Sample &

Buy



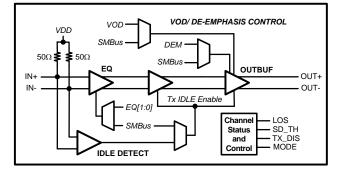




#### DS100BR210

SNLS348E - OCTOBER 2011 - REVISED JANUARY 2015

# DS100BR210 Ultra Low Power 10.3 Gbps 2-Channel Repeater with Input Equalization and Output De-Emphasis


# 1 Features

- Two Channel Repeaters for up to 10.3 Gbps
  - DS100BR210 : 2x Unidirectional Channels
  - DS100BR111 : 1x Bidirectional Lane
- 10G-KR Bi-directional Interface Compatibility
  - Allows for Back-channel Communication and Training
- Low 65 mW/channel (Typical) Power Consumption, with Option to Power Down Unused Channels
- Advanced Signal Conditioning Features
  - Receive Equalization up to +36 dB
  - Transmit De-emphasis up to -12 dB
  - Transmit VOD Control: 700 to 1300 mVp-p
  - Low Residual DJ at 10.3 Gbps
- Programmable Via Pin Selection, EEPROM, or SMBus Interface
- Single Supply Voltage: 2.5 V or 3.3 V
- Flow-thru Pinout in 4 mm × 4 mm 24-pin Leadless WQFN Package
- 5 kV HBM ESD Rating
- -40 to 85°C Operating Temperature Range

# 2 Applications

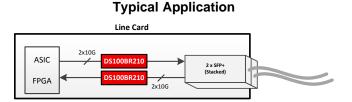
- High-speed Active Copper Cable Modules and FR-4 Backplane in Communication Systems
- 10GE, 10G-KR, FC, SAS, SATA 3/6 Gbps (with OOB Detection), InfiniBand, CPRI, RXAUI and many others

# **4** Simplified Schematic



# 3 Description

The DS100BR210 is an extremely low power, high performance repeater designed to support serial links with data rates up to 10.3 Gbps. The DS100BR210 pinout is configured as two unidirectional channels. The DS100BR210 inputs feature a powerful 4-stage continuous time linear equalizer (CTLE) to provide a boost of up to +36 dB at 5 GHz and open an input eye that is completely closed due to inter-symbol interference (ISI) induced by the interconnect mediums such as board traces or twin-axial copper cables. The transmitter features a programmable output de-emphasis driver with up to -12 dB and can drive output voltage levels from 700 mVp-p to 1300 mVp-p.


When configured as a 10G-KR repeater, the DS100BR210 allows the KR host and the end point to optimize the full link by adjusting transmit and receive equalizer coefficients using back-channel communication techniques specified by the 802.3ap Ethernet standard.

The programmable settings can be applied via pin control, SMBus protocol, or an external EEPROM. In the EEPROM mode, the configuration information is automatically loaded on power up, thereby eliminating the need for an external microprocessor or software driver.

#### Device Information<sup>(1)</sup>

| PART NUMBER | PACKAGE   | BODY SIZE (NOM)   |
|-------------|-----------|-------------------|
| DS100BR210  | WQFN (24) | 4.00 mm x 4.00 mm |

(1) For all available packages, see the orderable addendum at the end of the datasheet.



2

| Table | of | Contents |
|-------|----|----------|
|       |    |          |

| 1 | Fea  | tures 1                                                         |
|---|------|-----------------------------------------------------------------|
| 2 | Арр  | lications1                                                      |
| 3 | Des  | cription 1                                                      |
| 4 | Sim  | plified Schematic1                                              |
| 5 | Rev  | ision History 2                                                 |
| 6 | Pin  | Configuration and Functions 3                                   |
| 7 | Spe  | cifications6                                                    |
|   | 7.1  | Absolute Maximum Ratings 6                                      |
|   | 7.2  | ESD Ratings6                                                    |
|   | 7.3  | Recommended Operating Conditions 6                              |
|   | 7.4  | Thermal Information6                                            |
|   | 7.5  | Electrical Characteristics7                                     |
|   | 7.6  | Electrical Characteristics — Serial Management Bus<br>Interface |
|   | 7.7  | Timing Requirements — LOS and ENABLE /<br>DISABLE Timing        |
|   | 7.8  | Typical Characteristics 11                                      |
| 8 | Deta | ailed Description 12                                            |
|   | 8.1  | Overview 12                                                     |
|   | 8.2  | Functional Block Diagram 12                                     |

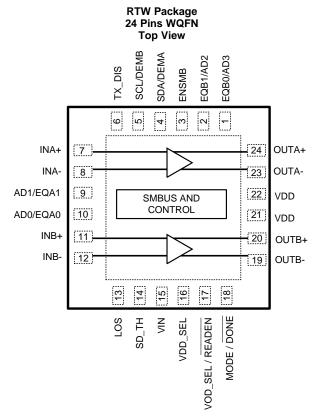
|    | 8.3  | Feature Description                  | 13 |
|----|------|--------------------------------------|----|
|    | 8.4  | Device Functional Modes              | 13 |
|    | 8.5  | Programming                          | 15 |
|    | 8.6  | Register Maps                        | 29 |
| 9  | App  | lication and Implementation          | 36 |
|    | 9.1  | Application Information              | 36 |
|    | 9.2  | Typical Application                  | 37 |
| 10 | Pow  | ver Supply Recommendations           | 44 |
|    | 10.1 | 3.3-V or 2.5-V Supply Mode Operation | 44 |
|    | 10.2 | Power Supply Bypass                  | 45 |
| 11 | Laye | out                                  | 45 |
|    | -    | Layout Guidelines                    |    |
|    | 11.2 | Layout Example                       | 45 |
| 12 | Dev  | ice and Documentation Support        | 47 |
|    | 12.1 |                                      |    |
|    | 12.2 | Trademarks                           | 47 |
|    | 12.3 | Electrostatic Discharge Caution      | 47 |
|    | 12.4 | Glossary                             |    |
| 13 | Мес  | hanical, Packaging, and Orderable    |    |
|    |      | mation                               | 47 |

# **5** Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

#### Changes from Revision D (April 2013) to Revision E

| • | Added, updated, or renamed the following sections: Device Information Table, Application and Implementation; |     |
|---|--------------------------------------------------------------------------------------------------------------|-----|
|   | Power Supply Recommendations; Layout, Device and Documentation Support, Mechanical, Packaging, and           |     |
|   | Ordering Information                                                                                         | . 1 |
| • | Added Thermal Information                                                                                    | . 6 |


www.ti.com

Page



#### DS100BR210 SNLS348E – OCTOBER 2011 – REVISED JANUARY 2015

# 6 Pin Configuration and Functions



(1) The center DAP on the package bottom is the device GND connection. This pad must be connected to GND through multiple (minimum of 4) vias to ensure optimal electrical and thermal performance.

## Pin Functions<sup>(1)</sup>

| PIN                                    |                  |                       | DESCRIPTION                                                                                                                                                                               |
|----------------------------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME                                   | NUMBER           | I/O, TYPE             | DESCRIPTION                                                                                                                                                                               |
| DIFFERENTIAL HIGI                      | H SPEED I/O's    |                       |                                                                                                                                                                                           |
| INA+, INA- , 7, 8<br>INB+, INB- 11, 12 |                  | I, CML                | Inverting and non-inverting CML differential inputs to the equalizer. On-chip 50 $\Omega$ termination resistors connect both INx+ and INx- to VDD. Compatible with AC coupled CML inputs. |
| OUTA+, OUTA-,<br>OUTB+, OUTB-          | 24, 23<br>20, 19 | O, CML                | Inverting and non-inverting 50 $\Omega$ driver outputs with de-emphasis. Compatible with AC coupled CML inputs.                                                                           |
| CONTROL PINS                           |                  |                       |                                                                                                                                                                                           |
| ENSMB 3                                |                  | I, 4-LEVEL,<br>LVCMOS | System Management Bus (SMBus) Enable Pin<br>High = Register Access SMBus Slave Mode<br>Float = Read External EEPROM (SMBus Master Mode)<br>Tie 1 kΩ to GND = Pin Mode                     |

(1) LVCMOS inputs without the "Float" conditions must be driven to a logic low or high at all times or operation is not guaranteed. Unless the "Float" level is desired, 4-Level input pins require a minimum 1 kΩ resistor to GND, VDD (in 2.5 V mode), or VIN (in 3.3 V mode). Input edge rate for LVCMOS/FLOAT inputs must be faster than 50 ns from 10–90%.

STRUMENTS

EXAS

# Pin Functions<sup>(1)</sup> (continued)

| PIN                      |               |                                            |                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------|---------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME                     | NUMBER        | I/O, TYPE                                  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                            |
| ENSMB = Float or 1       | (SMBus MODE   | ES)                                        |                                                                                                                                                                                                                                                                                                                                                                                        |
| SCL                      | 5             | I, 2-LEVEL,<br>LVCMOS,<br>O, Open<br>Drain | Clock output when loading EEPROM configuration, reverting to SMBus clock input when EEPROM load is complete (ALL_DONE = 0).<br>External 2 k $\Omega$ to 5 k $\Omega$ pull-up resistor to VDD (2.5 V mode) or VIN (3.3 V mode) recommended as per SMBus interface standards <sup>(2)</sup>                                                                                              |
| SDA                      | 4             | I, 2-LEVEL,<br>LVCMOS,<br>O, Open<br>Drain | In both SMBus Modes, this pin is the SMBus data I/O. Data input or open drain output. External 2 k $\Omega$ to 5 k $\Omega$ pull-up resistor to VDD (2.5 V mode) or VIN (3.3 V mode) recommended as per SMBus interface standards <sup>(2)</sup>                                                                                                                                       |
| AD0-AD3                  | 10, 9, 2, 1   | I, 4-LEVEL,<br>LVCMOS                      | ENSMB Master or Slave mode<br>SMBus Slave Address Inputs. In SMBus mode, these pins are the user set SMBus<br>slave address inputs. There are 16 addresses supported by these pins.<br>Pins must be tied Low or High when used to define the device SMBus address. <sup>(3)</sup>                                                                                                      |
| READEN                   | 17            | I, 2-LEVEL,<br>LVCMOS                      | ENSMB = Float: When using SMBus Master Mode, a logic low on this pin starts the load from the external EEPROM.<br>ENSMB = 1: When using SMBus Slave Mode, the VOD_SEL/READEN pin must be tied Low for the AD[3:0] to be active. If this pin is tied High or left floating, an address of 0xB0 will be used for the DS100BR210.                                                         |
| DONE                     | 18            | O, 2-LEVEL,<br>LVCMOS                      | When using an External EEPROM (ENSMB = Float), Valid Register Load Status<br>Output<br>High = External EEPROM load failed or incomplete<br>Low = External EEPROM load passed                                                                                                                                                                                                           |
| ENSMB = 0 (PIN MO        | DE)           | 1                                          |                                                                                                                                                                                                                                                                                                                                                                                        |
| EQA0, EQA1<br>EQB0, EQB1 | 10, 9<br>1, 2 | I, 4-LEVEL,<br>LVCMOS                      | EQA[1:0] and EQB[1:0] control the level of equalization on the input pins. EQA[1:0] controls the A channel, and EQB[1:0] controls the B channel. The pins are only active when ENSMB = 0.<br>When ENSMB = 1, the SMBus registers provide independent control of each channel, and the EQB0/B1 pins are converted to SMBus AD2/AD3 inputs.<br>See Table 3 for additional information.   |
| DEMA, DEMB               | 4, 5          | I, 4-LEVEL,<br>LVCMOS                      | DEMA and DEMB control the level of de-emphasis for the output driver when in 10G mode. DEMA controls the A channel, and DEMB controls the B channel. The pins are only active when ENSMB = 0.<br>When ENSMB = 1, the SMBus registers provide independent control of each channel, and the DEM pins are converted to SMBus SCL and SDA pins.<br>See Table 4 for additional information. |
| VOD_SEL                  | 17            | I, 4-LEVEL,<br>LVCMOS                      | VOD Select<br>High = 10G-KR Mode (VOD = 1.1 Vpp or 1.3 Vpp)<br>Float = (VOD = 1.0 Vpp)<br>20 k $\Omega$ to GND = (VOD = 1.2 Vpp)<br>1 k $\Omega$ to GND = (VOD = 700 mVpp)<br>See for additional notes. See Table 2 for additional information.                                                                                                                                        |
| MODE                     | 18            | I, 4-LEVEL,<br>LVCMOS                      | Controls Device Mode of Operation<br>High= 10GbE Mode, Continuous Talk (Output Always On)<br>Float = 10G-KR Mode, Slow OOB<br>20 k $\Omega$ to GND = eSATA Mode, Fast OOB, Auto Low Power on 100 µs of inactivity. SD<br>stays active.<br>1 k $\Omega$ to GND = SAS Mode, Fast OOB                                                                                                     |
| CONTROL PINS -           | BOTH PIN AND  | SMBus MOD                                  | ES (LVCMOS)                                                                                                                                                                                                                                                                                                                                                                            |
| TX_DIS                   | 6             | I, 2-LEVEL,<br>LVCMOS                      | High = OUTA Disabled, OUTB Disabled<br>Low = OUTA and OUTB Enabled                                                                                                                                                                                                                                                                                                                     |
| LOS                      | 13            | O, Open<br>Drain                           | Indicates Loss of Signal (Default is LOS on INA). Can be modified via SMBus registers.                                                                                                                                                                                                                                                                                                 |
| SD_TH                    | 14            | I, 4-LEVEL,<br>LVCMOS                      | The SD_TH pin controls LOS threshold setting<br>Assert (mVpp), Deassert (mVpp)<br>High = 190 mVpp, 130 mVpp<br>Float = 180 mVpp, 110 mVpp (Default)<br>20 k $\Omega$ to GND = 160 mVpp, 100 mVpp<br>1 k $\Omega$ to GND = 210 mVpp, 150 mVpp <sup>(4)</sup>                                                                                                                            |

SCL and SDA pins can be tied either to 3.3 V or 2.5 V, regardless of whether the device is operating in 2.5 V mode or 3.3 V mode. Setting VOD\_SEL = High in SMBus Mode will force the SMBus Address = 0xB0 Using values less than the default level can extend the time required to detect LOS and are not recommended. (2)

- (3)
- (4)



## DS100BR210 SNLS348E – OCTOBER 2011–REVISED JANUARY 2015

#### www.ti.com

# Pin Functions<sup>(1)</sup> (continued)

| PIN     |        |           | DESCRIPTION                                                                                                                                                                                                                                                                          |
|---------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME    | NUMBER | I/O, TYPE | DESCRIPTION                                                                                                                                                                                                                                                                          |
| VDD_SEL | 16     | I, FLOAT  | Enables the 3.3 V to 2.5 V internal regulator<br>Low = 3.3 V Operation<br>Float = 2.5 V Operation                                                                                                                                                                                    |
| POWER   |        |           |                                                                                                                                                                                                                                                                                      |
| VDD     | 21, 22 | Power     | Power supply pins<br>When in 2.5 V mode, connect to 2.5 V supply.<br>When in 3.3 V mode, do not connect to any supply voltage. Should be used to attach<br>external decoupling to device, 100 nF recommended.<br>See <i>Power Supply Recommendations</i> for additional information. |
| VIN     | 15     | Power     | VIN = 3.3 V ± 10% (input to internal LDO regulator)<br>When in 2.5 V mode, VIN pin must be left floating.<br>See <i>Power Supply Recommendations</i> for additional information.                                                                                                     |
| GND     | DAP    | Power     | Ground pad (DAP - die attach pad).                                                                                                                                                                                                                                                   |

STRUMENTS

EXAS

# 7 Specifications

# 7.1 Absolute Maximum Ratings<sup>(1)(2)</sup>

|                                            | MIN  | MAX       | UNIT |
|--------------------------------------------|------|-----------|------|
| Supply Voltage (VDD)                       | -0.5 | 2.75      | V    |
| Supply Voltage (VIN)                       | -0.5 | 4.0       | V    |
| LVCMOS Input/Output Voltage                | -0.5 | 4.0       | V    |
| CML Input Voltage                          | -0.5 | (VDD+0.5) | V    |
| CML Input Current                          | -30  | 30        | mA   |
| Junction Temperature                       |      | 125       | °C   |
| Storage Temperature Range T <sub>stg</sub> | -40  | 125       | °C   |

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied.

(2) For soldering specifications, see SNOA549.

# 7.2 ESD Ratings

|                    |                         |                                                                                     | VALUE | UNIT |
|--------------------|-------------------------|-------------------------------------------------------------------------------------|-------|------|
|                    |                         | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>                   | ±5000 |      |
| V <sub>(ESD)</sub> | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\left(2\right)}$ | ±1250 | V    |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

## 7.3 Recommended Operating Conditions<sup>(1)</sup>

|                             | MIN   | NOM | MAX   | UNIT |
|-----------------------------|-------|-----|-------|------|
| Supply Voltage (2.5 V mode) | 2.375 | 2.5 | 2.625 | V    |
| Supply Voltage (3.3 V mode) | 3.0   | 3.3 | 3.6   | V    |
| Ambient Temperature         | -40   | 25  | +85   | °C   |
| SMBus (SDA, SCL)            |       |     | 3.6   | V    |

(1) The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. Absolute Maximum Numbers are guaranteed for a junction temperature range of -40°C to +125°C. Models are validated to Maximum Operating Voltages only.

## 7.4 Thermal Information

|                       | THERMAL METRIC <sup>(1)</sup>                                     | RTW<br>WQFN<br>(24 PINS) | UNIT |
|-----------------------|-------------------------------------------------------------------|--------------------------|------|
| $R_{\theta JA}$       | Junction-to-ambient thermal resistance, No Airflow, 4 layer JEDEC | 33.0                     | °C/W |
| R <sub>0JC(top)</sub> | Junction-to-case (top) thermal resistance                         | 3.2                      | C/VV |

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.



#### 7.5 Electrical Characteristics

|                     | PARAMETER                                             | TEST CONDITIONS                                                                                                              | MIN  | ТҮР  | MAX  | UNIT  |  |
|---------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|--|
| POWER SU            | JPPLY CURRENT                                         | ·                                                                                                                            |      |      |      |       |  |
|                     |                                                       | TX_DIS = Low, EQ = ON<br>VOD_SEL = Float (1000 mVpp)                                                                         |      | 50   | 63   |       |  |
| IDD                 | Supply Current                                        | Auto Low Power Mode<br>$TX_DIS = Low, MODE = 20 k\Omega$<br>VID CHA and CHB = 0.0 V<br>VOD_SEL = Float (1000 mVpp)           |      | 12   | 15   | mA    |  |
|                     |                                                       | TX_DIS = High                                                                                                                |      | 25   | 35   |       |  |
| LVCMOS D            | C SPECIFICATIONS                                      | · · · · · · · · · · · · · · · · · · ·                                                                                        |      |      |      |       |  |
| V <sub>IH25</sub>   | High Level Input Voltage, 2-Level LVCMOS              |                                                                                                                              |      | VDD  | V    |       |  |
| V <sub>IH33</sub>   | High Level Input Voltage, 2-Level LVCMOS              | 3.3 V Supply Mode                                                                                                            | 2.0  |      | VIN  | V     |  |
| V <sub>IL</sub>     | Low Level Input Voltage,<br>2-Level LVCMOS            |                                                                                                                              | GND  |      | 0.7  | V     |  |
| V <sub>OH</sub>     | High Level Output Voltage                             | $I_{OH} = -4.0 \text{ mA}^{(1)}$                                                                                             | 2.0  |      |      | V     |  |
| V <sub>OL</sub>     | Low Level Output Voltage                              | I <sub>OL</sub> = 4.0 mA                                                                                                     |      |      | 0.4  | V     |  |
| 1                   | Input Lookogo Current                                 | Vinput = 0 V or VDD<br>VDD_SEL = Float                                                                                       | -15  |      | +15  |       |  |
| I <sub>IN</sub>     | Input Leakage Current                                 | Vinput = 0 V or VIN<br>VDD_SEL = Low                                                                                         | -15  |      | +15  | μA    |  |
| I <sub>IN-P</sub>   | Input Leakage Current<br>4-Level Input <sup>(2)</sup> | Vinput = 0 V or VDD - 0.05 V<br>VDD_SEL = Float<br>Vinput = 0 V or VIN - 0.05 V<br>VDD_SEL = Low                             | -160 |      | +80  | μA    |  |
| CML RECE            | IVER INPUTS                                           | · · · · ·                                                                                                                    |      |      |      |       |  |
| V <sub>TX</sub>     | Source Transmit Launch<br>Differential Signal Level   | Default power-up conditions<br>ENSMB = 0 or 1                                                                                | 190  | 800  | 1600 | mVp-p |  |
|                     |                                                       | SDD11 @ 4.1 GHz                                                                                                              |      | -12  |      |       |  |
| RL <sub>RX-IN</sub> | RX return loss                                        | SDD11 @ 11.1 GHz                                                                                                             |      | -8   |      | dB    |  |
|                     |                                                       | SCD11 @ 11.1 GHz                                                                                                             | -10  |      |      |       |  |
| HIGH SPEE           | ED TRANSMITTER OUTPUTS                                |                                                                                                                              |      |      |      |       |  |
| V <sub>OD1</sub>    | Output Voltage Differential Swing                     | OUT+ and OUT- AC coupled and<br>terminated by 50 $\Omega$ to GND<br>VOD_SEL = Low (700 mVpp setting)<br>DE = Low             | 500  | 650  | 800  |       |  |
| V <sub>OD2</sub>    | Output Voltage Differential Swing                     | OUT+ and OUT- AC coupled and<br>terminated by 50 $\Omega$ to GND<br>VOD_SEL = Float (1000 mVpp setting)<br>DE = Low          | 800  | 1000 | 1100 | mVp-p |  |
| V <sub>OD3</sub>    | Output Voltage Differential Swing                     | OUT+ and OUT- AC coupled and terminated by 50 $\Omega$ to GND VOD_SEL = 20 k $\Omega$ to GND (1200 mVpp) DE = Low            | 950  | 1150 | 1350 |       |  |
| V <sub>OD_DE1</sub> | De-Emphasis Levels                                    | OUT+ and OUT- AC coupled and<br>terminated by 50 $\Omega$ to GND<br>VOD_SEL = Float (1000 mVpp)<br>DE = Float                |      | -3.5 |      | dB    |  |
| V <sub>OD_DE2</sub> | De-Emphasis Levels                                    | OUT+ and OUT- AC coupled and<br>terminated by 50 $\Omega$ to GND<br>VOD_SEL = Float (1000 mVpp)<br>DE = 20 k $\Omega$ to GND |      | -6   |      | dB    |  |

VOH only applies to the DONE pin; LOS, SCL, and SDA are open-drain outputs that have no internal pull-up capability. DONE is a full LVCMOS output with pull-up and pull-down capability.
 Input is held to a maximum of 50 mV below VDD or VIN to simulate the use of a 1 kΩ resistor on the input.

SNLS348E-OCTOBER 2011-REVISED JANUARY 2015

STRUMENTS www.ti.com

EXAS

## **Electrical Characteristics (continued)**

|                                       | PARAMETER                                                                    | TEST CONDITIONS                                                                                                                       | MIN | ТҮР  | MAX | UNIT     |
|---------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|----------|
| V <sub>OD_DE3</sub>                   | De-Emphasis Levels                                                           | OUT+ and OUT- AC coupled and<br>terminated by 50 $\Omega$ to GND<br>VOD_SEL = Float (1000 mVpp)<br>DE = High                          |     | -9   |     | dB       |
| V <sub>CM-AC</sub>                    | Output Common-Mode Voltage                                                   | AC Common Mode Voltage<br>DE = 0 dB, VOD ≤ 1000 mVpp                                                                                  |     | 4.5  |     | mV (rms) |
| V <sub>CM-DC</sub>                    | Output DC Common-Mode<br>Voltage                                             | DC Common Mode Voltage                                                                                                                | 0   | 1.1  | 1.9 | V        |
| V <sub>IDLE</sub>                     | TX IDLE Output Voltage                                                       | VID = 0 mVp-p                                                                                                                         |     |      | 30  | mV       |
|                                       |                                                                              | SDD22 @ 4.1 GHz                                                                                                                       |     | -13  |     |          |
|                                       | TV astrono la se                                                             | SDD22 @ 11.1 GHz                                                                                                                      |     | -9   |     |          |
| RL <sub>TX-DIFF</sub>                 | TX return loss                                                               | SCC22 @ 2.5 GHz                                                                                                                       |     | -22  |     | dB       |
|                                       |                                                                              | SCC22 @ 11.1 GHz                                                                                                                      |     | -10  |     |          |
| Delta_Z <sub>M</sub>                  | Transmitter Termination<br>Mismatch                                          | DC, $I_{FORCE} = \pm 100 \ \mu A^{(3)}$                                                                                               |     | 2.5% |     |          |
| T <sub>R/F</sub>                      | Transmitter Rise and Fall Time                                               | Measurement points at 20% - 80% (4)                                                                                                   |     | 38   |     | ps       |
| T <sub>PD</sub>                       | Propagation Delay                                                            | Measured at 50% crossing<br>EQ = 0x00                                                                                                 |     | 230  |     | ps       |
| Т <sub>ССSK</sub>                     | Channel to Channel Skew                                                      | T = 25°C, VDD = 2.5 V                                                                                                                 |     | 7    |     | ps       |
| T <sub>PPSK</sub>                     | Part to Part Skew                                                            | T = 25°C, VDD = 2.5 V                                                                                                                 |     | 20   |     | ps       |
| T <sub>TX-IDLE-SET-TO-</sub> IDLE     | Max time to transition to idle after differential signal                     | VIN = 1 Vpp, 10 Gbps<br>EQ = 0x00, DE = 0 dB                                                                                          | 6.5 |      |     | ns       |
| T <sub>TX-IDLE-TO-</sub><br>DIFF-DATA | Max time to transition to valid differential signal after idle               | VIN = 1 Vpp, 10 Gbps<br>EQ = 0x00, DE = 0 dB                                                                                          | 3.2 |      | ns  |          |
| T <sub>ENV_DISTORT</sub>              | Active OOB timing distortion,<br>input active time vs. output active<br>time |                                                                                                                                       | 3.3 |      |     | ns       |
| OUTPUT JITTE                          | ER SPECIFICATIONS <sup>(5)</sup>                                             |                                                                                                                                       |     |      |     |          |
| RJ                                    | Random Jitter                                                                | No Media                                                                                                                              |     | 0.3  |     | ps (rms) |
| D <sub>J1</sub>                       | Deterministic Jitter                                                         | Source Amplitude = 700 mVpp,<br>PRBS15 pattern,<br>10.3125 Gbps<br>VOD = Default, EQ = minimum,<br>DE = 0 dB                          |     | 0.09 |     | UI       |
| EQUALIZATIO                           | N                                                                            | · · · · ·                                                                                                                             |     |      |     |          |
| D <sub>JE1</sub>                      | Residual Deterministic Jitter                                                | 10.3125 Gbps<br>8 meter 30AWG Cable on Input<br>Source = 700 mVpp, PRBS15 pattern<br>EQ = 0x0F                                        |     | 0.27 |     | UI       |
| D <sub>JE2</sub>                      | Residual Deterministic Jitter                                                | 10.3125 Gbps<br>30" 4-mil FR4 on Inputs<br>Source = 700 mVpp, PRBS15 pattern<br>EQ = 0x16                                             |     |      |     | UI       |
| DE-EMPHASIS                           |                                                                              | ·                                                                                                                                     |     |      |     |          |
| D <sub>JD1</sub>                      | Residual Deterministic Jitter                                                | 10.3125 Gbps<br>10" 4 mil stripline FR4 on Outputs<br>Source = 700 mVpp, PRBS15 pattern<br>EQ = Min, VOD = 1200 mVpp,<br>DE = -3.5 dB |     | 0.13 |     | UI       |

(3) Force ±100 μA on output, measure ΔV on the Output and calculate impedance. Mismatch is the percentage difference of OUTn+ and OUTn- impedance driving the same logic state.

(4) Default VOD used for testing. DE = -1.5 dB level used to compensate for fixture attenuation.
(5) Typical jitter reported is determined by jitter decomposition software on the DSA8200 Oscilloscope.



# 7.6 Electrical Characteristics — Serial Management Bus Interface

Over recommended operating supply and temperature ranges unless other specified.

|                       | PARAMETER                                                                                          | TEST CONDITIONS                                                           | MIN   | TYP  | MAX                                      | UNIT |
|-----------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|------|------------------------------------------|------|
| SERIAL BU             | S INTERFACE DC SPECIFICATIONS                                                                      | (1)                                                                       |       |      | L. L |      |
| V <sub>IL</sub>       | Data, Clock Input Low Voltage                                                                      |                                                                           |       |      | 0.8                                      | V    |
| VIH                   | Data, Clock Input High Voltage                                                                     |                                                                           | 2.1   |      | 3.6                                      | V    |
| I <sub>PULLUP</sub>   | Current Through Pull-Up Resistor<br>or Current Source                                              | High Power Specification                                                  | 4     |      |                                          | mA   |
| V <sub>DD</sub>       | Nominal Bus Voltage                                                                                |                                                                           | 2.375 |      | 3.6                                      | V    |
| I <sub>LEAK-Bus</sub> | Input Leakage Per Bus Segment                                                                      | See <sup>(2)</sup>                                                        | -200  |      | +200                                     | μA   |
| Cl                    | Capacitance for SDA and SCL                                                                        | See (2) (3) (4)                                                           |       |      | 10                                       | pF   |
| R <sub>TERM</sub>     | External Termination Resistance                                                                    | Pullup $V_{DD}$ = 3.3 V, See <sup>(2)</sup> <sup>(3)</sup> <sup>(5)</sup> |       | 2000 |                                          | Ω    |
|                       | pull to $V_{DD}$ = 2.5V ± 5% OR 3.3V ± 10%                                                         | Pullup $V_{DD}$ = 2.5 V, See <sup>(2)</sup> <sup>(3)</sup> <sup>(5)</sup> |       | 1000 |                                          | Ω    |
| SERIAL BU             | S INTERFACE TIMING SPECIFICATIO                                                                    | DNS                                                                       |       |      |                                          |      |
| FSMB                  | Bus Operating Frequency                                                                            | ENSMB = VDD (Slave Mode)                                                  |       |      | 400                                      | kHz  |
| FSINB                 |                                                                                                    | ENSMB = Float (Master Mode) (1)                                           | 280   | 400  | 520                                      | kHz  |
| T <sub>BUF</sub>      | Bus Free Time Between Stop and Start Condition                                                     |                                                                           | 1.3   |      |                                          | μs   |
| T <sub>HD:STA</sub>   | Hold time after (Repeated) Start<br>Condition. After this period, the<br>first clock is generated. | At I <sub>PULLUP</sub> , Max                                              | 0.6   |      |                                          | μs   |
| T <sub>SU:STA</sub>   | Repeated Start Condition Setup<br>Time                                                             |                                                                           | 0.6   |      |                                          | μs   |
| T <sub>SU:STO</sub>   | Stop Condition Setup Time                                                                          |                                                                           | 0.6   |      |                                          | μs   |
| T <sub>HD:DAT</sub>   | Data Hold Time                                                                                     |                                                                           | 0     |      |                                          | ns   |
| T <sub>SU:DAT</sub>   | Data Setup Time                                                                                    |                                                                           | 100   |      |                                          | ns   |
| T <sub>LOW</sub>      | Clock Low Period                                                                                   |                                                                           | 1.3   |      |                                          | μs   |
| T <sub>HIGH</sub>     | Clock High Period                                                                                  | See <sup>(6)</sup>                                                        | 0.6   |      | 50                                       | μs   |
| t <sub>F</sub>        | Clock/Data Fall Time                                                                               | See <sup>(6)</sup>                                                        |       |      | 300                                      | ns   |
| t <sub>R</sub>        | Clock/Data Rise Time                                                                               | See <sup>(6)</sup>                                                        |       |      | 300                                      | ns   |
| t <sub>POR</sub>      | Time in which a device must be operational after power-on reset                                    | See <sup>(4) (6)</sup>                                                    |       |      | 500                                      | ms   |

(1) EEPROM interface requires 1 MHz capable EEPROM device.

(2) Recommended value.

(3)

Recommended maximum capacitance load per bus segment is 400 pF. Guaranteed by design and characterization. Parameter not tested in production. (4)

(5) Maximum termination voltage should be identical to the device supply voltage.

(6) Compliant to SMBus 2.0 physical layer specification. See System Management Bus (SMBus) Specification Version 2.0, section 3.1.1 SMBus common AC specifications for details.

## 7.7 Timing Requirements — LOS and ENABLE / DISABLE Timing

|                       |                                                            |                    | MIN | NOM   | MAX | UNIT |
|-----------------------|------------------------------------------------------------|--------------------|-----|-------|-----|------|
| T <sub>LOS_OFF</sub>  | Input IDLE to Active<br>RX_LOS response time               | See <sup>(1)</sup> |     | 0.035 |     | μs   |
| T <sub>LOS_ON</sub>   | Input Active to IDLE<br>RX_LOS response time               | See <sup>(1)</sup> |     | 0.4   |     | μs   |
| T <sub>OFF</sub>      | TX Disable assert Time<br>TX_DIS = High to Output OFF      | See <sup>(1)</sup> |     | 0.005 |     | μs   |
| T <sub>ON</sub>       | TX Disable negateTime<br>TX_DIS = Low to Output ON         | See <sup>(1)</sup> |     | 0.150 |     | μs   |
| T <sub>LP_EXIT</sub>  | Auto Low Power Exit<br>ALP to Normal Operation             | See <sup>(1)</sup> |     | 150   |     | ns   |
| T <sub>LP_ENTER</sub> | Auto Low Power Enter<br>Normal Operation to Auto Low Power | See (1)            |     | 100   |     | μs   |

(1) Parameter not tested in production.

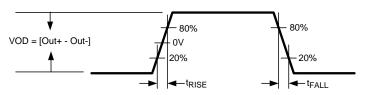



Figure 1. Output Rise and Fall Transition Times

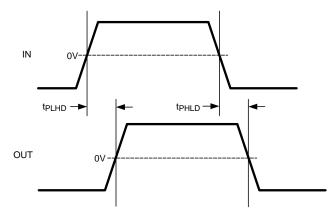



Figure 2. Propagation Delay Timing Diagram

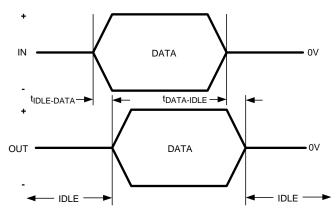



Figure 3. Transmit Idle-Data and Data-Idle Response Time

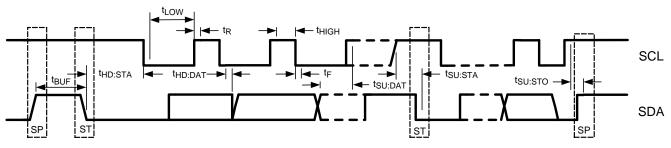
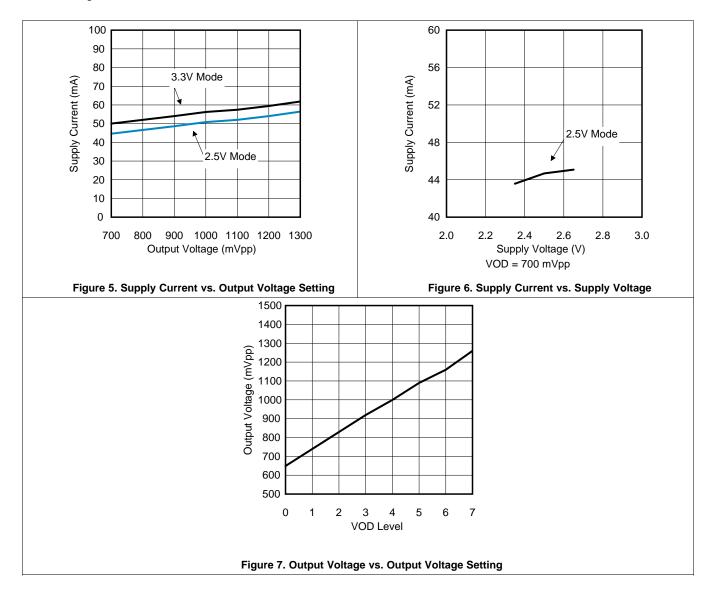




Figure 4. SMBus Timing Parameters



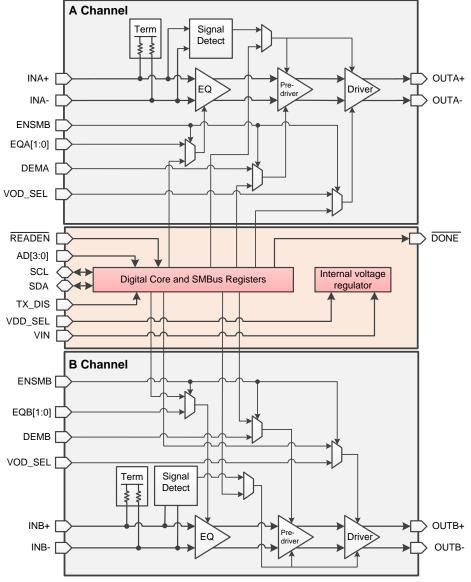
# 7.8 Typical Characteristics

The following data was collected at 25°C.



TEXAS INSTRUMENTS

www.ti.com


# 8 Detailed Description

## 8.1 Overview

The DS100BR210 is a high performance unidirectional 2-channel repeater optimized for 10G-KR and SAS/SATA operation, where its programmable equalization and de-emphasis compensate for lossy FR-4 printed circuit board backplanes or balanced cables. The DS100BR210 operates in 3 modes: Pin Control Mode (ENSMB = 0), SMBus Slave Mode (ENSMB = 1), and SMBus Master Mode (ENSMB = Float) to load register information from external EEPROM.

Each channel has a signal detector circuit that monitors the input signal amplitude. When the input signal level is below the detector's de-assert level, the output is disabled. When input signal level exceeds the detector's assert level, the output is enabled. The signal detector circuit is used to support the OOB signaling used in SAS and SATA.

## 8.2 Functional Block Diagram



Note: This diagram is representative of device signal flow only.



#### 8.3 Feature Description

#### 8.3.1 4-Level Input Configuration Guidelines

The 4-level input pins use a resistor divider to set the four valid control levels and provide a wider range of control settings when ENSMB = 0. There is an internal 30 k $\Omega$  pull-up and a 60 k $\Omega$  pull-down connected to the package pin. These resistors, together with the external resistor connection, combine to achieve the desired voltage level. By using the 1 k $\Omega$  pull-down, 20 k $\Omega$  pull-down, no connect, or 1 k $\Omega$  pull-up, the optimal voltage levels for each of the four input states are achieved as shown in Table 1.

|       |                                                        | RESULTING PIN VOLTAGE    |                          |  |
|-------|--------------------------------------------------------|--------------------------|--------------------------|--|
| LEVEL | SETTING                                                | 3.3 V MODE               | 2.5 V MODE               |  |
| 0     | Tie 1 kΩ to GND                                        | 0.10 V                   | 0.08 V                   |  |
| R     | Tie 20 kΩ to GND                                       | 1/3 x V <sub>IN</sub>    | 1/3 x V <sub>DD</sub>    |  |
| F     | Float (leave pin open)                                 | 2/3 x V <sub>IN</sub>    | 2/3 x V <sub>DD</sub>    |  |
| 1     | Tie 1 k $\Omega$ to V <sub>IN</sub> or V <sub>DD</sub> | V <sub>IN</sub> - 0.05 V | V <sub>DD</sub> - 0.04 V |  |

#### Table 1. 4–Level Control Pin Settings

#### 8.3.2 Typical 4-Level Input Thresholds

- Internal Threshold between 0 and R = 0.2 \* V<sub>IN</sub> or V<sub>DD</sub>
- Internal Threshold between R and F = 0.5 \*  $V_{IN}$  or  $V_{DD}$
- Internal Threshold between F and 1 = 0.8 \*  $V_{IN}$  or  $V_{DD}$

In order to minimize the startup current associated with the integrated 2.5 V regulator, the 1 k $\Omega$  pull-up / pulldown resistors are recommended. If several four level inputs require the same setting, it is possible to combine two or more 1 k $\Omega$  resistors into a single lower value resistor. As an example, combining two inputs with a single 500  $\Omega$  resistor is a valid way to save board space.

#### 8.4 Device Functional Modes

#### 8.4.1 Pin Control Mode

When in Pin Mode (ENSMB = 0), equalization, de-emphasis, and VOD (output amplitude) can be selected via external pin control for both the A-channel and B-channel. Equalization and de-emphasis can be programmed by pin selection for each side independently. For further device control, the VOD\_SEL and MODE pins are available to improve DS100BR210 performance depending on design applications. The receiver electrical idle detect threshold is also adjustable via the SD\_TH pin. Pin control mode is ideal in situations where neither MCU or EEPROM is available to access the device via SMBus SDA and SCL lines.

#### 8.4.2 SMBus Slave Mode

When in Slave SMBus Mode (ENSMB = 1), equalization, de-emphasis, and VOD (output amplitude) are all programmable on an individual channel basis. Upon assertion of ENSMB, the EQx, DEMx, and VODx settings are controlled by SMBus immediately. It is important to note that SMBus settings can only be changed from their defaults after asserting Register Enable by setting Reg 0x06[3] = 1. The EQx, DEMx, and VODx pins are subsequently converted to AD0-AD3 SMBus address inputs. The other external control pins (TX\_DIS, MODE, and SD\_TH) remain active unless their respective registers are written to and the appropriate override bit is set. If the user overrides a pin control, the input voltage level of that control pin is ignored until ENSMB is driven low (Pin Mode). In the event that channels are powered down via the TX\_DIS pin, register setting states are not affected.

| Level | SD_TH (Pin 14) | SMBus REG bit<br>[3:2] and [1:0] | TYPICAL ASSERT LEVEL<br>(mVpp) | TYPICAL DE-ASSERT LEVEL<br>(mVpp) |
|-------|----------------|----------------------------------|--------------------------------|-----------------------------------|
| 1     | 0              | 10                               | 210                            | 150                               |
| 2     | R              | 01                               | 160                            | 100                               |
| 3     | F (Default)    | 00                               | 180                            | 110                               |

## Table 2. Signal Detect Threshold Level<sup>(1)</sup>

(1) Typical assert and de-assert levels were measured with VDD = 2.5 V, 25°C, and 010101 pattern at 8 Gbps.

TEXAS INSTRUMENTS

www.ti.com

## **Device Functional Modes (continued)**

| Level | SD_TH (Pin 14) | SMBus REG bit<br>[3:2] and [1:0] | TYPICAL ASSERT LEVEL<br>(mVpp) | TYPICAL DE-ASSERT LEVEL<br>(mVpp) |
|-------|----------------|----------------------------------|--------------------------------|-----------------------------------|
| 4     | 1              | 11                               | 190                            | 130                               |

## Table 2. Signal Detect Threshold Level<sup>(1)</sup> (continued)

#### 8.4.3 SMBus Master Mode

When in SMBus Master Mode (ENSMB = Float), the equalization, de-emphasis, and VOD (output amplitude) for multiple devices can be loaded via external EEPROM. By asserting a Float condition on the ENSMB pin, an external EEPROM writes register settings to each device in accordance with its SMBus slave address. The settings programmable by external EEPROM provide only a subset of all the register bits available via SMBus Slave Mode, and the bit-mapping between SMBus Slave Mode registers and EEPROM addresses can be referenced in Table 6. Once the EEPROM successfully finishes loading each device's register settings, the device reverts back to SMBus Slave Mode and releases SDA and SCL control to an external master MCU. If the EEPROM fails to load settings to a particular device, for example due to an invalid or blank hex file, the device waits indefinitely in an unknown state where access to the SMBus lines is not possible.

#### 8.4.4 Signal Conditioning Settings

Equalization, de-emphasis, and VOD settings accessible via the pin controls are chosen to meet the needs of most high speed applications. For additional levels and flexibility in EQ, de-emphasis, and VOD programming, these settings can be controlled via the SMBus registers. Each control pin input has a total of four possible voltage level settings. In pin mode, Table 3 shows the 16 EQ settings available, and Table 4 shows the 16 de-emphasis and VOD combination settings available. Note that when in pin mode, only 16 of a possible 256 EQ programmable levels can be accessed by setting the EQx[1:0] pins. In addition, each pin setting applied to the VOD\_SEL and DEMx pin input programs a fixed combination of VOD and de-emphasis. In order to access all 256 EQ levels and control both VOD and de-emphasis settings independently, SMBus register access must be used.

|       | EQUALIZATION BOOST RELATIVE TO DC |              |                   |                   |                                      |  |  |  |  |
|-------|-----------------------------------|--------------|-------------------|-------------------|--------------------------------------|--|--|--|--|
| LEVEL | EQA1<br>EQB1                      | EQA0<br>EQB0 | EQ — 8 bits [7:0] | dB BOOST at 5 GHz | SUGGESTED MEDIA <sup>(1)</sup>       |  |  |  |  |
| 1     | 0                                 | 0            | 0000 0000 = 0x00  | 2.5               | FR4 < 5 inch trace                   |  |  |  |  |
| 2     | 0                                 | R            | 0000 0001 = 0x01  | 6.5               | FR4 5 inch trace                     |  |  |  |  |
| 3     | 0                                 | F            | 0000 0010 = 0x02  | 9                 | FR4 10 inch trace                    |  |  |  |  |
| 4     | 0                                 | 1            | 0000 0011 = 0x03  | 11.5              | FR4 15 inch trace                    |  |  |  |  |
| 5     | R                                 | 0            | 0000 0111 = 0x07  | 14                | FR4 20 inch trace                    |  |  |  |  |
| 6     | R                                 | R            | 0001 0101 = 0x15  | 15                | FR4 25 inch trace                    |  |  |  |  |
| 7     | R                                 | F            | 0000 1011 = 0x0B  | 17                | FR4 25 inch trace                    |  |  |  |  |
| 8     | R                                 | 1            | 0000 1111 = 0x0F  | 19                | 7m 30 AWG Cable                      |  |  |  |  |
| 9     | F                                 | 0            | 0101 0101 = 0x55  | 20                | FR4 30 inch trace                    |  |  |  |  |
| 10    | F                                 | R            | 0001 1111 = 0x1F  | 23                | 8m 30 AWG Cable<br>FR4 35 inch trace |  |  |  |  |
| 11    | F                                 | F            | 0010 1111 = 0x2F  | 25                | 10m 30 AWG Cable                     |  |  |  |  |
| 12    | F                                 | 1            | 0011 1111 = 0x3F  | 27                |                                      |  |  |  |  |
| 13    | 1                                 | 0            | 1010 1010 = 0xAA  | 30                |                                      |  |  |  |  |
| 14    | 1                                 | R            | 0111 1111 = 0x7F  | 31                | 10m - 12m, Cable                     |  |  |  |  |
| 15    | 1                                 | F            | 1011 1111 = 0xBF  | 33                |                                      |  |  |  |  |
| 16    | 1                                 | 1            | 1111 1111 = 0xFF  | 34                |                                      |  |  |  |  |

Table 3. Equalizer Settings

 Settings are approximate and will change based on PCB material, trace dimensions, and driver waveform characteristics. Optimal EQ settings should be determined via simulation and prototype verification.

| Level | VOD_SEL <sup>(1)(2)</sup> | DEMA/B | SMBus Register<br>DEM Level | SMBus Register<br>VOD Level | VOD (mVpp) | DEM (dB) |
|-------|---------------------------|--------|-----------------------------|-----------------------------|------------|----------|
| 1     | 0                         | 0      | 000                         | 000                         | 700        | 0        |
| 2     | 0                         | F      | 010                         | 000                         | 700        | -3.5     |
| 3     | 0                         | R      | 011                         | 000                         | 700        | -6       |
| 4     | 0                         | 1      | 101                         | 000                         | 700        | -9       |
| 5     | F                         | 0      | 000                         | 011                         | 1000       | 0        |
| 6     | F                         | F      | 010                         | 011                         | 1000       | -3.5     |
| 7     | F                         | R      | 011                         | 011                         | 1000       | -6       |
| 8     | F                         | 1      | 101                         | 011                         | 1000       | -9       |
| 9     | R                         | 0      | 000                         | 101                         | 1200       | -0       |
| 10    | R                         | F      | 010                         | 101                         | 1200       | -3.5     |
| 11    | R                         | R      | 011                         | 101                         | 1200       | -6       |
| 12    | R                         | 1      | 101                         | 101                         | 1200       | -9       |
| 13    | 1                         | 0      | 000                         | 100                         | 1100       | 0        |
| 14    | 1                         | F      | 001                         | 100                         | 1100       | -1.5     |
| 15    | 1                         | R      | 001                         | 110                         | 1300       | -1.5     |
| 16    | 1                         | 1      | 010                         | 110                         | 1300       | -3.5     |

## Table 4. De-Emphasis and Output Voltage Setting

(1) When VOD\_SEL is in the Logic 1 state (1 kΩ resistor to VIN or VDD), the DS100BR210 will support 10G-KR back-channel communication using pin control.

(2) In SMBus Mode, if VOD\_SEL is in the Logic 1 state (1 kΩ resistor to VIN or VDD), the DS100BR210 AD0-AD3 pins are internally forced to 0.

## 8.5 Programming

## 8.5.1 System Management Bus (SMBus) and Configuration Registers

The System Management Bus interface is compatible with the SMBus 2.0 physical layer specification. Tie ENSMB = 1 k $\Omega$  to VDD (2.5 V mode) or VIN (3.3 V mode) to enable SMBus Slave Mode and allow access to the configuration registers.

The DS100BR210 uses AD[3:0] inputs in both SMBus Modes. These AD[3:0] pins are the user set SMBus slave address inputs and have internal pull-downs. Based on the SMBus 2.0 specification, the DS100BR210 has a 7-bit slave address. The LSB is set to 0'b (for a WRITE). When AD[3:0] pins are left floating or pulled low, AD[3:0] = 0000'b, and the device default address byte is 0xB0. The device supports up to 16 address bytes, as shown in Table 5.

| T | INSTRUMENTS |
|---|-------------|
|   |             |

// Texas

www.ti.com

| Table 5. Device Slave Address Bytes |                                                        |                           |  |  |  |
|-------------------------------------|--------------------------------------------------------|---------------------------|--|--|--|
| AD[3:0] SETTINGS                    | FULL SLAVE ADDRESS BYTE<br>(7-Bit ADDRESS + WRITE BIT) | 7-Bit SLAVE ADDRESS (HEX) |  |  |  |
| 0000                                | B0                                                     | 58                        |  |  |  |
| 0001                                | B2                                                     | 59                        |  |  |  |
| 0010                                | B4                                                     | 5A                        |  |  |  |
| 0011                                | B6                                                     | 5B                        |  |  |  |
| 0100                                | B8                                                     | 5C                        |  |  |  |
| 0101                                | BA                                                     | 5D                        |  |  |  |
| 0110                                | BC                                                     | 5E                        |  |  |  |
| 0111                                | BE                                                     | 5F                        |  |  |  |
| 1000                                | C0                                                     | 60                        |  |  |  |
| 1001                                | C2                                                     | 61                        |  |  |  |
| 1010                                | C4                                                     | 62                        |  |  |  |
| 1011                                | C6                                                     | 63                        |  |  |  |
| 1100                                | C8                                                     | 64                        |  |  |  |
| 1101                                | CA                                                     | 65                        |  |  |  |
| 1110                                | CC                                                     | 66                        |  |  |  |
| 1111                                | CE                                                     | 67                        |  |  |  |

The SDA and SCL pins are 3.3 V tolerant, but are not 5 V tolerant. An external pull-up resistor is required on the SDA and SCL line. The resistor value can be from 2 k $\Omega$  to 5 k $\Omega$  depending on the voltage, loading, and speed.

#### 8.5.2 Transfer Of Data Via the SMBus

During normal operation, the data on SDA must be stable during the time when SCL is High.

There are three unique states for the SMBus:

**START:** A High-to-Low transition on SDA while SCL is High indicates a message START condition.

**STOP:** A Low-to-High transition on SDA while SCL is High indicates a message STOP condition.

**IDLE:** If SCL and SDA are both High for a time exceeding  $t_{BUF}$  from the last detected STOP condition or if they are High for a total exceeding the maximum specification for  $t_{HIGH}$ , then the bus will transfer to the IDLE state.

#### 8.5.3 SMBus Transactions

The device supports WRITE and READ transactions. See Table 9 for register address, type (Read/Write, Read Only), default value, and function information.

#### 8.5.4 Writing a Register

To write a register, the following protocol is used (see SMBus 2.0 specification):

- 1. The Host drives a START condition, the 7-bit SMBus address, and a "0" indicating a WRITE.
- 2. The Device (Slave) drives the ACK bit ("0").
- 3. The Host drives the 8-bit Register Address.
- 4. The Device drives an ACK bit ("0").
- 5. The Host drive the 8-bit data byte.
- 6. The Device drives an ACK bit ("0").
- 7. The Host drives a STOP condition.

Once the WRITE transaction is completed, the bus goes IDLE and communication with other SMBus devices may now occur.



#### 8.5.5 Reading a Register

- To read a register, the following protocol is used (see SMBus 2.0 specification):
- 1. The Host drives a START condition, the 7-bit SMBus address, and a "0" indicating a WRITE.
- 2. The Device (Slave) drives the ACK bit ("0").
- 3. The Host drives the 8-bit Register Address.
- 4. The Device drives an ACK bit ("0").
- 5. The Host drives a START condition.
- 6. The Host drives the 7-bit SMBus Address, and a "1" indicating a READ.
- 7. The Device drives an ACK bit "0".
- 8. The Device drives the 8-bit data value (register contents).
- 9. The Host drives a NACK bit "1" indicating end of the READ transfer.
- 10. The Host drives a STOP condition.

Once the READ transaction is completed, the bus goes IDLE and communication with other SMBus devices may now occur.

Please see Table 9 for more information.

## 8.5.6 EEPROM Programming

The DS100BR210 supports reading directly from an external EEPROM device by implementing SMBus Master mode. When used in SMBus Master mode, the DS100BR210 will read directly from a specific location in the external EEPROM. When designing a system that uses external EEPROM, the following guidelines should be followed:

- Set the DS100BR210 in SMBus Master Mode.
  - ENSMB (Pin 3) = Float
- The external EEPROM device must support 1 MHz operation.
- The external EEPROM device address byte must be 0xA0.
- Set the AD[3:0] inputs for SMBus address byte. When AD[3:0] = 0000'b, the device address byte is 0xB0.
- The device address can be set with the use of the AD[3:0] input up to 16 different addresses. Use the example below to set each of the SMBus addresses.
  - AD[3:0] = 0001'b, the device address byte is 0xB2
  - AD[3:0] = 0010'b, the device address byte is 0xB4
  - AD[3:0] = 0011'b, the device address byte is 0xB6
  - AD[3:0] = 0100'b, the device address byte is 0xB8
- The master implementation in the DS100BR210 supports multiple devices reading from one EEPROM. When tying multiple devices to the SDA and SCL pins, use these guidelines:
  - Use adjacent SMBus addresses for the 4 devices
  - Use a pull-up resistor on SDA; value =  $4.7 \text{ k}\Omega$
  - Use a pull-up resistor on SCL: value =  $4.7 \text{ k}\Omega$
  - Daisy-chain READEN (Pin 17) and DONE (Pin 18) from one device to the next device in the sequence.
    - 1. Tie READEN of the 1st device in the chain (U1) to GND
    - 2. Tie DONE of U1 to READEN of U2
    - 3. Tie DONE of U2 to READEN of U3
    - 4. Tie DONE of U3 to READEN of U4
    - 5. Optional: Tie DONE of U4 to a LED to show each of the devices have been loaded successfully

#### DS100BR210

SNLS348E-OCTOBER 2011-REVISED JANUARY 2015



www.ti.com

## 8.5.6.1 Master EEPROM Programming

Below is an example of a 2 kbits (256 x 8-bit) EEPROM in hex format for the DS100BR210 device. The first 3 bytes of the EEPROM always contain a header common and necessary to control initialization of all devices connected to the same SMBus line. There is a CRC enable flag to enable or disable CRC checking. There is a MAP bit to flag the presence of an address map that specifies the configuration data start address in the EEPROM. If the MAP bit is not present, the configuration data start address immediately follows the 3-byte base header. A bit to indicate an EEPROM size > 256 bytes is necessary to address the EEPROM properly. There are 37 bytes of data size for each DS100BR210 device. For more details about EEPROM programming and Master mode, refer to SNLA228.

| 1 |    |                                                    |
|---|----|----------------------------------------------------|
|   | 1  | :100000000000200000407002FED4002FED4002FC4         |
|   | 2  | :10001000AD4002FAD400005F568005F5A8005F5AE9        |
|   | 3  | :100020008005F\$A800005454 00000000000000A8        |
|   | 4  | :10003000000000000000000000000000000000            |
|   | 5  | :10004000000000000000000000000000000000            |
|   | 6  | :10005000000000000000000000000000000000            |
|   | 7  | :10006000000000000000000000000000000000            |
|   | 8  | :10007000000000000000000000000000000000            |
|   | 9  | :10008000000000000000000000000000000000            |
|   | 10 | :10009000000000000000000000000000000000            |
|   | 11 | :1000A000000000000000000000000000000000            |
|   | 12 | :10008000000000000000000000000000000000            |
|   | 13 | :10000000000000000000000000000000000000            |
|   | 14 | :10000000000000000000000000000000000000            |
|   | 15 | :1000E000000000000000000000000000000000            |
|   | 16 | :1000F000000000000000000000000000000000            |
|   | 17 | :00000001/FF                                       |
|   | 18 |                                                    |
|   |    |                                                    |
|   | CR | C-8 based on 40 bytes of Insert the CRC value here |
|   |    | a in this shaded area                              |
|   |    | MAX EEPROM Burst = 32                              |
|   | CR | C Polynomial = 0x07                                |

Figure 8. Typical EEPROM Data Set

#### NOTE

The maximum EEPROM size supported is 8 kbits (1024 x 8 bits).

The CRC-8 calculation is performed for each device on the first 3 bytes of header information plus the 37 bytes of data for the DS100BR210 or 40 bytes in total. The result of this calculation is placed immediately after the DS100BR210 data in the EEPROM which ends with "5454". The CRC-8 in the DS100BR210 uses a polynomial =  $x^8 + x^2 + x + 1$ .

There are two pins that provide unique functions in SMBus Master mode:

- DONE
- READEN

When the DS100BR210 is powered up in SMBus Master mode, it reads its configuration from the external EEPROM when the READEN pin goes low. When the DS100BR210 is finished reading its configuration from the external EEPROM, it drives the DONE pin low. In applications where there is more than one DS100BR210 on the same SMBus, bus contention can result if more than one DS100BR210 tries to take control of the SMBus at the same time. The READEN and DONE pins prevent this bus contention. The system should be designed so that the READEN pin from one DS100BR210 in the system is driven low on power-up. This DS100BR210 will take command of the SMBus on power-up and will read its initial configuration from the external EEPROM. When the first DS100BR210 is finished reading its configuration, it will drive the DONE pin low. This pin should be



connected to the READEN pin of another DS100BR210. When this second DS100BR210 senses its READEN pin driven low, it will take command of the SMBus and read its initial configuration from the external EEPROM, after which it will set its DONE pin low. By connecting the DONE pin of each DS100BR210 to the READEN pin of the next DS100BR210, each DS100BR210 can read its initial configuration from the EEPROM without causing bus contention.

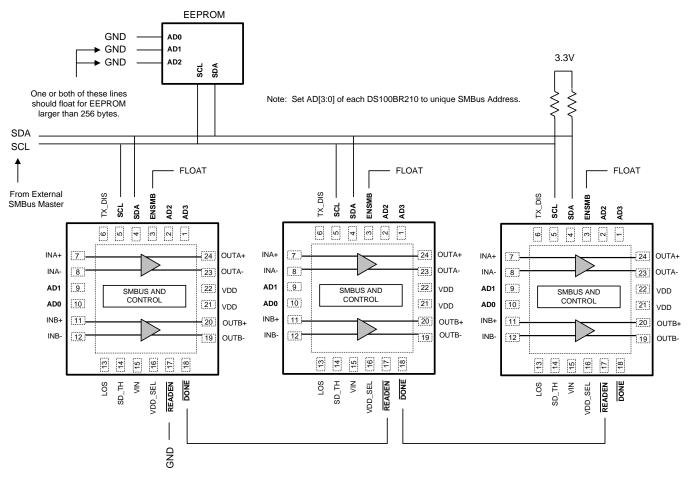



Figure 9. Typical Multi-Device EEPROM Connection Diagram

# 8.5.6.2 EEPROM Address Mapping

A detailed EEPROM Address Mapping for a single device is shown in Table 6. For instances where multiple devices are written to EEPROM, the device starting address definitions align starting with Byte 0x03. A register map overview for a multi-device EEPROM address map is shown in Table 7.

## DS100BR210

SNLS348E-OCTOBER 2011-REVISED JANUARY 2015



www.ti.com

# Table 6. Single Device with Default Value

|                  |               |        |                             |                             | rable of enigie             |                             |                             |                             |                             |                             |
|------------------|---------------|--------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| EEPROM A         | Address       | s Byte | BIT 7                       | BIT 6                       | BIT 5                       | BIT 4                       | BIT 3                       | BIT 2                       | BIT 1                       | BIT 0                       |
| Description      |               | 0x00   | CRC_EN                      | Address Map<br>Present      | EEPROM > 256<br>Bytes       | Reserved                    | DEVICE<br>COUNT[3]          | DEVICE<br>COUNT[2]          | DEVICE<br>COUNT[1]          | DEVICE<br>COUNT[0]          |
| Default<br>√alue | 0x00          | 0x00   | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           |
| Description      |               |        | Reserved                    |
| Default<br>√alue | 0x00          | 0x01   | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           |
| Description      |               | 0x02   | Max EEPROM<br>Burst size[7] | Max EEPROM<br>Burst size[6] | Max EEPROM<br>Burst size[5] | Max EEPROM<br>Burst size[4] | Max EEPROM<br>Burst size[3] | Max EEPROM<br>Burst size[2] | Max EEPROM<br>Burst size[1] | Max EEPROM<br>Burst size[0] |
| Default<br>∕alue | 0x00          | 0x02   | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           |
| Description      |               |        | Cont_talk_EN_CH<br>A        | Cont_talk_EN_CH<br>B        | Reserved                    | Reserved                    | Reserved                    | Sel_LOS                     | Reserved                    | Reserved                    |
| SMBus Reg        | gister        | 0x03   | 0x01[7]                     | 0x01[6]                     | 0x01[5]                     | 0x01[4]                     | 0x01[3]                     | 0x01[2]                     | 0x01[1]                     | 0x01[0]                     |
| Default<br>/alue | 0x00          |        | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           |
| Description      |               |        | Ovrd_LOS                    | LOS_Value                   | PWDN_Inputs                 | PWDN_Osc                    | Reserved                    | eSATA En CHA                | eSATA En CHB                | Ovrd TX_DIS                 |
| SMBus Reg        | gister        | 0x04   | 0x02[5]                     | 0x02[4]                     | 0x02[3]                     | 0x02[2]                     | 0x02[0]                     | 0x04[7]                     | 0x04[6]                     | 0x04[5]                     |
| Default<br>∕alue | 0x00          | ene :  | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           |
| Description      |               |        | TX_DIS CHA                  | TX_DIS CHB                  | Reserved                    | EQ Stage 4 CHB              | EQ Stage 4 CHA              | Reserved                    | Ovrd IDLE_TH                | Reserved                    |
| SMBus Reg        | gister        | 0x05   | 0x04[4]                     | 0x04[3]                     | 0x04[2]                     | 0x04[1]                     | 0x04[0]                     | 0x06[4]                     | 0x08[6]                     | 0x08[5]                     |
| Default<br>/alue | 0x04          | UNUU   | 0                           | 0                           | 0                           | 0                           | 0                           | 1                           | 0                           | 0                           |
| Description      |               |        | Ovrd IDLE                   | Reserved                    | Ovrd Out_Mode               | Ovrd DEM                    | Reserved                    | Reserved                    | Reserved                    | Reserved                    |
| SMBus Reg        | MBus Register |        | 0x08[4]                     | 0x08[3]                     | 0x08[2]                     | 0x08[1]                     | 0x08[0]                     | 0x0B[6]                     | 0x0B[5]                     | 0x0B[4]                     |
| Default<br>/alue | 0x07          | 0x06   | 0                           | 0                           | 0                           | 0                           | 0                           | 1                           | 1                           | 1                           |
| Description      |               |        | Reserved                    | Reserved                    | Reserved                    | Reserved                    | CHA_Idle_Auto               | CHA_ldle_Sel                | Reserved                    | Reserved                    |
| SMBus Register   |               | 0x07   | 0x0B[3]                     | 0x0B[2]                     | 0x0B[1]                     | 0x0B[0]                     | 0x0E[5]                     | 0x0E[4]                     | 0x0E[3]                     | 0x0E[2]                     |
| Default<br>/alue | 0x00          | 0.01   | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           | 0                           |

| EEPROM A         | Address       | Byte  | BIT 7           | BIT 6           | BIT 5           | BIT 4           | BIT 3           | BIT 2           | BIT 1           | BIT 0           |
|------------------|---------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Description      |               |       | CHA_EQ[7]       | CHA_EQ[6]       | CHA_EQ[5]       | CHA_EQ[4]       | CHA_EQ[3]       | CHA_EQ[2]       | CH0_EQ[1]       | CH0_EQ[0]       |
| SMBus Reg        | UXUC          |       | 0x0F[7]         | 0x0F[6]         | 0x0F[5]         | 0x0F[4]         | 0x0F[3]         | 0x0F[2]         | 0x0F[1]         | 0x0F[0]         |
| Default<br>Value | 0x2F          | 0,00  | 0               | 0               | 1               | 0               | 1               | 1               | 1               | 1               |
| Description      |               |       | CHA_Sel SCP     | CHA_Out Mode    | Reserved        | Reserved        | Reserved        | Reserved        | Reserved        | Reserved        |
| SMBus Reg        | MBus Register |       | 0x10[7]         | 0x10[6]         | 0x10[5]         | 0x10[4]         | 0x10[3]         | 0x10[2]         | 0x10[1]         | 0x10[0]         |
| Default<br>Value | 0xED          | 0x09  | 1               | 1               | 1               | 0               | 1               | 1               | 0               | 1               |
| Description      |               |       | CHA_DEM[2]      | CHA_DEM[1]      | CHA_DEM[0]      | Reserved        | CHA_ldle_ThA[1] | CHA_Idle_ThA[0] | CHA_Idle_ThD[1] | CHA_Idle_ThD[0] |
| SMBus Reg        | gister        | 0x0A  | 0x11[2]         | 0x11[1]         | 0x11[0]         | 0x12[7]         | 0x12[3]         | 0x12[2]         | 0x12[1]         | 0x12[0]         |
| Default<br>Value | 0x40          | UND/Y | 0               | 1               | 0               | 0               | 0               | 0               | 0               | 0               |
| Description      |               |       | CHB_Idle_Auto   | CHB_Idle_Sel    | Reserved        | Reserved        | CHB_EQ[7]       | CHB_EQ[6]       | CHB_EQ[5]       | CHB_EQ[4]       |
| SMBus Reg        | gister        | 0x0B  | 0x15[5]         | 0x15[4]         | 0x15[3]         | 0x15[2]         | 0x16[7]         | 0x16[6]         | 0x16[5]         | 0x16[4]         |
| Default<br>Value | 0x02          | 0X0B  | 0               | 0               | 0               | 0               | 0               | 0               | 1               | 0               |
| Description      |               |       | CHB_EQ[3]       | CHB_EQ[2]       | CHB_EQ[1]       | CHB_EQ[0]       | CHB_Sel SCP     | CHB_Out Mode    | Reserved        | Reserved        |
| SMBus Reg        | gister        | 0x0C  | 0x16[3]         | 0x16[2]         | 0x16[1]         | 0x16[0]         | 0x17[7]         | 0x17[6]         | 0x17[5]         | 0x17[4]         |
| Default<br>Value | 0xFE          | 0.000 | 1               | 1               | 1               | 1               | 1               | 1               | 1               | 0               |
| Description      |               |       | Reserved        | Reserved        | Reserved        | Reserved        | CHB_DEM[2]      | CHB_DEM[1]      | CHB_DEM[0]      | Reserved        |
| SMBus Reg        | gister        | 0x0D  | 0x17[3]         | 0x17[2]         | 0x17[1]         | 0x17[0]         | 0x18[2]         | 0x18[1]         | 0x18[0]         | 0x19[7]         |
| Default<br>Value | 0xD4          |       | 1               | 1               | 0               | 1               | 0               | 1               | 0               | 0               |
| Description      |               |       | CHB_Idle_ThA[1] | CHB_Idle_ThA[0] | CHB_ldle_ThD[1] | CHB_Idle_ThD[0] | Reserved        | Reserved        | Reserved        | Reserved        |
| SMBus Reg        | gister        | 0x0E  | 0x19[3]         | 0x19[2]         | 0x19[1]         | 0x19[0]         | 0x1C[5]         | 0x1C[4]         | 0x1C[3]         | 0x1C[2]         |
| Default<br>Value | 0x00          | OXOL  | 0               | 0               | 0               | 0               | 0               | 0               | 0               | 0               |
| Description      |               |       | Reserved        |
|                  |               | 0x0F  | 0x1D[7]         | 0x1D[6]         | 0x1D[5]         | 0x1D[4]         | 0x1D[3]         | 0x1D[2]         | 0x1D[1]         | 0x1D[0]         |
| Default<br>Value | 0x2F          | 0,01  | 0               | 0               | 1               | 0               | 1               | 1               | 1               | 1               |

## DS100BR210

SNLS348E - OCTOBER 2011 - REVISED JANUARY 2015



www.ti.com

| EEPROM Address Byte |        | Byte   | BIT 7         | BIT 6      | BIT 5    | BIT 4    | BIT 3          | BIT 2          | BIT 1          | BIT 0         |
|---------------------|--------|--------|---------------|------------|----------|----------|----------------|----------------|----------------|---------------|
| Description         |        |        | Reserved      | Reserved   | Reserved | Reserved | Reserved       | Reserved       | Reserved       | Reserved      |
| SMBus Reg           | gister | 0x10   | 0x1E[7]       | 0x1E[6]    | 0x1E[5]  | 0x1E[4]  | 0x1E[3]        | 0x1E[2]        | 0x1E[1]        | 0x1E[0]       |
| Default<br>Value    | 0xAD   | 0,10   | 1             | 0          | 1        | 0        | 1              | 1              | 0              | 1             |
| Description         |        |        | Reserved      | Reserved   | Reserved | Reserved | Reserved       | Reserved       | Reserved       | Reserved      |
| SMBus Reg           | gister | 0x11   | 0x1F[2]       | 0x1F[1]    | 0x1F[0]  | 0x20[7]  | 0x20[3]        | 0x20[2]        | 0x20[1]        | 0x20[0]       |
| Default<br>Value    | 0x40   | 0.000  | 0             | 1          | 0        | 0        | 0              | 0              | 0              | 0             |
| Description         | n      |        | Reserved      | Reserved   | Reserved | Reserved | Reserved       | Reserved       | Reserved       | Reserved      |
| SMBus Reg           | gister | 0x12   | 0x23[5]       | 0x23[4]    | 0x23[3]  | 0x23[2]  | 0x24[7]        | 0x24[6]        | 0x24[5]        | 0x24[4]       |
| Default<br>Value    | 0x02   | UNIT 2 | 0             | 0          | 0        | 0        | 0              | 0              | 1              | 0             |
| Description         |        |        | Reserved      | Reserved   | Reserved | Reserved | Reserved       | Reserved       | Reserved       | CHA_VOD[2]    |
| SMBus Reg           |        |        | 0x24[3]       | 0x24[2]    | 0x24[1]  | 0x24[0]  | 0x25[7]        | 0x25[6]        | 0x25[5]        | 0x25[4]       |
| Default<br>Value    | 0xFA   | 0x13   | 1             | 1          | 1        | 1        | 1              | 0              | 1              | 0             |
| Description         |        |        | CHA_VOD[1]    | CHA_VOD[0] | Reserved | Reserved | Reserved       | Reserved       | Reserved       | Reserved      |
| SMBus Reg           | gister | 0x14   | 0x25[3]       | 0x25[2]    | 0x25[1]  | 0x25[0]  | 0x26[2]        | 0x26[1]        | 0x26[0]        | 0x27[7]       |
| Default<br>Value    | 0xD4   | UX I I | 1             | 1          | 0        | 1        | 0              | 1              | 0              | 0             |
| Description         |        |        | Reserved      | Reserved   | Reserved | Reserved | Ovrd_Fast IDLE | hi_idle_th_CHA | hi_idle_th_CHB | fast_idle_CHA |
| SMBus Reg           | gister | 0x15   | 0x27[3]       | 0x27[2]    | 0x27[1]  | 0x27[0]  | 0x28[6]        | 0x28[5]        | 0x28[4]        | 0x28[3]       |
| Default<br>Value    | 0x00   | 0,10   | 0             | 0          | 0        | 0        | 0              | 0              | 0              | 0             |
| Description         |        |        | fast_idle_CHB | Reserved   | Reserved | Reserved | Reserved       | Reserved       | Reserved       | Reserved      |
| SMBus Reg           | gister | 0x16   | 0x28[2]       | 0x28[1]    | 0x28[0]  | 0x2B[5]  | 0x2B[4]        | 0x2B[3]        | 0x2B[2]        | 0x2C[7]       |
| Default<br>Value    | 0x00   | 5710   | 0             | 0          | 0        | 0        | 0              | 0              | 0              | 0             |
| Description         |        |        | Reserved      | Reserved   | Reserved | Reserved | Reserved       | Reserved       | Reserved       | Reserved      |
| SMBus Register      |        | 0x17   | 0x2C[6]       | 0x2C[5]    | 0x2C[4]  | 0x2C[3]  | 0x2C[2]        | 0x2C[1]        | 0x2C[0]        | 0x2D[7]       |
| Default<br>Value    | 0x5F   | 5717   | 0             | 1          | 0        | 1        | 1              | 1              | 1              | 1             |

| EEPROM Address Byte |               | BIT 7  | BIT 6    | BIT 5    | BIT 4      | BIT 3      | BIT 2      | BIT 1    | BIT 0    |          |
|---------------------|---------------|--------|----------|----------|------------|------------|------------|----------|----------|----------|
| Description         |               |        | Reserved | Reserved | CHB_VOD[2] | CHB_VOD[1] | CHB_VOD[0] | Reserved | Reserved | Reserved |
| SMBus Reg           | gister        | 0x18   | 0x2D[6]  | 0x2D[5]  | 0x2D[4]    | 0x2D[3]    | 0x2D[2]    | 0x2D[1]  | 0x2D[0]  | 0x2E[2]  |
| Default<br>/alue    | 0x5A          | 0,10   | 0        | 1        | 0          | 1          | 1          | 0        | 1        | 0        |
| Description         |               |        | Reserved | Reserved | Reserved   | Reserved   | Reserved   | Reserved | Reserved | Reserved |
| MBus Reg            | gister        | 0x19   | 0x2E[1]  | 0x2E[0]  | 0x2F[7]    | 0x2F[3]    | 0x2F[2]    | 0x2F[1]  | 0x2F[0]  | 0x32[5]  |
| Default<br>/alue    | 0x80          | ox ro  | 1        | 0        | 0          | 0          | 0          | 0        | 0        | 0        |
| Description         |               |        | Reserved | Reserved | Reserved   | Reserved   | Reserved   | Reserved | Reserved | Reserved |
| SMBus Reg           | gister        | 0x1A   | 0x32[4]  | 0x32[3]  | 0x32[2]    | 0x33[7]    | 0x33[6]    | 0x33[5]  | 0x33[4]  | 0x33[3]  |
| Default<br>Value    | 0x05          | 0XII/  | 0        | 0        | 0          | 0          | 0          | 1        | 0        | 1        |
| Description         |               |        | Reserved | Reserved | Reserved   | Reserved   | Reserved   | Reserved | Reserved | Reserved |
| SMBus Reg           | MDue Decister |        | 0x33[2]  | 0x33[1]  | 0x33[0]    | 0x34[7]    | 0x34[6]    | 0x34[5]  | 0x34[4]  | 0x34[3]  |
| Default<br>Value    | 0xF5          | 0x1B   | 1        | 1        | 1          | 1          | 0          | 1        | 0        | 1        |
| Description         |               |        | Reserved | Reserved | Reserved   | Reserved   | Reserved   | Reserved | Reserved | Reserved |
| SMBus Reg           | gister        | 0x1C   | 0x34[2]  | 0x34[1]  | 0x34[0]    | 0x35[2]    | 0x35[1]    | 0x35[0]  | 0x36[7]  | 0x36[3]  |
| Default<br>√alue    | 0xA8          | ox i o | 1        | 0        | 1          | 0          | 1          | 0        | 0        | 0        |
| Description         |               |        | Reserved | Reserved | Reserved   | Reserved   | Reserved   | Reserved | Reserved | Reserved |
| SMBus Reg           | gister        | 0x1D   | 0x36[2]  | 0x36[1]  | 0x36[0]    | 0x39[5]    | 0x39[4]    | 0x39[3]  | 0x39[2]  | 0x3A[7]  |
| Default<br>Value    | 0x00          | OXID   | 0        | 0        | 0          | 0          | 0          | 0        | 0        | 0        |
| Description         |               |        | Reserved | Reserved | Reserved   | Reserved   | Reserved   | Reserved | Reserved | Reserved |
| SMBus Reg           | gister        | 0x1E   | 0x3A[6]  | 0x3A[5]  | 0x3A[4]    | 0x3A[3]    | 0x3A[2]    | 0x3A[1]  | 0x3A[0]  | 0x3B[7]  |
| Default<br>√alue    | 0x5F          | UNIL   | 0        | 1        | 0          | 1          | 1          | 1        | 1        | 1        |
| Description         |               |        | Reserved | Reserved | Reserved   | Reserved   | Reserved   | Reserved | Reserved | Reserved |
| SMBus Register      |               | 0x1F   | 0x3B[6]  | 0x3B[5]  | 0x3B[4]    | 0x3B[3]    | 0x3B[2]    | 0x3B[1]  | 0x3B[0]  | 0x3C[2]  |
| Default<br>√alue    | 0x5A          | 5711   | 0        | 1        | 0          | 1          | 1          | 0        | 1        | 0        |

## DS100BR210

SNLS348E - OCTOBER 2011 - REVISED JANUARY 2015



www.ti.com

| EEPROM Address Byte |        | BIT 7            | BIT 6    | BIT 5    | BIT 4    | BIT 3    | BIT 2    | BIT 1    | BIT 0    |          |
|---------------------|--------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Description         |        |                  | Reserved |
| SMBus Reg           | gister | 0x20             | 0x3C[1]  | 0x3C[0]  | 0x3D[7]  | 0x3D[3]  | 0x3D[2]  | 0x3D[1]  | 0x3D[0]  | 0x40[5]  |
| Default<br>/alue    | 0x80   | 0,20             | 1        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Description         |        | 0x21 0<br>0<br>F | Reserved |
| 6MBus Reg           | gister | 0x21             | 0x40[4]  | 0x40[3]  | 0x40[2]  | 0x41[7]  | 0x41[6]  | 0x41[5]  | 0x41[4]  | 0x41[3]  |
| Default<br>/alue    | 0x05   | UNE I            | 0        | 0        | 0        | 0        | 0        | 1        | 0        | 1        |
| Description         |        | -                | Reserved |
| SMBus Reg           | gister | 0x22             | 0x41[2]  | 0x41[1]  | 0x41[0]  | 0x42[7]  | 0x42[6]  | 0x42[5]  | 0x42[4]  | 0x42[3]  |
| Default<br>Value    | 0xF5   | ONEL             | 1        | 1        | 1        | 1        | 0        | 1        | 0        | 1        |
| Description         |        |                  | Reserved |
| SMBus Reg           |        | 0x23             | 0x42[2]  | 0x42[1]  | 0x42[0]  | 0x43[2]  | 0x43[1]  | 0x43[0]  | 0x44[7]  | 0x44[3]  |
| Default<br>Value    | 0xA8   | UNEU             | 1        | 0        | 1        | 0        | 1        | 0        | 0        | 0        |
| Description         |        |                  | Reserved |
| SMBus Reg           | gister | 0x24             | 0x44[2]  | 0x44[1]  | 0x44[0]  | 0x47[3]  | 0x47[2]  | 0x47[1]  | 0x47[0]  | 0x48[7]  |
| Default<br>√alue    | 0x00   | UNE I            | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Description         |        |                  | Reserved |
| SMBus Reg           | gister | 0x25             | 0x48[6]  | 0x4C[7]  | 0x4C[6]  | 0x4C[5]  | 0x4C[4]  | 0x4C[3]  | 0x4C[0]  | 0x59[0]  |
| Default<br>√alue    | 0x00   | 5720             | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Description         |        |                  | Reserved |
| SMBus Reg           | gister | 0x26             | 0x5A[7]  | 0x5A[6]  | 0x5A[5]  | 0x5A[4]  | 0x5A[3]  | 0x5A[2]  | 0x5A[1]  | 0x5A[0]  |
| Default<br>∕alue    | 0x54   | 5.20             | 0        | 1        | 0        | 1        | 0        | 1        | 0        | 0        |
| Description         |        |                  | Reserved |
| SMBus Reg           | gister | 0x27             | 0x5B[7]  | 0x5B[6]  | 0x5B[5]  | 0x5B[4]  | 0x5B[3]  | 0x5B[2]  | 0x5B[1]  | 0x5B[0]  |
| Default<br>Value    | 0x54   | 0.21             | 0        | 1        | 0        | 1        | 0        | 1        | 0        | 0        |

|                     | ADDR | BIT 7       | BIT 6       | BIT 5                 | BIT 4       | BIT 3       | BIT 2       | BIT 1       | BIT 0       |
|---------------------|------|-------------|-------------|-----------------------|-------------|-------------|-------------|-------------|-------------|
|                     | 0    | CRC EN      | Address Map | EEPROM > 256<br>Bytes | Reserved    | COUNT[3]    | COUNT[2]    | COUNT[1]    | COUNT[0]    |
| Header              | 1    | Reserved    | Reserved    | Reserved              | Reserved    | Reserved    | Reserved    | Reserved    | Reserved    |
|                     | 2    | EE Burst[7] | EE Burst[6] | EE Burst[5]           | EE Burst[4] | EE Burst[3] | EE Burst[2] | EE Burst[1] | EE Burst[0] |
| Device 0 3          | 3    | CRC[7]      | CRC[6]      | CRC[5]                | CRC[4]      | CRC[3]      | CRC[2]      | CRC[1]      | CRC[0]      |
| Info                | 4    | EE AD0 [7]  | EE AD0 [6]  | EE AD0 [5]            | EE AD0 [4]  | EE AD0 [3]  | EE AD0 [2]  | EE AD0 [1]  | EE AD0 [0]  |
| Device 1            | 5    | CRC[7]      | CRC[6]      | CRC[5]                | CRC[4]      | CRC[3]      | CRC[2]      | CRC[1]      | CRC[0]      |
| Info                | 6    | EE AD1 [7]  | EE AD1 [6]  | EE AD1 [5]            | EE AD1 [4]  | EE AD1 [3]  | EE AD1 [2]  | EE AD1 [1]  | EE AD1 [0]  |
| Device 2            | 7    | CRC[7]      | CRC[6]      | CRC[5]                | CRC[4]      | CRC[3]      | CRC[2]      | CRC[1]      | CRC[0]      |
| Info                | 8    | EE AD2 [7]  | EE AD2 [6]  | EE AD2 [5]            | EE AD2 [4]  | EE AD2 [3]  | EE AD2 [2]  | EE AD2 [1]  | EE AD2 [0]  |
| Device 3            | 9    | CRC[7]      | CRC[6]      | CRC[5]                | CRC[4]      | CRC[3]      | CRC[2]      | CRC[1]      | CRC[0]      |
| Info                | 10   | EE AD3 [7]  | EE AD3 [6]  | EE AD3 [5]            | EE AD3 [4]  | EE AD3 [3]  | EE AD3 [2]  | EE AD3 [1]  | EE AD3 [0]  |
| Device 0<br>Addr 3  | 11   | RES         | RES         | RES                   | RES         | RES         | Sel_LOS     | RES         | RES         |
| Device 0<br>Addr 4  | 12   | Ovrd_LOS    | LOS_Value   | PWDN Inp              | PWDN OSC    | RES         | eSATA CHA   | eSATA CHB   | Ovrd TX_DIS |
| Device 0<br>Addr 38 | 46   | RES         | RES         | RES                   | RES         | RES         | RES         | RES         | RES         |
| Device 0<br>Addr 39 | 47   | RES         | RES         | RES                   | RES         | RES         | RES         | RES         | RES         |
| Device 1<br>Addr 3  | 48   | RES         | RES         | RES                   | RES         | RES         | Sel_LOS     | RES         | RES         |
| Device 1<br>Addr 4  | 49   | Ovrd_LOS    | LOS_Value   | PWDN Inp              | PWDN OSC    | RES         | eSATA CHA   | eSATA CHB   | Ovrd TX_DIS |
| Device 1<br>Addr 38 | 83   | RES         | RES         | RES                   | RES         | RES         | RES         | RES         | RES         |
| Device 1<br>Addr 39 | 84   | RES         | RES         | RES                   | RES         | RES         | RES         | RES         | RES         |
| Device 2<br>Addr 3  | 85   | RES         | RES         | RES                   | RES         | RES         | Sel_LOS     | RES         | RES         |
| Device 2<br>Addr 4  | 86   | Ovrd_LOS    | LOS_Value   | PWDN Inp              | PWDN OSC    | RES         | eSATA CHA   | eSATA CHB   | Ovrd TX_DIS |

(1) (a) CRC EN = 1; Address Map = 1
 (b) EEPROM > 256 Bytes = 0
 (c) COUNT[3:0] = 0011'b

(d) Note: Multiple DS100BR210 devices may point at the same address space if they have identical programming values.

Copyright © 2011–2015, Texas Instruments Incorporated

# DS100BR210

SNLS348E - OCTOBER 2011-REVISED JANUARY 2015

Table 7. Multi-Device EEPROM Address Map Overview<sup>(1)</sup> (continued)

|                     | ADDR | BIT 7    | BIT 6     | BIT 5    | BIT 4    | BIT 3 | BIT 2     | BIT 1     | BIT 0       |
|---------------------|------|----------|-----------|----------|----------|-------|-----------|-----------|-------------|
| Device 2<br>Addr 38 | 120  | RES      | RES       | RES      | RES      | RES   | RES       | RES       | RES         |
| Device 2<br>Addr 39 | 121  | RES      | RES       | RES      | RES      | RES   | RES       | RES       | RES         |
| Device 3<br>Addr 3  | 122  | RES      | RES       | RES      | RES      | RES   | Sel_LOS   | RES       | RES         |
| Device 3<br>Addr 4  | 123  | Ovrd_LOS | LOS_Value | PWDN Inp | PWDN OSC | RES   | eSATA CHA | eSATA CHB | Ovrd TX_DIS |
| Device 3<br>Addr 38 | 157  | RES      | RES       | RES      | RES      | RES   | RES       | RES       | RES         |
| Device 3<br>Addr 39 | 158  | RES      | RES       | RES      | RES      | RES   | RES       | RES       | RES         |



#### mornom

#### DS100BR210 SNLS348E – OCTOBER 2011–REVISED JANUARY 2015

www.ti.com

## Table 8. Multi DS100BR210 EEPROM Data

| 0 0<br>1 0 | 00 |      |                                                                        |
|------------|----|------|------------------------------------------------------------------------|
| 1 0        | 50 | 0x43 | CRC_EN = 0, Address Map = 1, Device Count = 3 (Devices 0, 1, 2, and 3) |
|            | 01 | 0x00 |                                                                        |
| 2 0        | 02 | 0x08 | EEPROM Burst Size                                                      |
| 3 0        | 03 | 0x00 | CRC not used                                                           |
| 4 0        | 04 | 0x0B | Device 0 Address Location                                              |
| 5 0        | 05 | 0x00 | CRC not used                                                           |
| 6 0        | 06 | 0x30 | Device 1 Address Location                                              |
| 7 0        | 07 | 0x00 | CRC not used                                                           |
| 8 0        | 08 | 0x30 | Device 2 Address Location                                              |
| 9 0        | 09 | 0x00 | CRC not used                                                           |
| 10 0       | AC | 0x0B | Device 3 Address Location                                              |
| 11 0       | OB | 0x00 | Begin Device 0 and Device 3 - Address Offset 3                         |
| 12 0       | OC | 0x00 |                                                                        |
| 13 0       | DD | 0x04 |                                                                        |
| 14 0       | DE | 0x07 |                                                                        |
| 15 0       | DF | 0x00 |                                                                        |
| 16 1       | 10 | 0x2F | Default EQ CHA                                                         |
| 17 1       | 11 | 0xED |                                                                        |
| 18 1       | 12 | 0x40 |                                                                        |
| 19 1       | 13 | 0x02 | Default EQ CHB                                                         |
| 20 1       | 14 | 0xFE | Default EQ CHB                                                         |
| 21 1       | 15 | 0xD4 |                                                                        |
| 22 1       | 16 | 0x00 |                                                                        |
| 23 1       | 17 | 0x2F |                                                                        |
| 24 1       | 18 | 0xAD |                                                                        |
| 25 1       | 19 | 0x40 |                                                                        |
| 26 1       | 1A | 0x02 |                                                                        |
| 27 1       | 1B | 0xFA | BR210 CHA VOD = 1000 mVpp                                              |
| 28 1       | 1C | 0xD4 | BR210 CHA VOD = 1000 mVpp                                              |
| 29 1       | 1D | 0x00 |                                                                        |
| 30 1       | 1E | 0x00 |                                                                        |
| 31 1       | 1F | 0x5F |                                                                        |
| 32 2       | 20 | 0x5A | BR210 CHB VOD = 1000 mVpp                                              |
| 33 2       | 21 | 0x80 |                                                                        |
|            | 22 | 0x05 |                                                                        |
| 35 2       | 23 | 0xF5 |                                                                        |
| 36 2       | 24 | 0xA8 |                                                                        |
| 37 2       | 25 | 0x00 |                                                                        |
|            | 26 | 0x5F |                                                                        |
| 39 2       | 27 | 0x5A |                                                                        |
| 40 2       | 28 | 0x80 |                                                                        |
| 41 2       | 29 | 0x05 |                                                                        |
| 42 2       | 2A | 0xF5 |                                                                        |
| 43 2       | 2B | 0xA8 |                                                                        |
|            | 2C | 0x00 |                                                                        |
| 45 2       | 2D | 0x00 |                                                                        |
| 46 2       | 2E | 0x54 |                                                                        |

DS100BR210 SNLS348E – OCTOBER 2011 – REVISED JANUARY 2015

#### www.ti.com

NSTRUMENTS

Texas

# Table 8. Multi DS100BR210 EEPROM Data (continued)

| EEPROM<br>ADDRESS | ADDRESS<br>(HEX) | EEPROM<br>DATA | COMMENTS                                       |
|-------------------|------------------|----------------|------------------------------------------------|
| 47                | 2F               | 0x54           | End Device 0 and Device 3 - Address Offset 39  |
| 48                | 30               | 0x00           | Begin Device 1 and Device 2 - Address Offset 3 |
| 49                | 31               | 0x00           |                                                |
| 50                | 32               | 0x04           |                                                |
| 51                | 33               | 0x07           |                                                |
| 52                | 34               | 0x00           |                                                |
| 53                | 35               | 0x2F           | Default EQ CHA                                 |
| 54                | 36               | 0xED           |                                                |
| 55                | 37               | 0x40           |                                                |
| 56                | 38               | 0x02           | Default EQ CHB                                 |
| 57                | 39               | 0xFE           | Default EQ CHB                                 |
| 58                | 3A               | 0xD4           |                                                |
| 59                | 3B               | 0x00           |                                                |
| 60                | 3C               | 0x2F           |                                                |
| 61                | 3D               | 0xAD           |                                                |
| 62                | 3E               | 0x40           |                                                |
| 63                | 3F               | 0x02           |                                                |
| 64                | 40               | 0xFA           | BR210 CHA VOD = 1000 mVpp                      |
| 65                | 41               | 0xD4           | BR210 CHA VOD = 1000 mVpp                      |
| 66                | 42               | 0x00           |                                                |
| 67                | 43               | 0x00           |                                                |
| 68                | 44               | 0x5F           |                                                |
| 69                | 45               | 0x5A           | BR210 CHB VOD = 1000 mVpp                      |
| 70                | 46               | 0x80           |                                                |
| 71                | 47               | 0x05           |                                                |
| 72                | 48               | 0xF5           |                                                |
| 73                | 49               | 0xA8           |                                                |
| 74                | 4A               | 0x00           |                                                |
| 75                | 4B               | 0x5F           |                                                |
| 76                | 4C               | 0x5A           |                                                |
| 77                | 4D               | 0x80           |                                                |
| 78                | 4E               | 0x05           |                                                |
| 79                | 4F               | 0xF5           |                                                |
| 80                | 50               | 0xA8           |                                                |
| 81                | 51               | 0x00           |                                                |
| 82                | 52               | 0x00           |                                                |
| 83                | 53               | 0x54           |                                                |
| 84                | 54               | 0x54           | End Device 1 and Device 2 - Address Offset 39  |

Copyright © 2011–2015, Texas Instruments Incorporated



# 8.6 Register Maps

| ADDRESS | REGISTER<br>NAME | BIT | FIELD                          | TYPE | DEFAULT | EEPROM<br>REG BIT | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|------------------|-----|--------------------------------|------|---------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                  | 7   | Reserved                       | R/W  |         |                   | Set bit to 0                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0x00    | Device ID        | 6:3 | SMBus Address<br>[3:0]         | R    | 0x00    |                   | SMBus strap observation                                                                                                                                                                                                                                                                                                                                                                                           |
| 0x00    | Device ID        | 2   | EEPROM Reading<br>Done         | R    | 0,000   |                   | 1 = EEPROM Done Loading<br>0 = EEPROM Loading                                                                                                                                                                                                                                                                                                                                                                     |
|         |                  | 1:0 | Reserved                       | RWSC |         |                   | Set bits to 0                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                  | 7:6 | Idle Control                   |      |         |                   | Continuous Talk Control (Output Always On)<br>[7]: Continuous talk ENABLE (Channel A)<br>[6]: Continuous talk ENABLE (Channel B)                                                                                                                                                                                                                                                                                  |
| 0x01    | Control 1        | 5:3 | Reserved                       | R/W  | 0x00    | Yes               | Set bits to 0                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0x01    | Control 1        | 2   | LOS Select                     | K/VV | 0x00    | res               | LOS Monitor Selection<br>1 = Use LOS from CH B<br>0 = Use LOS from CH A                                                                                                                                                                                                                                                                                                                                           |
|         |                  | 1:0 | Reserved                       |      |         |                   | Set bits to 0                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                  | 7:6 | Reserved                       |      |         |                   | Set bits to 0                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                  | 5   | LOS override                   |      |         | Yes               | <ul><li>1 = LOS pin override enable</li><li>0 = Use Normal Signal Detection</li></ul>                                                                                                                                                                                                                                                                                                                             |
| 0x02    | Control 2        | 4   | LOS override value             | R/W  | 0x00    | Yes               | 1 = Normal Operation<br>0 = Output LOS                                                                                                                                                                                                                                                                                                                                                                            |
|         |                  | 3   | PWDN Inputs                    | -    |         | Yes               | 1 = PWDN                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                  | 2   | PWDN Oscillator                |      |         | Yes               | 0 = Normal Operation                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                  | 1   | Reserved                       |      |         |                   | Set bit to 0                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                  | 0   | Reserved                       |      |         | Yes               | Set bit to 0                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0x03    | Reserved         | 7:0 | Reserved                       | R/W  | 0x00    |                   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                  | 7:6 | eSATA Mode<br>Enable           |      |         |                   | [7] Channel A (1)<br>[6] Channel B (1)                                                                                                                                                                                                                                                                                                                                                                            |
|         |                  | 5   | TX_DIS Override<br>Enable      |      |         |                   | 1 = Override Use Reg 0x04[4:3]<br>0 = Normal Operation - uses pin                                                                                                                                                                                                                                                                                                                                                 |
|         |                  | 4   | TX_DIS Value<br>Channel A      |      |         |                   | 1 = Channel A TX Disabled<br>0 = Channel A TX Enabled                                                                                                                                                                                                                                                                                                                                                             |
|         |                  | 3   | TX_DIS Value<br>Channel B      |      |         |                   | 1 = Channel B TX Disabled<br>0 = Channel B TX Enabled                                                                                                                                                                                                                                                                                                                                                             |
| 0x04    | Control 3        | 2   | Reserved                       | R/W  | 0x00    | Yes               | Set bit to 0                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                  | 1:0 | EQ Stage 4<br>Limiting Control |      |         |                   | [1]: Channel B - EQ Stage 4 Limiting On/Off<br>[0]: Channel A - EQ Stage 4 Limiting On/Off<br>Setting this control bit turns on added voltage<br>gain compared to normal operating range. If the<br>bits are set to 1 (On), the EQ will act as a<br>limiting amplifier, resulting in reduction of<br>overall linear gain characteristics. Turning these<br>bits On is not recommended for 10G-KR<br>applications. |
| 0x05    | Reserved         | 7:0 | Reserved                       | R/W  | 0x00    |                   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                          |

# Table 9. SMBus Slave Mode Register Map

DS100BR210 SNLS348E – OCTOBER 2011 – REVISED JANUARY 2015 TEXAS INSTRUMENTS

www.ti.com

# **Register Maps (continued)**

| ADDRESS   | REGISTER<br>NAME             | BIT | FIELD                      | TYPE | DEFAULT | EEPROM<br>REG BIT | DESCRIPTION                                                                                                                                                                                                                                          |
|-----------|------------------------------|-----|----------------------------|------|---------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                              | 7   | Disable EEPROM<br>CFG      |      |         |                   | Disable Master Mode EEPROM Configuration                                                                                                                                                                                                             |
|           |                              | 6:5 | Reserved                   |      |         |                   | Set bits to 0                                                                                                                                                                                                                                        |
|           |                              | 4   | Reserved                   |      |         | Yes               | Set bit to 1                                                                                                                                                                                                                                         |
| 0x06      | Slave<br>Register<br>Control | 3   | Register Enable            | R/W  | 0x10    |                   | <ul> <li>1 = Enable SMBus Slave Mode Register<br/>Control</li> <li>0 = Disable SMBus Slave Mode Register<br/>Control</li> <li>Note: In order to change VOD, DEM, and EQ<br/>of the channels in slave mode, this bit must<br/>be set to 1.</li> </ul> |
|           |                              | 2:1 | Reserved                   |      |         |                   | Set bits to 0                                                                                                                                                                                                                                        |
|           |                              | 0   | Reserved                   |      |         |                   | Set bit to 0                                                                                                                                                                                                                                         |
|           |                              | 7   | Reserved                   |      |         |                   | Set bit to 0                                                                                                                                                                                                                                         |
| 0.07      | Digital Reset                | 6   | Reset Registers            | DAM  | 0.01    |                   | 1 = Self clearing reset for SMBus registers<br>(register settings return to default values)                                                                                                                                                          |
| 0x07      | and Control                  | 5   | Reset SMBus<br>Master      | R/W  | 0x01    |                   | 1 = Self clearing reset to SMBus master state machine                                                                                                                                                                                                |
|           |                              | 4:0 | Reserved                   |      |         |                   | Set bits to 0 0001'b                                                                                                                                                                                                                                 |
|           |                              | 7   | Reserved                   |      |         |                   | Set bit to 0                                                                                                                                                                                                                                         |
|           |                              | 6   | Override Idle<br>Threshold |      |         | Yes               | 1 = Override by Channel - see Reg 0x13 and<br>0x19<br>0 = SD_TH pin control                                                                                                                                                                          |
|           |                              | 5   | Reserved                   | -    |         | Yes               | Set bit to 0                                                                                                                                                                                                                                         |
|           |                              | 4   | Override IDLE              |      |         | Yes               | 1 = Force IDLE by Channel - see Reg 0x0E<br>and 0x15<br>0 = Normal Operation                                                                                                                                                                         |
| 0x08      | Pin Override                 | 3   | Reserved                   | R/W  | 0x00    |                   | Set bit to 0<br>Note: For all applications operating > 8Gbps,<br>users must set this bit to 1 and enable all<br>channels manually.                                                                                                                   |
|           |                              | 2   | Override Output            |      |         | Yes               | 1 = Enable Output Mode control for individual outputs. See register locations 0x10[6] and 0x17[6].                                                                                                                                                   |
|           |                              | 2   | Mode                       |      |         |                   | 0 = Disable - Outputs are kept in the normal mode of operation allowing VOD and DE adjustments.                                                                                                                                                      |
|           |                              | 1   | Override DEM               |      |         | Yes               | Override De-emphasis (ignore rate)                                                                                                                                                                                                                   |
|           |                              | 0   | Reserved                   |      |         | Yes               | Set bit to 0                                                                                                                                                                                                                                         |
| 0x09-0x0A | Reserved                     | 7:0 | Reserved                   | R/W  | 0x00    |                   | Reserved                                                                                                                                                                                                                                             |
| OVOD      | Boognad                      | 7   | Reserved                   | D/M  | 0,70    |                   | Reserved                                                                                                                                                                                                                                             |
| 0x0B      | Reserved                     | 6:0 | Reserved                   | R/W  | 0x70    | Yes               | Reserved                                                                                                                                                                                                                                             |
| 0x0C      | CH A<br>Analog<br>Override 1 | 7:0 | Reserved                   | R/W  | 0x00    |                   | Set bits to 0x00                                                                                                                                                                                                                                     |
| 0x0D      | CH A<br>Reserved             | 7:0 | Reserved                   | R/W  | 0x00    |                   | Set bits to 0x00.                                                                                                                                                                                                                                    |



# **Register Maps (continued)**

| ADDRESS | REGISTER<br>NAME             | віт | FIELD                            | TYPE     | DEFAULT | EEPROM<br>REG BIT | DESCRIPTION                                                                                                                                                                     |
|---------|------------------------------|-----|----------------------------------|----------|---------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                              | 7:6 | Reserved                         |          |         |                   | Set bits to 0                                                                                                                                                                   |
|         | CH A<br>Idle Control         | 5   | Idle Auto                        | R/W      | 0x00    | Yes               | 1 = Allow IDLE Select control in bit 4<br>0 = Automatic IDLE detect<br>(Must set 0x08[4] = 1 to override pin-select<br>control)                                                 |
| 0x0E    |                              | 4   | Idle Select                      |          |         | Yes               | 1 = Output is muted (electrical IDLE)<br>0 = Output is on<br>(Must set 0x08[4] = 1 to override pin-select<br>control)                                                           |
|         |                              | 3:2 | Reserved                         |          |         | Yes               | Set bits to 0                                                                                                                                                                   |
|         |                              | 1:0 | Reserved                         |          |         |                   | Set bits to 0                                                                                                                                                                   |
| 0x0F    | CH A<br>EQ Setting           | 7:0 | BOOST [7:0]                      | R/W      | 0x2F    | Yes               | EQ Boost Default to 24 dB<br>See Table 3 for Information                                                                                                                        |
|         |                              | 7   | Sel_scp                          |          |         | Yes               | <ul><li>1 = Short Circuit Protection ON</li><li>0 = Short Circuit Protection OFF</li></ul>                                                                                      |
| 0x10    | CH A<br>Control 1            | 6   | Output Mode                      | R/W      | 0xED    | Yes               | 1 = Normal operation<br>0 = 10G-KR operation                                                                                                                                    |
|         |                              | 5:3 | Reserved                         |          |         | Yes               | Set bits to 101'b                                                                                                                                                               |
|         |                              | 2:0 | Reserved                         |          |         | Yes               | Set bits to 101'b                                                                                                                                                               |
|         | CH A<br>Control 2            | 7:5 | Reserved                         | R<br>R/W | 0x82    |                   | Set bits to 100'b                                                                                                                                                               |
|         |                              | 4:3 | Reserved                         |          |         |                   | Set bits to 0                                                                                                                                                                   |
| 0x11    |                              | 2:0 | DEM [2:0]                        |          |         | Yes               | De-Emphasis<br>000'b = -0.0 dB<br>001'b = -1.5 dB<br>010'b = -3.5 dB (Default)<br>011'b = -6.0 dB<br>100'b = -8.0 dB<br>101'b = -9.0 dB<br>110'b = -10.5 dB<br>111'b = -12.0 dB |
|         |                              | 7   | Reserved                         |          | 0x00    | Yes               | Set bit to 0                                                                                                                                                                    |
|         |                              | 6:4 | Reserved                         |          |         |                   | Set bits to 0                                                                                                                                                                   |
| 0x12    | CH A<br>Idle<br>Threshold    | 3:2 | IDLE Assert<br>Threshold[1:0]    | R/W      |         | Yes               | Assert Thresholds<br>Use only if register 0x08 [6] = 1<br>00'b = 180 mVpp (Default)<br>01'b = 160 mVpp<br>10'b = 210 mVpp<br>11'b = 190 mVpp                                    |
|         |                              | 1:0 | IDLE De-assert<br>Threshold[1:0] |          |         | Yes               | De-assert Thresholds<br>Use only if register 0x08 [6] = 1<br>00'b = 110 mVpp (Default)<br>01'b = 100 mVpp<br>10'b = 150 mVpp<br>11'b = 130 mVpp                                 |
| 0x13    | CH B<br>Analog<br>Override 1 | 7:0 | Reserved                         | R/W      | 0x00    |                   | Set bits to 0x00                                                                                                                                                                |
| 0x14    | CH B<br>Reserved             | 7:0 | Reserved                         | R/W      | 0x00    |                   | Set bits to 0x00                                                                                                                                                                |

DS100BR210 SNLS348E – OCTOBER 2011 – REVISED JANUARY 2015 TEXAS INSTRUMENTS

www.ti.com

# **Register Maps (continued)**

| ADDRESS                | REGISTER<br>NAME          | BIT                                     | FIELD                            | TYPE  | DEFAULT | EEPROM<br>REG BIT | DESCRIPTION                                                                                                                                                                               |
|------------------------|---------------------------|-----------------------------------------|----------------------------------|-------|---------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                           | 7:6                                     | Reserved                         |       |         |                   | Set bits to 0                                                                                                                                                                             |
|                        | CH B<br>Idle Control      | 5                                       | Idle Auto                        | R/W   | 0x00    | Yes               | 1 = Allow IDLE Select control in bit 4<br>0 = Automatic IDLE detect<br>(Must set 0x08[4] = 1 to override pin-select<br>control)                                                           |
| 0x15                   |                           | 4                                       | Idle Select                      |       |         | Yes               | 1 = Output is muted (electrical IDLE)<br>0 = Output is on<br>(Must set 0x08[4] = 1 to override pin-select<br>control)                                                                     |
|                        |                           | 3:2                                     | Reserved                         |       |         | Yes               | Set bits to 0                                                                                                                                                                             |
|                        |                           | 1:0                                     | Reserved                         |       |         |                   | Set bits to 0                                                                                                                                                                             |
| 0x16                   | CH B<br>EQ Setting        | 7:0                                     | BOOST [7:0]                      | R/W   | 0x2F    | Yes               | EQ Boost Default to 24 dB<br>See Table 3 for Information                                                                                                                                  |
|                        |                           | 7                                       | Sel_scp                          |       |         | Yes               | 1 = Short Circuit Protection ON<br>0 = Short Circuit Protection OFF                                                                                                                       |
| 0x17                   | CH B<br>Control 1         | 6                                       | Output Mode                      | R/W   | 0xED    | Yes               | 1 = Normal operation<br>0 = 10G-KR operation                                                                                                                                              |
|                        |                           | 5:3                                     | Reserved                         | -     |         | Yes               | Set bits to 101'b                                                                                                                                                                         |
|                        |                           | 2:0                                     | Reserved                         |       |         | Yes               | Set bits to 101'b                                                                                                                                                                         |
|                        |                           | 7:5                                     | Reserved                         | R     | _       |                   | Set bits to 100'b                                                                                                                                                                         |
|                        |                           | 4:3                                     | Reserved                         |       |         |                   | Set bits to 0                                                                                                                                                                             |
| 0x18 CH B<br>Control 2 | -                         | 2:0                                     | DEM [2:0]                        | ] R/W | 0x82    | Yes               | De-Emphasis (Default = -3.5 dB)<br>000'b = -0.0 dB<br>001'b = -1.5 dB<br>010'b = -3.5 dB<br>011'b = -6.0 dB<br>100'b = -8.0 dB<br>101'b = -9.0 dB<br>110'b = -10.5 dB<br>111'b = -12.0 dB |
|                        |                           | 7                                       | Reserved                         |       | 0x00    | Yes               | Set bit to 0                                                                                                                                                                              |
|                        | CH B<br>Idle<br>Threshold | 6:4                                     | Reserved                         |       |         |                   | Set bits to 0                                                                                                                                                                             |
| 0x19                   |                           | 3:2                                     | IDLE Assert<br>Threshold[1:0]    | R/W   |         | Yes               | Assert Thresholds<br>Use only if register 0x08 [6] = 1<br>00'b = 180 mVpp (Default)<br>01'b = 160 mVpp<br>10'b = 210 mVpp<br>11'b = 190 mVpp                                              |
|                        |                           | 1:0                                     | IDLE De-assert<br>Threshold[1:0] |       |         | Yes               | De-assert Thresholds<br>Use only if register 0x08 [6] = 1<br>00'b = 110 mVpp (Default)<br>01'b = 100 mVpp<br>10'b = 150 mVpp<br>11'b = 130 mVpp                                           |
| 0x1A-0x1B              | Reserved                  | 7:0                                     | Reserved                         | R/W   | 0x00    |                   | Reserved                                                                                                                                                                                  |
|                        |                           | 7:6                                     | Reserved                         |       |         |                   | Reserved                                                                                                                                                                                  |
| 0x1C                   | Reserved                  | 5:2                                     | Reserved                         | R/W   | 0x00    | Yes               | Reserved                                                                                                                                                                                  |
|                        |                           | 1:0                                     | Reserved                         |       |         |                   | Reserved                                                                                                                                                                                  |
| 0x1D                   | Reserved                  | 7:0                                     | Reserved                         | R/W   | 0x2F    | Yes               | Reserved                                                                                                                                                                                  |
| 0x1E                   | Reserved                  | 7:0                                     | Reserved                         | R/W   | 0xAD    | Yes               | Reserved                                                                                                                                                                                  |
| 0x1F                   | Reserved                  | 7:3     Reserved       2:0     Reserved | R/W                              | 0x02  |         | Reserved          |                                                                                                                                                                                           |
| U. T                   | 1.0001100                 |                                         |                                  | UNUL  | Yes     | Reserved          |                                                                                                                                                                                           |



# **Register Maps (continued)**

| ADDRESS   | REGISTER<br>NAME    | BIT | FIELD              | TYPE  | DEFAULT | EEPROM<br>REG BIT | DESCRIPTION                                                                                                                                                                     |
|-----------|---------------------|-----|--------------------|-------|---------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                     | 7   | Reserved           |       |         | Yes               | Reserved                                                                                                                                                                        |
| 0x20      | Reserved            | 6:4 | Reserved           | R/W   | 0x00    |                   | Reserved                                                                                                                                                                        |
|           |                     | 3:0 | Reserved           |       |         | Yes               | Reserved                                                                                                                                                                        |
| 0x21-0x22 | Reserved            | 7:0 | Reserved           | R/W   | 0x00    |                   | Reserved                                                                                                                                                                        |
|           |                     | 7:6 | Reserved           |       |         |                   | Set bits to 0                                                                                                                                                                   |
| 0x23      | Reserved            | 5:2 | Reserved           | R/W   | 0x00    | Yes               | Set bits to 0                                                                                                                                                                   |
|           |                     | 1:0 | Reserved           | -     |         |                   | Set bits to 0                                                                                                                                                                   |
| 0x24      | Reserved            | 7:0 | Reserved           | R/W   | 0x2F    | Yes               | Reserved                                                                                                                                                                        |
|           |                     | 7:5 | Reserved           |       |         | Yes               | Set bits to 0                                                                                                                                                                   |
| 0x25      | CH A VOD<br>Control | 4:2 | VOD_CHA[2:0]       | R/W   | 0xAD    | Yes               | VOD Controls for CH A<br>000'b = 700 mVpp<br>001'b = 800 mVpp<br>010'b = 900 mVpp<br>011'b = 1000 mVpp (Default)<br>100'b = 1100 mVpp<br>101'b = 1200 mVpp<br>110'b = 1300 mVpp |
|           |                     | 1:0 | Reserved           |       |         | Yes               | Set bits to 0                                                                                                                                                                   |
|           |                     | 7:3 | Reserved           |       |         |                   | Reserved                                                                                                                                                                        |
| 0x26      | Reserved            | 2:0 | Reserved           | R/W   | 0x02    | Yes               | Reserved                                                                                                                                                                        |
|           |                     | 7   | Reserved           | R/W   | 0x00    | Yes               | Reserved                                                                                                                                                                        |
| 0x27      | Reserved            | 6:4 | Reserved           |       |         |                   | Reserved                                                                                                                                                                        |
|           |                     | 3:0 | Reserved           |       |         | Yes               | Reserved                                                                                                                                                                        |
|           | Idle Control        | 7   | Reserved           |       | 0x00    |                   | Set bit to 0                                                                                                                                                                    |
|           |                     | 6   | Override Fast Idle | R/W   |         | Yes               | 1 = Enable Fast IDLE control in Reg 0x28[3:2]<br>0 = Disable Fast IDLE control in Reg 0x28[3:2].                                                                                |
| 0x28      |                     | 5:4 | en_hi_idle_th[1:0] |       |         | Yes               | Enable high SD thresholds (Slow IDLE)<br>[5]: CH A<br>[4]: CH B                                                                                                                 |
|           |                     | 3:2 | en_fast_idle[1:0]  |       |         | Yes               | Enable Fast IDLE<br>[3]: CH A<br>[2]: CH B                                                                                                                                      |
|           |                     | 1:0 | Reserved           |       |         | Yes               | Set bits to 0                                                                                                                                                                   |
| 0x29-0x2A | Reserved            | 7:0 | Reserved           | R/W   | 0x00    |                   | Reserved                                                                                                                                                                        |
|           |                     | 7:6 | Reserved           |       |         |                   | Reserved                                                                                                                                                                        |
| 0x2B      | Reserved            | 5:2 | Reserved           | R/W   | 0x00    | Yes               | Reserved                                                                                                                                                                        |
|           |                     | 1:0 | Reserved           |       |         |                   | Reserved                                                                                                                                                                        |
| 0x2C      | Reserved            | 7:0 | Reserved           | R/W   | 0x2F    | Yes               | Reserved                                                                                                                                                                        |
|           |                     | 7:5 | Reserved           |       |         | Yes               | Set bits to 101'b                                                                                                                                                               |
| 0x2D      | CH B VOD<br>Control | 4:2 | VOD_CHB[2:0]       | R/W   | 0xAD    | Yes               | VOD Controls for CH B<br>000'b = 700 mVpp<br>001'b = 800 mVpp<br>010'b = 900 mVpp<br>011'b = 1000 mVpp (Default)<br>100'b = 1100 mVpp<br>101'b = 1200 mVpp<br>110'b = 1300 mVpp |
|           |                     | 1:0 | Reserved           |       |         | Yes               | Set bits to 01'b                                                                                                                                                                |
| 0x2E      | Reserved            | 7:3 | Reserved           | R/W   | 0x02    |                   | Reserved                                                                                                                                                                        |
| UNZL      | Neserveu            | 2:0 | Reserved           | 11/11 | 0702    | Yes               | Reserved                                                                                                                                                                        |

DS100BR210 SNLS348E – OCTOBER 2011 – REVISED JANUARY 2015 TEXAS INSTRUMENTS

www.ti.com

# **Register Maps (continued)**

| ADDRESS   | REGISTER<br>NAME | BIT        | FIELD                | TYPE     | DEFAULT | EEPROM<br>REG BIT | DESCRIPTION       |
|-----------|------------------|------------|----------------------|----------|---------|-------------------|-------------------|
|           |                  | 7          | Reserved             |          |         | Yes               | Reserved          |
| 0x2F      | Reserved         | 6:4        | Reserved             | R/W      | 0x00    |                   | Reserved          |
|           |                  | 3:0        | Reserved             |          |         | Yes               | Reserved          |
| 0x30-0x31 | Reserved         | 7:0        | Reserved             | R/W      | 0x00    |                   | Reserved          |
|           |                  | 7:6        | Reserved             |          |         |                   | Reserved          |
| 0x32      | Reserved         | 5:2        | Reserved             | R/W      | 0x00    | Yes               | Reserved          |
|           |                  | 1:0        | Reserved             | -        |         |                   | Reserved          |
| 0x33      | Reserved         | 7:0        | Reserved             | R/W      | 0x2F    | Yes               | Reserved          |
| 0x34      | Reserved         | 7:0        | Reserved             | R/W      | 0xAD    | Yes               | Reserved          |
|           |                  | 7:3        | Reserved             |          |         |                   | Reserved          |
| 0x35      | Reserved         | 2:0        | Reserved             | R/W      | 0x02    | Yes               | Reserved          |
|           |                  | 7          | Reserved             |          |         | Yes               | Reserved          |
| 0x36      | Reserved         | 6:4        | Reserved             | R/W      | 0x00    |                   | Reserved          |
|           |                  | 3:0        | Reserved             | _        |         | Yes               | Reserved          |
| 0x37-0x38 | Reserved         | 7:0        | Reserved             | R/W      | 0x00    |                   | Reserved          |
|           |                  | 7:6        | Reserved             | -        |         |                   | Reserved          |
| 0x39      | Reserved         | 5:2        | Reserved             | R/W      | 0x00    | Yes               | Reserved          |
|           |                  | 1:0        | Reserved             |          |         |                   | Reserved          |
| 0x3A      | Reserved         | 7:0        | Reserved             | R/W      | 0x2F    | Yes               | Reserved          |
| 0x3B      | Reserved         | 7:0        | Reserved             | R/W      | 0xAD    | Yes               | Reserved          |
|           |                  | 7:3        | Reserved             |          | 0x02    |                   | Reserved          |
| 0x3C      | Reserved         | 2:0        | Reserved             | R/W      |         | Yes               | Reserved          |
|           |                  | 7          | Reserved             |          |         | Yes               | Reserved          |
| 0x3D      | Reserved         | 6:4        | Reserved             | R/W      | 0x00    |                   | Reserved          |
| 0.102     |                  | 3:0        | Reserved             |          |         | Yes               | Reserved          |
| 0x3E-0x3F | Reserved         | 7:0        | Reserved             | R/W      | 0x00    | 100               | Reserved          |
|           | rtooorrou        | 7:6        | Reserved             |          | 0,000   |                   | Reserved          |
| 0x40      | Reserved         | 5:2        | Reserved             | R/W      | 0x00    | Yes               | Reserved          |
| 0,40      | Reserved         | 1:0        | Reserved             |          |         | 100               | Reserved          |
| 0x41      | Reserved         | 7:0        | Reserved             | R/W      | 0x2F    | Yes               | Reserved          |
| 0x42      | Reserved         | 7:0        | Reserved             | R/W      | 0xAD    | Yes               | Reserved          |
| 0742      | Reserved         | 7:3        | Reserved             | 10/00    | UXAD    | 103               | Reserved          |
| 0x43      | Reserved         | 2:0        | Reserved             | R/W      | 0x02    | Yes               | Reserved          |
|           |                  | 7          | Reserved             |          |         | Yes               | Reserved          |
| 0×44      | Percented        |            |                      | R/W      | 0.00    | 165               |                   |
| 0x44      | Reserved         | 6:4<br>3:0 | Reserved             | R/ VV    | 0x00    | Yes               | Reserved Reserved |
| 0x45      | Reserved         | 7:0        | Reserved<br>Reserved | R/W      | 0x00    | 162               | Reserved          |
|           |                  | 7:0        |                      | R/W      |         |                   |                   |
| 0x46      | Reserved         | 7:0        | Reserved<br>Reserved | F\$/ V V | 0x38    |                   | Reserved          |
| 0x47      | Reserved         |            |                      | R/W      | 0x00    | Vaa               | Reserved          |
|           |                  | 3:0        | Reserved             |          |         | Yes               | Reserved          |
| 0x48      | Reserved         | 7:6        | Reserved             | R/W      | 0x05    | Yes               | Reserved          |
| 0.40.0.45 | Description      | 5:0        | Reserved             |          | 0.00    |                   | Reserved          |
| 0x49-0x4B | Reserved         | 7:0        | Reserved             | R/W      | 0x00    |                   | Reserved          |



# **Register Maps (continued)**

| ADDRESS   | REGISTER<br>NAME | BIT | FIELD     | TYPE  | DEFAULT | EEPROM<br>REG BIT | DESCRIPTION |
|-----------|------------------|-----|-----------|-------|---------|-------------------|-------------|
|           |                  | 7:3 | Reserved  | R/W   | 0x00    | Yes               | Reserved    |
| 0x4C      | Reserved         | 2:1 | Reserved  |       |         |                   | Reserved    |
|           |                  | 0   | Reserved  |       |         | Yes               | Reserved    |
| 0x4D-0x50 | Reserved         | 7:0 | Reserved  | R/W   | 0x00    |                   | Reserved    |
| 0         | Device           | 7:5 | Version   | P     | 0x66    |                   | 011'b       |
| UX51      | 0x51 Information | 4:0 | Device ID | R     |         |                   | 0 0110'b    |
| 0x52-0x55 | Reserved         | 7:0 | Reserved  | R/W   | 0x00    |                   | Reserved    |
| 0x56      | Reserved         | 7:0 | Reserved  | R/W   | 0x02    |                   | Reserved    |
| 0x57      | Reserved         | 7:0 | Reserved  | R/W   | 0x14    |                   | Reserved    |
| 0x58      | Reserved         | 7:0 | Reserved  | R/W   | 0x21    |                   | Reserved    |
| 050       | December         | 7:1 | Reserved  | R/W ( | 0x00    |                   | Reserved    |
| 0x59      | Reserved         | 0   | Reserved  |       |         | Yes               | Reserved    |
| 0x5A      | Reserved         | 7:0 | Reserved  | R/W   | 0x54    | Yes               | Reserved    |
| 0x5B      | Reserved         | 7:0 | Reserved  | R/W   | 0x54    | Yes               | Reserved    |
| 0x5C-0x61 | Reserved         | 7:0 | Reserved  | R/W   | 0x00    |                   | Reserved    |

TEXAS INSTRUMENTS

www.ti.com

## **9** Application and Implementation

#### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

## 9.1 Application Information

#### 9.1.1 Signal Integrity in 10G-KR Applications

When configured in "KR Mode", using either the VOD\_SEL and MODE pin setting or SMBus register control, the DS100BR210 is designed to operate transparently within a KR backplane channel environment. Installing a DS100BR210 repeater within the KR backplane channel splits the total channel attenuation into two parts. In other words, operating in "KR Mode" implies that signals will pass through the repeater with a linearized output. Ideally the repeater can be placed near the middle of the channel, maximizing the signal-to-noise ratio across the bidirectional interface.

In order to maximize the 10G-KR solution space, the 802.3ap specification calls for an optimization of the Tx partner signal conditioning coefficients based on feedback from the KR Rx ASIC endpoint. This link optimization sequence is commonly referred to as "link training" and is performed at speed (10.3125 Gbps). Setting the DS100BR210 active CTLE to compensate for the channel loss from each of the KR transmitters will reduce the transmit and receive equalization settings required on the KR physical layer devices. This central location keeps a larger signal-to-noise ratio at all points in the channel, extending the available solution space and increasing the overall margin of almost any channel. Suggested initial settings for the DS100BR210 are given in Table 10 and Table 11. Further adjustments to EQx, DEMx, and VODx settings may optimize signal margin on the link for different system applications.

# Table 10. Suggested 10G-KR Initial Device Settings in Pin Mode<sup>(1)</sup> CHANNEL SETTINGS PIN MODE

(1) For 10G-KR mode with slow idle-to-active response, the MODE pin should be left floating.

|                  | -           |
|------------------|-------------|
| CHANNEL SETTINGS | SMBus MODES |
| EQx              | 0x00        |
| VODx             | 100'b       |
| DEMx             | 000'b       |

#### Table 11. Suggested 10G-KR Initial Device Settings in SMBus Modes

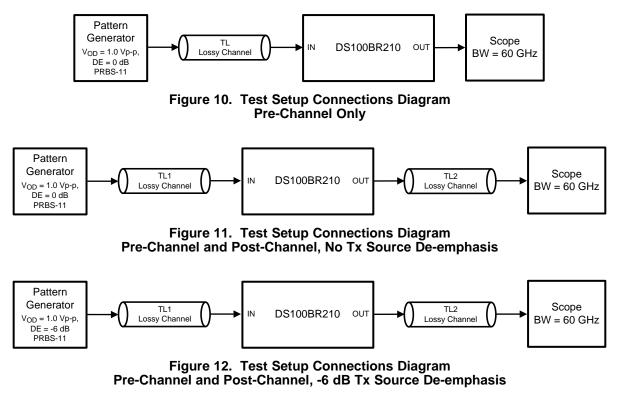
The SMBus Slave Mode code example in Table 12 may be used to program the DS100BR210 with the recommended device settings.

| REGISTER | WRITE VALUE | COMMENTS                                                                                                |
|----------|-------------|---------------------------------------------------------------------------------------------------------|
| 0x06     | 0x18        | Set SMBus Slave Mode Register Enable.                                                                   |
| 0x08     | 0x04        | Enable Output Mode Control for individual channel outputs.                                              |
| 0x0F     | 0x00        | Set CHA EQ to 0x00.                                                                                     |
| 0x10     | 0xAD        | Set CHA Output Mode to Linear (10G-KR mode).<br>If link-training is not required, set Reg 0x10 to 0xED. |
| 0x11     | 0x00        | Set CHA DEM to 000'b.                                                                                   |
| 0x16     | 0x00        | Set CHB EQ to 0x00.                                                                                     |

#### Table 12. SMBus 10G-KR Example Sequence

Table 12.

| REGISTER | WRITE VALUE | COMMENTS                                                                                                |  |  |  |  |  |  |
|----------|-------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 0x17     | 0xAD        | Set CHB Output Mode to Linear (10G-KR mode).<br>If link-training is not required, set Reg 0x18 to 0xED. |  |  |  |  |  |  |
| 0x18     | 0x00        | Set CHB DEM to 000'b.                                                                                   |  |  |  |  |  |  |
| 0x25     | 0xB1        | Set CHA VOD to 100'b.                                                                                   |  |  |  |  |  |  |
| 0x28     | 0x00        | Leave Idle Control at default levels.<br>For SAS/SATA applications, set Reg 0x28 to 0x4C.               |  |  |  |  |  |  |
| 0x2D     | 0xB1        | Set CHB VOD to 100'b.                                                                                   |  |  |  |  |  |  |


## Table 12. SMBus 10G-KR Example Sequence (continued)

## 9.1.2 OOB (Out-of-Band) Functionality in SAS/SATA Applications

For SAS/SATA systems, a low speed OOB (Out-of-Band) communication sequence is used to detect and communicate device capabilities between host ASIC and link partners. These OOB signals, including COMWAKE, COMINIT, COMRESET, and COMSAS, are a series of burst, idle, and negation times transmitted and detected across the SAS/SATA link. These bursts occur at a rapid rate, with the COMWAKE signal having the most stringent requirement of 106.6 ns active followed by 106.6 ns idle. Normally, if the device is set in 10G-KR mode (MODE pin floating), the device goes idle-to-active in approximately 150 ns. If the device is set to SAS mode (MODE pin tied via 1 k $\Omega$  to VDD (2.5 V mode) or VIN (3.3 V mode)), the device goes idle-to-active in approximately 3 to 4 ns. This fast idle-to-active time is critical to pass OOB signaling, and when operating in pin mode, the MODE pin should be tied high. If operating in SMBus slave mode, the user can set Reg 0x28 to 0x4C for this faster idle-to-active response.

# 9.2 Typical Application

The DS100BR210 works to extend the reach possible by using active equalization on the channel, boosting attenuated signals so that they can be more easily recovered at the Rx endpoint. The capability of the repeater can be explored across a range of data rates and ASIC-to-link-partner signaling, as shown in the following test setup connections. The test setup connections diagrams shown represent typical generic application scenarios for the DS100BR210.





### **Typical Application (continued)**

### 9.2.1 Design Requirements

As with any high speed design, there are many factors that influence the overall performance. Below are a list of critical areas for consideration during design.

- Use 100  $\Omega$  impedance traces. Length matching on the P and N traces should be done on the single-ended segments of the differential pair.
- Use uniform trace width and trace spacing for differential pairs.
- Place AC-coupling capacitors near to the receiver end of each channel segment to minimize reflections.
- The maximum body size for AC-coupling capacitors is 0402.
- Back-drill connector vias and signal vias to minimize stub length.
- Use Reference plane vias to ensure a low inductance path for the return current.

### 9.2.2 Detailed Design Procedure

The DS100BR210 is designed to be placed at an offset location with respect to the overall channel attenuation. In order to optimize performance, the repeater requires optimization to extend the reach of the cable or trace length while also recovering a solid eye opening. To optimize the repeater in a 10G-KR environment, the settings mentioned in Table 10 (for Pin Mode) and Table 11 (for SMBus Modes) are recommended as a default starting point. For a generic 10GbE application where link training is not required, the following settings in Table 13 and Table 14 may be referenced as an initial starting point:

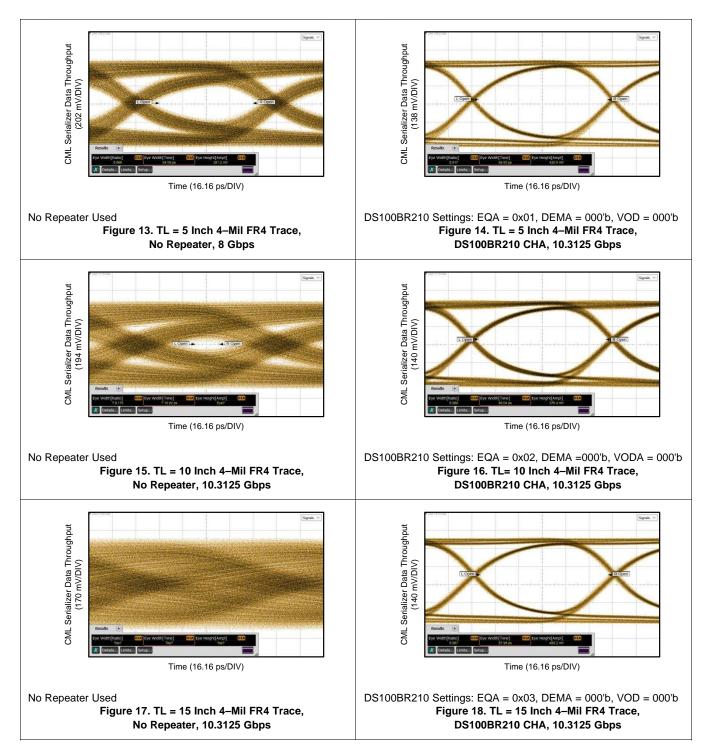
#### Table 13. Suggested Generic 10GbE Initial Device Settings in Pin Mode<sup>(1)</sup>

| CHANNEL SETTINGS | PIN MODE |
|------------------|----------|
| EQx[1:0]         | 0, 0     |
| VOD_SEL          | 0        |
| DEMx             | 0        |

(1) For 10GbE applications, the MODE pin should be tied high.

#### Table 14. Suggested Generic 10GbE Initial Device Settings in SMBus Modes

| CHANNEL SETTINGS | SMBus MODES |  |  |  |  |
|------------------|-------------|--|--|--|--|
| EQx              | 0x00        |  |  |  |  |
| VODx             | 000'b       |  |  |  |  |
| DEMx             | 000'b       |  |  |  |  |

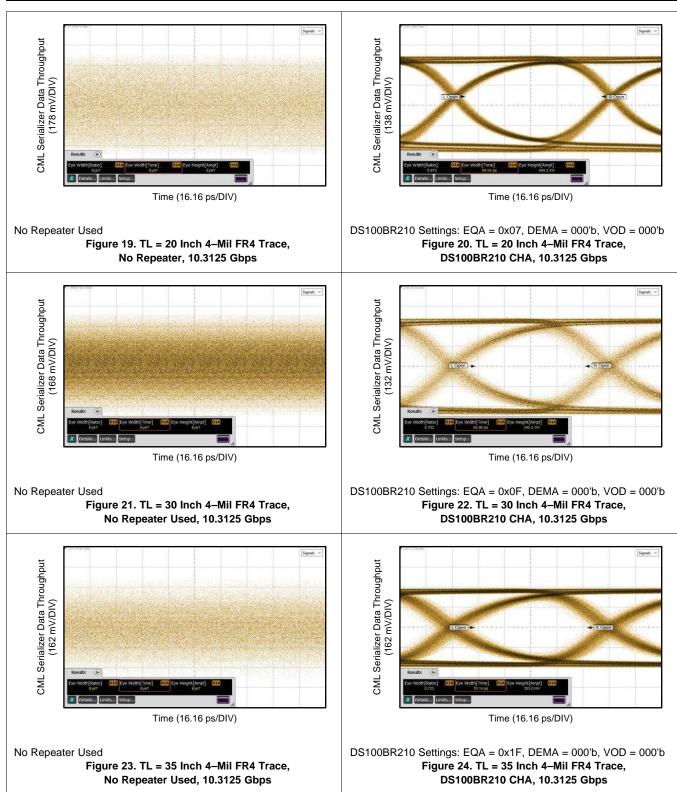

Examples of the repeater performance are illustrated in the performance curves in the next section.



#### 9.2.3 Application Performance Plots

The lab setups referenced in Figure 10 to Figure 12 were used to collect typical performance data on FR4 and cable media. For all measurements, Mode Pin = Float.

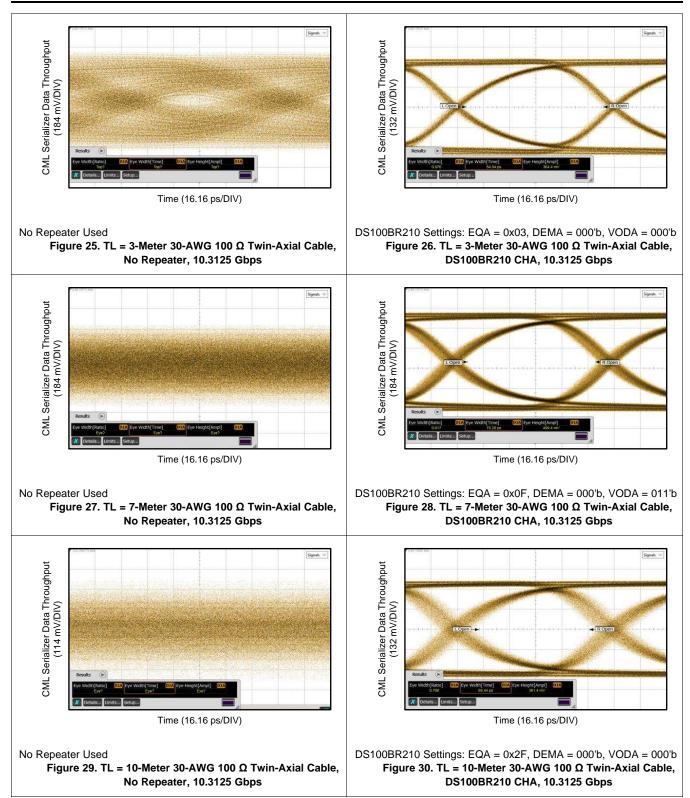
### 9.2.3.1 Equalization Results (Pre-Channel Only)



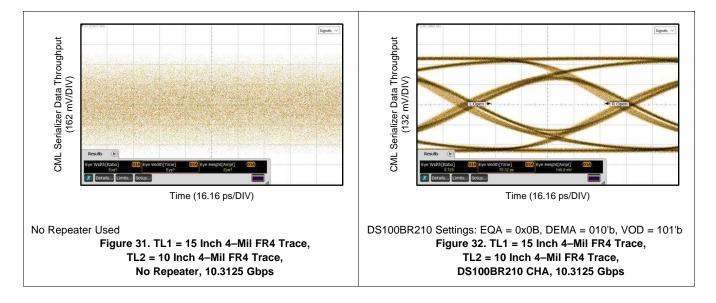

DS100BR210

SNLS348E-OCTOBER 2011-REVISED JANUARY 2015



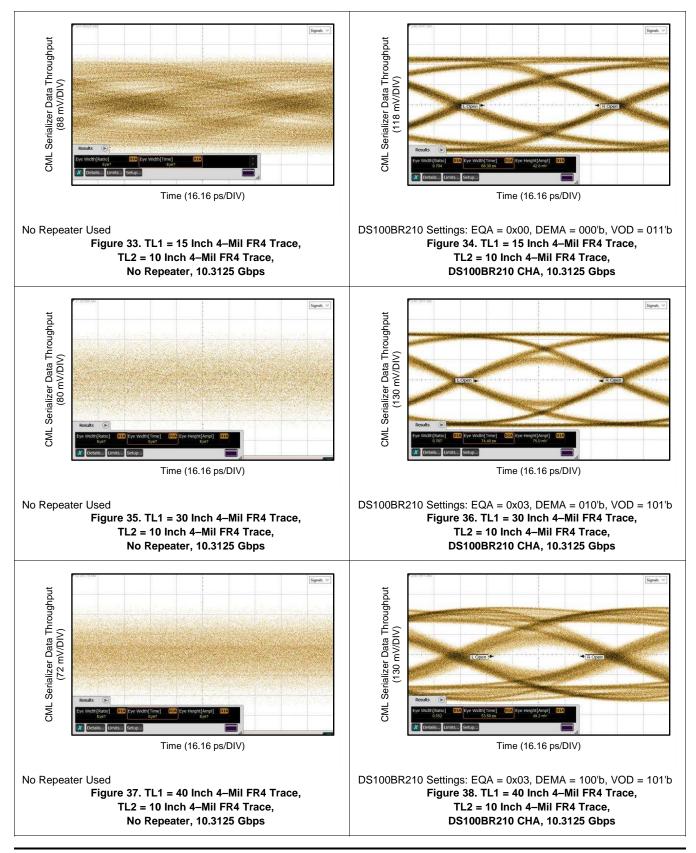

www.ti.com






DS100BR210

SNLS348E-OCTOBER 2011-REVISED JANUARY 2015




#### 9.2.3.2 Equalization and De-Emphasis Results (Pre-channel and Post-channel, No Tx Source De-emphasis)





#### 9.2.3.3 Equalization and De-Emphasis Results (Pre-channel and Post-channel, -6 dB Tx Source De-emphasis)





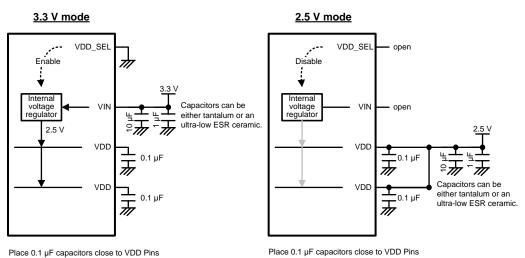
# **10** Power Supply Recommendations

## 10.1 3.3-V or 2.5-V Supply Mode Operation

The DS100BR210 has an optional internal voltage regulator to provide the 2.5 V supply to the device. In 3.3 V mode, the VIN pin = 3.3 V is used to supply power to the device and the VDD pins should be left open. The internal regulator will provide the 2.5 V to the VDD pins of the device and a 0.1  $\mu$ F cap is needed at each of the two VDD pins for power supply de-coupling (total capacitance should be  $\leq 0.2 \mu$ F). The VDD\_SEL pin must be tied to GND to enable the internal regulator. In 2.5 V mode, the VIN pin should be left open and 2.5 V supply must be applied to the VDD pins. The VDD\_SEL pin must be left open (no connect) to disable the internal regulator.

The DS100BR210 can be configured for 2.5 V operation or 3.3 V operation. The lists below outline required connections for each supply selection.

### 3.3 V Mode of Operation


- Tie VDD\_SEL = GND.
- Feed 3.3 V supply into VIN pin. Local 10 µF and 1 µF decoupling at VIN is recommended.
- See information on VDD bypass in Power Supply Bypass.
- SDA and SCL pins should connect pull-up resistor to VIN.
- Any 4-Level input which requires a connection to "Logic 1" should use a 1 kΩ resistor to VIN.

### 2.5 V Mode of Operation

- VDD\_SEL = Float
- VIN = Float
- Feed 2.5 V supply into VDD pins. Local 10 µF and 1 µF decoupling at VIN is recommended.
- See information on VDD bypass in Power Supply Bypass.
- SDA and SCL pins connect pull-up resistor to VDD for 2.5 V or 3.3 V microcontroller SMBus IO.
- Any 4-Level input which requires a connection to "Logic 1" should use a 1 kΩ resistor to VDD.

### NOTE

The DAP (bottom solder pad) is the GND connection.



Total capacitance should be  $\leq 0.2 \ \mu F$ 





### **10.2 Power Supply Bypass**

Two approaches are recommended to ensure that the DS100BR210 is provided with an adequate power supply bypass. First, the supply (VDD) and ground (GND) pins should be connected to power planes routed on adjacent layers of the printed circuit board. Second, careful attention to supply bypassing through the proper use of bypass capacitors is required. A 0.1  $\mu$ F bypass capacitor should be connected to each VDD pin such that the capacitor is placed as close as possible to the device. Small body size capacitors (such as 0402) reduce the capacitors' parasitic inductance and also help in placement close to the VDD pin. If possible, the layer thickness of the dielectric should be minimized so that the VDD and GND planes create a low inductance supply with distributed capacitance.

# 11 Layout

### 11.1 Layout Guidelines

The differential inputs and outputs are designed with 100  $\Omega$  differential terminations. Therefore, they should be connected to interconnects with controlled differential impedance of approximately 85-110  $\Omega$ . It is preferable to route differential lines primarily on one layer of the board, particularly for the input traces. The use of vias should be avoided if possible. If vias must be used, they should be used sparingly and must be placed symmetrically for each side of a given differential pair. Whenever differential vias are used, the layout must also provide for a low inductance path for the return currents as well. Route the differential signals away from other signals and noise sources on the printed circuit board. To minimize the effects of crosstalk, a 5:1 ratio or greater should be maintained between inter-pair spacing and trace width. See AN-1187 *"Leadless Leadframe Package (LLP) Application Report"* (literature number SNOA401) for additional information on QFN (WQFN) packages.

The DS100BR210 pinout promotes easy high speed routing and layout. To optimize DS100BR210 performance, refer to the following guidelines:

- 1. Place local VIN and VDD capacitors as close as possible to the device supply pins. Often the best location is directly under the DS100BR210 pins to reduce the inductance path to the capacitor. In addition, bypass capacitors may share a via with the DAP GND to minimize ground loop inductance.
- 2. Differential pairs going into or out of the DS100BR210 should have adequate pair-to-pair spacing to minimize crosstalk.
- 3. Use return current via connections to link reference planes locally. This ensures a low inductance return current path when the differential signal changes layers.
- 4. Optimize the via structure to minimize trace impedance mismatch.
- 5. Place GND vias around the DAP perimeter to ensure optimal electrical and thermal performance. A 2x2 or 3x3 array of GND vias for the DAP is recommended.
- 6. Use small body size AC coupling capacitors when possible 0402 or smaller size is preferred. The AC coupling capacitors should be placed closer to the Rx on the channel.

## 11.2 Layout Example

In most cases, DS100BR210 layouts will fit neatly into a 2-channel application. The example layout in Figure 40 shows the DS100BR210 channels in a typical 2-channel unidirectional layout.



# Layout Example (continued)

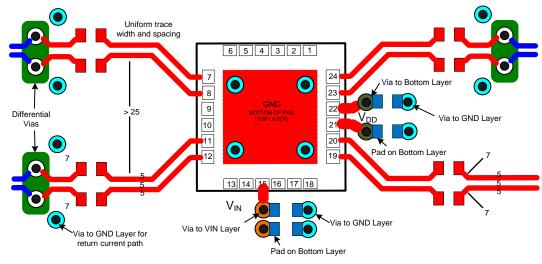



Figure 40. DS100BR210 Example Layout



# **12 Device and Documentation Support**

## **12.1** Documentation Support

### 12.1.1 Related Documentation

For related documentation see the following:

- Absolute Maximum Ratings for Soldering, SNOA549
- IC Package Thermal Metrics application report, SPRA953
- EEPROM Programming and Master Mode, SNLA228

## 12.2 Trademarks

All trademarks are the property of their respective owners.

### 12.3 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

## 12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

# 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



## **PACKAGING INFORMATION**

| Orderable part number | Status | Material type | Package   Pins  | Package qty   Carrier | RoHS | Lead finish/  | MSL rating/         | Op temp (°C) | Part marking |
|-----------------------|--------|---------------|-----------------|-----------------------|------|---------------|---------------------|--------------|--------------|
|                       | (1)    | (2)           |                 |                       | (3)  | Ball material | Peak reflow         |              | (6)          |
|                       |        |               |                 |                       |      | (4)           | (5)                 |              |              |
| DS100BR210SQ/NOPB     | Active | Production    | WQFN (RTW)   24 | 1000   SMALL T&R      | Yes  | SN            | Level-3-260C-168 HR | -40 to 85    | BR210        |
| DS100BR210SQ/NOPB.A   | Active | Production    | WQFN (RTW)   24 | 1000   SMALL T&R      | Yes  | SN            | Level-3-260C-168 HR | -40 to 85    | BR210        |
| DS100BR210SQ/NOPB.B   | Active | Production    | WQFN (RTW)   24 | 1000   SMALL T&R      | Yes  | SN            | Level-3-260C-168 HR | -40 to 85    | BR210        |
| DS100BR210SQE/NOPB    | Active | Production    | WQFN (RTW)   24 | 250   SMALL T&R       | Yes  | SN            | Level-3-260C-168 HR | -40 to 85    | BR210        |
| DS100BR210SQE/NOPB.A  | Active | Production    | WQFN (RTW)   24 | 250   SMALL T&R       | Yes  | SN            | Level-3-260C-168 HR | -40 to 85    | BR210        |
| DS100BR210SQE/NOPB.B  | Active | Production    | WQFN (RTW)   24 | 250   SMALL T&R       | Yes  | SN            | Level-3-260C-168 HR | -40 to 85    | BR210        |

<sup>(1)</sup> **Status:** For more details on status, see our product life cycle.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

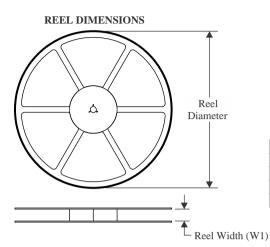
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

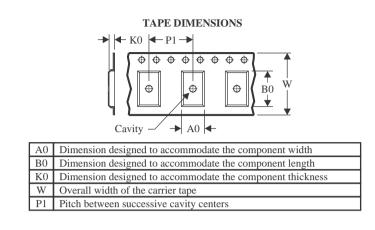
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

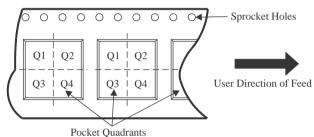


# PACKAGE OPTION ADDENDUM


23-May-2025




Texas

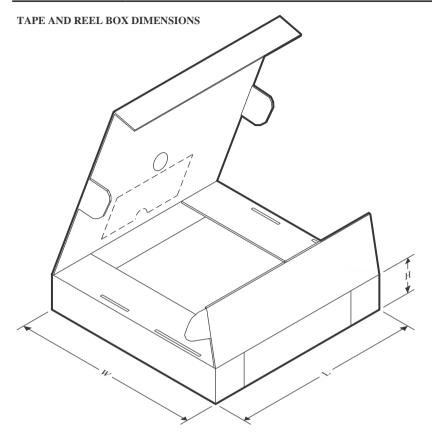

STRUMENTS

# TAPE AND REEL INFORMATION





#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| *All dimensions are nominal |      |                    |    |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | •    | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| DS100BR210SQ/NOPB           | WQFN | RTW                | 24 | 1000 | 177.8                    | 12.4                     | 4.3        | 4.3        | 1.3        | 8.0        | 12.0      | Q1               |
| DS100BR210SQE/NOPB          | WQFN | RTW                | 24 | 250  | 177.8                    | 12.4                     | 4.3        | 4.3        | 1.3        | 8.0        | 12.0      | Q1               |



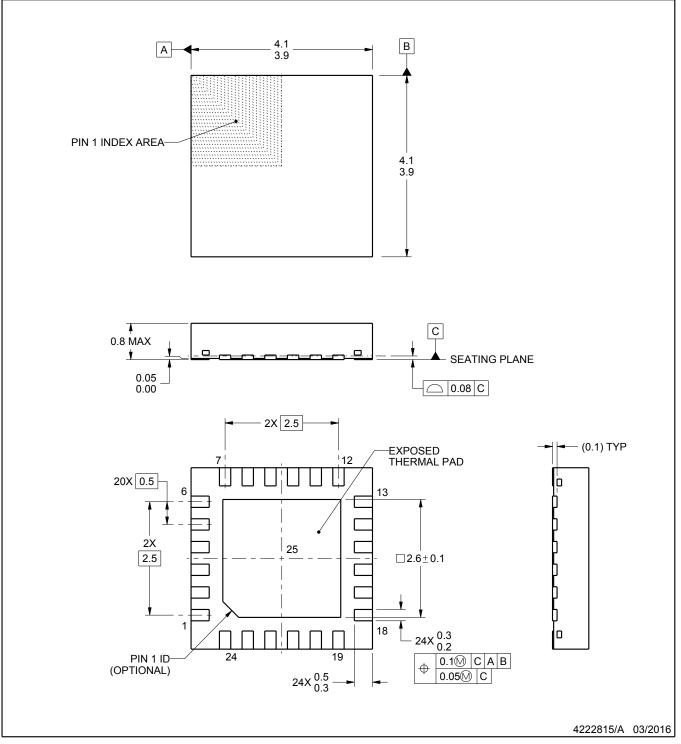
# PACKAGE MATERIALS INFORMATION

1-Aug-2025



\*All dimensions are nominal

| Device             | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| DS100BR210SQ/NOPB  | WQFN         | RTW             | 24   | 1000 | 208.0       | 191.0      | 35.0        |
| DS100BR210SQE/NOPB | WQFN         | RTW             | 24   | 250  | 208.0       | 191.0      | 35.0        |


# **RTW0024A**



# **PACKAGE OUTLINE**

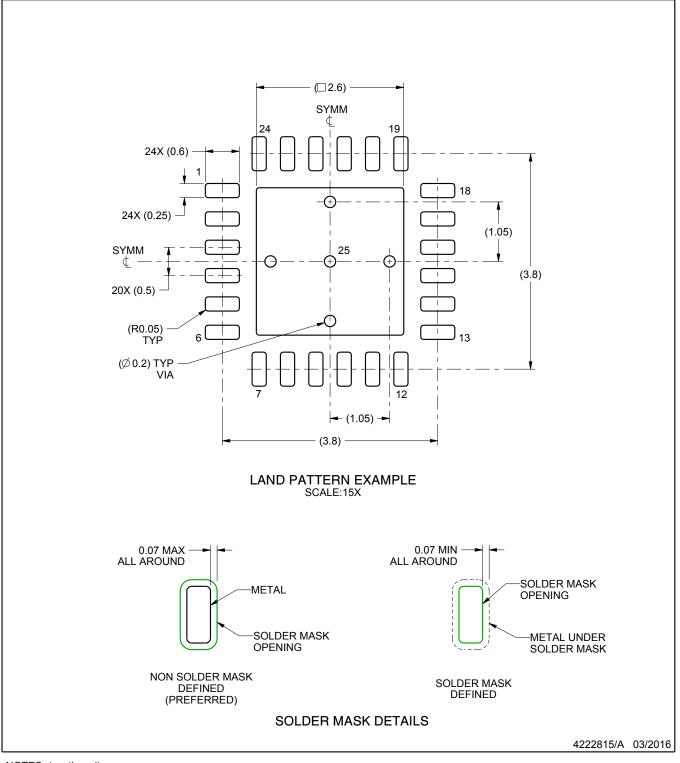
# WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.




# **RTW0024A**

# **EXAMPLE BOARD LAYOUT**

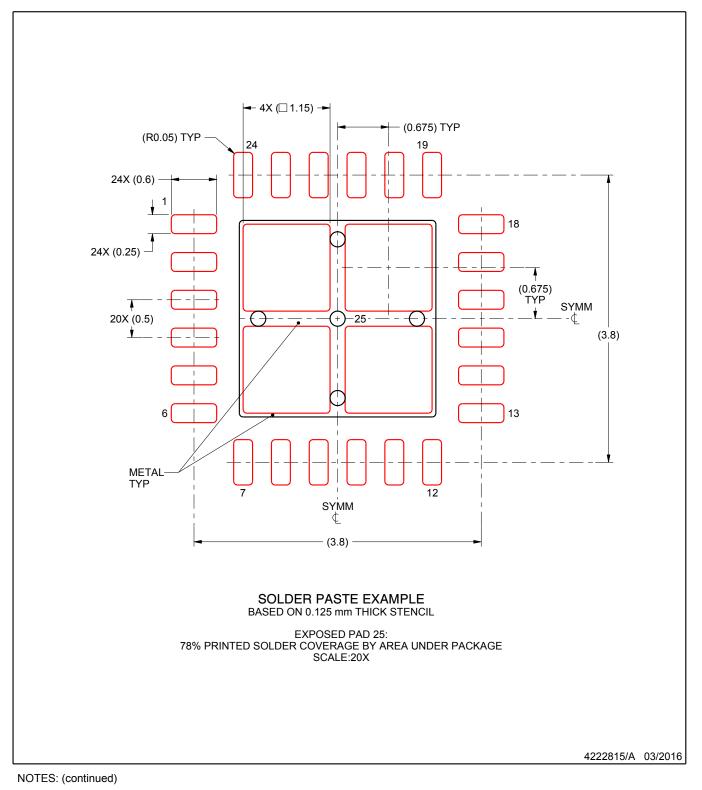
# WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).




# **RTW0024A**

# **EXAMPLE STENCIL DESIGN**

# WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD



5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



# IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated