










**DLPC1438** DLPS216A - JULY 2021 - REVISED AUGUST 2021

# **DLPC1438 Digital Controller for TI DLP® 3D Printers**

## 1 Features

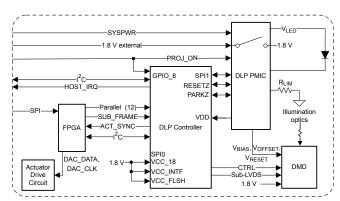
- Digital controller for DLP300S and DLP301S (0.3inch 3.6-megapixel) DMDs
- 3D Printing Features:
  - Linear gamma modes optimized for optimizing illumination uniformity and greyscale printing
  - Programmable layer exposure time
  - 8-bit monochrome greyscale output
- System Features:
  - Front-end FPGA with low-cost SPI data input interface
  - Actuator control
  - I2C control of device configuration
  - Programmable LED current control
- Operation optimized for reliable performance in DLP 3D printer applications
- Pair with DLPA2000, DLPA2005, DLPA3000, or DLPA3005 PMIC (power management integrated circuit) and LED driver

# 2 Applications

- TI DLP® 3D Printer
  - Additive manufacturing
  - Vat polymerization
  - Masked stereolithography (mSLA 3D printer)
- Dental DLP 3D printer
- Light exposure: programmable spatial and temporal light exposure

## 3 Description

The DLPC1438 3D print controller supports reliable operation of the DLP300S and DLP301S digital micromirror devices (DMDs) for DLP 3D Printer applications. The DLPC1438 controller provides a convenient interface between user electronics and the DMD to enable fast, high resolution, reliable DLP 3D printers.


Get started with TI DLP® light-control technology page to learn how to get started with the DLP300S.

The DLP advanced light control resources on ti.com accelerate time to market, which include reference designs, optical modules manufactures, and DLP design network partners.

#### **Device Information**

| PART NUMBER  | PACKAGE     | BODY SIZE (NOM)     |  |  |  |
|--------------|-------------|---------------------|--|--|--|
| DLPC1438 (1) | NFBGA (201) | 13.00 mm × 13.00 mm |  |  |  |

For all available packages, see the orderable addendum at the end of the data sheet.



**Simplified Application** 



# **Table of Contents**

| 1 Features1                                            | 7 Detailed Description2                                | 25 |
|--------------------------------------------------------|--------------------------------------------------------|----|
| 2 Applications 1                                       | 7.1 Overview2                                          |    |
| 3 Description1                                         | 7.2 Functional Block Diagram2                          | 25 |
| 4 Revision History2                                    | 7.3 Feature Description2                               | 26 |
| 5 Pin Configuration and Functions3                     | 7.4 Device Functional Modes3                           | 4  |
| 6 Specifications11                                     | 7.5 Programming3                                       | 4  |
| 6.1 Absolute Maximum Ratings11                         | 8 Application and Implementation3                      | 5  |
| 6.2 ESD Ratings11                                      | 8.1 Application Information3                           | 5  |
| 6.3 Recommended Operating Conditions12                 | 8.2 Typical Application3                               | 5  |
| 6.4 Thermal Information12                              | 9 Power Supply Recommendations3                        | 8  |
| 6.5 Power Electrical Characteristics                   | 9.1 PLL Design Considerations3                         | 8  |
| 6.6 Pin Electrical Characteristics14                   | 9.2 System Power-Up and Power-Down Sequence 3          | 8  |
| 6.7 Internal Pullup and Pulldown Electrical            | 9.3 Power-Up Initialization Sequence4                  |    |
| Characteristics16                                      | 9.4 DMD Fast Park Control (PARKZ)4                     | 2  |
| 6.8 DMD Sub-LVDS Interface Electrical                  | 9.5 Hot Plug I/O Usage4                                | 2  |
| Characteristics17                                      | 10 Layout4                                             | 4  |
| 6.9 DMD Low-Speed Interface Electrical                 | 10.1 Layout Guidelines4                                | 4  |
| Characteristics18                                      | 10.2 Layout Example5                                   |    |
| 6.10 System Oscillator Timing Requirements19           | 11 Device and Documentation Support5                   | 13 |
| 6.11 Power Supply and Reset Timing Requirements19      | 11.1 Device Support5                                   | 13 |
| 6.12 Parallel Interface Frame Timing Requirements20    | 11.2 Documentation Support5                            | 4  |
| 6.13 Parallel Interface General Timing Requirements 21 | 11.3 Receiving Notification of Documentation Updates 5 | 4  |
| 6.14 BT656 Interface General Timing Requirements22     | 11.4 Support Resources5                                | 4  |
| 6.15 Flash Interface Timing Requirements23             | 11.5 Trademarks5                                       | 4  |
| 6.16 Other Timing Requirements23                       | 11.6 Electrostatic Discharge Caution5                  | 4  |
| 6.17 DMD Sub-LVDS Interface Switching                  | 11.7 Glossary5                                         | 4  |
| Characteristics24                                      | 12 Mechanical, Packaging, and Orderable                |    |
| 6.18 DMD Parking Switching Characteristics24           | Information5                                           | 4  |
| 6.19 Chipset Component Usage Specification24           |                                                        |    |

# **4 Revision History**

| C | changes from Revision (July 2021) to Revision A (August 2021)         | Page |
|---|-----------------------------------------------------------------------|------|
| • | Changed the device status from Advance Information to Production Data | 1    |



# **5 Pin Configuration and Functions**

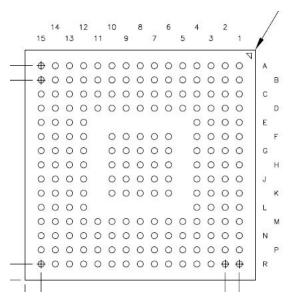



Figure 5-1. ZEZ Package 201-Pin NFBGA Bottom View

|   | 1                 | 2                | 3                   | 4                   | 5                   | 6                   | 7                | 8                   | 9                   | 10                  | 11                  | 12        | 13        | 14        | 15       |
|---|-------------------|------------------|---------------------|---------------------|---------------------|---------------------|------------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|-----------|----------|
| Α | DMD_LS_C<br>LK    | DMD_LS_W<br>DATA | DMD_HS_W<br>DATAH_P | DMD_HS_W<br>DATAG_P | DMD_HS_W<br>DATAF_P | DMD_HS_W<br>DATAE_P | DMD_HS_CLK_<br>P | DMD_HS_W<br>DATAD_P | DMD_HS_W<br>DATAC_P | DMD_HS_W<br>DATAB_P | DMD_HS_W<br>DATAA_P | CMP_OUT   | SPI0_CLK  | SPI0_CSZ0 | CMP_PWI  |
| В | DMD_DEN_<br>ARSTZ | DMD_LS_R<br>DATA | DMD_HS_W<br>DATAH_N | DMD_HS_W<br>DATAG_N | DMD_HS_W<br>DATAF_N | DMD_HS_W<br>DATAE_N | DMD_HS_CLK_<br>N | DMD_HS_W<br>DATAD_N | DMD_HS_W<br>DATAC_N | DMD_HS_W<br>DATAB_N | DMD_HS_W<br>DATAA_N | SPI0_DIN  | SPI0_DOUT | LED_SEL_1 | LED_SEL_ |
| С | DD3P              | DD3N             | VDDLP12             | VSS                 | VDD                 | VSS                 | VCC              | VSS                 | VCC                 | HWTEST_E<br>N       | RESETZ              | SPI0_CSZ1 | PARKZ     | GPIO_00   | GPIO_01  |
| D | DD2P              | DD2N             | VDD                 | VCC                 | VDD                 | VSS                 | VDD              | VSS                 | VDD                 | VSS                 | VCC_FLSH            | VDD       | VDD       | GPIO_02   | GPIO_03  |
| E | DCLKP             | DCLKN            | VDD                 | VSS                 |                     |                     |                  |                     |                     |                     |                     | VCC       | VSS       | GPIO_04   | GPIO_05  |
| F | DD1P              | DD1N             | RREF                | VSS                 |                     | VSS                 | VSS              | VSS                 | VSS                 | VSS                 |                     | VCC       | VDD       | GPIO_06   | GPIO_07  |
| G | DD0P              | DD0N             | VSS_PLLM            | VSS                 |                     | VSS                 | VSS              | VSS                 | VSS                 | VSS                 |                     | VSS       | VSS       | GPIO_08   | GPIO_09  |
| Н | PLL_REFCL<br>K_I  | VDD_PLLM         | VSS_PLLD            | VSS                 |                     | VSS                 | VSS              | VSS                 | VSS                 | VSS                 |                     | VSS       | VDD       | GPIO_10   | GPIO_11  |
| J | PLL_REFCL<br>K_O  | VDD_PLLD         | VSS                 | VDD                 |                     | VSS                 | VSS              | VSS                 | VSS                 | VSS                 |                     | VDD       | VSS       | GPIO_12   | GPIO_13  |
| K | PDATA_1           | PDATA_0          | VDD                 | VSS                 |                     | VSS                 | VSS              | VSS                 | VSS                 | VSS                 |                     | VSS       | VCC       | GPIO_14   | GPIO_15  |
| L | PDATA_3           | PDATA_2          | VSS                 | VDD                 |                     |                     |                  |                     |                     |                     |                     | VDD       | VDD       | GPIO_16   | GPIO_17  |
| М | PDATA_5           | PDATA_4          | VCC_INTF            | VSS                 | VSS                 | VDD                 | VCC_INTF         | VSS                 | VDD                 | VDD                 | VCC                 | VSS       | JTAGTMS1  | GPIO_18   | GPIO_19  |
| N | PDATA_7           | PDATA_6          | VCC_INTF            | PDM_CVS_<br>TE      | HSYNC_CS            | 3DR                 | VCC_INTF         | HOST_IRQ            | IIC0_SDA            | IIC0_SCL            | JTAGTMS2            | JTAGTDO2  | JTAGTDO1  | TSTPT_6   | TSTPT_7  |
| P | VSYNC_WE          | DATEN_CM<br>D    | PCLK                | PDATA_11            | PDATA_13            | PDATA_15            | PDATA_17         | PDATA_19            | PDATA_21            | PDATA_23            | JTAGTRSTZ           | JTAGTCK   | JTAGTDI   | TSTPT_4   | TSTPT_5  |
| R | PDATA_8           | PDATA_9          | PDATA_10            | PDATA_12            | PDATA_14            | PDATA_16            | PDATA_18         | PDATA_20            | PDATA_22            | IIC1_SDA            | IIC1_SCL            | TSTPT_0   | TSTPT_1   | TSTPT_2   | TSTPT_3  |



#### Table 5-1. Test Pins and General Control

| PIN       |                    |       | -x-n=(4)            | DECORPTION                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|-----------|--------------------|-------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NAME      | NO.                | · I/O | TYPE <sup>(4)</sup> | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| HWTEST_EN | C10                | I     | 6                   | Manufacturing test enable signal. Connect this signal directly to ground on the PCB for normal operation.                                                                                                                                                                                                                                                                                                                         |  |  |
| PARKZ     | C13                | I     | 6                   | DMD fast park control (active low Input with a hysteresis buffer). This signal is used to quickly park the DMD when loss of power is imminent. The longest lifetime of the DMD may not be achieved with the fast park operation; therefore, this signal is intended to only be asserted when a normal park operation is unable to be completed. The PARKZ signal is typically provided from the DLPAxxxx interrupt output signal. |  |  |
| JTAGTCK   | P12                | 1     | 6                   | TI internal use. Leave this pin unconnected.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| JTAGTDI   | P13                | 1     | 6                   | TI internal use. Leave this pin unconnected.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| JTAGTDO1  | N13 <sup>(1)</sup> | 0     | 1                   | TI internal use. Leave this pin unconnected.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| JTAGTDO2  | N12 <sup>(1)</sup> | 0     | 1                   | TI internal use. Leave this pin unconnected.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| JTAGTMS1  | M13                | I     | 6                   | TI internal use. Leave this pin unconnected.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| JTAGTMS2  | N11                | I     | 6                   | TI internal use. Leave this pin unconnected.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| JTAGTRSTZ | P11                | I     | 6                   | TI internal use. This pin must be tied to ground, through an external resistor for normal operation. Failure to tie this pin low during normal operation can cause start up and initialization problems. <sup>(2)</sup>                                                                                                                                                                                                           |  |  |
| RESETZ    | C11                | I     | 6                   | Power-on reset (active low input with a hysteresis buffer). Self-configuration starts when a low-to-high transition is detected on RESETZ. All controller power and clocks must be stable before this reset is de-asserted. No signals are in their active state while RESETZ is asserted. This pin is typically connected to the RESETZ pin of the DLPA200x or RESET_Z of the DLPA300X.                                          |  |  |
| TSTPT_0   | R12                | I/O   | 1                   | Test pins (includes weak internal pulldown). Pins are tri-stated while                                                                                                                                                                                                                                                                                                                                                            |  |  |
| TSTPT_1   | R13                | I/O   | 1                   | RESETZ is asserted low. Sampled as an input test mode selection control approximately 1.5 µs after de-assertion of RESETZ, and then driven as                                                                                                                                                                                                                                                                                     |  |  |
| TSTPT_2   | R14                | I/O   | 1                   | outputs. <sup>(2)</sup> (3)                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| TSTPT_3   | R15                | I/O   | 1                   | Normal use: reserved for test output. Leave open for normal use.  Note: An external pullup may put the DLPC1438 in a test mode. See Section  7.3.6 for more information.                                                                                                                                                                                                                                                          |  |  |
| TSTPT_4   | P14                | I/O   | 1                   | Test pin 4 (Includes weak internal pulldown) – tri-stated while RESETZ is asserted low. Sampled as an input test mode selection control approximately 1.5 µs after de-assertion of RESETZ and then driven as an output.                                                                                                                                                                                                           |  |  |
| TSTPT_5   | P15                | I/O   | 1                   | Test pins (includes weak internal pulldown). Pins are tri-stated while                                                                                                                                                                                                                                                                                                                                                            |  |  |
| TSTPT_6   | N14                | I/O   | 1                   | RESETZ is asserted low. Sampled as an input test mode selection control approximately 1.5 µs after de-assertion of RESETZ, and then driven as                                                                                                                                                                                                                                                                                     |  |  |
| TSTPT_7   | N15                | I/O   | 1                   | outputs. (2) (3)  Normal use: reserved for test output. Leave open for normal use.  Note: An external pullup may put the DLPC1438 in a test mode. See Section 7.3.6 for more information.                                                                                                                                                                                                                                         |  |  |

- (1) If the application design does not require an external pullup, and there is no external logic that can overcome the weak internal pulldown resistor, then this I/O pin can be left open or unconnected for normal operation. If the application design does not require an external pullup, but there is external logic that might overcome the weak internal pulldown resistor, then an external pulldown is recommended to ensure a logic low.
- (2) External resistor must have a value of  $8 \text{ k}\Omega$  or less to compensate for pins that provide internal pullup or pulldown resistors.
- (3) If the application design does not require an external pullup and there is no external logic that can overcome the weak internal pulldown, then the TSTPT I/O can be left open (unconnected) for normal operation. If operation does not call for an external pullup, but there is external logic that might overcome the weak internal pulldown resistor, then an external pulldown resistor is recommended to ensure a logic low.
- (4) See Table 5-10 for type definitions.

#### Table 5-2. Parallel Port Input

| PIN <sup>(1)</sup> |     | I/O TY | TYPE(3) | DESCRIPTION |  |
|--------------------|-----|--------|---------|-------------|--|
| NAME               | NO. | 1/0    | 11156   |             |  |
| PCLK               | P3  | I      | 11      | Pixel clock |  |

Table 5-2 Parallel Port Input (continued)

| Table 5-2. Parallel Port Input (continued)                                       |                                        |     |          |                                                                                                                              |  |  |  |  |
|----------------------------------------------------------------------------------|----------------------------------------|-----|----------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PIN <sup>(1)</sup>                                                               |                                        | I/O | TYPE(3)  | DESCRIPTION                                                                                                                  |  |  |  |  |
| NAME                                                                             | NO.                                    | 1/0 | I TPE(*) | DESCRIPTION                                                                                                                  |  |  |  |  |
| PDM_CVS_TE                                                                       | N4                                     | I/O | 5        | Parallel data mask. Programable polarity with default of active high. Optional signal.                                       |  |  |  |  |
| VSYNC_WE                                                                         | P1                                     | I   | 11       | Vsync <sup>(2)</sup>                                                                                                         |  |  |  |  |
| HSYNC_CS                                                                         | N5                                     | I   | 11       | Hsync <sup>(2)</sup>                                                                                                         |  |  |  |  |
| DATAEN_CMD                                                                       | P2                                     | I   | 11       | Data valid                                                                                                                   |  |  |  |  |
| PDATA_0 PDATA_1 PDATA_2 PDATA_3 PDATA_4 PDATA_5 PDATA_6 PDATA_6 PDATA_7          | K2<br>K1<br>L2<br>L1<br>M2<br>M1<br>N2 | ı   | 11       | (bit weight 1) (bit weight 2) (bit weight 4) (bit weight 8) (bit weight 16) (bit weight 32) (bit weight 64) (bit weight 128) |  |  |  |  |
| PDATA_8 PDATA_9 PDATA_10 PDATA_11 PDATA_12 PDATA_13 PDATA_14 PDATA_15            | R1<br>R2<br>R3<br>P4<br>R4<br>P5<br>R5 | ı   | 11       | Unused                                                                                                                       |  |  |  |  |
| PDATA_16 PDATA_17 PDATA_18 PDATA_19 PDATA_20 PDATA_21 PDATA_21 PDATA_22 PDATA_22 | R6<br>P7<br>R7<br>P8<br>R8<br>P9<br>R9 | ı   | 11       | Unused                                                                                                                       |  |  |  |  |
| 3DR                                                                              | N6                                     | I   | 11       | Unused                                                                                                                       |  |  |  |  |
| L                                                                                |                                        | 1   | 1        |                                                                                                                              |  |  |  |  |

 <sup>(1)</sup> Connect unused inputs to ground or pulldown to ground through an external resistor (8 kΩ or less).
 (2) VSYNC and HSYNC polarity can be adjusted by software.

See Table 5-10 for type definitions. (3)



## Table 5-3. DSI Input Data and Clock

| PIN                                                          |                                              | I/O Type <sup>(1)</sup> | Type(1) | DESCRIPTION                              |  |
|--------------------------------------------------------------|----------------------------------------------|-------------------------|---------|------------------------------------------|--|
| NAME                                                         | NO.                                          | 1/0                     | Type    | DESCRIPTION                              |  |
| DCLKN<br>DCLKP                                               | E2<br>E1                                     |                         |         | unused; Leave unconnected and floating.  |  |
| DD0N<br>DD0P<br>DD1N<br>DD1P<br>DD2N<br>DD2P<br>DD3N<br>DD3P | G2<br>G1<br>F2<br>F1<br>D2<br>D1<br>C2<br>C1 |                         |         | unused; Leave unconnected and floating.  |  |
| RREF                                                         | F3                                           | _                       |         | Leave this pin unconnected and floating. |  |

(1) See Table 5-10 for type definitions.

## Table 5-4. DMD Reset and Bias Control

| PIN           |     | I/O TYPE( |   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------|-----|-----------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME          | NO. | I/O TYPE  |   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DMD_DEN_ARSTZ | B1  | 0         | 2 | DMD driver enable (active high). DMD reset (active low). When corresponding I/O power is supplied, the controller drives this signal low after the DMD is parked and before power is removed from the DMD. If the 1.8-V power to the DLPC1438 is independent of the 1.8-V power to the DMD, then TI recommends including a weak, external pulldown resistor to hold the signal low in case DLPC1438 power is inactive while DMD power is applied. |
| DMD_LS_CLK    | A1  | 0         | 3 | DMD, low speed (LS) interface clock                                                                                                                                                                                                                                                                                                                                                                                                               |
| DMD_LS_WDATA  | A2  | 0         | 3 | DMD, low speed (LS) serial write data                                                                                                                                                                                                                                                                                                                                                                                                             |
| DMD_LS_RDATA  | B2  | I         | 6 | DMD, low speed (LS) serial read data                                                                                                                                                                                                                                                                                                                                                                                                              |

(1) See Table 5-10 for type definitions.

#### Table 5-5. DMD Sub-LVDS Interface

| Table V C. Blild Gab EVBG Interface |     |                         |       |                                                                   |  |  |  |
|-------------------------------------|-----|-------------------------|-------|-------------------------------------------------------------------|--|--|--|
| PIN                                 |     | I/O TYPE <sup>(1)</sup> |       | DESCRIPTION                                                       |  |  |  |
| NAME                                | NO. | ] "/0                   | I IPE | DESCRIPTION                                                       |  |  |  |
| DMD_HS_CLK_P                        | A7  | 0                       | 4     | DMD high speed (HS) interface clock                               |  |  |  |
| DMD_HS_CLK_N                        | B7  |                         |       |                                                                   |  |  |  |
| DMD_HS_WDATA_H_P                    | A3  |                         |       |                                                                   |  |  |  |
| DMD_HS_WDATA_H_N                    | B3  |                         |       |                                                                   |  |  |  |
| DMD_HS_WDATA_G_P                    | A4  |                         |       |                                                                   |  |  |  |
| DMD_HS_WDATA_G_N                    | B4  |                         |       |                                                                   |  |  |  |
| DMD_HS_WDATA_F_P                    | A5  |                         |       |                                                                   |  |  |  |
| DMD_HS_WDATA_F_N                    | B5  |                         |       |                                                                   |  |  |  |
| DMD_HS_WDATA_E_P                    | A6  |                         |       | DMD sub-LVDS high speed (HS) interface write data lanes. The true |  |  |  |
| DMD_HS_WDATA_E_N                    | B6  | 0                       | 4     | numbering and application of the DMD HS WDATA pins depend on the  |  |  |  |
| DMD_HS_WDATA_D_P                    | A8  |                         |       | software configuration. See Table 7-9.                            |  |  |  |
| DMD_HS_WDATA_D_N                    | B8  |                         |       | garanom da razio / dr                                             |  |  |  |
| DMD_HS_WDATA_C_P                    | A9  |                         |       |                                                                   |  |  |  |
| DMD_HS_WDATA_C_N                    | B9  |                         |       |                                                                   |  |  |  |
| DMD_HS_WDATA_B_P                    | A10 |                         |       |                                                                   |  |  |  |
| DMD_HS_WDATA_B_N                    | B10 |                         |       |                                                                   |  |  |  |
| DMD_HS_WDATA_A_P                    | A11 |                         |       |                                                                   |  |  |  |
| DMD_HS_WDATA_A_N                    | B11 |                         |       |                                                                   |  |  |  |

(1) See Table 5-10 for type definitions.

# Table 5-6 Peripheral Interface(1)

| Table 5-6. Peripheral Interface <sup>(1)</sup> |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|------------------------------------------------|-----|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PIN <sup>(1)</sup>                             |     | I/O | TYPE(3)  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| NAME                                           | NO. | 1/0 | 111 = ., | BEGGINI TIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| CMP_OUT                                        | A12 | I   | 6        | Successive approximation ADC (analog-to-digital converter) comparator output (DLPC1438 Input). To implement, use a successive approximation ADC with a thermistor feeding one input of the external comparator and the DLPC1438 controller GPIO_10 (RC_CHARGE) pin driving the other side of the comparator. It is recommended to use the DLPAxxxx to achieve this function. CMP_OUT must be pulled-down to ground if this function is not used. (hysteresis buffer)                                                                                                          |  |  |  |  |
| CMP_PWM                                        | A15 | 0   | 1        | TI internal use. Leave this pin unconnected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| HOST_IRQ <sup>(2)</sup>                        | N8  | 0   | 9        | Host interrupt (output) HOST_IRQ indicates when the DLPC1438 auto-initialization is in progress and most importantly when it completes. This pin is tri-stated during reset. An external pullup must be included on this signal.                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| IIC0_SCL <sup>(4)</sup>                        | N10 | I/O | 7        | l²C slave (port 0) SCL (bidirectional, open-drain signal with input hysteresis): This pin requires an external pullup resistor. The slave l²C l/Os are 3.6-V tolerant (high-voltage-input tolerant) and are powered by VCC_INTF (which can be 1.8, 2.5, or 3.3 V). External l²C pullups must be connected to a host supply with an equal or higher supply voltage, up to a maximum of 3.6 V (a lower pullup supply voltage does not typically satisfy the $V_{\rm IH}$ specification of the slave l²C input buffers).                                                         |  |  |  |  |
| IIC1_SCL                                       | R11 | I/O | 8        | TI internal use. TI recommends an external pullup resistor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| IIC0_SDA <sup>(4)</sup>                        | N9  | I/O | 7        | l²C slave (port 0) SDA. (bidirectional, open-drain signal with input hysteresis): This pin requires an external pullup resistor. The slave l²C port is the control port of controller. The slave l²C l/O pins are 3.6-V tolerant (high-volt-input tolerant) and are powered by VCC_INTF (which can be 1.8, 2.5, or 3.3 V). External l²C pullups must be connected to a host supply with an equal or higher supply voltage, up to a maximum of 3.6 V (a lower pullup supply voltage does not typically satisfy the $V_{\rm IH}$ specification of the slave l²C input buffers). |  |  |  |  |
| IIC1_SDA                                       | R10 | I/O | 8        | TI internal use. TI recommends an external pullup resistor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| LED_SEL_0                                      | B15 | 0   | 1        | LED enable select. Automatically controlled by the DLPC1438 programmable DMD sequence  LED_SEL(1:0) Enabled LED 00 None 01 Red 10 Green 11 Blue                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| LED_SEL_1                                      | B14 | 0   | 1        | The controller drives these signals low when RESETZ is asserted and the corresponding I/O power is supplied. The controller continues to drive these signals low throughout the auto-initialization process. A weak, external pulldown resistor is recommended to ensure that the LEDs are disabled when I/O power is not applied.                                                                                                                                                                                                                                            |  |  |  |  |
| SPI0_CLK                                       | A13 | 0   | 13       | SPI (Serial Peripheral Interface) port 0, clock. This pin is typically connected to the flash memory clock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| SPI0_CSZ0                                      | A14 | 0   | 13       | SPI port 0, chip select 0 (active low output). This pin is typically connected to the flash memory chip select.  TI recommends an external pullup resistor to avoid floating inputs to the external SPI device during controller reset assertion.                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| SPI0_CSZ1                                      | C12 | 0   | 13       | SPI port 0, chip select 1 (active low output). This pin typically remains unused. TI recommends an external pullup resistor to avoid floating inputs to the external SPI device during controller reset assertion.                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| SPI0_DIN                                       | B12 | I   | 12       | Synchronous serial port 0, receive data in. This pin is typically connected to the flash memory data out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| SPI0_DOUT                                      | B13 | 0   | 13       | Synchronous serial port 0, transmit data out. This pin is typically connected to the flash memory data in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

- External pullup resistor must be 8 k $\Omega$  or less. For more information about usage, see *Section 7.3.3*. (1) (2)
- (3) See Table 5-10 for type definitions.



(4) When VCC\_INTF is powered and VDD is not powered, the controller may drive the IICO\_xxx pins low which prevents communication on this I<sup>2</sup>C bus. Do not power up the VCC\_INTF pin before powering up the VDD pin for any system that has additional slave devices on this bus.

Table 5-7. GPIO Peripheral Interface<sup>(1)</sup>

| PIN <sup>(</sup> | 1)  | .,- | (2)                 |                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|-----|-----|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME             | NO. | 1/0 | TYPE <sup>(3)</sup> | DESCRIPTION <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                |
| GPIO_19          | M15 | I/O | 1                   | General purpose I/O 19 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.                                                                                                                                                    |
| GPIO_18          | M14 | I/O | 1                   | General purpose I/O 18 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.                                                                                                                                                    |
| GPIO_17          | L15 | I/O | 1                   | General purpose I/O 17 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.                                                                                                                                                    |
| GPIO_16          | L14 | I/O | 1                   | General purpose I/O 16 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.                                                                                                                                                    |
| GPIO_15          | K15 | I/O | 1                   | General purpose I/O 15 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.                                                                                                                                                    |
| GPIO_14          | K14 | I/O | 1                   | General purpose I/O 14 (hysteresis buffer). FPGA_RDY (input): Input from FPGA, indicating when the FPGA initialization process is complete.                                                                                                                                                                                                                                                               |
| GPIO_13          | J15 | I/O | 1                   | General purpose I/O 13 (hysteresis buffer). AWG_ERR (input): Input from FPGA, indicating instability in actuator operation in order to halt printing and recover.                                                                                                                                                                                                                                         |
| GPIO_12          | J14 | I/O | 1                   | General purpose I/O 12 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.                                                                                                                                                    |
| GPIO_11          | H15 | I/O | 1                   | <ol> <li>General purpose I/O 11 (hysteresis buffer). Options:</li> <li>Thermistor power enable (output). Turns on the power to the thermistor when it is used and enabled.</li> <li>Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.</li> </ol> |
| GPIO_10          | H14 | I/O | 1                   | <ol> <li>General Purpose I/O 10 (hysteresis buffer). Options:</li> <li>RC_CHARGE (output): Intended to feed the RC charge circuit of the thermistor interface.</li> <li>Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.</li> </ol>             |
| GPIO_09          | G15 | I/O | 1                   | General purpose I/O 09 (hysteresis buffer). Reserved for Print Active signal. Indicates that a layer is actively being printed with previously sent print layer command. Applicable to External Print Mode only.                                                                                                                                                                                          |
| GPIO_08          | G14 | I/O | 1                   | General purpose I/O 08 (hysteresis buffer). Normal mirror parking request (active low): To be driven by the PROJ_ON output of the host. A logic low on this signal causes the DLPC1438 to PARK the DMD, but it does not power down the DMD (the DLPAxxxx does that instead). The minimum high time is 200 ms. The minimum low time is 200 ms.                                                             |
| GPIO_07          | F15 | I/O | 1                   | General purpose I/O 07 (hysteresis buffer). ACT_SYNC (output): Output to FPGA, used for synchronizing the actuator position with the controller data processing.                                                                                                                                                                                                                                          |
| GPIO_06          | F14 | I/O | 1                   | General purpose I/O 06 (hysteresis buffer). Reserved for System Ready signal (Output). Indicates when system is configured and ready for first print layer command after being commanded to go into External Print Mode. Applicable to External Print Mode only.                                                                                                                                          |
| GPIO_05          | E15 | I/O | 1                   | General purpose I/O 05 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.                                                                                                                                                    |

Table 5-7. GPIO Peripheral Interface<sup>(1)</sup> (continued)

| PIN <sup>(1)</sup> |     | 1/0 | TVDE(3)             | DESCRIPTION(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|-----|-----|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME               | NO. | I/O | TYPE <sup>(3)</sup> | DESCRIPTION <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GPIO_04            | E14 | I/O | 1                   | <ol> <li>General purpose I/O 04 (hysteresis buffer). Options:</li> <li>SPI1_CSZ1 (active-low output): Optional SPI1 chip select 1 signal. Requires an external pullup resistor to deactivate this signal during reset and auto-initialization processes.</li> <li>Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.</li> </ol> |
| GPIO_03            | D15 | I/O | 1                   | General purpose I/O 03 (hysteresis buffer). SPI1_CSZ0 (active low output): SPI1 chip select 0 signal. This pin is typically connected to the DLPAxxxx SPI_CSZ pin. Requires an external pullup resistor to deactivate this signal during reset and auto-initialization processes.                                                                                                                                                                                                       |
| GPIO_02            | D14 | I/O | 1                   | General purpose I/O 02 (hysteresis buffer). SPI1_DOUT (output): SPI1 data output signal. This pin is typicallyconnected to the DLPAxxxx SPI_DIN pin.                                                                                                                                                                                                                                                                                                                                    |
| GPIO_01            | C15 | I/O | 1                   | General purpose I/O 01 (hysteresis buffer). SPI1_CLK (output): SPI1 clock signal. This pin is typically connected to the DLPAxxxx SPI_CLK pin.                                                                                                                                                                                                                                                                                                                                          |
| GPIO_00            | C14 | I/O | 1                   | General purpose I/O 00 (hysteresis buffer). SPI1_DIN (input): SPI1 data input signal. This pin is typically connected to the DLPAxxxx SPI_DOUT pin.                                                                                                                                                                                                                                                                                                                                     |

- (1) GPIO pins must be configured through software for input, output, bidirectional, or open-drain operation. Some GPIO pins have one or more alternative use modes, which are also software configurable. An external pullup resistor is required for each signal configured as open-drain.
- (2) General purpose I/O for the DLPC1438 controller. These GPIO pins are software configurable.
- (3) See Table 5-10 for type definitions.

Table 5-8. Clock and PLL Support

| PIN NAME NO. |    | I/O | TYPE <sup>(1)</sup> | DESCRIPTION                                                                                                                                                  |
|--------------|----|-----|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |    | "0  | III L               | DESCRIPTION                                                                                                                                                  |
| PLL_REFCLK_I | H1 | I   | 11                  | Reference clock crystal input. If an external oscillator is used instead of a crystal, use this pin as the oscillator input.                                 |
| PLL_REFCLK_O | J1 | 0   |                     | Reference clock crystal return. If an external oscillator is used instead of a crystal, leave this pin unconnected (floating with no added capacitive load). |

(1) See Table 5-10 for type definitions.

## Table 5-9. Power and Ground

|         |                                                                                                         |      |             | 1 Owor and Oroana                                            |  |
|---------|---------------------------------------------------------------------------------------------------------|------|-------------|--------------------------------------------------------------|--|
| PIN     | I/O                                                                                                     | TYPE | DESCRIPTION |                                                              |  |
| NAME    | NO.                                                                                                     | "0   | IIFE        | DESCRIPTION                                                  |  |
| VDD     | C5, D5, D7,<br>D12, J4,<br>J12, K3, L4,<br>L12, M6,<br>M9, D9,<br>D13, F13,<br>H13, L13,<br>M10, D3, E3 | _    | PWR         | Core 1.1-V power (main 1.1 V)                                |  |
| VDDLP12 | C3                                                                                                      | _    |             | Unused. It is recommended to externally tie this pin to VDD. |  |



# Table 5-9. Power and Ground (continued)

| PIN      |                                                                                                                                                                                                             |     |      |                                                                                                                                                                                                               |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME     | NO.                                                                                                                                                                                                         | I/O | TYPE | DESCRIPTION                                                                                                                                                                                                   |
| VSS      | C4, D6, D8, D10, E4, E13, F4, G4, G12, H4, H12, J3, J13, K4, K12, L3, M4, M5, M8, M12, G13, C6, C8, F6, F7, F8, F9, F10, G6, G7, G8, G9, G10, H6, H7, H8, H9, H10, J6, J7, J8, J9, J10, K6, K7, K8, K9, K10 | 1   | GND  | Core ground (eDRAM, DSI, I/O ground, thermal ground)                                                                                                                                                          |
| VCC18    | C7, C9, D4,<br>E12, F12,<br>K13, M11                                                                                                                                                                        | 1   | PWR  | All 1.8-V I/O power: (1.8-V power supply for all I/O pins except the host or parallel interface and the SPI flash interface. This includes RESETZ, PARKZ, LED_SEL, CMP_OUT, GPIO, IIC1, TSTPT, and JTAG pins) |
| VCC_INTF | M3, M7, N3,<br>N7                                                                                                                                                                                           | _   | PWR  | Host or parallel interface I/O power: 1.8 V to 3.3 V (Includes IIC0, PDATA, video syncs, and HOST_IRQ pins)                                                                                                   |
| VCC_FLSH | D11                                                                                                                                                                                                         | _   | PWR  | Flash interface I/O power: 1.8 V to 3.3 V (Dedicated SPI0 power pin)                                                                                                                                          |
| VDD_PLLM | H2                                                                                                                                                                                                          | _   | PWR  | MCG PLL (master clock generator phase lock loop) 1.1-V power                                                                                                                                                  |
| VSS_PLLM | G3                                                                                                                                                                                                          | _   | RTN  | MCG PLL return                                                                                                                                                                                                |
| VDD_PLLD | J2                                                                                                                                                                                                          |     | PWR  | DCG PLL (DMD clock generator phase lock loop) 1.1-V power                                                                                                                                                     |
| VSS_PLLD | H3                                                                                                                                                                                                          | _   | RTN  | DCG PLL return                                                                                                                                                                                                |

# Table 5-10. I/O Type Subscript Definition

|           | Table 5-10. I/O Typ                                  | e Subscript Deminio  | <b> </b>                         |
|-----------|------------------------------------------------------|----------------------|----------------------------------|
|           | I/O                                                  | SUPPLY REFERENCE     | ESD STRUCTURE                    |
| SUBSCRIPT | DESCRIPTION                                          | SUPPLI REFERENCE     | ESD STRUCTURE                    |
| 1         | 1.8-V LVCMOS I/O buffer with 8-mA drive              | V <sub>cc18</sub>    | ESD diode to GND and supply rail |
| 2         | 1.8-V LVCMOS I/O buffer with 4-mA drive              | V <sub>cc18</sub>    | ESD diode to GND and supply rail |
| 3         | 1.8-V LVCMOS I/O buffer with 24-mA drive             | V <sub>cc18</sub>    | ESD diode to GND and supply rail |
| 4         | 1.8-V sub-LVDS output with 4-mA drive                | V <sub>cc18</sub>    | ESD diode to GND and supply rail |
| 5         | 1.8-V, 2.5-V, 3.3-V LVCMOS with 4-mA drive           | V <sub>cc_INTF</sub> | ESD diode to GND and supply rail |
| 6         | 1.8-V LVCMOS input                                   | V <sub>cc18</sub>    | ESD diode to GND and supply rail |
| 7         | 1.8-V, 2.5-V, 3.3-V I <sup>2</sup> C with 3-mA drive | V <sub>cc_INTF</sub> | ESD diode to GND and supply rail |
| 8         | 1.8-V I <sup>2</sup> C with 3-mA drive               | V <sub>cc18</sub>    | ESD diode to GND and supply rail |
| 9         | 1.8-V, 2.5-V, 3.3-V LVCMOS with 8-mA drive           | V <sub>cc_INTF</sub> | ESD diode to GND and supply rail |
| 10        | Reserved                                             |                      |                                  |
| 11        | 1.8-V, 2.5-V, 3.3-V LVCMOS input                     | V <sub>cc_INTF</sub> | ESD diode to GND and supply rail |
| 12        | 1.8-V, 2.5-V, 3.3-V LVCMOS input                     | V <sub>cc_FLSH</sub> | ESD diode to GND and supply rail |
| 13        | 1.8-V, 2.5-V, 3.3-V LVCMOS with 8-mA drive           | V <sub>cc_FLSH</sub> | ESD diode to GND and supply rail |

Product Folder Links: *DLPC1438* 



# **6 Specifications**

# **6.1 Absolute Maximum Ratings**

over operating free-air temperature (unless otherwise noted) (1)

|                        |                                                      | MIN  | MAX     | UNIT |
|------------------------|------------------------------------------------------|------|---------|------|
| SUPPLY                 | YOLTAGE (2)                                          |      |         |      |
| V <sub>(VDD)</sub>     |                                                      | -0.3 | 1.21    | V    |
| V <sub>(VDDLP1</sub>   | 12)                                                  | -0.3 | 1.32    | V    |
| V <sub>(VCC18)</sub>   |                                                      | -0.3 | 1.96    | V    |
| DMD Su                 | b-LVDS Interface (DMD_HS_CLK_x and DMD_HS_WDATA_x_y) | -0.3 | 1.96    | V    |
| V <sub>(VCC_IN</sub>   | TF)                                                  | -0.3 | 3.60    | V    |
| V <sub>(VCC_FL</sub>   | SH)                                                  | -0.3 | 3.60    | V    |
| V <sub>(VDD_PL</sub>   | LM) (MCG PLL)                                        | -0.3 | 1.21    | V    |
| V <sub>(VDD_PL</sub>   | LD) (DCG PLL)                                        | -0.3 | 1.21    | V    |
| V <sub>I2C buffe</sub> | r (I/O type 7)                                       | -0.3 | See (3) | V    |
| GENER                  | AL                                                   | ,    |         |      |
| TJ                     | Operating junction temperature                       | -30  | 125     | °C   |
| T <sub>stg</sub>       | Storage temperature                                  | -40  | 125     | °C   |
|                        | 1                                                    |      |         |      |

<sup>(1)</sup> Stresses beyond those listed under Section 6.1 may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Section 6.3. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

# 6.2 ESD Ratings

|                    |               |                                                                                          | VALUE | UNIT |
|--------------------|---------------|------------------------------------------------------------------------------------------|-------|------|
| V                  | Electrostatic | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins <sup>(1)</sup>              | ±2000 | \ \  |
| V <sub>(ESD)</sub> | discharge     | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins <sup>(2)</sup> | ±500  | V    |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

<sup>(2)</sup> All voltage values are with respect to VSS (GND).

<sup>(3)</sup> I/O is high voltage tolerant; that is, if VCC\_INTF = 1.8 V, the input is 3.3-V tolerant, and if VCC\_INTF = 3.3 V, the input is 5-V tolerant.

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



## **6.3 Recommended Operating Conditions**

over operating free-air temperature range (unless otherwise noted)

|                         |                                                                                                                                                                                                               |                    | MIN   | NOM   | MAX                                                     | UNIT |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|-------|---------------------------------------------------------|------|
| V <sub>(VDD)</sub>      | Core power 1.1 V (main 1.1 V)                                                                                                                                                                                 |                    | 1.045 | 1.10  | 1.155                                                   | V    |
| V <sub>(VDDLP12)</sub>  | Unused                                                                                                                                                                                                        |                    | 1.045 | 1.10  | 1.155                                                   | V    |
| V <sub>(VCC18)</sub>    | All 1.8-V I/O power: (1.8-V power supply for all I/O pins except the host or parallel interface and the SPI flash interface. This includes RESETZ, PARKZ LED_SEL, CMP_OUT, GPIO, IIC1, TSTPT, and JTAG pins.) |                    | 1.64  | 1.80  | 1.96                                                    | V    |
|                         |                                                                                                                                                                                                               |                    | 1.64  | 1.80  | 1.96                                                    |      |
| V <sub>(VCC_INTF)</sub> | Host or parallel interface I/O power: 1.8 to 3.3 V (includes IIC0, PDATA, video syncs, and HOST_IRQ pins)                                                                                                     | See <sup>(1)</sup> | 2.28  | 2.50  | 2.72                                                    | V    |
|                         |                                                                                                                                                                                                               |                    | 3.02  | 3.30  | 3.58                                                    |      |
|                         |                                                                                                                                                                                                               |                    | 1.64  | 1.80  | 1.96                                                    |      |
| V <sub>(VCC_FLSH)</sub> | Flash interface I/O power: 1.8 V to 3.3 V                                                                                                                                                                     | See (1)            | 2.28  | 2.50  | 2.72                                                    | V    |
|                         |                                                                                                                                                                                                               |                    | 3.02  | 3.30  | 1.155 1.96 1.96 2.72 3.58 1.96 2.72 3.58 1.155 1.155 85 |      |
| V <sub>(VDD_PLLM)</sub> | MCG PLL 1.1-V power                                                                                                                                                                                           | See (2)            | 1.025 | 1.100 | 1.155                                                   | V    |
| V <sub>(VDD_PLLD)</sub> | DCG PLL 1.1-V power                                                                                                                                                                                           | See (2)            | 1.025 | 1.100 | 1.155                                                   | V    |
| T <sub>A</sub>          | Operating ambient temperature <sup>(3)</sup>                                                                                                                                                                  | ,                  | -30   |       | 85                                                      | °C   |
| TJ                      | Operating junction temperature                                                                                                                                                                                |                    | -30   |       | 105                                                     | °C   |

- (1) These supplies have multiple valid ranges.
- (2) The minimum voltage is lower than other 1.1-V supply minimum to enable additional filtering. This filtering may result in an IR drop across the filter.
- (3) The operating ambient temperature range assumes 0 forced air flow, a JEDEC JESD51 junction-to-ambient thermal resistance value at 0 forced air flow (R<sub>BJA</sub> at 0 m/s), a JEDEC JESD51 standard test card and environment, along with minimum and maximum estimated power dissipation across process, voltage, and temperature. Thermal conditions vary by application, and this affects R<sub>BJA</sub>. Thus, maximum operating ambient temperature varies by application.
  - $T_{a\_min} = T_{j\_min} (P_{d\_min} \times R_{\theta JA}) = -30^{\circ}C (0.0 \text{ W} \times 28.8^{\circ}\text{C/W}) = -30^{\circ}\text{C}$
  - $T_{a \text{ max}} = T_{j \text{ max}} (P_{d \text{ max}} \times R_{\theta \text{JA}}) = +105^{\circ}\text{C} (0.348 \text{ W} \times 28.8^{\circ}\text{C/W}) = +95.0^{\circ}\text{C}$

#### 6.4 Thermal Information

|                 |                                                                |                                                   | DLPC1438 controller |      |
|-----------------|----------------------------------------------------------------|---------------------------------------------------|---------------------|------|
|                 | TH                                                             | ERMAL METRIC <sup>(1)</sup>                       | ZEZ (NFBGA)         | UNIT |
|                 |                                                                |                                                   | 201 PINS            |      |
| $R_{\theta JC}$ | Junction-to-case thermal                                       | resistance                                        | 10.1                | °C/W |
|                 |                                                                | at 0 m/s of forced airflow <sup>(2)</sup>         | 28.8                |      |
| $R_{\theta JA}$ | Junction-to-air thermal resistance                             | at 1 m/s of forced airflow <sup>(2)</sup>         | 25.3                | °C/W |
|                 | redictarioe                                                    | at 2 m/s of forced airflow <sup>(2)</sup>         | 24.4                |      |
| ΨЈТ             | Temperature variance fro unit power dissipation <sup>(3)</sup> | m junction to package top center temperature, per | 0.23                | °C/W |

- (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
- (2) Thermal coefficients abide by JEDEC Standard 51. R<sub>0JA</sub> is the thermal resistance of the package as measured using a JEDEC defined standard test PCB. This JEDEC test PCB is not necessarily representative of the DLPC1438 controller PCB and thus the reported thermal resistance may not be accurate in the actual product application. Although the actual thermal resistance may be different, it is the best information available during the design phase to estimate thermal performance.
- (3) Example: (0.5 W) × (0.2 °C/W) ≈ 0.1°C temperature rise.



#### **6.5 Power Electrical Characteristics**

|                                                                              | PARAMETER <sup>(3)</sup> (4) (5)                                                                                              | TEST CONDITIONS                   | MIN | TYP (1) | MAX (2) | UNIT |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----|---------|---------|------|
| I <sub>(VDD)</sub> +<br>I <sub>(VDD_PLLM)</sub> +<br>I <sub>(VDD_PLLD)</sub> | 1.1-V rails                                                                                                                   | 8 bit, 60 Hz, External Print Mode |     | 163     | 278     | mA   |
| I <sub>(VDD_PLLM)</sub>                                                      | MCG PLL 1.1V (6)                                                                                                              | 8 bit, 60 Hz, External Print Mode |     | 6       |         | mA   |
| I <sub>(VDD_PLLD)</sub>                                                      | DCG PLL 1.1V <sup>(6)</sup>                                                                                                   | 8 bit, 60 Hz, External Print Mode |     | 6       |         | mA   |
| I <sub>(VCC18)</sub>                                                         | All 1.8-V I/O current: (1.8-V power supply for all I/O other than the host or parallel interface and the SPI flash interface) | 8 bit, 60 Hz, External Print Mode |     | 35      | 48      | mA   |
| I <sub>(VCC_INTF)</sub>                                                      | Host or parallel interface I/O current: 1.8 to 3.3 V (includes IIC0, PDATA, video syncs, and HOST_IRQ pins) <sup>(6)</sup>    | 8 bit, 60 Hz, External Print Mode |     | 2       |         | mA   |
| I <sub>(VCC_FLSH)</sub>                                                      | Flash interface I/O current: 1.8 to 3.3 V (6)                                                                                 | 8 bit, 60 Hz, External Print Mode |     | 1       |         | mA   |

- (1) Assumes nominal process, voltage, and temperature (25°C nominal ambient) with nominal input images.
- (2) Assumes worst case process, maximum voltage, and high nominal ambient temperature of 65°C with worst case input image.
- (3) Values assume all pins using 1.1 V are tied together (including VDDLP12), and programmable host and flash I/O are at the minimum nominal voltage (that is 1.8 V).
- (4) Input image is 1280 × 720, 8-bits on the parallel interface with 144 MHz pixel clock at the frame rate shown with the DLP300S DMD.
- (5) The values do not take into account software updates or customer changes that may affect power performance.
- (6) This rail was not measured due to board limitations. Simulation values are used instead. Simulations assume 12.5% activity factor, 30% clock gating on appropriate domains, and mixed SVT (standard threshold voltage) or HVT (high threshold voltage) cells.



#### 6.6 Pin Electrical Characteristics

|          | PAR                       | AMETER <sup>(3)</sup>                                      | TEST<br>CONDITIONS <sup>(4)</sup> | MIN               | TYP MAX           | UNIT |
|----------|---------------------------|------------------------------------------------------------|-----------------------------------|-------------------|-------------------|------|
|          |                           | I <sup>2</sup> C buffer (I/O type 7)                       |                                   | 0.7 ×<br>VCC_INTF | See (1)           |      |
|          |                           | I/O type 1, 2, 3, 6, 8 except pins noted in <sup>(2)</sup> | VCC18 = 1.8 V                     | 1.17              | 3.6               |      |
|          |                           | I/O type 1, 6 for pins noted in (2)                        | VCC18 = 1.8 V                     | 1.3               | 3.6               |      |
| $V_{IH}$ | High-level input          | I/O type 5, 9, 11                                          | VCC_INTF = 1.8 V                  | 1.17              | 3.6               | V    |
| - 111    | threshold voltage         | I/O type 12, 13                                            | VCC_FLSH = 1.8 V                  | 1.17              | 3.6               |      |
|          |                           | I/O type 5, 9, 11                                          | VCC_INTF = 2.5 V                  | 1.7               | 3.6               |      |
|          |                           | I/O type 12, 13                                            | VCC_FLSH = 2.5 V                  | 1.7               | 3.6               |      |
|          |                           | I/O type 5, 9, 11                                          | VCC_INTF = 3.3 V                  | 2.0               | 3.6               |      |
|          |                           | I/O type 12, 13                                            | VCC_FLSH = 3.3 V                  | 2.0               | 3.6               |      |
|          |                           | I <sup>2</sup> C buffer (I/O type 7)                       |                                   | -0.5              | 0.3 ×<br>VCC_INTF |      |
|          |                           | I/O type 1, 2, 3, 6, 8 except pins noted in <sup>(2)</sup> | VCC18 = 1.8 V                     | -0.3              | 0.63              |      |
|          |                           | I/O type 1, 6 for pins noted in (2)                        | VCC18 = 1.8 V                     | -0.3              | 0.5               |      |
| $V_{IL}$ | Low-level input           | I/O type 5, 9, 11                                          | VCC_INTF = 1.8 V                  | -0.3              | 0.63              | V    |
| V IL     | threshold voltage         | I/O type 12, 13                                            | VCC_FLSH = 1.8 V                  | -0.3              | 0.63              | -    |
|          |                           | I/O type 5, 9, 11                                          | VCC_INTF = 2.5 V                  | -0.3              | 0.7               |      |
|          |                           | I/O type 12, 13                                            | VCC_FLSH = 2.5 V                  | -0.3              | 0.7               |      |
|          |                           | I/O type 5, 9, 11                                          | VCC_INTF = 3.3 V                  | -0.3              | 0.8               |      |
|          |                           | I/O type 12, 13                                            | VCC_FLSH = 3.3 V                  | -0.3              | 0.8               |      |
|          |                           | I/O type 1, 2, 3, 6, 8                                     | VCC18 = 1.8 V                     | 1.35              |                   |      |
|          |                           | I/O type 5, 9, 11                                          | VCC_INTF = 1.8 V                  | 1.35              |                   |      |
|          |                           | I/O type 12, 13                                            | VCC_FLSH = 1.8 V                  | 1.35              |                   |      |
| $V_{OH}$ | High-level output voltage | I/O type 5, 9, 11                                          | VCC_INTF = 2.5 V                  | 1.7               |                   | V    |
|          | voltage                   | I/O type 12, 13                                            | VCC_FLSH = 2.5 V                  | 1.7               |                   |      |
|          |                           | I/O type 5, 9, 11                                          | VCC_INTF = 3.3 V                  | 2.4               |                   |      |
|          |                           | I/O type 12, 13                                            | VCC_FLSH = 3.3 V                  | 2.4               |                   |      |
|          |                           | I <sup>2</sup> C buffer (I/O type 7)                       | VCC_INTF > 2 V                    |                   | 0.4               |      |
|          |                           | I <sup>2</sup> C buffer (I/O type 7)                       | VCC_INTF < 2 V                    |                   | 0.2 ×<br>VCC_INTF |      |
|          |                           | I/O type 1, 2, 3, 6, 8                                     | VCC18 = 1.8 V                     |                   | 0.45              |      |
|          | Low-level output          | I/O Type 5, 9, 11                                          | VCC_INTF = 1.8 V                  |                   | 0.45              |      |
| $V_{OL}$ | voltage                   | I/O Type 12, 13                                            | VCC_FLSH = 1.8 V                  |                   | 0.45              | V    |
|          |                           | I/O Type 5, 9, 11                                          | VCC_INTF = 2.5 V                  |                   | 0.7               |      |
|          |                           | I/O Type 12, 13                                            | VCC_FLSH = 2.5 V                  |                   | 0.7               |      |
|          |                           | I/O Type 5, 9, 11                                          | VCC_INTF = 3.3 V                  |                   | 0.4               |      |
|          |                           | I/O Type 12, 13                                            | VCC_FLSH = 3.3 V                  |                   | 0.4               |      |



# **6.6 Pin Electrical Characteristics (continued)**

|                 | PAR                                     | AMETER(3)                            | TEST<br>CONDITIONS <sup>(4)</sup>                                                             | MIN  | TYP | MAX | UNIT |
|-----------------|-----------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|------|-----|-----|------|
|                 |                                         | I/O type 2, 4                        | VCC18 = 1.8 V                                                                                 | 2    |     |     |      |
|                 |                                         | I/O type 5                           | VCC_INTF = 1.8 V                                                                              | 2    |     |     |      |
|                 |                                         | I/O type 1                           | VCC18 = 1.8 V                                                                                 | 3.5  |     |     |      |
|                 |                                         | I/O type 9                           | VCC_INTF = 1.8 V                                                                              | 3.5  |     |     |      |
|                 |                                         | I/O type 13                          | VCC_FLSH = 1.8 V                                                                              | 3.5  |     |     |      |
|                 | High-level output                       | I/O type 3                           | VCC18 = 1.8 V                                                                                 | 10.6 |     |     | 4    |
| I <sub>OH</sub> | current <sup>(5)</sup>                  | I/O type 5                           | VCC_INTF = 2.5 V                                                                              | 5.4  |     |     | mA   |
|                 |                                         | I/O type 9, 13                       | VCC_INTF = 2.5V                                                                               | 10.8 |     |     |      |
|                 |                                         | I/O type 13                          | VCC_FLSH = 2.5 V                                                                              | 10.8 |     |     |      |
|                 |                                         | I/O type 5                           | VCC_INTF = 3.3 V                                                                              | 7.8  |     |     |      |
|                 |                                         | I/O type 9                           | VCC_INTF = 3.3 V                                                                              | 15   |     |     |      |
|                 |                                         | I/O type 13                          | VCC_FLSH = 3.3 V                                                                              | 15   |     |     |      |
|                 |                                         | I <sup>2</sup> C buffer (I/O type 7) |                                                                                               | 3    |     |     |      |
|                 |                                         | I/O type 2, 4                        | VCC18 = 1.8 V                                                                                 | 2.3  |     |     |      |
|                 |                                         | I/O type 5                           | VCC_INTF = 1.8 V                                                                              | 2.3  |     |     |      |
|                 |                                         | I/O type 1                           | VCC18 = 1.8 V                                                                                 | 4.6  |     |     |      |
|                 |                                         | I/O type 9                           | VCC_INTF = 1.8 V                                                                              | 4.6  |     |     |      |
|                 |                                         | I/O type 13                          | VCC_FLSH = 1.8 V                                                                              | 4.6  |     |     |      |
| $I_{OL}$        | Low-level output current <sup>(6)</sup> | I/O type 3                           | VCC18 = 1.8 V                                                                                 | 13.9 |     |     | mA   |
|                 | Garrone                                 | I/O type 5                           | VCC_INTF = 2.5 V                                                                              | 5.2  |     |     |      |
|                 |                                         | I/O type 9                           | VCC_INTF = 2.5 V                                                                              | 10.4 |     |     |      |
|                 |                                         | I/O type 13                          | VCC_FLSH = 2.5 V                                                                              | 10.4 |     |     |      |
|                 |                                         | I/O type 5                           | VCC_INTF = 3.3 V                                                                              | 4.4  |     |     |      |
|                 |                                         | I/O type 9                           | VCC_INTF = 3.3 V                                                                              | 8.9  |     |     |      |
|                 |                                         | I/O type 13                          | VCC_FLSH = 3.3 V                                                                              | 8.9  |     |     |      |
|                 |                                         | I <sup>2</sup> C buffer (I/O type 7) | V <sub>12C</sub> buffer < 0.1 ×<br>VCC_INTF or<br>V <sub>12C</sub> buffer > 0.9 ×<br>VCC_INTF | -10  |     | 10  |      |
|                 |                                         | I/O type 1, 2, 3, 6, 8,              | VCC18 = 1.8 V                                                                                 | -10  |     | 10  |      |
|                 | High-impedance                          | I/O Type 5, 9, 11                    | VCC_INTF = 1.8 V                                                                              | -10  |     | 10  | ^    |
| l <sub>OZ</sub> | leakage current                         | I/O Type 12, 13                      | VCC_FLSH = 1.8 V                                                                              | -10  |     | 10  | μΑ   |
|                 |                                         | I/O type 5, 9, 11                    | VCC_INTF = 2.5 V                                                                              | -10  |     | 10  |      |
|                 |                                         | I/O Type 12, 13                      | VCC_FLSH = 2.5 V                                                                              | -10  | ,   | 10  |      |
|                 |                                         | I/O Type 5, 9, 11                    | VCC_INTF = 3.3 V                                                                              | -10  |     | 10  |      |
|                 |                                         | I/O type 12, 13                      | VCC_FLSH = 3.3 V                                                                              | -10  |     | 10  |      |



### 6.6 Pin Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

|    | PARA                | METER <sup>(3)</sup>                   | TEST<br>CONDITIONS <sup>(4)</sup> | MIN | TYP MAX | UNIT |
|----|---------------------|----------------------------------------|-----------------------------------|-----|---------|------|
|    |                     | I <sup>2</sup> C buffer (I/O type 7)   |                                   |     | 5       |      |
|    |                     | I/O type 1, 2, 3, 6, 8                 | VCC18 = 1.8 V                     | 2.6 | 3.5     |      |
|    |                     | I/O Type 5, 9, 11                      | VCC_INTF = 1.8 V                  | 2.6 | 3.5     |      |
|    |                     | I/O Type 12, 13                        | VCC_FLSH = 1.8 V                  | 2.6 | 3.5     |      |
| Cı | Input capacitance   | I/O type 5, 9, 11                      | VCC_INTF = 2.5 V                  | 2.6 | 3.5     | pF   |
|    | (including package) | I/O type 12, 13                        | VCC_FLSH = 2.5 V                  | 2.6 | 3.5     |      |
|    |                     | I/O type 5, 9, 11                      | VCC_INTF = 3.3 V                  | 2.6 | 3.5     |      |
|    |                     | I/O type 12, 13                        | VCC_FLSH = 3.3 V                  | 2.6 | 3.5     |      |
|    |                     | sub-LVDS – DMD high speed (I/O type 4) | VCC18 = 1.8 V                     |     | 3       |      |

- (1) I/O is high voltage tolerant; that is, if VCC INTF = 1.8 V, the input is 3.3-V tolerant, and if VCC INTF = 3.3 V, the input is 5-V tolerant.
- (2) Controller pins CMP\_OUT, PARKZ, RESETZ, and GPIO\_00 through GPIO\_19 have slightly varied V<sub>IH</sub> and V<sub>IL</sub> range from other 1.8-V I/O.
- (3) The I/O type refers to the type defined in Table 5-10.
- (4) Test conditions that define a value for VCC18, VCC\_INTF, or VCC\_FLSH show the nominal voltage that the specified I/O's supply reference is set to.
- (5) At a high level output signal, the given I/O will be able to output at least the minimum current specified.
- (6) At a low level output signal, the given I/O will be able to sink at least the minimum current specified.

### 6.7 Internal Pullup and Pulldown Electrical Characteristics

over operating free-air temperature (unless otherwise noted) (2)

| INTERNAL PULLUP AND PULLDOWN RESISTOR CHARACTERISTICS | TEST<br>CONDITIONS <sup>(1)</sup> | MIN | MAX | UNIT |
|-------------------------------------------------------|-----------------------------------|-----|-----|------|
|                                                       | VCCIO = 3.3 V                     | 29  | 63  | kΩ   |
| Weak pullup resistance                                | VCCIO = 2.5 V                     | 38  | 90  | kΩ   |
| k pullup resistance                                   | VCCIO = 1.8 V                     | 56  | 148 | kΩ   |
|                                                       | VCCIO = 3.3 V                     | 30  | 72  | kΩ   |
| Weak pulldown resistance                              | VCCIO = 2.5 V                     | 36  | 101 | kΩ   |
|                                                       | VCCIO = 1.8 V                     | 52  | 167 | kΩ   |

- (1) The resistance is dependent on VCCIO, the pin's supply reference (see a given pins supply reference in Table 5-10).
- (2) An external 8-kΩ pullup or pulldown (if needed) would work for any voltage condition to correctly pull enough to override any associated internal pullups or pulldowns.

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated



#### 6.8 DMD Sub-LVDS Interface Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

|                                      | PARAMETER                                                              | TEST CONDITIONS | MIN   | TYP   | MAX   | UNIT   |
|--------------------------------------|------------------------------------------------------------------------|-----------------|-------|-------|-------|--------|
| V <sub>CM</sub>                      | Common mode voltage                                                    |                 | 0.8   | 0.9   | 1.0   | V      |
| V <sub>CM</sub> (Δpp) <sup>(1)</sup> | V <sub>CM</sub> change peak-to-peak (during switching)                 |                 |       |       | 75    | mV     |
| V <sub>CM</sub> (Δss) <sup>(1)</sup> | V <sub>CM</sub> change steady state                                    |                 | -10   |       | 10    | mV     |
| V <sub>OD</sub>   <sup>(2)</sup>     | Differential output voltage magnitude                                  |                 | 170   | 250   | 350   | mV     |
| V <sub>OD</sub> (Δ)                  | V <sub>OD</sub> change (between logic states)                          |                 | -10   |       | 10    | mV     |
| V <sub>OH</sub>                      | Single-ended output voltage high                                       |                 | 0.825 | 1.025 | 1.175 | V      |
| V <sub>OL</sub>                      | Single-ended output voltage low                                        |                 | 0.625 | 0.775 | 0.975 | V      |
| Tx <sub>term</sub>                   | Internal differential termination                                      |                 | 80    | 100   | 120   | Ω      |
| Tx <sub>load</sub>                   | 100- $\Omega$ differential PCB trace (50- $\Omega$ transmission lines) |                 | 0.5   |       | 6     | inches |

- (1) See Figure 6-1
- (2) V<sub>OD</sub> is the differential voltage measured across a 100-Ω termination resistance connected directly between the transmitter differential pins. V<sub>OD</sub> = V<sub>P</sub> V<sub>N</sub>, where P and N are the differential output pins. |V<sub>OD</sub>| is the magnitude of the peak-to-peak voltage swing across the P and N output pins (see Figure 6-2). V<sub>CM</sub> cancels out between signals when measured differentially, thus the reason V<sub>OD</sub> swings relative to zero.

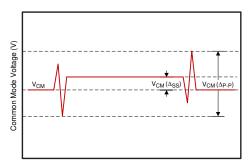
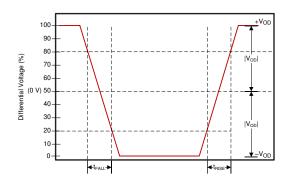




Figure 6-1. Common Mode Voltage



 $V_{\text{CM}}$  is removed when the signals are viewed differentially

Figure 6-2. Differential Output Signal



# 6.9 DMD Low-Speed Interface Electrical Characteristics

|                         | PARAMETER <sup>(3)</sup>                               | TEST CONDITIONS                                                                               | MIN            | TYP MAX        | UNIT |
|-------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------|----------------|------|
| V <sub>OH(DC)</sub>     | DC output high voltage for DMD_LS_WDATA and DMD_LS_CLK |                                                                                               | 0.7 ×<br>VCC18 |                | V    |
| V <sub>OL(DC)</sub>     | DC output low voltage for DMD_LS_WDATA and DMD_LS_CLK  |                                                                                               |                | 0.3 ×<br>VCC18 | V    |
| V <sub>OH(AC)</sub> (1) | AC output high voltage for DMD_LS_WDATA and DMD_LS_CLK |                                                                                               | 0.8 ×<br>VCC18 | VCC18 +<br>0.5 | V    |
| V <sub>OL(AC)</sub> (2) | AC output low voltage for DMD_LS_WDATA and DMD_LS_CLK  |                                                                                               | -0.5           | 0.2 ×<br>VCC18 | V    |
| Slew rate               | DMD_LS_WDATA and DMD_LS_CLK                            | $V_{OL(DC)}$ to $V_{OH(AC)}$ for rising edge and $V_{OH(DC)}$ to $V_{OL(AC)}$ for rising edge | 1.0            | 3.0            | V/ns |
|                         | DMD_DEN_ARSTZ                                          | V <sub>OL(AC)</sub> to V <sub>OH(AC)</sub> for rising edge                                    | 0.25           |                |      |
|                         | DMD_LS_RDATA                                           |                                                                                               | 0.5            |                |      |

<sup>(1)</sup> V<sub>OH(AC)</sub> maximum applies to overshoot. When the DMD\_LS\_WDATA and DMD\_LS\_CLK lines include a proper 43-Ω series termination resistor, the DMD operates within the LPSDR input AC specifications.

<sup>(3)</sup> See Figure 6-3 for DMD\_LS\_CLK, and DMD\_LS\_WDATA rise and fall times. See Figure 6-4 for DMD\_DEN\_ARSTZ rise and fall times.

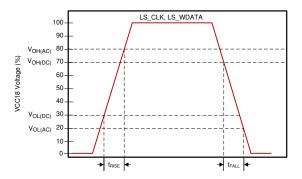



Figure 6-3. LS\_CLK and LS\_WDATA Slew Rate

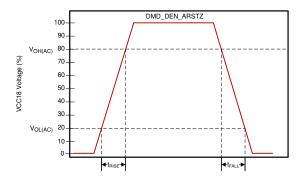



Figure 6-4. DMD\_DEN\_ARSTZ Slew Rate

<sup>(2)</sup> V<sub>OL(AC)</sub> minimum applies to undershoot. When the DMD\_LS\_WDATA and DMD\_LS\_CLK lines include a proper 43-Ω series termination resistor, the DMD operates within the LPSDR input AC specifications.



# **6.10 System Oscillator Timing Requirements**

|                   |                                                                                                                                                      |                                                                                                   | MIN    | NOM    | MAX    | UNIT |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------|--------|--------|------|
| f <sub>clk</sub>  | Clock frequency, MOSC (master oscillator clock) <sup>(1)</sup>                                                                                       |                                                                                                   | 23.998 | 24.000 | 24.002 | MHz  |
| t <sub>c</sub>    | Cycle time, MOSC (clock period) <sup>(1)</sup>                                                                                                       | See Figure 6-5                                                                                    | 41.663 | 41.667 | 41.670 | ns   |
| t <sub>w(H)</sub> | Pulse duration as percent of t <sub>c</sub> <sup>(2)</sup> , MOSC, high                                                                              | 50% to 50% reference points (signal)                                                              | 40%    | 50%    |        |      |
| t <sub>w(L)</sub> | Pulse duration as percent of t <sub>c</sub> <sup>(2)</sup> , MOSC, low                                                                               | 50% to 50% reference points (signal)                                                              | 40%    | 50%    |        |      |
| t <sub>t</sub>    | Transition time <sup>(2)</sup> , MOSC                                                                                                                | 20% to 80% reference<br>points (rising signal)<br>80% to 20% reference<br>points (falling signal) |        |        | 10     | ns   |
| t <sub>jp</sub>   | Long-term, peak-to-peak, period jitter <sup>(2)</sup> , MOSC (that is the deviation in period from ideal period due solely to high frequency jitter) |                                                                                                   |        |        | 2%     |      |

- The frequency accuracy for MOSC is ±200 PPM. (This includes impact to accuracy due to aging, temperature, and trim sensitivity.)
   The MOSC input does not support spread spectrum clock spreading.
- (2) Applies only when driven by an external digital oscillator.

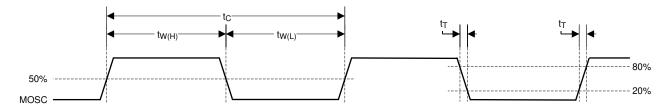



Figure 6-5. System Oscillators

# 6.11 Power Supply and Reset Timing Requirements

|                   |                                                |                                      | MIN MAX | UNIT |
|-------------------|------------------------------------------------|--------------------------------------|---------|------|
| t <sub>w(L)</sub> | Pulse duration, active low, RESETZ             | 50% to 50% reference points (signal) | 1.25    | μs   |
| t <sub>r</sub>    | Rise time, RESETZ <sup>(1)</sup>               | 20% to 80% reference points (signal) | 0.5     | μs   |
| t <sub>f</sub>    | Fall time, RESETZ <sup>(1)</sup>               | 80% to 20% reference points (signal) | 0.5     | μs   |
| t <sub>rise</sub> | Rise time, VDD (during VDD ramp up at turn-on) | 0.3 V to 1.045 V (VDD)               | 1       | ms   |

(1) For more information on RESETZ, see Section 5.

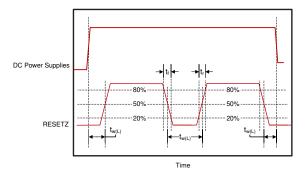



Figure 6-6. Power-Up and Power-Down RESETZ Timing



## **6.12 Parallel Interface Frame Timing Requirements**

See for additional information

|                    |                                                                                                                                                                |                      | MIN                | MAX | UNIT  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|-----|-------|
| t <sub>p_vsw</sub> | Pulse duration – default VSYNC_WE high                                                                                                                         | 50% reference points | 1                  |     | lines |
| t <sub>p_vbp</sub> | Vertical back porch (VBP) – time from the active edge of VSYNC_WE to the active edge of HSYNC_CS for the first active line <sup>(1)</sup>                      | 50% reference points | 2                  |     | lines |
| t <sub>p_vfp</sub> | Vertical front porch (VFP) – time from the active edge of the HSYNC_CS following the last active line in a frame to the active edge of VSYNC_WE <sup>(1)</sup> | 50% reference points | 1                  |     | lines |
| t <sub>p_tvb</sub> | Total vertical blanking – the sum of VBP and VFP $(t_{p\_vbp} + t_{p\_vfp})$                                                                                   | 50% reference points | See <sup>(1)</sup> |     | lines |
| t <sub>p_hsw</sub> | Pulse duration – default HSYNC_CS high                                                                                                                         | 50% reference points | 4                  | 128 | PCLKs |
| t <sub>p_hbp</sub> | Horizontal back porch (HBP) – time from the active edge of HSYNC_CS to the rising edge of DATAEN_CMD                                                           | 50% reference points | 4                  |     | PCLKs |
| t <sub>p_hfp</sub> | Horizontal front porch (HFP) – time from the falling edge of DATAEN_CMD to the active edge of HSYNC_CS                                                         | 50% reference points | 8                  |     | PCLKs |

- (1) The minimum total vertical blanking is defined by the following equation: t<sub>p\_tvb</sub>(min) = 6 + [8 × Max(1, Source\_ALPF/ DMD\_ALPF)] lines where:
  - SOURCE\_ALPF = Input source active lines per frame
  - DMD\_ALPF = Actual DMD used lines per frame supported

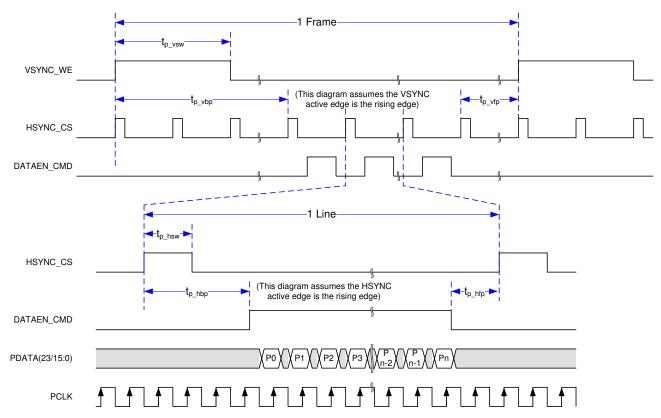



Figure 6-7. Parallel Interface Frame Timing

# 6.13 Parallel Interface General Timing Requirements

|                          |                                                                                     |                                                                                                   | MIN  | MAX     | UNIT |
|--------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|---------|------|
| $f_{clock}$              | PCLK frequency                                                                      |                                                                                                   | 1.0  | 155.0   | MHz  |
| t <sub>p_clkper</sub>    | PCLK period                                                                         | 50% reference points                                                                              | 6.45 | 1000    | ns   |
| t <sub>p_clkjit</sub>    | PCLK jitter                                                                         | Max f <sub>clock</sub>                                                                            |      | see (1) |      |
| t <sub>p_wh</sub>        | PCLK pulse duration high                                                            | 50% reference points                                                                              | 2.43 |         | ns   |
| t <sub>p_wl</sub>        | PCLK pulse duration low                                                             | 50% reference points                                                                              | 2.43 |         | ns   |
| p_su                     | Setup time – HSYNC_CS, DATAEN_CMD, PDATA(23:0) valid before the active edge of PCLK | 50% reference points                                                                              | 0.9  |         | ns   |
| p_h                      | Hold time – HSYNC_CS, DATAEN_CMD, PDATA(23:0) valid after the active edge of PCLK   | 50% reference points                                                                              | 0.9  |         | ns   |
| it                       | Transition time – all signals                                                       | 20% to 80% reference<br>points (rising signal)<br>80% to 20% reference<br>points (falling signal) | 0.2  | 2.0     | ns   |
| t <sub>setup</sub> , 3DR | This is the setup time with respect to VSYNC <sup>(2)</sup>                         | 50% reference points                                                                              | 1.0  |         | ms   |
| t <sub>hold</sub> , 3DR  | This is the hold time with respect VSYNC <sup>(3)</sup>                             | 50% reference points                                                                              | 1.0  |         | ms   |

- Calculate clock jitter (in ns) using this formula: Jitter = [1 /  $f_{clock}$  5.76 ns]. Setup and hold times must be met even with clock jitter. In other words, the 3DR signal must change at least 1.0 ms before VSYNC changes
- (2)
- In other words, the 3DR signal must not change for at least 1.0 ms after VSYNC changes

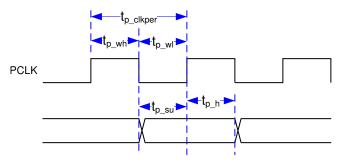



Figure 6-8. Parallel Interface Pixel Timing



# 6.14 BT656 Interface General Timing Requirements

The DLPC34xx controller input interface supports the industry standard BT.656 parallel video interface. See the appropriate ITU-R BT.656 specification for detailed interface timing requirements. (2)

|                       |                                                        |                                                                                                   | MIN   | MAX     | UNIT |
|-----------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|---------|------|
| $f_{cll}$             | PCLK frequency                                         |                                                                                                   | 1.0   | 33.5    | MHz  |
| t <sub>p_clkper</sub> | PCLK period                                            | 50% reference points                                                                              | 29.85 | 1000    | ns   |
| t <sub>p_clkjit</sub> | PCLK jitter                                            | Max f <sub>clock</sub>                                                                            |       | See (1) |      |
| t <sub>p_wh</sub>     | PCLK pulse duration high                               | 50% reference points                                                                              | 10.0  |         | ns   |
| t <sub>p_wl</sub>     | PCLK pulse duration low                                | 50% reference points                                                                              | 10.0  |         | ns   |
| t <sub>p_su</sub>     | Setup time – PDATA(7:0) before the active edge of PCLK | 50% reference points                                                                              | 3.0   |         | ns   |
| t <sub>p_h</sub>      | Hold time – PDATA(7:0) after the active edge of PCLK   | 50% reference points                                                                              | 0.9   |         | ns   |
| t <sub>t</sub>        | Transition time – all signals                          | 20% to 80% reference points<br>(rising signal)<br>80% to 20% reference points<br>(falling signal) | 0.2   | 3.0     | ns   |

- (1) Calculate clock jitter (in ns) using this formula: Jitter = [1 / f<sub>clock</sub> 5.76 ns]. Clock jitter must maintain setup and hold times. BT.656 data bits must be mapped to the DLPC34xx PDATA bus as shown in Figure 6-9 shows BT.656 bus mode YCbCr 4:2:2 source PDATA (23:0) mapping.
- (2) The BT.656 interface accepts 8-bits per color, 4:2:2 YCbCr data encoded per the industry standard through PDATA(7:0) on the active edge of PCLK. See Figure 6-9.

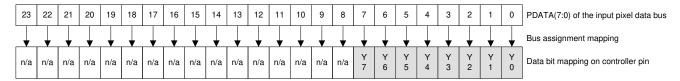



Figure 6-9. BT.656 Interface Mode Bit Mapping

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated



### 6.15 Flash Interface Timing Requirements

The DLPC3478 flash memory interface consists of a SPI flash serial interface. The DLPC3478 can support 1- to 128-Mb flash memories.  $^{(2)}$   $^{(3)}$   $^{(4)}$ 

|                       |                                                                        |                                                                                                   | MIN  | MAX  | UNIT |
|-----------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|------|------|
| f <sub>clock</sub>    | SPI_CLK frequency                                                      | See <sup>(1)</sup>                                                                                | 1.4  | 36.0 | MHz  |
| t <sub>p_clkper</sub> | SPI_CLK period                                                         | 50% reference points                                                                              | 27.8 | 704  | ns   |
| t <sub>p_wh</sub>     | SPI_CLK pulse duration high                                            | 50% reference points                                                                              | 352  |      | ns   |
| t <sub>p_wl</sub>     | SPI_CLK pulse duration low                                             | 50% reference points                                                                              | 352  |      | ns   |
| t <sub>t</sub>        | Transition time – all signals                                          | 20% to 80% reference<br>points (rising signal)<br>80% to 20% reference<br>points (falling signal) | 0.2  | 3.0  | ns   |
| t <sub>p_su</sub>     | Setup time – SPI_DIN valid before SPI_CLK falling edge                 | 50% reference points                                                                              | 10.0 |      | ns   |
| t <sub>p_h</sub>      | Hold time – SPI_DIN valid after SPI_CLK falling edge                   | 50% reference points                                                                              | 0.0  |      | ns   |
| t <sub>p_clqv</sub>   | SPI_CLK clock falling edge to output valid time – SPI_DOUT and SPI_CSZ | 50% reference points                                                                              |      | 1.0  | ns   |
| t <sub>p_clqx</sub>   | SPI_CLK clock falling edge output hold time – SPI_DOUT and SPI_CSZ     | 50% reference points                                                                              | -3.0 | 3.0  | ns   |

- (1) This range include the ±200 ppm of the external oscillator (but no jitter).
- (2) Standard SPI protocol is to transmit data on the falling edge of SPI\_CLK and capture data on the rising edge. The DLPC3478 does transmit data on the falling edge, but it also captures data on the falling edge rather than the rising edge. This provides support for SPI devices with long clock-to-Q timing. DLPC3478 hold capture timing has been set to facilitate reliable operation with standard external SPI protocol devices.
- (3) With the above output timing, DLPC3478 provides the external SPI device 8.2-ns input set-up and 8.2-ns input hold, relative to the rising edge of SPI\_CLK.
- (4) For additional requirements of the external flash device view the Section 7.3.4 section.

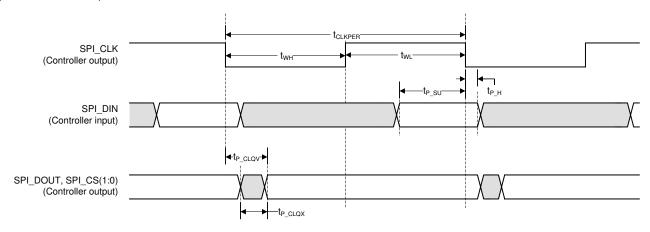



Figure 6-10. Flash Interface Timing

## 6.16 Other Timing Requirements

|                                                                   |                             | MIN | MAX | UNIT |
|-------------------------------------------------------------------|-----------------------------|-----|-----|------|
| t <sub>rise</sub> , all <sup>(1)</sup> (2)                        | 20% to 80% reference points |     | 10  | ns   |
| t <sub>fall</sub> , all <sup>(1)</sup> (2)                        | 80% to 20% reference points |     | 10  | ns   |
| t <sub>rise</sub> , PARKZ <sup>(2)</sup>                          | 20% to 80% reference points |     | 150 | ns   |
| t <sub>fall</sub> , PARKZ <sup>(2)</sup>                          | 80% to 20% reference points |     | 150 | ns   |
| t <sub>w</sub> , GPIO_08 (normal park) pulse width <sup>(3)</sup> |                             | 200 |     | ms   |
| I <sup>2</sup> C baud rate                                        |                             |     | 100 | kHz  |

- (1) Unless noted elsewhere, the following signal transition times are for all DLPC34xx signals.
- (2) This is the recommended signal transition time to avoid input buffer oscillations.

(3) The pulse width encompasses the minimum high time and the minimum low time for this signal.

## 6.17 DMD Sub-LVDS Interface Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

|                               | PARAMETER                      | TEST CONDITIONS | MIN | TYP  | MAX | UNIT |
|-------------------------------|--------------------------------|-----------------|-----|------|-----|------|
| t <sub>R</sub> (1)            | Differential output rise time  |                 |     |      | 250 | no   |
| t <sub>F</sub> <sup>(1)</sup> | Differential output fall time  |                 |     |      | 250 | ps   |
| t <sub>switch</sub>           | DMD HS Clock switching rate    |                 |     | 1200 |     | Mbps |
| f <sub>clock</sub>            | DMD HS Clock frequency         |                 |     | 600  |     | MHz  |
| DCout                         | DMD HS Clock output duty cycle |                 | 45% | 50%  | 55% |      |

<sup>(1)</sup> Rise and fall times are defined for the differential  $V_{OD}$  signal as shown in Figure 6-2.

### 6.18 DMD Parking Switching Characteristics

#### See (2)

| PARAMETER              |                                 | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
|------------------------|---------------------------------|-----------------|-----|-----|-----|------|
| t <sub>park</sub>      | Normal Park time <sup>(1)</sup> |                 |     |     | 20  | ms   |
| t <sub>fast park</sub> | Fast park time <sup>(3)</sup>   |                 |     |     | 32  | μs   |

- (1) Normal park time is defined as how long it takes the DLPC34xx controller to complete the parking of the DMD after it receives the normal park request (GPIO\_08 goes low).
- (2) The oscillator and power supplies must remain active for at least the duration of the park time. The power supplies must additionally be held on for a time after parking is completed to satisfy DMD requirements. See Section 9.2 and the appropriate DMD or PMIC datasheet for more information.
- (3) Fast park time is defined as how long it takes the DLPC34xx controller to complete the parking of the DMD after it receives the fast park request (PARKZ goes low).

# 6.19 Chipset Component Usage Specification

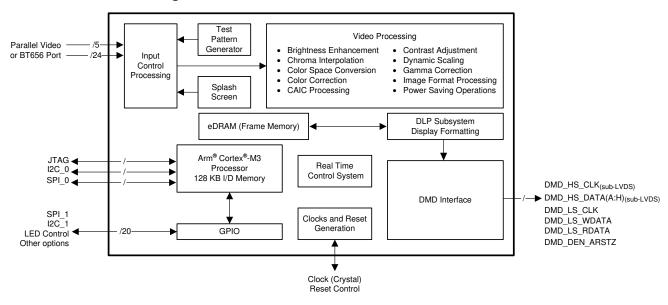
The DLPC1438 is a component of a DLP chipset. Reliable function and operation of the DLP chipset requires that it be used with all components (DMD, PMIC, and controller) of the applicable DLP chipset.

Table 6-1. DLPC1438 Supported DMDs and PMICs

| DLPC1438 DLP Chipset |  |  |  |  |
|----------------------|--|--|--|--|
| DLP300S              |  |  |  |  |
| DLP301S              |  |  |  |  |
| DLPA2000             |  |  |  |  |
| DLPA2005             |  |  |  |  |
| DLPA3000             |  |  |  |  |
| DLPA3005             |  |  |  |  |
|                      |  |  |  |  |

Product Folder Links: DLPC1438

Submit Document Feedback




# 7 Detailed Description

## 7.1 Overview

The DLPC1438 controller is part of the chipset that includes the DLP300S or DLP301S DMD, and the DLPA200x or DLPA300x PMIC/LED driver. To ensure reliable operation of the DLP chipset, the DLPC1438 must always be used with the supported devices shown in Table 6-1.

## 7.2 Functional Block Diagram





### 7.3 Feature Description

#### 7.3.1 Input Source

### 7.3.1.1 Supported Resolution and Frame Rates

Table 7-1. Supported Input Source Ranges<sup>(1)</sup> (2) (3)

| INTERFACE | Bits / Pixel (4) | HORIZONTAL |          | VERTICAL  |          | FRAME RATE<br>RANGE |
|-----------|------------------|------------|----------|-----------|----------|---------------------|
|           |                  | Landscape  | Portrait | Landscape | Portrait |                     |
| Parallel  | 8                | 1280       | 720      | 720       | 1280     | 60 ±2 Hz            |

- (1) The application must remain within specifications for all source interface parameters such as maximum clock rate and maximum line rate
- (2) The maximum DMD size for all rows in the table is 1280 × 720.
- (3) To achieve the ranges stated, the firmware must support the source parameters. Review the firmware release notes or contact TI to determine the latest available frame rate and input resolution support for a given firmware image.
- (4) Bits per pixel does not necessarily equal the number of data pins used on the DLPC1438 controller.
- (5) By using an I2C command, portrait image inputs can be rotated on the DMD by minus 90 degrees so that the image is displayed in landscape format.

#### 7.3.1.2 Parallel Interface

The parallel interface complies with standard graphics interface protocol, which includes the signals listed in Table 7-2.

Table 7-2. Parallel Interface Signals

| SIGNAL     | DESCRIPTION                   |  |  |  |
|------------|-------------------------------|--|--|--|
| VSYNC_WE   | vertical sync                 |  |  |  |
| HSYNC_CS   | horizontal sync               |  |  |  |
| DATAEN_CMD | data valid                    |  |  |  |
| PDATA      | 8-bit data bus                |  |  |  |
| PCLK       | pixel clock                   |  |  |  |
| PDM_CVS_TE | parallel data mask (optional) |  |  |  |

#### Note

VSYNC\_WE must remain active at all times when using parallel RGB mode. When this signal is no longer active, the display sequencer stops and causes the LEDs to turn off.

The active edge of both sync signals are variable. The *Parallel Interface Frame Timing Requirements* section shows the relationship of these signals.

An optional parallel data mask signal (PDM\_CVS\_TE) allows periodic frame updates to be stopped without losing the displayed image. When active, PDM\_CVS\_TE acts as a data mask and does not allow the source image to be propagated to the display. A programmable PDM polarity parameter determines if it is active high or active low. PDM\_CVS\_TE defaults to active high. To disable the data mask function, tie PDM\_CVS\_TE to a logic low signal. PDM\_CVS\_TE must only change during vertical blanking.

The parallel interface supports a single 8-bit data format with bitweights as defined in Table 5-2.

#### 7.3.2 External Print

External Print is one of the key capabilities of the DLPC1438 controller. When the DLPC1438 controller is configured for external print, most video processing functions are bypassed to allow for accurate pattern display. In external print mode, frame data is sent to the DLPC1438 controller over parallel interface. Commands to the DLPC1438 controller execute a printed layer with a programmable number of frames to expose before disabling illumination to prepare for the next print layer.

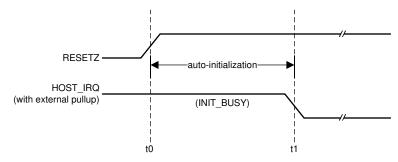
Submit Document Feedback



The DLPC1438 controller has two trigger out signals to synchronize printing operation with a host processor.

# **Table 7-3. External Print Signals**

| SIGNAL NAME             | DESCRIPTION                                                                                                                                                                               |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | System Ready: After switching to External Print Mode, some setup time is required. Once setup is complete and the controller is ready to accept a print layer command, SYS_RDY goes high. |
| TPRINT ACTIVE (GPIO NO) | Active during printing of each layer. When PRINT_ACTIVE is low, illumination is turned off and it is safe to perform mechanical motion to prepare for the next layer print.               |


Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback



#### 7.3.3 Device Startup

- The HOST\_IRQ signal is provided to indicated when the system has completed auto-initialization.
- While reset is applied, HOST\_IRQ is tri-stated (an external pullup resistor pulls the line high).
- HOST\_IRQ remains tri-stated (pulled high externally) until the boot process completes. While the signal is
  pulled high, this indicates that the controller is performing boot-up and auto-initialization.
- As soon as possible after the controller boots-up, the controller drives HOST\_IRQ to a logic high state to
  indicate that the controller is continuing to perform auto-initialization (no real state changes occur on the
  external signal).
- The software sets HOST\_IRQ to a logic low state at the completion of the auto-initialization process. At the falling edge of the signal, the initialization is complete.
- The DLPC1438 controller is ready to receive commands through I<sup>2</sup>C or accept video over the video interface only after auto-initialization is complete.
- The controller initialization typically completes (HOST\_IRQ goes low) within 500 ms of RESETZ being asserted. However, this time may vary depending on the software version and the contents of the user configurable auto initialization file.



t0: rising edge of RESETZ; auto-initialization begins

t1: falling edge of HOST IRQ; auto-initialization is complete

Figure 7-1. HOST IRQ Timing

#### 7.3.4 SPI Flash

#### 7.3.4.1 SPI Flash Interface

The DLPC1438 controller requires an external SPI serial flash memory device to store the firmware. Follow the below guidelines and requirements in addition to the requirements listed in the *Flash Interface Timing Requirements* section.

The controller supports a maximum flash size of 128 Mb (16 MB). See the DLPC1438 Validated SPI Flash Device Options table for example compatible flash options. The minimum required flash size depends on the size of the utilized firmware. The firmware size depends upon a variety of factors including the number of sequences, lookup tables, and splash images.

The DLPC1438 controller uses a single SPI interface that complies to industry standard SPI flash protocol. The device will begin accessing the flash at a nominal 1.42-MHz frequency before running at a nominal 30-MHz rate. The flash device must support these rates.

The controller has two independent SPI chip select (CS) control lines. Ensure that the chip select pin of the flash device is connects to SPI0\_CSZ0 as the controller boot routine is executes from the device connected to chip select zero. The boot routine uploads program code from flash memory to program memory then transfers control to an auto-initialization routine within program memory.

The DLPC1438 is designed to support any flash device that is compatible with the modes of operation, features, and performance as defined in the Additional DLPC1438 SPI Flash Requirements table below Table 7-4, Table 7-5, and Table 7-6.

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

# Table 7-4. Additional DLPC1438 SPI Flash Requirements

| FEATURE                                                       | DLPC1438 REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SPI interface width                                           | Single                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| SPI polarity and phase settings                               | SPI mode 0                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Fast READ addressing                                          | Auto-incrementing                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Programming mode                                              | Page mode                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Page size                                                     | 256 B                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Sector size                                                   | 4-KB sector                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Block size                                                    | Any                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Block protection bits                                         | 0 = Disabled                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Status register bit(0)                                        | Write in progress (WIP), also called flash busy                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Status register bit(1)                                        | Write enable latch (WEN)                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Status register bits(6:2)                                     | A value of 0 disables programming protection                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Status register bit(7)                                        | Status register write protect (SRWP)                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Status register bits(15:8)<br>(that is expansion status byte) | Because the DLPC1438 controller supports only single-byte status register R/W command execution, it may not be compatible with flash devices that contain an expansion status byte. However, as long as the expansion status byte is considered optional in the byte 3 position and any write protection control in this expansion status byte defaults to unprotected, then the flash device is likely compatible with the DLPC1438. |  |  |

The DLPC1438 controller is intended to support flash devices with program protection defaults of either enabled or disabled. The controller assumes the default is enabled and proceeds to disable any program protection as part of the boot process.

The DLPC1438 issues these commands during the boot process:

- A write enable (WREN) instruction to request write enable, followed by
- · A read status register (RDSR) instruction (repeated as needed) to poll the write enable latch (WEL) bit
- After the write enable latch (WEL) bit is set, a write status register (WRSR) instruction that writes 0 to all 8 bits (this disables all programming protection)

Prior to each program or erase instruction, the DLPC1438 controller issues similar commands:

- · A write enable (WREN) instruction to request write enable, followed by
- A read status register (RDSR) instruction (repeated as needed) to poll the write enable latch (WEL) bit
- After the write enable latch (WEL) bit is set, the program or erase instruction

Note that the flash device automatically clears the write enable status after each program and erase instruction.

Table 7-5 and Table 7-6 below list the specific instruction OpCode and timing compatibility requirements. The DLPC1438 controller does not adapt protocol or clock rate based on the flash type connected.



Table 7-5. SPI Flash Instruction OpCode and Access Profile Compatibility Requirements

| SPI FLASH COMMAND    | BYTE 1<br>(OPCODE) | BYTE 2    | BYTE 3   | BYTE 4    | BYTE 5                 | BYTE 6                 |
|----------------------|--------------------|-----------|----------|-----------|------------------------|------------------------|
| Fast READ (1 output) | 0x0B               | ADDRS(0)  | ADDRS(1) | ADDRS(2)  | dummy                  | DATA(0) <sup>(1)</sup> |
| Read status          | 0x05               | N/A       | N/A      | STATUS(0) |                        |                        |
| Write status         | 0x01               | STATUS(0) | See (2)  |           |                        |                        |
| Write enable         | 0x06               |           |          |           |                        |                        |
| Page program         | 0x02               | ADDRS(0)  | ADDRS(1) | ADDRS(2)  | DATA(0) <sup>(1)</sup> |                        |
| Sector erase (4 KB)  | 0x20               | ADDRS(0)  | ADDRS(1) | ADDRS(2)  |                        |                        |
| Chip erase           | 0xC7               |           |          |           |                        |                        |

- (1) Shows the first data byte only. Data continues.
- (2) Access to a second (expansion) write status byte not supported by the DLPC1438 controller.

Table 7-6 below and the *Flash Interface Timing Requirements* section list the specific timing compatibility requirements for a DLPC1438 compatible flash device.

Table 7-6. SPI Flash Key Timing Parameter Compatibility Requirements

| SPI FLASH TIMING PARAMETER <sup>(1)</sup> (2)                 | SYMBOL            | ALTERNATE SYMBOL | MIN   | MAX    | UNIT |
|---------------------------------------------------------------|-------------------|------------------|-------|--------|------|
| Access frequency (all commands)                               | FR                | f <sub>C</sub>   | ≤ 1.4 | ≥ 30.1 | MHz  |
| Chip select high time (also called chip select deselect time) | t <sub>SHSL</sub> | t <sub>CSH</sub> | ≤ 200 |        | ns   |
| Output hold time                                              | t <sub>CLQX</sub> | t <sub>HO</sub>  | ≥ 0   |        | ns   |
| Clock low to output valid time                                | t <sub>CLQV</sub> | t <sub>V</sub>   |       | ≤ 11   | ns   |
| Data in set-up time                                           | t <sub>DVCH</sub> | t <sub>DSU</sub> | ≤ 5   |        | ns   |
| Data in hold time                                             | t <sub>CHDX</sub> | t <sub>DH</sub>  | ≤ 5   |        | ns   |

- (1) The timing values apply to the specification of the peripheral flash device, not the DLPC1438 controller. For example, the flash device minimum access frequency (FR) must be 1.4 MHz or less and the maximum access frequency must be 30.1 MHz or greater.
- (2) The DLPC1438 does not drive the HOLD or WP (active low write protect) pins on the flash device, and thus these pins must be tied to a logic high on the PCB through an external pullup.

In order for the DLPC1438 controller to support 1.8-V, 2.5-V, or 3.3-V serial flash devices, the VCC\_FLSH pin must be supplied with the corresponding voltage. The DLPC1438 Validated SPI Flash Device Options table contains a list of validated 1.8-V, 2.5-V, or 3.3-V compatible SPI serial flash devices supported by the DLPC1438 controller.

Table 7-7. DLPC1438 Validated SPI Flash Device Options(1) (2) (3)

| DENSITY (Mb) | VENDOR                           | PART NUMBER       | PACKAGE SIZE         |  |  |  |  |  |
|--------------|----------------------------------|-------------------|----------------------|--|--|--|--|--|
|              | 1.8-V COMPATIBLE DEVICES         |                   |                      |  |  |  |  |  |
| 4 Mb         | Winbond                          | W25Q40BWUXIG      | 2 × 3 mm USON        |  |  |  |  |  |
| 4 Mb         | Macronix                         | MX25U4033EBAI-12G | 1.43 × 1.94 mm WLCSP |  |  |  |  |  |
| 8 Mb         | Macronix                         | MX25U8033EBAI-12G | 1.68 × 1.99 mm WLCSP |  |  |  |  |  |
|              | 2.5- OR 3.3-V COMPATIBLE DEVICES |                   |                      |  |  |  |  |  |
| 16 Mb        | Winbond                          | W25Q16CLZPIG      | 5 × 6 mm WSON        |  |  |  |  |  |

- (1) The flash supply voltage must equal VCC\_FLSH supply voltage on the DLPC1438 controller. Make sure to order the device that supports the correct supply voltage as multiple voltage options are often available.
- (2) Numonyx (Micron) serial flash devices typically do not support the 4 KB sector size compatibility requirement for the DLPC1438 controller.
- (3) The flash devices in this table have been formally validated by TI. Other flash options may be compatible with the DLPC1438 controller, but they have not been formally validated by TI.

Submit Document Feedback

## 7.3.4.2 SPI Flash Programming

The SPI pins of the flash can directly be driven for flash programming while the DLPC1438 controller I/Os are tri-stated. SPI0\_CLK, SPI0\_DOUT, and SPI0\_CSZ0 I/O can be tri-stated by holding RESETZ in a logic low state while power is applied to the controller. The logic state of the SPI0\_CSZ1 pin is not affected by this action. Alternatively, the DLPC1438 controller can program the SPI flash itself when commanded via I<sup>2</sup>C if a valid firmware image has already been loaded and the controller is operational.

#### 7.3.5 I<sup>2</sup>C Interface

Both of the DLPC1438 I<sup>2</sup>C interface ports support a 100-kHz baud rate. Because I<sup>2</sup>C interface transactions operate at the speed of the slowest device on the bus, there is no requirement to match the speed of all devices in the system.

#### 7.3.6 Test Point Support

The DLPC1438 test point output port, TSTPT\_(7:0), provides selected system calibration and controller debug support. These test points are inputs when reset is applied. These test points are outputs when reset is released. The controller samples the signal state upon the release of system reset and then uses the captured value to configure the test mode until the next time reset is applied. Because each test point includes an internal pulldown resistor, external pullups must be used to modify the default test configuration.

The default configuration (b000) corresponds to the TSTPT\_(2:0) outputs remaining tri-stated to reduce switching activity during normal operation. For maximum flexibility, a jumper to external pullup resistors is recommended for TSTPT\_(2:0). The pullup resistors on TSTPT\_(2:0) can be used to configure the controller for a specific mode or option. TI does not recommend adding pullup resistors to TSTPT\_(7:3) due to potentially adverse effects on normal operation. For normal use TSTPT\_(7:3) should be left unconnected. The test points are sampled only during a 0-to-1 transition on the RESETZ input, so changing the configuration after reset is released does not have any effect until the next time reset asserts and releases. Table 7-8 describes the test mode selections for one programmable scenario defined by TSTPT (2:0).

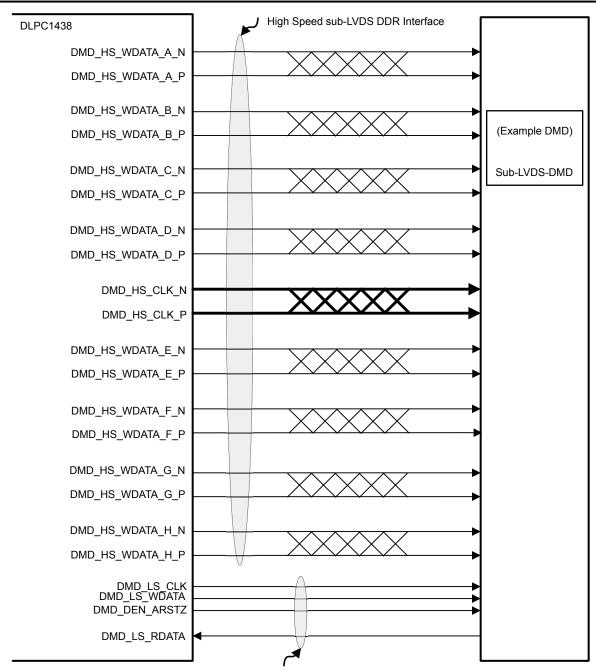
| rable 7 of rest mode selection sections belined by 1011 1_(2.0) |                       |                     |  |  |  |  |  |
|-----------------------------------------------------------------|-----------------------|---------------------|--|--|--|--|--|
| TSTPT OUTPUT VALUE(1)                                           | NO SWITCHING ACTIVITY | CLOCK DEBUG OUTPUT  |  |  |  |  |  |
| 131F1 OUTFOI VALUE                                              | TSTPT_(2:0) = 0b000   | TSTPT_(2:0) = 0b010 |  |  |  |  |  |
| TSTPT_0                                                         | HI-Z                  | 60 MHz              |  |  |  |  |  |
| TSTPT_1                                                         | HI-Z                  | 30 MHz              |  |  |  |  |  |
| TSTPT_2                                                         | HI-Z                  | 0.7 to 22.5 MHz     |  |  |  |  |  |
| TSTPT_3                                                         | HI-Z                  | HIGH                |  |  |  |  |  |
| TSTPT_4                                                         | HI-Z                  | LOW                 |  |  |  |  |  |
| TSTPT_5                                                         | HI-Z                  | HIGH                |  |  |  |  |  |
| TSTPT_6                                                         | HI-Z                  | HIGH                |  |  |  |  |  |
| TSTPT_7                                                         | HI-Z                  | 7.5 MHz             |  |  |  |  |  |

Table 7-8. Test Mode Selection Scenario Defined by TSTPT\_(2:0)

#### 7.3.7 DMD Interface

The DLPC1438 controller DMD interface consists of one high-speed (HS), 1.8-V sub-LVDS, output-only interface and one low speed (LS), 1.8-V LVCMOS SDR interface with a typical fixed clock speed of 120 MHz.

# 7.3.7.1 Sub-LVDS (HS) Interface


The DLP300S/DLP301S DMD does not require all of the available output data lanes of the controller. Internal software selection allows the controller to support multiple DMD interface swap configurations. These options can improve board layout by remapping specific combinations of DMD interface lines to other DMD interface lines as needed. Table 7-9 shows the two options available for the DLP300S/DLP301S DMD. Leave any unused DMD signal pairs unconnected on the final board design.

<sup>(1)</sup> These are default output selections. Software can reprogram the selection at any time.



Table 7-9. DLP300S/DLP301S DMD - ASIC to 8-Lane DMD Pin Mapping Options

| DLPC1438 CONTROLLER 8 LANE DMD | DMD PINS                     |                                  |
|--------------------------------|------------------------------|----------------------------------|
| OPTION 1                       | OPTION 2                     | DIND FINS                        |
| HS_WDATA_D_P<br>HS_WDATA_D_N   | HS_WDATA_E_P<br>HS_WDATA_E_N | Input DATA_p_0<br>Input DATA_n_0 |
| HS_WDATA_C_P<br>HS_WDATA_C_N   | HS_WDATA_F_P<br>HS_WDATA_F_N | Input DATA_p_1 Input DATA_n_1    |
| HS_WDATA_B_P<br>HS_WDATA_B_N   | HS_WDATA_G_P<br>HS_WDATA_G_N | Input DATA_p_2<br>Input DATA_n_2 |
| HS_WDATA_A_P<br>HS_WDATA_A_N   | HS_WDATA_H_P<br>HS_WDATA_H_N | Input DATA_p_3 Input DATA_n_3    |
| HS_WDATA_H_P<br>HS_WDATA_H_N   | HS_WDATA_A_P<br>HS_WDATA_A_N | Input DATA_p_4<br>Input DATA_n_4 |
| HS_WDATA_G_P<br>HS_WDATA_G_N   | HS_WDATA_B_P<br>HS_WDATA_B_N | Input DATA_p_5<br>Input DATA_n_5 |
| HS_WDATA_F_P<br>HS_WDATA_F_N   | HS_WDATA_C_P<br>HS_WDATA_C_N | Input DATA_p_6 Input DATA_n_6    |
| HS_WDATA_E_P<br>HS_WDATA_E_N   | HS_WDATA_D_P<br>HS_WDATA_D_N | Input DATA_p_7 Input DATA_n_7    |



Low Speed SDR Interface (120 MHz)

Figure 7-2. DLP300S/DLP301S DMD Interface Example

The sub-LVDS high-speed interface waveform quality and timing on the DLPC1438 controller depends on the total length of the interconnect system, the spacing between traces, the characteristic impedance, etch losses, and how well matched the lengths are across the interface. Thus, ensuring positive timing margin requires attention to many factors.

In an attempt to minimize the signal integrity analysis that would otherwise be required, the *DMD Control* and *Sub-LVDS Signals* layout section is provided as a reference of an interconnect system that satisfy both waveform quality and timing requirements (accounting for both PCB routing mismatch and PCB signal integrity). Variation from these recommendations may also work, but should be confirmed with PCB signal integrity analysis or lab measurements.



#### 7.4 Device Functional Modes

The DLPC1438 controller has two functional modes (ON and OFF) controlled by a single pin, PROJ\_ON (GPIO\_08).

- When the PROJ\_ON pin is set high, the controller powers up and can be programmed to send data to the DMD.
- When the PROJ\_ON pin is set low, the controller powers down and consumes minimal power.

## 7.5 Programming

The DLPC1438 controller contains an Arm® Cortex®-M3 processor with additional functional blocks to enable video processing and control. TI provides software as a firmware image. The customer is required to flash this firmware image onto the SPI flash memory. The DLPC1438 controller loads this firmware during startup and regular operation. The controller and its accompanying DLP chipset requires this proprietary software to operate. The available controller functions depend on the firmware version installed. Different firmware is required for different chipset combinations (such as when using different PMIC devices). See *Documentation Support* at the end of this document or contact TI to view or download the latest published software.

Users can modify software behavior through  $I^2C$  interface commands. For a list of commands, view the software user's guide accessible through the *Documentation Support* page.

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

## 8 Application and Implementation

#### Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

### 8.1 Application Information

The DLPC1438 3D Print controller with DLP300S or DLP301S DMD enables high resolution fast 3D printer products. This section describes typical 3D printer DLP systems with and without actuation. The DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two directions, with the primary direction being into projection or collection optics. The optical architecture of the system and the format of the image digital data coming into the DLPC1438 are what primarily determine the application requirements.

Typical applications include:

- · DLP 3D printer
  - Additive manufacturing
  - Vat polymerization
  - Masked stereolithography (mSLA 3D printer)
- · Light exposure: programmable spatial and temporal light exposure

## 8.2 Typical Application

#### 8.2.1 Pattern projector for 3D printer without actuation and without FPGA

DLPC1438 controller with DLP300S/DLP301S DMD enables high accuracy and low cost 3D printer products. Figure 8-1 shows a typical 3D printer system block diagram using external print mode.

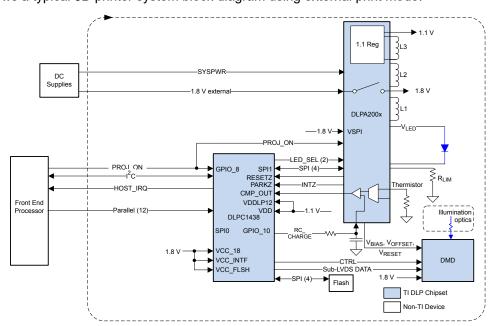



Figure 8-1. System without FPGA and without actuator

#### 8.2.1.1 Design Requirements

A DLP 3D printer can be created using the DLP300S/DLP301S, DLPC1438, and DLPA200x PMIC/LED driver. In addition to the DLP chipset, other IC components may be needed including a flash device to store the software and firmware to control the DLPC1438.

A 405nm LED typically supplies the illumination for the DMD. In addition to LEDs, other light sources are supported.

For connecting the DLPC1438 controller to the host processing for receiving patterns or video data, the parallel interface is used. Connect an I<sup>2</sup>C interface to the host processor to send commands to the DLPC1438 controller.

#### 8.2.1.2 Detailed Design Procedure

For connecting the DLP300S/DLP301S DMD, the DLPC1438 controller and the DLPA200x or DLPA300x PMIC/LED driver see the reference design schematic. Follow the layout guidelines shown in Section 10 to achieve reliable DLP system results.

#### 8.2.1.3 Application Curve

As the LED currents that are driven through LED\_0, LED\_1 or LED\_2 LEDs are increased, the brightness of the projector increases. This increase is somewhat non-linear, and the curve for typical white screen lumens changes with LED currents is shown in Figure 8-2. For the LED currents shown, it is assumed that the same current amplitude is applied to the LED\_0, LED\_1 or LED\_2 LEDs.

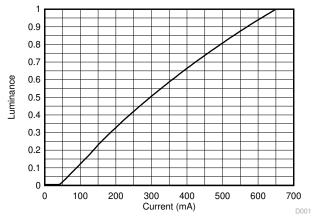



Figure 8-2. Luminance vs Current

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

## 8.2.2 Pattern projector for 3D printer with actuator

DLPC1438 controller with DLP300S/DLP301S DMD enables high accuracy and low cost 3D printer products. Figure 8-3 shows a typical 3D printer system block diagram using external print mode.

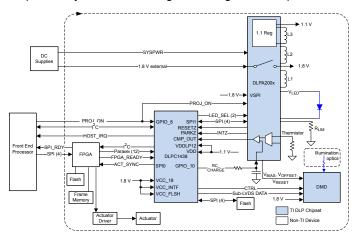



Figure 8-3. Internal Pattern Streaming Mode

### 8.2.2.1 Design Requirements

When higher resolution is required, a front-end FPGA design is provided which provides actuator control and synchronization, as well as providing a data bridge between an SPI output of a host processor and the parallel interface of the DLPC1438. This FPGA combined with the DLP300S/DLP301S, DLPC1438, and DLPA200x PMIC/LED driver complete the control electronics for the optical module of a 3D printer. In addition to the DLP chipset, other IC components may be needed including a flash device to store the software and firmware to control the DLPC1438.

A 405nm LED typically supplies the illumination for the DMD. In addition to LEDs, other light sources are supported.

For connecting the DLPC1438 controller to the host processing for receiving patterns or video data, the parallel interface is used. Connect an I<sup>2</sup>C interface to the host processor to send commands to the DLPC1438 controller.

### 8.2.2.2 Detailed Design Procedure

For connecting the DLP300S/DLP301S DMD, the DLPC1438 controller and the DLPA200x or DLPA300x PMIC/LED driver see the reference design schematic. Follow the layout guidelines shown in Section 10 to achieve reliable DLP system results.

### 8.2.2.3 Application Curve

See the Section 8.2.1.3 as the brightness considerations are similar in systems with and without an FPGA.



# 9 Power Supply Recommendations

# 9.1 PLL Design Considerations

It is acceptable for the VDD\_PLLD and VDD\_PLLM to be derived from the same regulator as the core VDD. However, to minimize the AC noise component, apply a filter as recommended in the *PLL Power Layout* section.

## 9.2 System Power-Up and Power-Down Sequence

Although the DLPC1438 requires an array of power supply voltages, (for example, VDD, VDDLP12, VDD\_PLLM/D, VCC18, VCC\_FLSH, VCC\_INTF), because VDDLP12 is tied to the 1.1-V VDD supply, then there are no restrictions regarding the relative order of power supply sequencing to avoid damaging the controller (This is true for both power-up and power-down scenarios). Similarly, there is no minimum time between powering-up or powering-down the different supplies if VDDLP12 is tied to the 1.1-V VDD supply.

Although there is no risk of damaging the controller if the above power sequencing rules are followed, the following additional power sequencing recommendations must be considered to ensure proper system operation.

- To ensure that DLPC1438 output signal states behave as expected, all controller I/O supplies should remain applied while VDD core power is applied. If VDD core power is removed while the I/O supply (VCC\_INTF) is applied, then the output signal state associated with the inactive I/O supply goes to a high impedance state.
- Additional power sequencing rules may exist for devices that share the supplies with the controller, and thus these devices may force additional system power sequencing requirements.

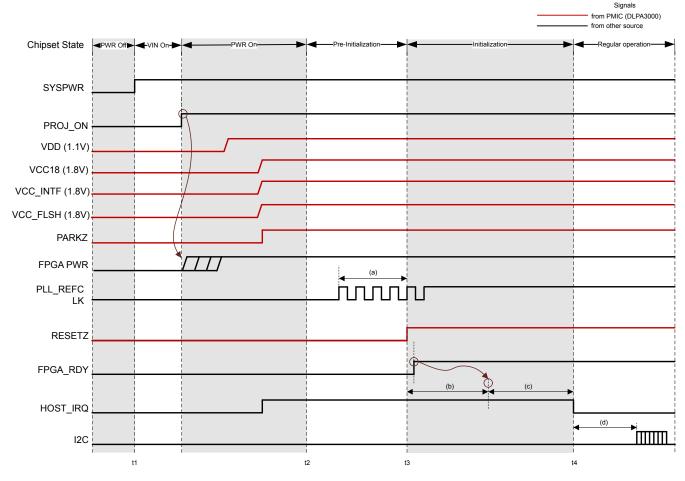
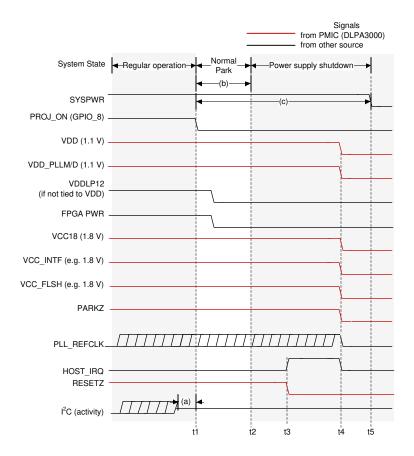

Note that when  $V_{DD}$  core power is applied, but I/O power is not applied, additional leakage current may be drawn. This added leakage does not affect normal controller operation or reliability.

Figure 9-1, Figure 9-2 and Figure 9-3 show the controller power-up and power-down sequence for both the normal PARK and fast PARK operations of the DLPC1438 controller.

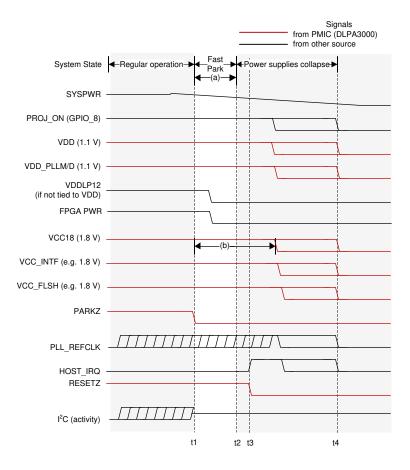
#### Note

During a Normal Park it is recommended to maintain SYSPWR within specification for at least 50 ms after PROJ\_ON goes low. This is to allow the DMD to be parked and the power supply rails to safely power down. After 50 ms, SYSPWR can be turned off. If a DLPA200x is used, it is also recommended that the 1.8-V supply fed into the DLPA200x load switch be maintained within specification for at least 50 ms after PROJ\_ON goes low.


Submit Document Feedback



- t1: SYSPWR (VIN) applied to the PMIC. All other voltage rails are derived from SYSPWR.
- t2: All DLPC1438 supplies reach 95% of their specified nominal value. Note HOST\_IRQ may go high sooner if it is pulled-up to a different external supply.
- t3: Point where RESETZ is deasserted (goes high). This indicates the beginning of the controller auto-initialization routine.
- t4: HOST\_IRQ goes low to indicate initialization is complete. I<sup>2</sup>C is now ready to accept commands.
- (a): The typical delay between the PLL reference clock becoming active and RESETZ being deasserted (going high) is less than 1 ms. PLL\_REFCLK must be stable within 5 ms of all power being applied, and may be active before power is applied.
- (b): There is a typical controller boot time of 100 ms. PARKZ must be high before RESETZ releases to support auto-initialization. RESETZ must also be held low for at least 5 ms after DLPC1438 power supplies are in specification.
- (c): There is a typical FPGA setup time of 2.75 ms before the system completes boot process. During this period, the DLPC1438 controller writes startup values to the FPGA registers.
- (d): After FPGA setup is complete, I<sup>2</sup>C now accepts commands.


Figure 9-1. DLPC1438 Power-Up Timing





- t1: PROJ\_ON goes low to begin the power down sequence.
- t2: The controller finishes parking the DMD.
- t3: Controller power supplies are turned off.
- (a): The DMD will be parked within 20 ms of PROJ\_ON being deasserted (going low). VDD, VDD\_PLLM/D, VCC18, VCC\_INITF, and VCC\_FLSH power supplies and the PLL\_REFCLK must be held within specification for a minimum of 20 ms after PROJ\_ON is deasserted (goes low). However, 20 ms does not satisfy the typical shutdown timing of the entire chipset. It is therefore recommended to follow note (c).
- (b): DMD reset voltage regulation stops typically after 12 ms of normal DMD park being completed.
- (c): It is recommended that SYSPWR not be turned off for 50 ms after PROJ\_ON is deasserted (goes low). This time allows the DMD to be parked, the controller to turn off, and the PMIC supplies to shut down.

Figure 9-2. DLPC1438 Normal Power-Down



- t1: A fault is detected and PARKZ is asserted (goes low) to tell the controller to initiate a fast park of the DMD.
- t2: The controller finishes the fast park procedure.
- t3: Eventually all power supplies that were derived from SYSPWR collapse.
- t4: System is completely turned off.

Figure 9-3. DLPC1438 Fast Power-Down

## 9.3 Power-Up Initialization Sequence

An external power monitor is required to hold the DLPC1438 controller in system reset during the power-up sequence by driving RESETZ to a logic-low state. It shall continue to drive RESETZ low until all controller voltages reach the minimum specified voltage levels, PARKZ goes high, and the input clocks are stable. The external power monitoring is automatically done by the DLPAxxxx PMIC.

No signals output by the DLPC1438 controller will be in their active state while RESETZ is asserted. The following signals are tri-stated while RESETZ is asserted:

- SPI0 CLK
- SPI0 DOUT
- SPI0\_CSZ0
- SPI0\_CSZ1
- GPIO [19:00]

Add external pullup (or pulldown) resistors to all tri-stated output signals (including bidirectional signals to be configured as outputs) to avoid floating controller outputs during reset if they are connected to devices on the PCB that can malfunction. For SPI, at a minimum, include a pullup to any chip selects connected to devices.



Unused bidirectional signals can be configured as outputs in order to avoid floating controller inputs after RESETZ is set high.

The following signals are forced to a logic low state while RESETZ is asserted and the corresponding I/O power is applied:

- LED\_SEL\_0
- LED SEL 1
- DMD\_DEN\_ARSTZ

After power is stable and the PLL\_REFCLK\_I clock input to the DLPC1438 controller is stable, then RESETZ should be deactivated (set to a logic high). The DLPC1438 controller then performs a power-up initialization routine that first locks its PLL followed by loading self configuration data from the external flash. Upon release of RESETZ, all DLPC1438 I/Os will become active. Immediately following the release of RESETZ, the HOST\_IRQ signal will be driven high to indicate that the auto initialization routine is in progress. However, since a pullup resistor is connected to signal HOST\_IRQ, this signal will have already gone high before the controller actively drives it high. Upon completion of the auto-initialization routine, the DLPC1438 controller will drive HOST\_IRQ low to indicate the initialization done state of the controller has been reached.

To ensure reliable operation, during the power-up initialization sequence, GPIO\_08 (PROJ\_ON) must not be deasserted. In other words, once the startup routine has begun (by asserting PROJ\_ON), the startup routine must complete (indicated by HOST\_IRQ going low) before the controller can be commanded off (by deasserting PROJ\_ON).

#### Note

No I<sup>2</sup>C or DSI (if applicable) activity is permitted until HOST\_IRQ goes low.

## 9.4 DMD Fast Park Control (PARKZ)

PARKZ is an input early warning signal that must alert the controller at least 32 µs before DC supply voltages drop below specifications. Typically, the PARKZ signal is provided by the DLPAxxxx interrupt output signal. PARKZ must be deasserted (set high) prior to releasing RESETZ (that is, prior to the low-to-high transition on the RESETZ input) for normal operation. When PARKZ is asserted (set low) the controller performs a Fast Park operation on the DMD which assists in maintaining the lifetime of the DMD. The reference clock must continue running and RESETZ must remain deactivated for at least 32 µs after PARKZ has been asserted (set low) to allow the park operation to complete.

Fast Park operation is only intended for use when loss of power is imminent and beyond the control of the host processor (for example, when the external power source has been disconnected or the battery has dropped below a minimum level). The longest lifetime of the DMD may not be achieved with Fast Park operation. The longest lifetime is achieved with a Normal Park operation (initiated through GPIO\_08). Hence, PARKZ is typically only used instead of a Normal Park request if there is not enough time for a Normal Park. A Normal Park operation takes much longer than 32 µs to park the mirrors. During a Normal Park operation, the DLPAxxxx keeps on all power supplies, and keeps RESETZ high, until the longer mirror parking has completed. Additionally, the DLPAxxxx may hold the supplies on for a period of time after the parking has been completed. View the relevant DLPAxxxx datasheet for more information. The longer mirror parking time ensures the longest DMD lifetime and reliability. The *DMD Parking Switching Characteristics* section specifies the park timings.

## 9.5 Hot Plug I/O Usage

The DLPC1438 controller provides fail-safe I/O on all host interface signals (signals powered by VCC\_INTF). This allows these inputs to externally be driven even when no I/O power is applied. Under this condition, the controller does not load the input signal nor draw excessive current that could degrade controller reliability. For example, the I<sup>2</sup>C bus from the host to other components is not affected by powering off VCC\_INTF to the DLPC1438 controller. The allows additional devices on the I<sup>2</sup>C bus to be utilized even if the controller is not powered on. TI recommends weak pullup or pulldown resistors to avoid floating inputs for signals that feed back to the host.

Product Folder Links: DI PC1438

If the I/O supply (VCC\_INTF) powers off, but the core supply (VDD) remains on, then the corresponding input buffer may experience added leakage current; however, the added leakage current does not damage the DLPC1438 controller.

However, if VCC\_INTF is powered and VDD is not powered, the controller may drives the IIC0\_xx pins low which prevents communication on this I<sup>2</sup>C bus. Do not power up the VCC\_INTF pin before powering up the VDD pin for any system that has additional secondary devices on this bus.



# 10 Layout

## 10.1 Layout Guidelines

For a summary of the PCB design requirements for the DLPC1438 controller see *PCB Design Requirements for TI DLP Pico TRP Digital Micromirror Devices*. Some applications (such as high frame rate video) may require the use of 1-oz (or greater) copper planes to manage the controller package heat.

## 10.1.1 PLL Power Layout

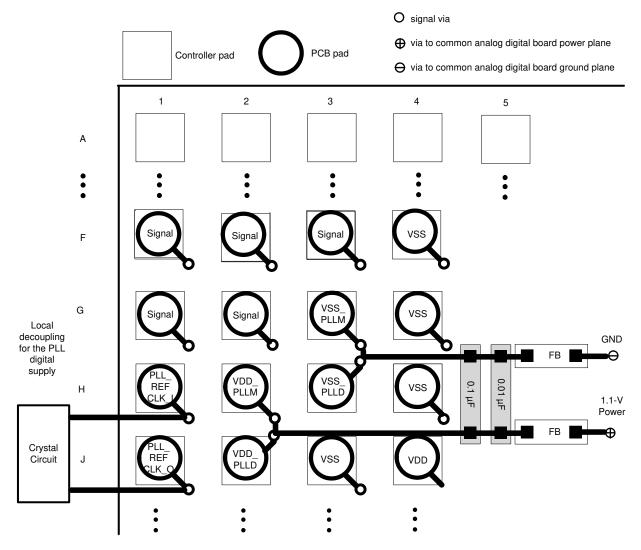
Follow these recommended guidelines to achieve acceptable controller performance for the internal PLL. The DLPC1438 controller contains two internal PLLs which have dedicated analog supplies (VDD\_PLLM, VSS\_PLLM, VDD\_PLLD, and VSS\_PLLD). At a minimum, isolate the VDD\_PLLx power and VSS\_PLLx ground pins using a simple passive filter consisting of two series ferrite beads and two shunt capacitors (to widen the spectrum of noise absorption). It is recommended that one capacitor be 0.1  $\mu$ F and one be 0.01  $\mu$ F. Place all four components as close to the controller as possible. It is especially important to keep the leads of the high frequency capacitors as short as possible. Connect both capacitors from VDD\_PLLM to VSS\_PLLM and VDD\_PLLD to VSS\_PLLD on the controller side of the ferrite beads.

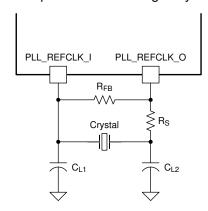
Select ferrite beads with these characteristics:

- DC resistance less than 0.40  $\Omega$
- Impedance at 10 MHz equal to or greater than 180  $\Omega$
- Impedance at 100 MHz equal to or greater than 600  $\Omega$

The PCB layout is critical to PLL performance. It is vital that the quiet ground and power are treated like analog signals. Therefore, VDD\_PLLM and VDD\_PLLD must be a single trace from the DLPC1438 controller to both capacitors and then through the series ferrites to the power source. Make the power and ground traces as short as possible, parallel to each other, and as close as possible to each other.

Submit Document Feedback





Figure 10-1. PLL Filter Layout

## 10.1.2 Reference Clock Layout

The DLPC1438 controller requires an external reference clock to feed the internal PLL. Use either a crystal or oscillator to supply this reference. The DLPC1438 reference clock must not exceed a frequency variation of ±200 ppm (including aging, temperature, and trim component variation).



Figure 10-2 shows the required discrete components when using a crystal.



 $C_L$  = Crystal load capacitance (farads)  $C_{L1}$  = 2 × ( $C_L$  - Cstray\_pll\_refclk\_i)  $C_{L2}$  = 2 × ( $C_L$  - Cstray\_pll\_refclk\_o)

- Cstray\_pll\_refclk\_i = Sum of package and PCB stray capacitance at the crystal pin associated with the controller pin pll\_refclk\_i.
- Cstray\_pll\_refclk\_o = Sum of package and PCB stray capacitance at the crystal pin associated with the controller pin pll\_refclk\_o.

Figure 10-2. Required Discrete Components

## 10.1.2.1 Recommended Crystal Oscillator Configuration

**Table 10-1. Crystal Port Characteristics** 

| PARAMETER                       | NOM | UNIT |
|---------------------------------|-----|------|
| PLL_REFCLK_I TO GND capacitance | 1.5 | pF   |
| PLL_REFCLK_O TO GND capacitance | 1.5 | pF   |

Table 10-2. Recommended Crystal Configuration

| PARAMETER (1) (2)                                                                         | RECOMMENDED                                               | UNIT |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|------|
| Crystal circuit configuration                                                             | Parallel resonant                                         |      |
| Crystal type                                                                              | Fundamental (first harmonic)                              |      |
| Crystal nominal frequency                                                                 | 24                                                        | MHz  |
| Crystal frequency tolerance (including accuracy, temperature, aging and trim sensitivity) | ±200                                                      | PPM  |
| Maximum startup time                                                                      | 1.0                                                       | ms   |
| Crystal equivalent series resistance (ESR)                                                | 120 (max)                                                 | Ω    |
| Crystal load                                                                              | 6                                                         | pF   |
| R <sub>S</sub> drive resistor (nominal)                                                   | 100                                                       | Ω    |
| R <sub>FB</sub> feedback resistor (nominal)                                               | 1                                                         | ΜΩ   |
| C <sub>L1</sub> external crystal load capacitor                                           | See equation in Figure 10-2 notes                         | pF   |
| C <sub>L2</sub> external crystal load capacitor                                           | See equation in Figure 10-2 notes                         | pF   |
| PCB layout                                                                                | A ground isolation ring around the crystal is recommended |      |
|                                                                                           |                                                           |      |

- (1) Temperature range of -30°C to 85°C.
- (2) The crystal bias is determined by the controllers VCC\_INTF voltage rail, which is variable (not the VCC18 rail).

If an external oscillator is used, then the oscillator output must drive the PLL\_REFCLK\_I pin on the DLPC1438 controller, and the PLL\_REFCLK\_O pin must be left unconnected.

Submit Document Feedback

Table 10-3. Recommended Crystal Parts

| Table 10-3. Recommended Crystal Faits |                                |                |                                   |                    |                             |                               |  |  |
|---------------------------------------|--------------------------------|----------------|-----------------------------------|--------------------|-----------------------------|-------------------------------|--|--|
| MANUFACTURER (1) (2)                  | PART NUMBER                    | SPEED<br>(MHz) | TEMPERATURE<br>AND AGING<br>(ppm) | MAXIMUM<br>ESR (Ω) | LOAD<br>CAPACITANCE<br>(pF) | PACKAGE<br>DIMENSIONS<br>(mm) |  |  |
| KDS                                   | DSX211G-24.000M-8pF-50-50      | 24             | ±50                               | 120                | 8                           | 2.0 × 1.6                     |  |  |
| Murata                                | XRCGB24M000F0L11R0             | 24             | ±100                              | 120                | 6                           | 2.0 × 1.6                     |  |  |
| NDK                                   | NX2016SA 24M<br>EXS00A-CS05733 | 24             | ±145                              | 120                | 6                           | 2.0 × 1.6                     |  |  |

<sup>(1)</sup> The crystal devices in this table have been validated to work with the DLPC1438 controller. Other devices may also be compatible but have not necessarily been validated by TI.

### 10.1.3 Unused Pins

To avoid potentially damaging current caused by floating CMOS input-only pins, TI recommends tying unused controller input pins through a pullup resistor to its associated power supply or a pulldown resistor to ground. For controller inputs with internal pullup or pulldown resistors, it is unnecessary to add an external pullup or pulldown unless specifically recommended. Note that internal pullup and pulldown resistors are weak and should not be expected to drive an external device. The DLPC1438 controller implements very few internal resistors and are listed in the tables found in the *Pin Configuration and Functions* section. When external pullup or pulldown resistors are needed for pins that have weak pullup or pulldown resistors, choose a maximum resistance of 8  $k\Omega$ .

Never tie unused output-only pins directly to power or ground. Leave them open.

When possible, TI recommends that unused bidirectional I/O pins are configured to their output state such that the pin can remain open. If this control is not available and the pins may become an input, then include an appropriate pullup (or pulldown) resistor.

<sup>(2)</sup> Operating temperature range: -30°C to 85°C for all crystals.



# 10.1.4 DMD Control and Sub-LVDS Signals

Table 10-4. Maximum Pin-to-Pin PCB Interconnect Recommendations

|                                      | SIGNAL INTERCOI                       | SIGNAL INTERCONNECT TOPOLOGY         |            |  |  |  |
|--------------------------------------|---------------------------------------|--------------------------------------|------------|--|--|--|
| DMD BUS SIGNAL(1) (2)                | SINGLE-BOARD SIGNAL<br>ROUTING LENGTH | MULTI-BOARD SIGNAL<br>ROUTING LENGTH | UNIT       |  |  |  |
| DMD_HS_CLK_P<br>DMD_HS_CLK_N         | 6.0<br>(152.4)                        | See <sup>(3)</sup>                   | in<br>(mm) |  |  |  |
| DMD_HS_WDATA_A_P<br>DMD_HS_WDATA_A_N |                                       |                                      |            |  |  |  |
| DMD_HS_WDATA_B_P DMD_HS_WDATA_B_N    |                                       |                                      |            |  |  |  |
| DMD_HS_WDATA_C_P DMD_HS_WDATA_C_N    |                                       |                                      |            |  |  |  |
| DMD_HS_WDATA_D_P<br>DMD_HS_WDATA_D_N | 6.0                                   | See <sup>(3)</sup>                   | in         |  |  |  |
| DMD_HS_WDATA_E_P DMD_HS_WDATA_E_N    | (152.4)                               | See (4)                              | (mm)       |  |  |  |
| DMD_HS_WDATA_F_P DMD_HS_WDATA_F_N    |                                       |                                      |            |  |  |  |
| DMD_HS_WDATA_G_P<br>DMD_HS_WDATA_G_N |                                       |                                      |            |  |  |  |
| DMD_HS_WDATA_H_P DMD_HS_WDATA_H_N    |                                       |                                      |            |  |  |  |
| DMD_LS_CLK                           | 6.5<br>(165.1)                        | See <sup>(3)</sup>                   | in<br>(mm) |  |  |  |
| DMD_LS_WDATA                         | 6.5<br>(165.1)                        | See <sup>(3)</sup>                   | in<br>(mm) |  |  |  |
| DMD_LS_RDATA                         | 6.5<br>(165.1)                        | See <sup>(3)</sup>                   | in<br>(mm) |  |  |  |
| DMD_DEN_ARSTZ                        | 7.0<br>(177.8)                        | See (3)                              | in<br>(mm) |  |  |  |

<sup>(1)</sup> Maximum signal routing length includes escape routing.

Submit Document Feedback

<sup>(2)</sup> Multi-board DMD routing length is more restricted due to the impact of the connector.

<sup>(3)</sup> Due to PCB variations, these recommendations cannot be defined. Any board design should SPICE simulate with the controller IBIS model (found under the *Tools & Software* tab of the controller web page) to ensure routing lengths do not violate signal requirements.

Table 10-5. High Speed PCB Signal Routing Matching Requirements

|           | SIGNAL G                             | ROUP LENGTH MATCHING <sup>(1)</sup> (2) (3) |                             |            |  |
|-----------|--------------------------------------|---------------------------------------------|-----------------------------|------------|--|
| INTERFACE | SIGNAL GROUP                         | REFERENCE SIGNAL                            | MAX MISMATCH <sup>(4)</sup> | UNIT       |  |
|           | DMD_HS_WDATA_A_P<br>DMD_HS_WDATA_A_N |                                             |                             |            |  |
|           | DMD_HS_WDATA_B_P<br>DMD_HS_WDATA_B_N |                                             |                             |            |  |
|           | DMD_HS_WDATA_C_P<br>DMD_HS_WDATA_C_N |                                             | ±1.0<br>(±25.4)             |            |  |
| DMD(5)    | DMD_HS_WDATA_D_P<br>DMD_HS_WDATA_D_N | DMD_HS_CLK_P                                |                             | in         |  |
|           | DMD_HS_WDATA_E_P<br>DMD_HS_WDATA_E_N | DMD_HS_CLK_N                                |                             | (mm)       |  |
|           | DMD_HS_WDATA_F_P<br>DMD_HS_WDATA_F_N |                                             |                             |            |  |
|           | DMD_HS_WDATA_G_P<br>DMD_HS_WDATA_G_N |                                             |                             |            |  |
|           | DMD_HS_WDATA_H_P<br>DMD_HS_WDATA_H_N |                                             |                             |            |  |
| DMD       | DMD_HS_WDATA_x_P                     | DMD_HS_WDATA_x_N                            | ±0.025<br>(±0.635)          | in<br>(mm) |  |
| DMD       | DMD_HS_CLK_P                         | DMD_HS_CLK_N                                | ±0.025<br>(±0.635)          | in<br>(mm) |  |
| DMD       | DMD_LS_WDATA<br>DMD_LS_RDATA         | DMD_LS_CLK                                  | ±0.2<br>(±5.08)             | in<br>(mm) |  |
| DMD       | DMD_DEN_ARSTZ                        | N/A                                         | N/A                         | in<br>(mm) |  |

<sup>(1)</sup> The length matching values apply to PCB routing lengths only. Internal package routing mismatch associated with the DLPC1438 controller or the DMD require no additional consideration.

<sup>(2)</sup> Training is applied to DMD HS data lines. This is why the defined matching requirements are slightly relaxed compared to the LS data lines.

<sup>(3)</sup> DMD LS signals are single ended.

<sup>(4)</sup> Mismatch variance for a signal group is always with respect to the reference signal.

<sup>(5)</sup> DMD HS data lines are differential, thus these specifications are pair-to-pair.



**Table 10-6. Signal Requirements** 

| PARAMETER                 | REFERENCE        | REQUIREMENT                                      |  |  |  |
|---------------------------|------------------|--------------------------------------------------|--|--|--|
|                           | DMD_LS_WDATA     | Required                                         |  |  |  |
|                           | DMD_LS_CLK       | Required                                         |  |  |  |
| Source series termination | DMD_DEN_ARSTZ    | Acceptable                                       |  |  |  |
| Source series termination | DMD_LS_RDATA     | Required                                         |  |  |  |
|                           | DMD_HS_WDATA_x_y | Not acceptable                                   |  |  |  |
|                           | DMD_HS_CLK_y     | Not acceptable                                   |  |  |  |
|                           | DMD_LS_WDATA     | Not acceptable                                   |  |  |  |
|                           | DMD_LS_CLK       | Not acceptable                                   |  |  |  |
| Endpoint termination      | DMD_DEN_ARSTZ    | Not acceptable                                   |  |  |  |
| Endpoint termination      | DMD_LS_RDATA     | Not acceptable                                   |  |  |  |
|                           | DMD_HS_WDATA_x_y | Not acceptable                                   |  |  |  |
|                           | DMD_HS_CLK_y     | Not acceptable                                   |  |  |  |
|                           | DMD_LS_WDATA     | 68 Ω ±10%                                        |  |  |  |
|                           | DMD_LS_CLK       | 68 Ω ±10%                                        |  |  |  |
| PCB impedance             | DMD_DEN_ARSTZ    | 68 Ω ±10%                                        |  |  |  |
| POB impedance             | DMD_LS_RDATA     | 68 Ω ±10%                                        |  |  |  |
|                           | DMD_HS_WDATA_x_y | 100 Ω ±10%                                       |  |  |  |
|                           | DMD_HS_CLK_y     | 100 Ω ±10%                                       |  |  |  |
|                           | DMD_LS_WDATA     | SDR (single data rate) referenced to DMD_LS_DCLK |  |  |  |
|                           | DMD_LS_CLK       | SDR referenced to DMD_LS_DCLK                    |  |  |  |
| Cinnal ton                | DMD_DEN_ARSTZ    | SDR                                              |  |  |  |
| Signal type               | DMD_LS_RDATA     | SDR referenced to DMD_LS_DLCK                    |  |  |  |
|                           | DMD_HS_WDATA_x_y | sub-LVDS                                         |  |  |  |
|                           | DMD_HS_CLK_y     | sub-LVDS                                         |  |  |  |

## 10.1.5 Layer Changes

- Single-ended signals: Minimize the number of layer changes.
- Differential signals: Individual differential pairs can be routed on different layers. Ideally ensure that the signals of a given pair do not change layers.

### 10.1.6 Stubs

Avoid using stubs.

### 10.1.7 Terminations

- DMD\_HS differential signals require no external termination resistors.
- Make sure the DMD\_LS\_CLK and DMD\_LS\_WDATA signal paths include a 43-Ω series termination resistor located as close as possible to the corresponding controller pins.
- Make sure the DMD\_LS\_RDATA signal path includes a 43-Ω series termination resistor located as close as possible to the corresponding DMD pin.
- The DMD\_DEN\_ARSTZ pin requires no series resistor.

### 10.1.8 Routing Vias

- The number of vias on DMD\_HS signals must be minimized and ideally not exceed two.
- Any and all vias on DMD\_HS signals must be located as close to the controller as possible.
- The number of vias on the DMD\_LS\_CLK and DMD\_LS\_WDATA signals must be minimized and ideally not exceed two.
- Any and all vias on the DMD\_LS\_CLK and DMD\_LS\_WDATA signals must be located as close to the controller as possible.

### 10.1.9 Thermal Considerations

The underlying thermal limitation for the DLPC1438 controller is that the maximum operating junction temperature (T<sub>.1</sub>) not be exceeded (this is defined in the *Recommended Operating Conditions* section).

Some factors that influence T<sub>J</sub> are as follows:

- · operating ambient temperature
- airflow
- PCB design (including the component layout density and the amount of copper used)
- power dissipation of the DLPC1438 controller
- · power dissipation of surrounding components

The controller package is designed to primarily extract heat through the power and ground planes of the PCB. Thus, copper content and airflow over the PCB are important factors.

The recommends maximum operating ambient temperature ( $T_A$ ) is provided primarily as a design target and is based on maximum DLPC1438 controller power dissipation and  $R_{\theta JA}$  at 0 m/s of forced airflow, where  $R_{\theta JA}$  is the thermal resistance of the package as measured using a JEDEC defined standard test PCB with two, 1-oz power planes. This JEDEC test PCB is not necessarily representative of the DLPC1438 controller PCB, so the reported thermal resistance may not be accurate in the actual product application. Although the actual thermal resistance may be different, it is the best information available during the design phase to estimate thermal performance. TI highly recommended that thermal performance be measured and validated after the PCB is designed and the application is built.

To evaluate the thermal performance, measure the top center case temperature under the worse case product scenario (maximum power dissipation, maximum voltage, maximum ambient temperature), and validate the controller does not exceed the maximum recommended case temperature ( $T_C$ ). This specification is based on the measured  $\phi_{JT}$  for the DLPC1438 controller package and provides a relatively accurate correlation to junction temperature.

Take care when measuring this case temperature to prevent accidental cooling of the package surface. TI recommends a small (approximately 40 gauge) thermocouple. Place the bead and thermocouple wire so that they contact the top of the package. Cover the bead and thermocouple wire with a minimal amount of thermally conductive epoxy. Route the wires closely along the package and the board surface to avoid cooling the bead through the wires.



# 10.2 Layout Example

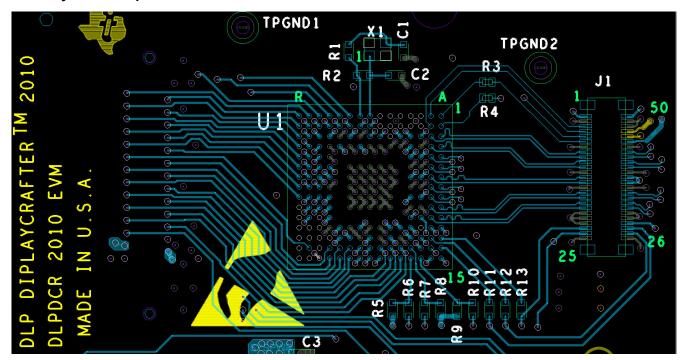
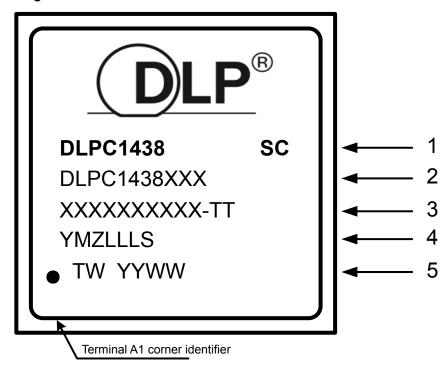



Figure 10-3. Layout Recommendation

## 11 Device and Documentation Support


## 11.1 Device Support

## 11.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

### 11.1.2 Device Nomenclature

### 11.1.2.1 Device Markings



## Marking Definitions:

Line 1: DLP® Device Name: DLPC1438 device name ID.

SC: Solder ball composition

e1: Indicates lead-free solder balls consisting of SnAgCu

G8: G indicates mold compound green; 8 indicates lead-free solder balls consisting of tin-silver-copper (SnAgCu) with

silver content less than or equal to 1.5% and that the mold compound meets TI's definition of green.

Line 2: TI Part Number

DLP® Device Name: DLPC1438 = x indicates 8 device name ID.

**XXX** corresponds to the device package designator.

Line 3: XXXXXXXXXXTT Manufacturer part number

Line 4: Foundry lot code for semiconductor wafers and lead-free solder ball marking

YM: Year month date code

Z: Site code

LLL: Assembly lot code

S: Site code

May also be in the format LLLLL.ZZZ

LLLLL: Fab lot number ZZZ: Lot split number

Line 5: PH YYWW: Package assembly information

PH: Manufacturing site

YYWW: Date code (YY = Year :: WW = Week)



### **Note**

1. Engineering prototype samples are marked with an **X** suffix appended to the TI part number. For example, 2512737-0001X.

## 11.2 Documentation Support

## 11.2.1 Related Documentation

The following table lists quick access links for associated parts of the DLP chipset.

**Table 11-1. Chipset Documentation** 

| PARTS    | PRODUCT FOLDER | SAMPLE & BUY | TECHNICAL DOCUMENTS | TOOLS & SOFTWARE |
|----------|----------------|--------------|---------------------|------------------|
| DLPA2000 | Click here     | Click here   | Click here          | Click here       |
| DLPA2005 | Click here     | Click here   | Click here          | Click here       |
| DLPA3000 | Click here     | Click here   | Click here          | Click here       |
| DLPA3005 | Click here     | Click here   | Click here          | Click here       |
| DLP300S  | Click here     | Click here   | Click here          | Click here       |
| DLP301S  | Click here     | Click here   | Click here          | Click here       |

## 11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

## 11.4 Support Resources

TI E2E<sup>™</sup> support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

### 11.5 Trademarks

TI E2E<sup>™</sup> is a trademark of Texas Instruments.

DLP® are registered trademarks of Texas Instruments.

Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. is a registered trademark of Texas Instruments.

All trademarks are the property of their respective owners.

## 11.6 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

## 11.7 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

## 12 Mechanical, Packaging, and Orderable Information

For the device mechanical, packaging, and orderable information, refer to the Mechanical, Packaging, and Orderable Information section of the data sheet available in the DLPC1438 product folder.

Submit Document Feedback

www.ti.com 23-May-2025

### PACKAGING INFORMATION

| Orderable part number | Status | Material type | Package   Pins    | Package qty   Carrier | RoHS (3) | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6)                                                              |
|-----------------------|--------|---------------|-------------------|-----------------------|----------|-------------------------------|----------------------------|--------------|-------------------------------------------------------------------------------|
| DLPC1438ZEZ           | Active | Production    | NFBGA (ZEZ)   201 | 119   BULK            | Yes      | SNAGCU                        | Level-3-260C-168Hrs        | -30 to 105   | (DLPC1438, DLPC143<br>8 G8, DLPC143<br>8 G8)<br>DLPC1438ZEZ<br>ECP292548C-11G |
| DLPC1438ZEZ.B         | Active | Production    | NFBGA (ZEZ)   201 | 119   BULK            | Yes      | SNAGCU                        | Level-3-260C-168Hrs        | -30 to 105   | (DLPC1438, DLPC143<br>8 G8, DLPC143<br>8 G8)<br>DLPC1438ZEZ<br>ECP292548C-11G |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

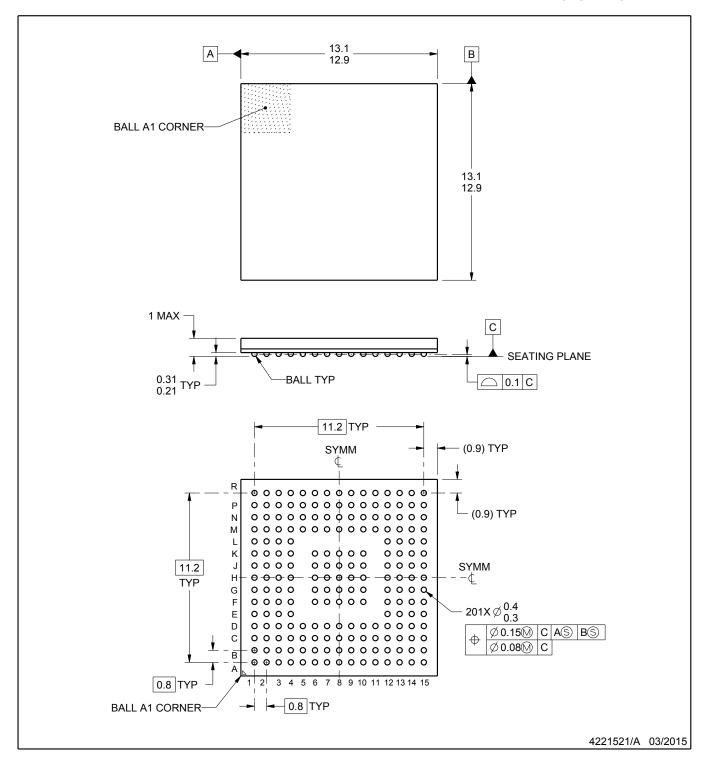
<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


# **PACKAGE OPTION ADDENDUM**

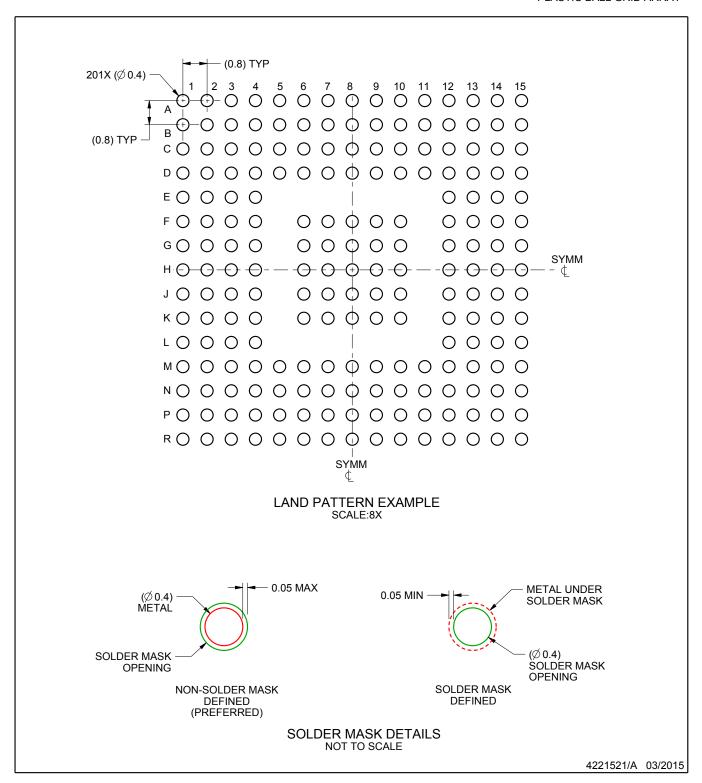
www.ti.com 23-May-2025

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



PLASTIC BALL GRID ARRAY



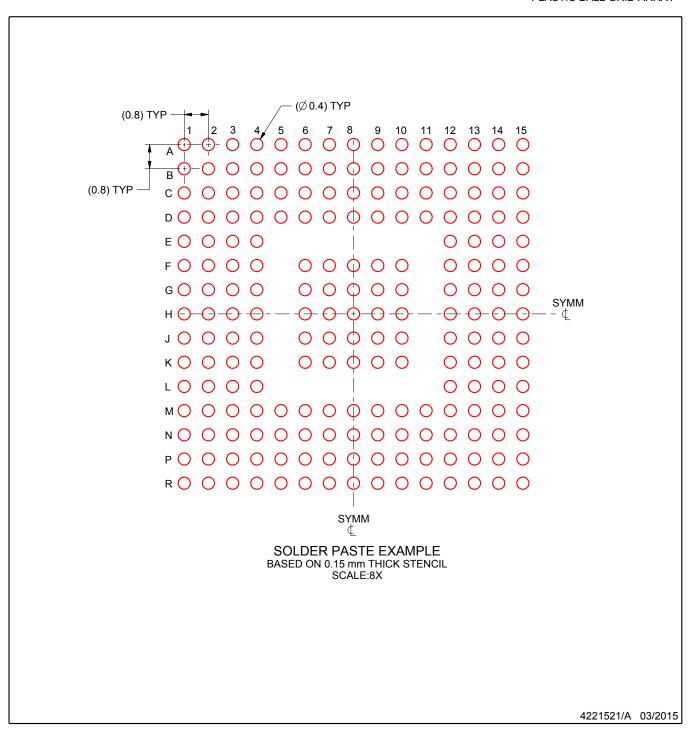

## NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

  2. This drawing is subject to change without notice.



PLASTIC BALL GRID ARRAY




NOTES: (continued)

Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).



PLASTIC BALL GRID ARRAY



NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.



### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated