DLP160CP 0.16 HD and nHD Digital Micromirror Device #### 1 Features - Ultra-compact 0.16-inch (3.965mm) diagonal micromirror array - nHD Configuration—Display 640x360 resolution on-screen - HD Configuration—Display 1280x720 resolution on-screen - 5.4µm micromirror pitch - 17° micromirror tilt (relative to a flat surface) - Side illumination for optimal efficiency and optical engine size - Polarization-independent aluminum micromirror surface - 4-bit SubLVDS input data bus - Dedicated DLPC3421 display controller and DLPA2000, DLPA2005, or DLPA3000 PMIC/LED driver for reliable operation # 2 Applications - Display: - Ultra-mobile, ultra-low power pico projectors - Phone, tablet and laptop - Smart display - **Smart home** - Augmented reality glasses - Informational display # 3 Description The DLP160CP digital micromirror device (DMD) is a digitally controlled micro-opto-electromechanical system (MOEMS) spatial light modulator (SLM). When coupled to an appropriate optical system, the DLP160CP DMD displays a crisp and highquality image or video. DLP160CP is part of the chipset comprising the DLP160CP DMD and DLPC3421 controller. This chipset is also supported by the DLPA2000, DLPA2005, and DLPA3000 (HD configuration only) PMIC/LED driver. The compact physical size of the DLP160CP is well-suited for portable equipment where a small form factor and low power are important. The compact DLP160CP DMD coupled with the controller and PMIC/LED driver provides a complete system solution that enables a small form factor, low power, and high image-quality displays. #### **Device Information** | PART NUMBER | PACKAGE ⁽¹⁾ | PACKAGE
SIZE | |-------------|------------------------|---------------------------| | DLP160CP | FQT (35) | 13.39mm × 4.97mm × 3.18mm | For more information, see the Mechanical, Packaging, and Orderable addendum. ## Simplified Application # **Table of Contents** | 1 Features | 1 | |---|----| | 2 Applications | | | 3 Description | | | | | | 4 Pin Configuration and Functions | | | 5 Specifications | | | 5.1 Absolute Maximum Ratings | | | 5.2 Storage Conditions | 5 | | 5.3 ESD Ratings | 6 | | 5.4 Recommended Operating Conditions | 6 | | 5.5 Thermal Information | 9 | | 5.6 Electrical Characteristics | | | 5.7 Timing Requirements | 10 | | 5.8 Switching Characteristics | 15 | | 5.9 System Mounting Interface Loads | | | 5.10 Micromirror Array Physical Characteristics | 17 | | 5.11 Micromirror Array Optical Characteristics | 18 | | 5.12 Window Characteristics | 20 | | 5.13 Chipset Component Usage Specification | 20 | | 6 Detailed Description | 21 | | 6.1 Overview | 21 | | 6.2 Functional Block Diagram | 21 | | 6.3 Feature Description | 22 | | 6.4 Device Functional Modes | 22 | | 6.5 Optical Interface and System Image Quality | | | Considerations | 22 | | 6.7 Micromirror Power Density Calculation | 6.6 Micromirror Array Temperature Calculation | . 23 | |--|---|------| | 7 Application and Implementation 30 7.1 Application Information 30 7.2 Typical Application 31 8 Power Supply Recommendations 34 8.1 Power Supply Power-Up Procedure 34 8.2 Power Supply Power-Down Procedure 34 8.3 Power Supply Sequencing Requirements 35 9 Layout 37 9.1 Layout Guidelines 37 9.2 Layout Example 37 10.1 Device and Documentation Support 38 10.2 Receiving Notification of Documentation Updates 38 10.3 Support Resources 38 10.4 Trademarks 38 10.5 Electrostatic Discharge Caution 39 10.6 Glossary 39 11 Revision History 39 12 Mechanical, Packaging, and Orderable | 6.7 Micromirror Power Density Calculation | .24 | | 7 Application and Implementation 30 7.1 Application Information 30 7.2 Typical Application 31 8 Power Supply Recommendations 34 8.1 Power Supply Power-Up Procedure 34 8.2 Power Supply Power-Down Procedure 34 8.3 Power Supply Sequencing Requirements 35 9 Layout 37 9.1 Layout Guidelines 37 9.2 Layout Example 37 10.1 Device and Documentation Support 38 10.2 Receiving Notification of Documentation Updates 38 10.3 Support Resources 38 10.4 Trademarks 38 10.5 Electrostatic Discharge Caution 39 10.6 Glossary 39 11 Revision History 39 12 Mechanical, Packaging, and Orderable | 6.8 Micromirror Landed-On/Landed-Off Duty Cycle | . 26 | | 7.2 Typical Application 31 8 Power Supply Recommendations 34 8.1 Power Supply Power-Up Procedure 34 8.2 Power Supply Power-Down Procedure 34 8.3 Power Supply Sequencing Requirements 35 9 Layout 37 9.1 Layout Guidelines 37 9.2 Layout Example 37 10 Device and Documentation Support 38 10.1 Device Support 38 10.2 Receiving Notification of Documentation Updates 38 10.3 Support Resources 38 10.4 Trademarks 38 10.5 Electrostatic Discharge Caution 39 10.6 Glossary 39 11 Revision History 39 12 Mechanical, Packaging, and Orderable | 7 Application and Implementation | . 30 | | 7.2 Typical Application 31 8 Power Supply Recommendations 34 8.1 Power Supply Power-Up Procedure 34 8.2 Power Supply Power-Down Procedure 34 8.3 Power Supply Sequencing Requirements 35 9 Layout 37 9.1 Layout Guidelines 37 9.2 Layout Example 37 10 Device and Documentation Support 38 10.1 Device Support 38 10.2 Receiving Notification of Documentation Updates 38 10.3 Support Resources 38 10.4 Trademarks 38 10.5 Electrostatic Discharge Caution 39 10.6 Glossary 39 11 Revision History 39 12 Mechanical, Packaging, and Orderable | 7.1 Application Information | . 30 | | 8.1 Power Supply Power-Up Procedure 34 8.2 Power Supply Power-Down Procedure 34 8.3 Power Supply Sequencing Requirements 35 9 Layout 37 9.1 Layout Guidelines 37 9.2 Layout Example 37 10 Device and Documentation Support 38 10.1 Device Support 38 10.2 Receiving Notification of Documentation Updates 38 10.3 Support Resources 38 10.4 Trademarks 38 10.5 Electrostatic Discharge Caution 39 10.6 Glossary 39 11 Revision History 39 12 Mechanical, Packaging, and Orderable | | | | 8.2 Power Supply Power-Down Procedure 34 8.3 Power Supply Sequencing Requirements 35 9 Layout 37 9.1 Layout Guidelines 37 9.2 Layout Example 37 10 Device and Documentation Support 38 10.1 Device Support 38 10.2 Receiving Notification of Documentation Updates 38 10.3 Support Resources 38 10.4 Trademarks 38 10.5 Electrostatic Discharge Caution 39 10.6 Glossary 39 11 Revision History 39 12 Mechanical, Packaging, and Orderable | 8 Power Supply Recommendations | 34 | | 8.2 Power Supply Power-Down Procedure 34 8.3 Power Supply Sequencing Requirements 35 9 Layout 37 9.1 Layout Guidelines 37 9.2 Layout Example 37 10 Device and Documentation Support 38 10.1 Device Support 38 10.2 Receiving Notification of Documentation Updates 38 10.3 Support Resources 38 10.4 Trademarks 38 10.5 Electrostatic Discharge Caution 39 10.6 Glossary 39 11 Revision History 39 12 Mechanical, Packaging, and Orderable | 8.1 Power Supply Power-Up Procedure | . 34 | | 9 Layout 37 9.1 Layout Guidelines 37 9.2 Layout Example 37 10 Device and Documentation Support 38 10.1 Device Support 38 10.2 Receiving Notification of Documentation Updates 38 10.3 Support Resources 38 10.4 Trademarks 38 10.5 Electrostatic Discharge Caution 39 10.6 Glossary 39 11 Revision History 39 12 Mechanical, Packaging, and Orderable | | | | 9.1 Layout Guidelines | 8.3 Power Supply Sequencing Requirements | . 35 | | 9.1 Layout Guidelines | 9 Layout | .37 | | 9.2 Layout Example | | | | 10.1 Device Support | • | | | 10.2 Receiving Notification of Documentation Updates38 10.3 Support Resources | 10 Device and Documentation Support | 38 | | 10.3 Support Resources | 10.1 Device Support | . 38 | | 10.4 Trademarks | 10.2 Receiving Notification of Documentation Updates. | .38 | | 10.4 Trademarks | 10.3 Support Resources | . 38 | | 10.6 Glossary | | | | 11 Revision History39 12 Mechanical, Packaging, and Orderable | 10.5 Electrostatic Discharge Caution | .39 | | 11 Revision History39 12 Mechanical, Packaging, and Orderable | 10.6 Glossary | .39 | | 12 Mechanical, Packaging, and Orderable | | | | | | | | IIIIOIIIIauoii | Information | . 39 | # 4 Pin Configuration and Functions Figure 4-1. FQT Package 35-Pin **Table 4-1. Connector Pins** | PIN ⁽¹⁾ | | | | | | PACKAGE NET LENGTH | |-------------------------|-----|-------|---------|-----------|--|---------------------| | NAME | NO. | TYPE | SIGNAL | DATA RATE | DESCRIPTION | (mm) ⁽²⁾ | | DATA INPUTS | | | | | 1 | | | D_N(0) | A2 | I | SubLVDS | Double | Data, negative | 1.91 | | D_N(1) | A4 | I | SubLVDS | Double | Data, negative | 3.6 | | D_N(2) | D4 | I | SubLVDS | Double | Data, negative | 3.28 | | D_N(3) | E2 | I | SubLVDS | Double | Data, negative | 1.67 | | D_P(0) | A3 | I | SubLVDS | Double | Data, positive | 2.03 | | D_P(1) | B4 | I | SubLVDS | Double | Data, positive | 3.7 | | D_P(2) | E4 | I | SubLVDS | Double | Data, positive | 3.39 | | D_P(3) | E3 | I | SubLVDS | Double | Data, positive | 1.77 | | DCLK_N | C3 | I | SubLVDS | Double | Clock, negative | 2.29 | | DCLK_P | C4 | ı | SubLVDS | Double | Clock, positive | 2.4 | | CONTROL INPUTS | | | 1 | | | | | LS_WDATA | C12 | I | LPSDR | Single
 Write data for low-speed interface | 1.55 | | LS_CLK | C13 | I | LPSDR | Single | Clock for low-speed interface | 1.65 | | DMD_DEN_ARSTZ | D12 | I | LPSDR | Single | Asynchronous reset DMD signal. A low signal places the DMD in reset. A high signal releases the DMD from reset and places it in active mode. | 1.57 | | LS_RDATA | D13 | 0 | LPSDR | Single | | 1.43 | | POWER | 1 | 1 | ı | | 1 | | | V _{BIAS} (3) | A13 | Power | | | Supply voltage for positive bias level at micromirrors | | | V _{OFFSET} (3) | E13 | Power | | | Supply voltage for HVCMOS core logic.
Supply voltage for stepped high level at
micromirror address electrodes. Supply
voltage for offset level at micromirrors. | | | V _{RESET} (3) | A14 | Power | | | Supply voltage for negative reset level at micromirrors. | | # **Table 4-1. Connector Pins (continued)** | PIN ⁽¹⁾ | | | | | | PACKAGE NET LENGTH | |--------------------|-----|--------|--------|-----------|--|---------------------| | NAME | NO. | TYPE | SIGNAL | DATA RATE | DESCRIPTION | (mm) ⁽²⁾ | | V_{DD} | B12 | Power | | | Supply voltage for LVCMOS core logic. | | | V_{DD} | B14 | Power | | | Supply voltage for LPSDR inputs. Supply voltage for normal high level at | | | V _{DD} | C1 | Power | | | micromirror address electrodes. | | | V_{DD} | C14 | Power | | | | | | V _{DD} | C2 | Power | | | | | | V_{DD} | E14 | Power | | | | | | V _{DDI} | B1 | Power | | | Supply voltage for SubLVDS receivers. | | | V _{DDI} | D1 | Power | | | | | | V _{SS} | A1 | Ground | | | Common return. Ground for all power. | | | V _{SS} | A12 | Ground | | | | | | V _{SS} | B13 | Ground | | | | | | V _{SS} | B2 | Ground | | | | | | V _{SS} | В3 | Ground | | | | | | V _{SS} | D14 | Ground | | | | | | V _{SS} | D2 | Ground | | | | | | V _{SS} | D3 | Ground | | | | | | V _{SS} | E1 | Ground | | | | | | V _{SS} | E12 | Ground | | | | | - (1) The low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard No. 209B, Low Power Double Data Rate (LPDDR). See JESD209B. - (2) Net trace lengths inside the package: - The relative dielectric constant for the FQP ceramic package is 9.8. - Propagation speed = 11.8 / sqrt (9.8) = 3.769 in/ns. - Propagation delay = 0.265ns/inch = 265ps/in = 10.43ps/mm. - (3) The following power supplies are all required to operate the DMD: V_{DD}, V_{DDI}, V_{OFFSET}, V_{BIAS}, V_{RESET}. All V_{SS} connections are also required. # Table 4-2. Test Pads | NUMBER | SYSTEM BOARD | |--------|----------------| | A5 | Do not connect | | A6 | Do not connect | | A7 | Do not connect | | A8 | Do not connect | | А9 | Do not connect | | A10 | Do not connect | | A11 | Do not connect | # 5 Specifications # 5.1 Absolute Maximum Ratings see (1) | | | | MIN | MAX | UNIT | |----------------|--|---|------|------------------------|------| | | V _{DD} | Supply voltage for LVCMOS core logic ⁽²⁾ Supply voltage for LPSDR low speed interface | -0.5 | 2.3 | V | | | V _{DDI} | Supply voltage for SubLVDS receivers ⁽²⁾ | -0.5 | 2.3 | V | | | V _{OFFSET} | Supply voltage for HVCMOS and micromirror electrode ⁽²⁾ (3) | -0.5 | 11 | V | | Supply voltage | V _{BIAS} | Supply voltage for micromirror electrode ⁽²⁾ | -0.5 | 19 | V | | | V _{RESET} | Supply voltage for micromirror electrode ⁽²⁾ | -15 | 0.5 | V | | | V _{DDI} -V _{DD} | Supply voltage delta (absolute value) ⁽⁴⁾ | | 0.3 | V | | | V _{BIAS} -V _{OFFSET} | Supply voltage delta (absolute value) ⁽⁵⁾ | | 11 | V | | | V _{BIAS} -V _{RESET} | Supply voltage delta (absolute value) ⁽⁶⁾ | | 34 | V | | Input voltage | Input voltage for other in | puts LPSDR ⁽²⁾ | -0.5 | V _{DD} + 0.5 | V | | iliput voltage | Input voltage for other in | puts SubLVDS ^{(2) (7)} | -0.5 | V _{DDI} + 0.5 | V | | Innut nine | V _{ID} | SubLVDS input differential voltage (absolute value) ⁽⁷⁾ | | 810 | mV | | Input pins | I _{ID} | SubLVDS input differential current | | 10 | mA | | Clock | $f_{ m clock}$ | Clock frequency for low speed interface LS_CLK | | 130 | MHz | | frequency | f_{clock} | Clock frequency for high speed interface DCLK | | 620 | MHz | | | T and T | Temperature – operational (8) | -20 | 90 | °C | | Environmental | T _{ARRAY} and T _{WINDOW} | Temperature – non-operational ⁽⁸⁾ | -40 | 90 | °C | | | T _{DELTA} | Absolute temperature delta between any point on the window edge and the ceramic test point TP1 ⁽⁹⁾ | | 30 | °C | | | T _{DP} | Dew Point - operating and non-operating | | 81 | °C | - (1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, and performance, and shorten the device lifetime. - (2) All voltage values are with respect to the ground terminals (V_{SS}). The following power supplies are all required to operate the DMD: V_{DD}, V_{DDI}, V_{OFFSET}, V_{BIAS}, and V_{RESET}. All V_{SS} connections are also required. - (3) V_{OFFSET} supply transients must fall within specified voltages. - (4) Exceeding the recommended allowable absolute voltage difference between V_{DDI} and V_{DD} may result in excessive current draw. - (5) Exceeding the recommended allowable absolute voltage difference between VBIAS and VOFFSET may result in excessive current draw. - (6) Exceeding the recommended allowable absolute voltage difference between V_{BIAS} and V_{RESET} may result in excessive current draw. - (7) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. SubLVDS differential inputs must not exceed the specified limit or damage may result to the internal termination resistors. - (8) The highest temperature of the active array (as calculated by the Section 6.6) or of any point along the window edge is defined in Figure 6-1. The location of thermal test point TP2 in Figure 6-1 is intended to measure the highest window edge temperature. If a particular application causes another point on the window edge to be at a higher temperature, that point should be used. - (9) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in Figure 6-1. The window test point TP2 shown in Figure 6-1 is intended to result in the worst-case delta. If a particular application causes another point on the window edge to result in a larger delta temperature, that point should be used. ## **5.2 Storage Conditions** Applicable for the DMD as a component or non-operating in a system. | | | MIN | MAX | UNIT | |---------------------|---|-----|-----|--------| | T _{DMD} | DMD storage temperature | -40 | 85 | °C | | T _{DP} | Average dew point temperature (non-condensing) (1) | | 24 | °C | | T _{DP-ELR} | Elevated dew point temperature range (non-condensing) (2) | 28 | 36 | °C | | CT _{ELR} | Cumulative time in elevated dew point temperature range | | 6 | months | (1) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range. (2) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total cumulative time of CT_{ELR}. # 5.3 ESD Ratings | | | VALUE | UNIT | |--|--|-------|------| | | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾ | ±2000 | | | V _(ESD) Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾ | ±500 | V | - (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process. # **5.4 Recommended Operating Conditions** Over-operating free-air temperature range (unless otherwise noted)(1) (2) | | | MIN | NOM | MAX | UNIT | |--|---|-------|-----|-------|------| | SUPPLY VOLTAG | GE RANGE ⁽³⁾ | | | - | | | V_{DD} | Supply voltage for LVCMOS core logic Supply voltage for LPSDR low-speed interface | 1.65 | 1.8 | 1.95 | V | | V_{DDI} | Supply voltage for SubLVDS receivers | 1.65 | 1.8 | 1.95 | V | | V _{OFFSET} | Supply voltage for HVCMOS and micromirror electrode ⁽⁴⁾ | 9.5 | 10 | 10.5 | V | | V _{BIAS} | Supply voltage for micromirror electrode | 17.5 | 18 | 18.5 | V | | V _{RESET} | Supply voltage for micromirror electrode | -14.5 | -14 | -13.5 | V | | V _{DDI} -V _{DD} | Supply voltage delta (absolute value) ⁽⁵⁾ | | | 0.3 | V | | V _{BIAS} -V _{OFFSET} | Supply voltage delta (absolute value) ⁽⁶⁾ | | | 10.5 | V | | V _{BIAS} -V _{RESET} | Supply voltage delta (absolute value) ⁽⁷⁾ | | | 33 | V | | CLOCK FREQUE | NCY | | - | | | | $f_{ m clock}$ | Clock frequency for low speed interface LS_CLK ⁽⁸⁾ | 108 | | 120 | MHz | | $f_{ m clock}$ | Clock frequency for high speed interface DCLK ⁽⁹⁾ | 300 | | 540 | MHz | | | Duty cycle distortion DCLK | 44% | | 56% | | | SUBLVDS INTER | FACE ⁽⁹⁾ | | | 1 | | | V _{ID} | SubLVDS input differential voltage (absolute value). See Figure 5-8, Figure 5-9 | 150 | 250 | 350 | mV | | V _{CM} | Common mode voltage. See Figure 5-8, Figure 5-9 | 700 | 900 | 1100 | mV | | V _{SUBLVDS} | SubLVDS voltage. See Figure 5-8, Figure 5-9 | 575 | |
1225 | mV | | Z _{LINE} | Line differential impedance (PWB/trace) | 90 | 100 | 110 | Ω | | Z _{IN} | Internal differential termination resistance. See Figure 5-10 | 80 | 100 | 120 | Ω | | | 100Ω differential PCB trace | 6.35 | | 152.4 | mm | # 5.4 Recommended Operating Conditions (continued) Over-operating free-air temperature range (unless otherwise noted)(1) (2) | | | MIN | NOM | MAX | UNIT | |---------------------|--|-----|-----|--------------------------|--------------------| | ENVIRONMEN | NTAL | | | | | | T _{ARRAY} | Array Temperature – long-term operational ⁽¹⁰⁾ (11) (12) (13) | 0 | | 40 to 70 ⁽¹²⁾ | °C | | | Array Temperature – short-term operational, 25 hr max ⁽¹¹⁾ (14) | -20 | | -10 | °C | | | Array Temperature – short-term operational, 500 hr max ⁽¹¹⁾ (14) | -10 | | 0 | °C | | | Array Temperature – short-term operational, 500 hr max ⁽¹¹⁾ (14) | 70 | | 75 | °C | | T _{WINDOW} | Window Temperature – operational ⁽¹⁵⁾ (16) | | | 90 | °C | | T _{DELTA} | Absolute temperature delta between any point on the window edge and the ceramic test point TP1 ⁽¹⁷⁾ | | | 15 | °C | | T _{DP-AVG} | Average dew point temperature (non-condensing) (18) | | | 24 | °C | | T _{DP-ELR} | Elevated dew point temperature range (non-condensing) (19) | 28 | | 36 | °C | | CT _{ELR} | Cumulative time in elevated dew point temperature range | | | 6 | months | | ILLUMINATIO | N | | - | | | | ILL _{UV} | Illumination power at wavelengths < 410nm ⁽¹⁰⁾ | | | 10 | mW/cm ² | | ILL _{VIS} | Illumination power at wavelengths ≥ 410nm and ≤ 800nm ⁽²⁰⁾ | | | 26.1 | W/cm ² | | ILL _{IR} | Illumination power at wavelengths > 800nm | | | 10 | mW/cm ² | | ILL _{BLU} | Illumination power at wavelengths ≥ 410nm and ≤ 475nm ⁽²⁰⁾ | | | 8.3 | W/cm ² | | ILL _{BLU1} | Illumination power at wavelengths ≥ 410nm and ≤ 445nm ⁽²⁰⁾ | , | | 1.5 | W/cm ² | | ILL _θ | Illumination marginal ray angle ⁽¹⁵⁾ | | | 55 | deg | - (1) The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by the Section 5.4. No level of performance is implied when operating the device above or below the Section 5.4 limits. - (2) The following power supplies are all required to operate the DMD: V_{DD}, V_{DDI}, V_{OFFSET}, V_{BIAS}, and V_{RESET}. All V_{SS} connections are also required. - (3) All voltage values are with respect to the ground pins (V_{SS}). - (4) V_{OFFSET} supply transients must fall within specified max voltages. - (5) To prevent excess current, the supply voltage delta $|V_{DDI} V_{DD}|$ must be less than the specified limit. - (6) To prevent excess current, the supply voltage delta |V_{BIAS} V_{OFFSET}| must be less than the specified limit. - (7) To prevent excess current, the supply voltage delta |V_{BIAS} V_{RESET}| must be less than the specified limit. - (8) LS_CLK must run as specified to ensure internal DMD timing for reset waveform commands. - (9) Refer to the SubLVDS timing requirements in Section 5.7. - (10) Simultaneous exposure of the DMD to the maximum *Recommended Operating Conditions* for temperature and UV illumination will reduce the device's lifetime. - (11) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1 (TP1) shown in Figure 6-1 and the package thermal resistance using Section 6.6. - (12) Per Figure 5-1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD experiences in the end application. Refer to Section 6.8 for a definition of micromirror landed duty cycle. - (13) Long-term is defined as the usable life of the device. - (14) Short-term is the total cumulative time over the useful life of the device. - (15) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including at the pond of micromirrors (POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM) will contribute to thermal limitations described in this document and may negatively affect lifetime. - (16) Window temperature is the highest temperature on the window edge shown in Figure 6-1. The location of thermal test point TP2 in Figure 6-1 is intended to measure the highest window edge temperature. If a particular application causes another point on the window edge to be at a higher temperature, that point should be used. - (17) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge shown in Figure 6-1. The window test point TP2 shown in Figure 6-1 is intended to result in the worst-case delta temperature. If a particular application causes another point on the window edge to result in a larger delta temperature, that point should be used. - (18) The average over time (including storage and operating) that the device is not in the 'elevated dew point temperature range'. - (19) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total cumulative time of CT_{FLR}. - (20) The maximum allowable optical power incident on the DMD is limited by the maximum optical power density for each wavelength range specified and the micromirror array temperature (T_{ARRAY}). Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback Figure 5-1. Maximum Recommended Array Temperature — Derating Curve ## 5.5 Thermal Information | | | DLP160CP | | |--------------------|--|----------|------| | | THERMAL METRIC(1) | FQT | UNIT | | | | 35 PINS | | | Thermal resistance | Active area to test point 1 (TP1) ⁽¹⁾ | 13 | °C/W | (1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of maintaining the package within the temperature range specified in the Section 5.4. The total heat load on the DMD is largely driven by the incident light absorbed by the active area, although other contributions include light energy absorbed by the window aperture and electrical power dissipated by the array. Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device. # **5.6 Electrical Characteristics** Over operating free-air temperature range (unless otherwise noted)(1) | | PARAMETER | TEST CONDITIONS(2) | MIN | TYP | MAX | UNIT | |----------------------------|---|---|-----------------------|------|-----------------------|------| | CURREN | Г | | | | | | | | Supply current: V _{DD} ⁽³⁾ ⁽⁴⁾ | V _{DD} = 1.95V | | | 50 | | | I _{DD} | | V _{DD} = 1.8V | | 38 | | mA | | | (3) (4) | V _{DDI} = 1.95V | | - | 12 | | | I _{DDI} | Supply current: V _{DDI} ^{(3) (4)} | V _{DDI} = 1.8V | | 8 | | mA | | I _{OFFSET} Supply | (5) (6) | V _{OFFSET} = 10.5V | | | 1 | | | | Supply current: V _{OFFSET} (5) (6) | V _{OFFSET} = 10V | | 0.9 | | mA | | | (5) (6) | V _{BIAS} = 18.5V | | | 0.2 | | | I _{BIAS} | Supply current: V _{BIAS} (5) (6) | V _{BIAS} = 18V | | 0.18 | | mA | | | (6) | V _{RESET} = -14.5V | | | -0.9 | | | RESET | Supply current: V _{RESET} (6) | V _{RESET} = -14V | | -0.8 | | mA | | POWER ⁽⁷ |) | 1 | | , | - | | | | (2) (4) | V _{DD} = 1.95V | | | 97.5 | 107 | | P_{DD} | Supply power dissipation: V _{DD} ⁽³⁾ ⁽⁴⁾ | V _{DD} = 1.8V | | 68.4 | | mW | | | 0 1 (3)(4) | V _{DDI} = 1.95V | | | 23.4 | 107 | | P_{DDI} | Supply power dissipation: V _{DDI} ⁽³⁾ ⁽⁴⁾ | V _{DD} = 1.8V | | 14.4 | | mW | | P _{OFFSET} Supply | Supply power dissipation: V _{OFFSET} (5) | V _{OFFSET} = 10.5V | | | 10.5 | \^/ | | | | V _{OFFSET} = 10V | | 9 | | mW | | Б. | (5) (6) | V _{BIAS} = 18.5V | | | 3.7 | \^/ | | P _{BIAS} | Supply power dissipation: V _{BIAS} ⁽⁵⁾ ⁽⁶⁾ | V _{BIAS} = 18V | | 3.2 | | mW | | Б. | Construction distinction V (6) | V _{RESET} = -14.5V | | | 13.1 | \^/ | | P _{RESET} | Supply power dissipation: V _{RESET} ⁽⁶⁾ | V _{RESET} = -14V | | 11.2 | | mW | | P _{TOTAL} | Supply power dissipation: Total | | | 106 | 148 | mW | | LPSDR IN | IPUT ⁽⁸⁾ | | | | ' | | | V _{IH(DC)} | DC input high voltage ⁽⁹⁾ | | 0.7 × V _{DD} | | V _{DD} + 0.3 | V | | V _{IL(DC)} | DC input low voltage ⁽⁹⁾ | | -0.3 | | 0.3 × V _{DD} | V | | V _{IH(AC)} | AC input high voltage ⁽⁹⁾ | | 0.8 × V _{DD} | | V _{DD} + 0.3 | V | | V _{IL(AC)} | AC input low voltage ⁽⁹⁾ | | -0.3 | | 0.2 × V _{DD} | V | | ΔV_{T} | Hysteresis (V _{T+} – V _{T-}) | Figure 5-10 | 0.1 × V _{DD} | | 0.4 × V _{DD} | V | | I _{IL} | Low-level input current | V _{DD} = 1.95V; V _I = 0V | -100 | | | nA | | I _{IH} | High-level input current | V _{DD} = 1.95V; V _I = 1.95V | | | 100 | nA | | LPSDR O | UTPUT ⁽¹⁰⁾ | • | • | | | | | V _{OH} | DC output high voltage | I _{OH} = -2mA | 0.8 × V _{DD} | | | V | | V _{OL} | DC output low voltage | I _{OL} = 2mA | | | 0.2 × V _{DD} | V | ## 5.6 Electrical Characteristics (continued) Over operating free-air temperature range (unless otherwise noted)(1) | PARAMETER | | TEST CONDITIONS(2) | MIN | TYP | MAX | UNIT | |--------------------|---------------------------|------------------------------------|-----|-----|-----|------| | CAPACIT | ANCE | | | | | | | 0 | Input capacitance LPSDR | f = 1MHz | | | 10 | pF | | C _{IN} | Input capacitance SubLVDS | f = 1MHz | | | 10 | pF | | C _{OUT} | Output capacitance | f = 1MHz | | | 10 | pF | |
C _{RESET} | Reset group capacitance | f = 1MHz; (360 × 160 micromirrors) | 90 | | 140 | pF | - (1) Device electrical characteristics are over Section 5.4 unless otherwise noted. - (2) All voltage values are with respect to the ground pins (V_{SS}). - (3) To prevent excess current, the supply voltage delta $|V_{DDI} V_{DD}|$ must be less than the specified limit. - (4) Supply power dissipation based on non-compressed commands and data. - (5) To prevent excess current, the supply voltage delta |V_{BIAS} V_{OFFSET}| must be less than the specified limit. - (6) Supply power dissipation based on 3 global resets in 300µs. - (7) The following power supplies are all required to operate the DMD: V_{DD}, V_{DDI}, V_{OFFSET}, V_{BIAS}, V_{RESET}. All V_{SS} connections are also required. - (8) LPSDR specifications are for pins LS CLK and LS WDATA. - (9) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard No. 209B, Low-Power Double Data Rate (LPDDR) JESD209B. - (10) LPSDR specification is for pin LS RDATA. # 5.7 Timing Requirements Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted. | | | | MIN | NOM MA | X UNIT | |-----------------------|---|--|--|---------------------|--------| | LPSDR | | | | | | | t _r | Rise slew rate ⁽¹⁾ | (30% to 80%) × V _{DD} , Figure 5-3 | 1 | | 3 V/ns | | t_f | Fall slew rate ⁽¹⁾ | (70% to 20%) × V _{DD} , Figure 5-3 | 1 | | 3 V/ns | | t _r | Rise slew rate ⁽²⁾ | (20% to 80%) × V _{DD} , Figure 5-3 | 0.25 | | V/ns | | t_f | Fall slew rate ⁽²⁾ | (80% to 20%) × V _{DD} , Figure 5-3 | 0.25 | | V/ns | | t _c | Cycle time LS_CLK | Figure 5-2 | 7.7 | 8.3 | ns | | t _{W(H)} | Pulse duration LS_CLK high | 50% to 50% reference points, Figure 5-2 | 3.1 | | ns | | t _{W(L)} | Pulse duration LS_CLK low | 50% to 50% reference points, Figure 5-2 | 3.1 | | ns | | t _{su} | Setup time | LS_WDATA valid before LS_CLK ↑, Figure 5-2 | 1.5 | | ns | | t _h | Hold time | LS_WDATA valid after LS_CLK ↑, Figure 5-2 | 1.5 | | ns | | t _{WINDOW} | Window time ⁽¹⁾ (3) | Setup time + hold time, Figure 5-2 | 3 | | ns | | t _{DERATING} | Window time derating ^{(1) (3)} | For each 0.25V/ns reduction in slew rate below 1V/ns, Figure 5-5 | | 0.35 | ns | | SubLVDS | | | | | - | | t _r | Rise slew rate | 20% to 80% reference points, Figure 5-4 | 0.7 | 1 | V/ns | | t_f | Fall slew rate | 80% to 20% reference points, Figure 5-4 | 0.7 | 1 | V/ns | | t _c | Cycle time DCLK | Figure 5-6 | 1.79 | 1.85 | ns | | t _{W(H)} | Pulse duration DCLK high | 50% to 50% reference points, Figure 5-6 | 0.79 | | ns | | t _{W(L)} | Pulse duration DCLK low | 50% to 50% reference points, Figure 5-6 | 0.79 | | ns | | t _{su} | Setup time | D(0:7) valid before
DCLK ↑ or DCLK ↓, Figure 5-6 | Setup and Ho
by t _{WINDOW} | ld times are define | d | | t _h | Hold time | D(0:7) valid after
DCLK ↑ or DCLK ↓, Figure 5-6 | Setup and Ho
by t _{WINDOW} | ld times are define | d | | t _{WINDOW} | Window time | Setup time + hold time, Figure 5-6, Figure 5-7 | 0.3 | | ns | ## 5.7 Timing Requirements (continued) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted. | | | MIN | NOM | MAX | UNIT | |-------------------------------------|----------------------------------|-----|-----|------|------| | t _{LVDS-}
ENABLE+REFGEN | Power-up receiver ⁽⁴⁾ | | | 2000 | ns | - (1) Specification is for LS_CLK and LS_WDATA pins. Refer to LPSDR input rise slew rate and fall slew rate in Figure 5-3. - (2) Specification is for DMD_DEN_ARSTZ pin. Refer to LPSDR input rise and fall slew rate in Figure 5-3. - (3) Window time derating example: 0.5V/ns slew rate increases the window time by 0.7ns, from 3ns to 3.7ns. - (4) Specification is for SubLVDS receiver time only and does not take into account commanding and latency after commanding. Low-speed interface is LPSDR and adheres to the Section 5.6 and AC/DC Operating Conditions table in JEDEC Standard No. 209B, Low Power Double Data Rate (LPDDR) JESD209B. Figure 5-2. LPSDR Switching Parameters Figure 5-3. LPSDR Input Rise and Fall Slew Rate Not to Scale Figure 5-4. SubLVDS Input Rise and Fall Slew Rate Figure 5-5. Window Time Derating Concept Submit Document Feedback Copyright © 2024 Texas Instruments Incorporated Figure 5-6. SubLVDS Switching Parameters Note: Refer to Section 6.3.3 for details. Figure 5-7. High-Speed Training Scan Window Figure 5-8. SubLVDS Voltage Parameters Figure 5-9. SubLVDS Waveform Parameters Figure 5-10. SubLVDS Equivalent Input Circuit Figure 5-11. LPSDR Input Hysteresis Figure 5-12. LPSDR Read Out Submit Document Feedback # **Data Sheet Timing Reference Point** See Section 6.3.4 for more information. Figure 5-13. Test Load Circuit for Output Propagation Measurement # **5.8 Switching Characteristics** Over operating free-air temperature range (unless otherwise noted). (1) | | PARAMETER | TEST CONDITIONS | MIN - | YP MAX | UNIT | |-----------------|--|-----------------------|-------|--------|------| | t _{PD} | Output propagation, clock to Q, rising edge of LS_CLK input to LS_RDATA output. See Figure 5-12. | C _L = 45pF | | 15 | ns | | | Slew rate, LS_RDATA | | 0.5 | | V/ns | | | Output duty cycle distortion, LS_RDATA | | 40% | 60% | | ⁽¹⁾ Device electrical characteristics are over Section 5.4 unless otherwise noted. # **5.9 System Mounting Interface Loads** | PARAMETER | MIN | NOM | MAX | UNIT | |--|-----|-----|-----|------| | Maximum system mounting interface load to be applied to the: | | | | | | Thermal interface area ⁽¹⁾ | | | 42 | N | | Clamping and electrical interface area ⁽¹⁾ | | | 94 | N | (1) Uniformly distributed within the area shown in Figure 5-14. Figure 5-14. System Interface Loads # 5.10 Micromirror Array Physical Characteristics | | PARAMETER | | | |---------------------------------|---|-------|-------------------| | Number of active columns | See Figure 5-15 | 640 | micromirrors | | Number of active rows (2) | See Figure 5-15 | 360 | micromirrors | | Micromirror (pixel) pitch | See Figure 5-16 | 5.4 | μm | | Micromirror active array width | Micromirror pitch × number of active columns; see Figure 5-15 | 3.456 | mm | | Micromirror active array height | Micromirror pitch × number of active rows; see Figure 5-15 | 1.944 | mm | | Micromirror active border | Pond of micromirror (POM) ⁽¹⁾ | 20 | micromirrors/side | - (1) The structure and qualities of the border around the active array include a band of partially functional micromirrors called the POM. These micromirrors are structurally or electrically prevented from tilting toward the bright or ON state, but still require an electrical bias to tilt toward OFF. - (2) The fast switching speed of the DMD micromirrors combined with advanced DLP image processing algorithms enables each micromirror to display four distinct pixels on the screen during every frame, resulting in a full 1280x720 pixel image being displayed. Not to scale Figure 5-15. Micromirror Array Physical Characteristics Figure 5-16. Mirror (Pixel) Pitch ## 5.11 Micromirror Array Optical Characteristics | | PARAMETER | TEST CONDITIONS | MIN | NOM | MAX | UNIT | |---|--|---------------------------------|------|-----|-----|--------------| | Micromirror tilt angle | | DMD landed state ⁽¹⁾ | | 17 | | degree | | Micromirror tilt | angle tolerance ^{(2) (3) (4) (5)} | | -1.4 | | 1.4 | degree | | Micromirror tilt | direction (6) (7) | Landed ON state | | 180 | | dograe | | Wilcromintor tilt | direction | Landed OFF state | | 270 | | degree | | Micromirror crossover time ⁽⁸⁾ | | Typical performance | | 1 | 3 | | | Micromirror swi | itching time ⁽⁹⁾ | Typical performance | 10 | | | μs | | | Bright pixel(s) in active area (11) | Gray 10 Screen (12) | | | 0 | | | Image | Bright pixel(s) in the POM (13) | Gray 10 Screen (12) | | | 1 | | | performance
(10) | Dark pixel(s) in the active area (14) | White Screen | | | 4 | micromirrors | | | Adjacent pixel(s) (15) | Any Screen | | | 0 | | | | Unstable pixel(s) in active area (16) | Any Screen | | | 0 | | - (1) Measured relative to the plane formed by the overall micromirror array. - (2) Additional variation exists between the micromirror array and the package datums. - (3) Represents the landed tilt angle variation relative to the nominal landed tilt angle. - (4) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different devices. - (5) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result in colorimetry variations, system efficiency variations, or system contrast variations. - (6) When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON state direction. A binary value of 0 results in a micromirror landing in the OFF state direction. See *Landed Pixel Orientation and Tilt*. - (7) Micromirror tilt direction is measured as in a typical polar coordinate system: Measuring counter-clockwise from a 0°
reference which is aligned with the +X Cartesian axis. - (8) The time required for a micromirror to nominally transition from one landed state to the opposite landed state. - (9) The minimum time between successive transitions of a micromirror. - (10) Conditions of Acceptance: All DMD image quality returns will be evaluated using the following projected image test conditions: Test set degamma shall be linear Test set brightness and contrast shall be set to nominal The diagonal size of the projected image shall be a minimum of 20 inches The projections screen shall be 1X gain The projected image shall be inspected from a 38 inch minimum viewing distance The image shall be in focus during all image quality tests - (11) Bright pixel definition: A single pixel or mirror that is stuck in the ON position and is visibly brighter than the surrounding pixels - (12) Gray 10 screen definition: All areas of the screen are colored with the following settings: Red = 10/255 Green = 10/255 Submit Document Feedback Blue = 10/255 - (13) POM definition: Rectangular border of off-state mirrors surrounding the active area - (14) Dark pixel definition: A single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels - (15) Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster - (16) Unstable pixel definition: A single pixel or mirror that does not operate in sequence with parameters loaded into memory. The unstable pixel appears to be flickering asynchronously with the image Figure 5-17. Landed Pixel Orientation and Tilt ## **5.12 Window Characteristics** | PARAMETER ⁽¹⁾ | | | NOM | MAX | UNIT | |-----------------------------------|---|-----|------------------|---------|------| | Window material | | | Corning Eagle XG | | | | Window refractive index | At wavelength 546.1nm | | 1.5119 | | | | Window aperture | | | | See (1) | | | Illumination overfill | | | | See (1) | | | Window transmittance, single-pass | Minimum within the wavelength range 420 to 680nm. Applies to all angles 0° to 30° AOI | 97% | | | | | through both surfaces and glass | Average over the wavelength range 420 to 680nm. Applies to all angles 30° to 45° AOI | 97% | | | | (1) See Section 6.5 for more information. # 5.13 Chipset Component Usage Specification #### Note TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously. The DLP160CP is a component of one or more DLP chipsets. Reliable function and operation of the DLP160CP requires that it be used in conjunction with the other components of the applicable DLP chipset, including those components that contain or implement TI DMD control technology. TI DMD control technology consists of the TI technology and devices used for operating or controlling a DLP DMD. # **6 Detailed Description** ## 6.1 Overview The DLP160CP is a 0.16-inch diagonal spatial light modulator of aluminum micromirrors. The pixel array size is 640 columns by 360 rows in a square grid pixel arrangement. The electrical interface is sub-low voltage differential signaling (SubLVDS) data. The DLP160CP is part of the chipset comprised of the DLP160CP DMD, the DLPC3421ZVB display controller, and the DLPA200x/DLPA3000 PMIC/LED driver. To ensure reliable operation, the DLP160CP DMD must always be used with the DLPC3421ZVB display controller and the DLPA200x/DLPA3000 PMIC/LED drivers. # 6.2 Functional Block Diagram ## **6.3 Feature Description** #### 6.3.1 Power Interface The power management IC DLPA200x/DLPA3000 contains three regulated DC supplies for the DMD reset circuitry: V_{BIAS}, V_{RESET} and V_{OFFSET}, as well as the two regulated DC supplies for the DLPC3421ZVB controller. ## 6.3.2 Low-Speed Interface The low speed interface handles instructions that configure the DMD and control reset operation. LS CLK is the low-speed clock, and LS WDATA is the low speed data input. ## 6.3.3 High-Speed Interface The purpose of the high-speed interface is to transfer pixel data rapidly and efficiently, making use of high speed DDR transfer and compression techniques to save power and time. The high-speed interface is composed of differential SubLVDS receivers for inputs with a dedicated clock. ### 6.3.4 Timing The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. Figure 5-13 shows an equivalent test load circuit for the output under test. Timing reference loads are not intended as a precise representation of any particular system environment or depiction of the actual load presented by a production test. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. #### 6.4 Device Functional Modes DMD functional modes are controlled by the DLPC3421ZVB controller. See the DLPC3421ZVB controller data sheet or contact a TI applications engineer. ## 6.5 Optical Interface and System Image Quality Considerations TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters. Optimizing system optical performance and image quality strongly relate to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical performance is contingent on compliance to the optical system operating conditions described in the following sections. ### 6.5.1 Numerical Aperture and Stray Light Control The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate apertures are added in the illumination and/or projection pupils to block out flat-state and stray light from the projection lens. The mirror tilt angle defines DMD capability to separate the ON optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the mirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle, objectionable artifacts in the display border and/or active area could occur. # 6.5.2 Pupil Match TI's optical and image quality specifications assume that the exit pupil of the illumination optics is nominally centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the display border and/or active area, which may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle. Product Folder Links: DLP160CP Copyright © 2024 Texas Instruments Incorporated #### 6.5.3 Illumination Overfill The active area of the device is surrounded by an aperture on the inside DMD window surface that masks structures of the DMD chip assembly from normal view and is sized to anticipate several optical operating conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window aperture opening and other surface anomalies that may be visible on the screen. The illumination optical system should be designed to limit the total light flux incident anywhere on the window aperture from exceeding approximately 10% of the total light flux in the active array. Depending on the particular optical architecture, overfill light may have to be further reduced below the suggested 10% level in order to be acceptable. # **6.6 Micromirror Array Temperature Calculation** Figure 6-1. DMD Thermal Test Points Micromirror array temperature cannot be measured directly, therefore it must be computed analytically from measurement points on the outside of the package, the package thermal resistance, the electrical power, and the illumination heat load. The relationship between array temperature and the reference ceramic temperature (thermal test point TP1 in Figure 6-1) is provided by the following equations: $$T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC})$$ $$Q_{ARRAY} = Q_{ELECTRICAL} + Q_{ILLUMINATION}$$ #### where - T_{ARRAY} = Computed array temperature (°C) - T_{CFRAMIC} = Measured ceramic temperature (°C) (TP1 location) Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback - RARRAY-TO-CERAMIC = Thermal resistance of package specified in Section 5.5 from array to ceramic TP1 (°C/Watt) - Q_{ARRAY} = Total DMD power on the array (W) (electrical + absorbed) - Q_{ELECTRICAL} = Nominal electrical power (W) - Q_{INCIDENT} = Incident illumination optical power (W) - Q_{ILLUMINATION} = (DMD average thermal absorptivity × Q_{INCIDENT}) (W) - DMD average thermal absorptivity = 0.4 The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies. A nominal electrical power dissipation to use when calculating array temperature is 0.07W. The absorbed power from the illumination source is variable and depends on the operating state of the micromirrors and the intensity of the light source. The equations shown above are valid for a single chip or multichip DMD system. It assumes an illumination distribution of 83.7% on the active array and 16.3% on the array border. The sample calculation for a typical
projection application is as follows: ``` Q_{INCIDENT} = 1.4W (measured) T_{CFRAMIC} = 55.0°C (measured) Q_{ELECTRICAL} = 0.07W Q_{ARRAY} = 0.07W + (0.40 \times 1.4W) = 0.63W T_{ARRAY} = 55.0°C + (0.63W × 13.0°C/W) = 63.2°C ``` ## 6.7 Micromirror Power Density Calculation The calculation of the optical power density of the illumination on the DMD in the different wavelength bands uses the total measured optical power on the DMD, percent illumination overfill, area of the active array, and the ratio of the spectrum in the wavelength band of interest to the total spectral optical power. Product Folder Links: DLP160CP - ILL_{UV} = [OP_{UV-RATIO} × Q_{INCIDENT}] × 1000 ÷ A_{ILL} (mW/cm²) - ILL_{VIS} = [OP_{VIS-RATIO} × Q_{INCIDENT}] ÷ A_{ILL} (W/cm²) - ILL_{IR} = [OP_{IR-RATIO} × Q_{INCIDENT}] × 1000 ÷ A_{ILL} (mW/cm²) - ILL_{BLU} = [OP_{BLU-RATIO} × Q_{INCIDENT}] ÷ A_{ILL} (W/cm²) - ILL_{BLU1} = [OP_{BLU1-RATIO} × Q_{INCIDENT}] ÷ A_{ILL} (W/cm²) - $A_{ILL} = A_{ARRAY} \div (1 OV_{ILL}) (cm^2)$ #### where: - ILL_{UV} = UV illumination power density on the DMD (mW/cm²) - ILL_{VIS} = VIS illumination power density on the DMD (W/cm²) - ILL_{IR} = IR illumination power density on the DMD (mW/cm²) - ILL_{BLU} = BLU illumination power density on the DMD (W/cm²) - ILL_{BLU1} = BLU1 illumination power density on the DMD (W/cm²) - A_{ILL} = illumination area on the DMD (cm²) - Q_{INCIDENT} = total incident optical power on DMD (W) (measured) Submit Document Feedback Copyright © 2024 Texas Instruments Incorporated #### www.ti.com - A_{ARRAY} = area of the array (cm²) (data sheet) - OV_{ILL} = percent of total illumination on the DMD outside the array (%) (optical model) - OP_{UV-RATIO} = ratio of the optical power for wavelengths <410nm to the total optical power in the illumination spectrum (spectral measurement) - OP_{VIS-RATIO} = ratio of the optical power for wavelengths ≥410 and ≤800nm to the total optical power in the illumination spectrum (spectral measurement) - OP_{IR-RATIO} = ratio of the optical power for wavelengths >800nm to the total optical power in the illumination spectrum (spectral measurement) - OP_{BLU-RATIO} = ratio of the optical power for wavelengths ≥410 and ≤475nm to the total optical power in the illumination spectrum (spectral measurement) - OP_{BLU1-RATIO} = ratio of the optical power for wavelengths ≥410 and ≤445nm to the total optical power in the illumination spectrum (spectral measurement) The illumination area varies and depends on the illumination overfill. The total illumination area on the DMD is the array area and the overfill area around the array. The optical model is used to determine the percent of the total illumination on the DMD outside the array (OV_{ILL}) and the percent of the total illumination on the active array. From these values, the illumination area (A_{ILL}) is calculated. The illumination is assumed to be uniform across the entire array. From the measured illumination spectrum, the ratio of the optical power in the wavelength bands of interest to the total optical power is calculated. ## Sample calculation: ``` \begin{aligned} &Q_{\text{INCIDENT}} = 1.40\text{W (measured)} \\ &A_{\text{ARRAY}} = (0.3456 \times 0.1944) = 0.0672\text{cm}^2 \text{ (data sheet)} \\ &OV_{\text{ILL}} = 16.3\% \text{ (optical model)} \\ &OP_{\text{UV-RATIO}} = 0.00021 \text{ (spectral measurement)} \\ &OP_{\text{US-RATIO}} = 0.99977 \text{ (spectral measurement)} \\ &OP_{\text{IR-RATIO}} = 0.00002 \text{ (spectral measurement)} \\ &OP_{\text{BLU-RATIO}} = 0.28100 \text{ (spectral measurement)} \\ &OP_{\text{BLU-RATIO}} = 0.03200 \text{ (spectral measurement)} \\ &OP_{\text{BLU1-RATIO}} = 0.03200 \text{ (spectral measurement)} \\ &A_{\text{ILL}} = 0.0672 \div (1 - 0.163) = 0.0803 \text{ cm}^2 \\ &ILL_{\text{UV}} = [0.00021 \times 1.40\text{W}] \times 1000 \div 0.0803\text{cm}^2 = 3.66\text{mW/cm}^2 \\ &ILL_{\text{VIS}} = [0.99977 \times 1.40\text{W}] \div 0.0803\text{cm}^2 = 17.4\text{W/cm}^2 \\ &ILL_{\text{IR}} = [0.00002 \times 1.40\text{W}] \times 1000 \div 0.0803\text{cm}^2 = 0.349 \text{ mW/cm}^2 \\ &ILL_{\text{BLU}} = [0.28100 \times 1.40\text{W}] \div 0.0803\text{cm}^2 = 4.90 \text{ W/cm}^2 \\ &ILL_{\text{BLU}} = [0.03200 \times 1.40\text{W}] \div 0.0803\text{ cm}^2 = 0.558 \text{ W/cm}^2 \end{aligned} ``` ## 6.8 Micromirror Landed-On/Landed-Off Duty Cycle ## 6.8.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a percentage) that an individual micromirror is landed in the ON state versus the amount of time the same micromirror is landed in the OFF state. As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the ON state 100% of the time (and in the OFF state 0% of the time), whereas 0/100 would indicate that the pixel is in the OFF state 100% of the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time and OFF 50% of the time. Note that when assessing the landed duty cycle, the time spent switching from one state (ON or OFF) to the other state (OFF or ON) is considered negligible and is thus ignored. Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages) always add to 100. ## 6.8.2 Landed Duty Cycle and Useful Life of the DMD Knowing the long-term average landed duty cycle (of the end product or application) is important because subjecting all (or a portion) of the DMD micromirror array (also called the active array) to an asymmetric landed duty cycle for a prolonged period of time can reduce the usable life of the DMD. Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical. Product Folder Links: DLP160CP Copyright © 2024 Texas Instruments Incorporated # 6.8.3 Landed Duty Cycle and Operational DMD Temperature Operational DMD temperature and landed duty cycle interact to affect the usable life of the DMD, and this interaction can be exploited to reduce the impact that an asymmetrical landed duty cycle has on the usable life of the DMD. The relationship between temperature and landed duty cycle is quantified in the derating curve shown in Figure 5-1. The importance of this curve is that: - All points along this curve represent the same usable life. - All points above this curve represent lower usable life (and the further away from the curve, the lower the usable life). - All points below this curve represent higher usable life (and the further away from the curve, the higher the usable life). In practice, this curve specifies the maximum operating DMD temperature that the DMD should be operated at for a given long-term average landed duty cycle. ## 6.8.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application During a given period of time, the landed duty cycle of a given pixel follows from the image content being displayed by that pixel. For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel will experience close to a 100/0 landed duty cycle during that time period. Likewise, when displaying pure-black, the pixel will experience close to a 0/100 landed duty cycle. Between the two extremes (ignoring for the moment color and any image processing that may be applied to an incoming image), the landed duty cycle tracks one-to-one with the gray scale value, as shown in Table 6-1. Table 6-1. Grayscale Value and Nominal Landed Duty Cycle | Grayscale
Value | Landed Duty
Cycle | |--------------------|----------------------| | 0% | 0/100 | | 10% | 10/90 | | 20% | 20/80 | | 30% | 30/70 | | 40% | 40/60 | | 50% | 50/50 | | 60% | 60/40 | | 70% | 70/30 | | 80% | 80/20 | | 90% | 90/10 | | 100% | 100/0 | Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from 0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color cycle time for each primary color, where "color cycle time" is the total percentage of the frame time that a given primary must be displayed in order to achieve the desired white point. During a given period of time, the landed duty cycle of a given pixel can be calculated as follows: where Red_Cycle_%, Green_Cycle_%, and Blue_Cycle_% represent the percentage of the frame time that red, green, and blue are displayed (respectively) to achieve the desired white point. For example, assuming that the red, green and blue color cycle times are 50%, 20%, and 30% respectively (in order to achieve the desired white point), then the landed duty cycle for various combinations of red, green, blue color intensities would be as shown in Table 6-2. Table 6-2. Example Nominal Landed Duty Cycle for Full-Color Pixels | Red Cycle | Green Cycle | Blue Cycle | |------------|-------------|------------| | Percentage | Percentage | Percentage | | 50% | 20% | 30% | | Red Scale
Value | Green Scale
Value | Blue Scale
Value | Landed Duty
Cycle | |--------------------|----------------------|---------------------|----------------------| | 0% | 0% | 0% | 0/100 | | 100% | 0% | 0% | 50/50 | | 0% | 100% | 0% | 20/80 | | 0% | 0% | 100% | 30/70 | | 12% | 0% | 0% | 6/94 | | 0% | 35% | 0% | 7/93 | | 0% | 0% | 60% | 18/82 | | 100% | 100% | 0% | 70/30 | | 0% | 100% | 100% | 50/50 | | 100% | 0% | 100% | 80/20 | | 12% | 35% | 0% | 13/87 | | 0% | 35% | 60% | 25/75 | | 12% | 0% | 60% | 24/76 | | 100% | 100% | 100% | 100/0 | The last factor to account for in estimating the landed duty cycle is any applied image processing. Within the DLP controller DLPC3421ZVB, the two functions which affect the landed duty cycle are gamma
and IntelliBright $^{\text{TM}}$. Gamma is a power function of the form $Output_Level = A \times Input_Level^{Gamma}$, where A is a scaling factor that is typically set to 1. In the DLPC3421ZVB controller, gamma is applied to the incoming image data on a pixel-by-pixel basis. A typical gamma factor is 2.2, which transforms the incoming data as shown in Figure 6-2. Figure 6-2. Example of Gamma = 2.2 From Figure 6-2, if the gray scale value of a given input pixel is 40% (before gamma is applied), then gray scale value will be 13% after gamma is applied. Therefore, it can be seen that since gamma has a direct impact displayed gray scale level of a pixel, it also has a direct impact on the landed duty cycle of a pixel. The content adaptive illumination control (CAIC) and local area brightness boost (LABB) of the IntelliBright algorithm also apply transform functions on the gray scale level of each pixel. But while the amount of gamma applied to every pixel of every frame is constant (the exponent, gamma, is constant), CAIC and LABB are both adaptive functions that can apply different amounts of either boost or compression to every pixel of every frame. Consideration must also be given to any image processing which occurs before the DLPC3421ZVB controller. # 7 Application and Implementation #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. # 7.1 Application Information The DMDs are spatial light modulators that reflect incoming light from an illumination source to one of two directions, with the primary direction being into a projection or collection optic. Each application is derived primarily from the optical architecture of the system and the format of the data coming into the DLPC3421 controller. The new high-tilt pixel in the side-illuminated DMD increases brightness performance and enables a smaller system footprint for thickness-constrained applications. Applications of interest include projection technology embedded in display devices like ultra low-power battery-operated mobile accessory projectors, phones, tablets, ultra-mobile low-end smart TVs, and virtual assistants. DMD power-up and power-down sequencing is strictly controlled by the DLPA200x/DLPA3000. Refer to *Power Supply Recommendations* for power-up and power-down specifications. To ensure reliable operation, the DLP160CP DMD must always be used with the DLPC3421 display controller and a DLPA200x/DLPA3000 PMIC/LED driver. Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *DLP160CP* ## 7.2 Typical Application ## 7.2.1 Typical Application—nHD Mode A common application when using the DLPC34xx controller with the DLP160CP DMD and the DLPA200x PMIC/LED driver is to create a Pico projector embedded in a handheld product. For example, a Pico projector may be embedded in a smartphone, a tablet, or a camera. The controller in the Pico projector embedded module typically receives images from a host processor within the product. Figure 7-1. Typical Simplified Application Schematic—nHD Mode (Using DLPA200x) # 7.2.2 Typical Application—HD Mode The DLPC3421 controller when combined with the FPGA and supporting firmware is used to create a Pico projector capable of displaying an HD (1280×720) image on screen. The FPGA in the system receives images from the host processor over an FPD-link interface within the product. Figure 7-2. Typical Simplified Application Schematic—HD Mode (Using DLPA200x) Figure 7-3. Typical Simplified Application Schematic—HD Mode (Using DLPA3000) ## 7.2.3 Design Requirements A pico projector is created by using a DLP chipset comprised of a DLP160CP DMD, a DLPC3421 controller, and a DLPA200x/DLPA3000 PMIC/LED driver. The DLPC3421 controller performs the digital image processing, the DLPA200x/DLPA3000 provides the needed analog functions for the projector, and the DLP160CP DMD is the display device for producing the projected image. In addition to the three DLP chips in the chipset, other chips are needed. At a minimum, a flash part is needed to store the DLPC3421 controller software. The illumination light applied to the DMD is typically from red, green, and blue LEDs. These are often contained in three separate packages, but sometimes more than one color of LED die may be in the same package to reduce the overall size of the pico projector. The DLPC3421 controller receives image data from the multimedia front end over a 24-bit parallel interface. An I²C interface should be connected from the multimedia front end for sending commands to the DLPC3421 controller for configuring the chipset for different features. ## 7.2.4 Detailed Design Procedure For instructions on how to connect the DLPC3421 controller, the DLPA200x/DLPA3000, and the DLP160CP DMD together, see the reference design schematic. When a circuit board layout is created from this schematic a very small circuit board is possible. An example small board layout is included in the reference design data base. Layout guidelines should be followed to achieve a reliable projector. The optical engine that has the LED packages and the DMD mounted to it is typically supplied by an optical OEM who specializes in designing optics for DLP projectors. ## 7.2.5 Application Curve As the LED currents that are driven time-sequentially through the red, green, and blue LEDs are increased, the brightness of the projector increases. This increase is somewhat non-linear, and the curve for typical white screen lumens changes with LED currents is as shown in Figure 7-4. For the LED currents shown, it is assumed that the same current amplitude is applied to the red, green, and blue LEDs. Figure 7-4. Luminance vs Current # 8 Power Supply Recommendations The following power supplies are all required to operate the DMD: V_{DD} , V_{DDI} , V_{OFFSET} , V_{BIAS} , and V_{RESET} . All V_{SS} connections are also required. DMD power-up and power-down sequencing is strictly controlled by the DLPA200x/DLPA3000 devices. ## **CAUTION** For reliable operation of the DMD, the following power supply sequencing requirements must be followed. Failure to adhere to the prescribed power-up and power-down procedures may affect device reliability. V_{DD} , V_{DDI} , V_{OFFSET} , V_{BIAS} , and V_{RESET} power supplies have to be coordinated during power-up and power-down operations. Failure to meet any of the below requirements results in a significant reduction in the reliability and lifetime of the DMD. Refer to the *Power-Up Sequence Delay Requirement*. V_{SS} must also be connected. # 8.1 Power Supply Power-Up Procedure - During power-up, V_{DD} and V_{DDI} must always start and settle before V_{OFFSET}, V_{BIAS}, and V_{RESET} voltages are applied to the DMD. - During power-up, it is a strict requirement that the delta between V_{BIAS} and V_{OFFSET} must be within the specified limit shown in *Section 5.4*. Refer to Power-Up Sequence Delay Requirement for power-up delay requirements. - During power-up, the LPSDR input pins of the DMD shall not be driven high until after V_{DD} and V_{DDI} have settled at operating voltage. - During power-up, there is no requirement for the relative timing of V_{RESET} with respect to V_{OFFSET} and V_{BIAS}. Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the requirements listed previously and in *Power Supply Sequencing Requirements (Power Up and Power Down)*. ## 8.2 Power Supply Power-Down Procedure - The power-down sequence is the reverse order of the previous power-up sequence. V_{DD} and V_{DDI} must be supplied until after V_{BIAS}, V_{RESET}, and V_{OFFSET} are discharged to within 4V of ground. - During power-down, it is not mandatory to stop driving V_{BIAS} prior to V_{OFFSET}, but it is a strict requirement that the delta between V_{BIAS} and V_{OFFSET} must be within the specified limit shown in Section 5.4 (Refer to Note 2 for Power Supply Sequencing Requirements (Power Up and Power Down). - During power-down, the LPSDR input pins of the DMD must be less than V_{DDI}, the specified limit shown in Section 5.4. - During power-down, there is no requirement for the relative timing of V_{RESET} with respect to V_{OFFSET} and V_{BIAS} . - Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the requirements listed previously and in Power Supply Sequencing Requirements (Power Up and Power Down). ## 8.3 Power Supply Sequencing Requirements - A. Refer to the Power-Up Sequence Delay Requirement for critical power-up sequence delay requirements. - B. To prevent excess current, the supply voltage delta |V_{BIAS} V_{OFFSET}| must be less than specified in Section 5.4. OEMs may find that the most reliable way to ensure this is to power V_{OFFSET} prior to V_{BIAS} during power-up and to remove V_{BIAS} prior to V_{OFFSET} during power-down. Refer to *Power-Up Sequence Delay Requirement* for power-up delay requirements. - C. To prevent excess current, the supply voltage delta |V_{BIAS} V_{RESET}| must be less than the specified limit shown in Section 5.4. - D. When system power is interrupted, the DLPA200x/DLPA3000 initiates hardware power-down that disables V_{BIAS}, V_{RESET}, and V_{OFFSET} after the micromirror park sequence. - E. The drawing is not to scale and details are omitted for clarity. Figure 8-1. Power Supply Sequencing Requirements (Power Up and Power Down) Table 8-1. Power-Up Sequence Delay Requirement | | MIN | MAX | UNIT | | |---------------------|---|-----|------|----| | t _{DELAY} | Delay requirement from V _{OFFSET} power
up to V _{BIAS} power up | 2 | | ms | | V _{OFFSET} | The supply voltage level at the beginning of power-up sequence delay | | 6 | V | | V _{BIAS} | The supply voltage level at end of power-up sequence delay | | 6 | V | This requirement applies only to the DLPA200x. Refer to Power-Up Sequence Delay Requirement for V_{OFFSET} and V_{BIAS} supply voltage levels during power-up sequence delay. Figure 8-2. Power-Up Sequence Delay Requirement Submit Document Feedback Copyright © 2024 Texas Instruments Incorporated # 9 Layout # 9.1 Layout Guidelines The DMD is connected to a PCB or a flex circuit using an interposer. For additional layout guidelines regarding length matching, impedance, and so on. see the DLPC3421 controller data sheet. For a detailed layout example refer to the layout design files. Some layout guidelines for routing to the DMD are: - Match lengths for the LS_WDATA and LS_CLK signals. - Minimize vias, layer changes, and turns for the HS bus signals. Refer to Figure 9-1. - Minimum of two 100nF (25V) capacitors—one close to V_{BIAS} pin. Capacitors C4 and C8 in Figure 9-1. - Minimum of two 100nF (25V) capacitors—one close to each V_{RST} pin. Capacitors C3 and C7 in Figure 9-1. - Minimum of two 220nF (25V) capacitors—one close to each V_{OFS} pin. Capacitors C5 and C6 in Figure 9-1. - Minimum of four 100nF (6.3V) capacitors—two close to the VDD/VDDI pins on each side of the DMD. Capacitors C1, C2, C9, and C10 in the layout example. ## 9.2 Layout Example Figure 9-1. Power Supply Connections # 10 Device and Documentation Support ## 10.1 Device Support ## 10.1.1 Third-Party Products Disclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE. #### 10.1.2 Device Nomenclature Figure 10-1. Part Number Description ## 10.1.3 Device Markings The device marking includes the legible character string GHJJJJK 160CPFQT. GHJJJJK is the lot trace code. 160CPFQT is the abbreviated part number. Figure 10-2. DMD Marking ## 10.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 10.3 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. ## 10.4 Trademarks IntelliBright[™] is a trademark of Texas Instruments. TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners. # 10.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ## 10.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. # 11 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | Changes from Revision C (July 2023) to Revision D (October 2024) | Page | |--|------| | Added feature for 1280 × 720 resolution | 1 | | Added DLPA3000 support for DLP160CP DMD | 1 | | Added a footnote to Micromirror Array Physical Characteristics describing the method of displaying | | | HD resolution | 17 | | Added DLPA3000 as PMIC | | | Added DLPA3000 as PMIC | 22 | | Added DLPA3000 as supported PMIC | | | Added section to support HD Mode applications | 31 | | Added note to figure Power-Up Sequencing Requirements regarding changes between DLPA200x | | | and DLPA3000 | 35 | | Changes from Revision B (May 2022) to Revision C (July 2023) | Page | | Added section "ILLUMINATION" to Recommended Operating Conditions | 6 | | Updated Micromirror Array Temperature Calculations | 23 | | Added Micromirror Power Density Calculation | 24 | | | | # 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2024 Texas Instruments Incorporated www.ti.com 2-Jun-2025 ### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|-----------------|---------------------------|------|-------------------------------|----------------------------|--------------|------------------| | | | | | | | (4) | (5) | | | | DLP160CPFQT | Active | Production | CLGA (FQT) 42 | 180 JEDEC
TRAY (5+1) | Yes | NI/AU | N/A for Pkg Type | 0 to 70 | | | DLP160CPFQT.B | Active | Production | CLGA (FQT) 42 | 180 JEDEC
TRAY (5+1) | Yes | NI/AU | N/A for Pkg Type | 0 to 70 | | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. www.ti.com 23-May-2025 ## **TRAY** Chamfer on Tray corner indicates Pin 1 orientation of packed units. #### *All dimensions are nominal | Device | Package
Name | Package
Type | Pins | SPQ | Unit array
matrix | Max
temperature
(°C) | L (mm) | W
(mm) | Κ0
(μm) | P1
(mm) | CL
(mm) | CW
(mm) | |---------------|-----------------|-----------------|------|-----|----------------------|----------------------------|--------|-----------|------------|------------|------------|------------| | DLP160CPFQT | FQT | CLGA | 42 | 180 | 15 x 12 | 150 | 315 | 135.9 | 12190 | 20 | 17.5 | 16.25 | | DLP160CPFQT.B | FQT | CLGA | 42 | 180 | 15 x 12 | 150 | 315 | 135.9 | 12190 | 20 | 17.5 | 16.25 | ## IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers
designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated