SCCS070A - OCTOBER 2001 - REVISED NOVEMBER 2001

- Function, Pinout, and Drive Compatible
 With FCT, F Logic, and AM29825
- Reduced V_{OH} (Typically = 3.3 V) Version of Equivalent FCT Functions
- Edge-Rate Control Circuitry for Significantly Improved Noise Characteristics
- I_{off} Supports Partial-Power-Down Mode Operation
- Matched Rise and Fall Times
- Fully Compatible With TTL Input and Output Logic Levels
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- 64-mA Output Sink Current
 32-mA Output Source Current
- High-Speed Parallel Register With Positive-Edge-Triggered D-Type Flip-Flops
- Buffered Common Clock-Enable (EN) and Asynchronous-Clear (CLR) Inputs
- 3-State Outputs

(TOP VIEW) OE₁ OE₂ 2 23 OE₃ $D_0 \square 3$ 22 Y₀ $D_1 \square 4$ 21 | Y₁ D_2 5 20 | Y₂ 19 | Y₃ $D_3 \coprod 6$ 18 Y₄ $D_4 \square 7$ D₅ 8 $D_6 \square 9$ 16∐ Y₆ 15 🛮 Y₇ D₇ 10 14 🛮 EN CLR | 11 GND 12 13 **∏** CP

Q PACKAGE

description

This bus-interface register is designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider address/data paths or buses carrying parity. The CY74FCT825T is an 8-bit buffered register with all the CY74FCT823T controls, plus multiple enables (\overline{OE}_1 , \overline{OE}_2 , \overline{OE}_3) to allow multiuser control of the interface, e.g., \overline{CS} , DMA, and RD/ \overline{WR} . This device is ideal for use as an output port requiring high I_{OL}/I_{OH} .

This device is designed for high-capacitance load drive capability, while providing low-capacitance bus loading at both inputs and outputs. Outputs are designed for low-capacitance bus loading in the high-impedance state.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

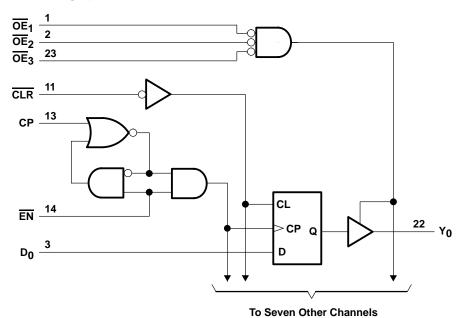
ORDERING INFORMATION

TA	PACKAGET		SPEED (ns)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	QSOP – Q	Tape and reel	6	CY74FCT825CTQCT	FCT825C

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PIN DESCRIPTION


NAME	I/O	DESCRIPTION					
D	I	D flip-flop data inputs					
CLR	CLR I When CLR is low and OE is low, Q outputs are low. When CLR is high, data can be entered into the register.						
CP	CP O Clock pulse for the register. Enters data into the register on the low-to-high clock transition.						
Υ	0	O Register 3-state outputs					
EN	I	Clock enable. When $\overline{\text{EN}}$ is low, data on the D input is transferred to the Q output on the low-to-high clock transition. When $\overline{\text{EN}}$ is high, the Q outputs do not change state, regardless of the data or clock input transitions.					
ŌĒ	ı	Output control. When OE is high, the Youtputs are in the high-impedance state. When OE is low, true register data is present at the Youtputs.					

FUNCTION TABLE

		INPUTS				RNAL PUTS	FUNCTION
OE	CLR	EN	D	СР	Q	Y	
Н	Н	L	L	\uparrow	L	Z	Z
Н	Н	L	Н	\uparrow	Н	Z	
Н	L	Х	Х	Х	L	Z	Clear
L	L	Χ	Χ	Х	L	L	Clear
Н	Н	Н	Х	Х	NC	Z	Hold
L	Н	Н	Χ	Х	NC	NC	Hold
Н	Н	L	L	1	L	Z	
Н	Н	L	Н	\uparrow	Н	Z	Load
L	Н	L	L	\uparrow	L	L	Load
L	Н	L	Н	1	Н	Н	

H = High logic level, L = Low logic level, X = Don't care, NC = No change, ↑ = Low-to-high transition, Z = High-impedance state

logic diagram (positive logic)

SCCS070A - OCTOBER 2001 - REVISED NOVEMBER 2001

absolute maximum rating over operating free-air temperature range (unless otherwise noted)†

Supply voltage range to ground potential	0.5 V to 7 V
DC input voltage range	0.5 V to 7 V
DC output voltage range	0.5 V to 7 V
DC output current (maximum sink current/pin)	120 mA
Package thermal impedance, θ_{JA} (see Note1)	61°C/W
Ambient temperature range with power applied, T _A	65°C to 135°C
Storage temperature range, T _{stg}	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 2)

		MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.75	5	5.25	V
VIH	High-level input voltage	2			V
VIL	Low-level input voltage			8.0	V
ІОН	High-level output current			-32	mA
l _{OL}	Low-level output current			64	mA
T _A	Operating free-air temperature	-40		85	°C

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

SCCS070A - OCTOBER 2001 - REVISED NOVEMBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITION	S	MIN	TYP	MAX	UNIT
VIK	$V_{CC} = 4.75 \text{ V},$	$I_{IN} = -18 \text{ mA}$			-0.7	-1.2	V
\/a	Vaa – 4.75.V	I _{OH} = -32 mA		2			V
VOH	V _{CC} = 4.75 V	$I_{OH} = -15 \text{ mA}$	$I_{OH} = -15 \text{ mA}$				V
VOL	$V_{CC} = 4.75 \text{ V},$	$I_{OL} = 64 \text{ mA}$			0.3	0.55	V
V _{hys}	All inputs				0.2		V
Ι _Ι	$V_{CC} = 5.25 \text{ V},$	$V_{IN} = V_{CC}$				5	μΑ
lін	V _{CC} = 5.25 V,	$V_{IN} = 2.7 \text{ V}$				±1	μΑ
I _{IL}	$V_{CC} = 5.25 \text{ V},$	V _{IN} = 0.5 V				±1	μΑ
lozh	$V_{CC} = 5.25 \text{ V},$	V _{OUT} = 2.7 V				10	μΑ
lozL	$V_{CC} = 5.25 \text{ V},$	V _{OUT} = 0.5 V				-10	μΑ
los [‡]	$V_{CC} = 5.25 \text{ V},$	V _{OUT} = 0 V		-60	-120	-225	mA
l _{off}	$V_{CC} = 0 V$,	V _{OUT} = 4.5 V				±1	μΑ
l _{CC}	$V_{CC} = 5.25 \text{ V},$	$V_{IN} \le 0.2 V$,	$V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.1	0.2	mA
ΔlCC	V _{CC} = 5.25 V, V _{IN} =	3.4 V , $f_1 = 0$, Outputs or	oen		0.5	2	mA
ICCD¶		oit switching at 50% duty of 0.2 V or $V_{IN} \ge V_{CC} - 0.00$			0.06	0.12	mA/ MHz
		One bit switching at f ₁ = 5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.7	1.4	
I _C #	V _{CC} = 5.25 V,	at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$		1.2	3.4	mA
I.C.,	Outputs open, OE = EN = GND	Eight bits switching at f ₁ = 2.5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$		1.6	3.2	IIIA
		at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$		3.9	12.2	
C _i					5	10	pF
Co					9	12	pF

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Where:

I_C = Total supply current

ICC = Power-supply current with CMOS input levels

ΔICC = Power-supply current for a TTL high input (VIN = 3.4 V)

D_H = Duty cycle for TTL inputs high N_T = Number of TTL inputs at D_H

I_{CCD} = Dynamic current caused by an input transition pair (HLH or LHL)

f₀ = Clock frequency for registered devices, otherwise zero

f₁ = Input signal frequency

N₁ = Number of inputs changing at f₁

All currents are in milliamperes and all frequencies are in megahertz.

Values for these conditions are examples of the I_{CC} formula.

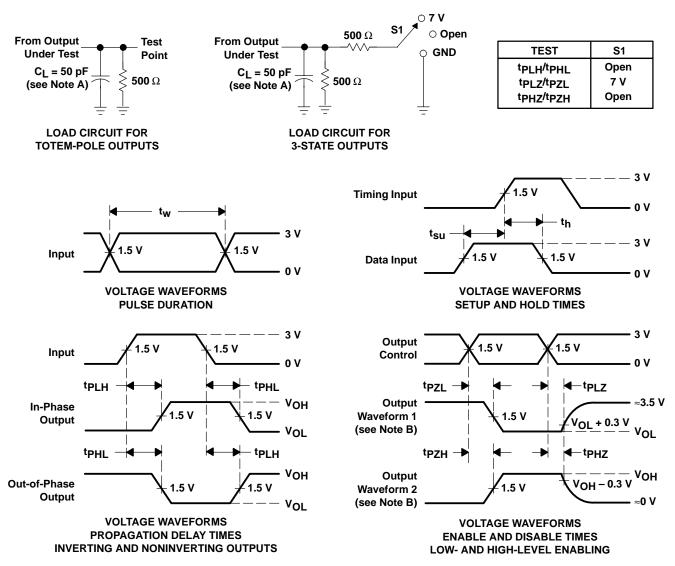
[‡] Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In any sequence of parameter tests, IOS tests should be performed last.

[§] Per TTL-driven input (V_{IN} = 3.4 V); all other inputs at V_{CC} or GND

 $[\]P$ This parameter is derived for use in total power-supply calculations.

 $^{^{\#}}$ IC = I_{CC} + Δ I_{CC} × D_H × N_T + I_{CCD} (f₀/2 + f₁ × N₁)

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)


	PARAMETER		TEST LOAD	CY74FC1	Г825AT	CY74FCT	825BT	CY74FCT	825CT	UNIT	
	PARAMETER		TEST LOAD	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
Γ.	Pulse duration	CP	C _L = 50 pF,	7		6		6		ns	
t _W	Puise duration	CLR low	$R_L = 500 \Omega$	6		6		6			
[.	Catua tima hafara CD↑	Data	$C_L = 50 \text{ pF},$	4		3		3		ns	
t _{su}	Setup time, before CP↑	EN	$R_L = 500 \Omega$	4		3		3		115	
Γ.	Hold time, after CP↑	Data	C _L = 50 pF,	2		1.5		1.5		20	
th	Hold time, after CP1	EN	$R_L = 500 \Omega$	2		0	0			ns	
t _{rec}	Recovery time	CLR before CP↑	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$	6		6		6		ns	

switching characteristics over operating free-air temperature range (see Figure 1)

PARAMETER	FROM	то	TEST LOAD	CY74FC1	825AT	CY74FCT8	25BT	CY74FC1	825CT	UNIT
PARAMETER	(INPUT)	(OUTPUT)	TEST LOAD	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	СР	Y	C _L = 50 pF,		10		7.5		6	ns
^t PHL	OI .	·	$R_L = 500 \Omega$		10		7.5		6	110
t _{PLH}	СР	Υ	$C_L = 300 \text{ pF},$		20		15		12.5	ns
t _{PHL}	GF .		$R_L = 500 \Omega$		20		15		12.5	115
^t PLH	CLR	Υ	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$		14		9		8	ns
^t PZH	ŌE	Υ	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$		12		8		7	no
t _{PZL}	OE	ī		$R_L = 500 \Omega$		12		8		7
^t PZH	ŌE	Y	C _L = 300 pF,		23		15		12.5	ns
^t PZL	OE		$R_L = 500 \Omega$		23		15	12.5		110
^t PHZ	ŌE	Y	C _L = 5 pF,		7		6.5		6	20
tPLZ	OE	ī	$R_L = 500 \Omega$		7		6.5		6	ns
^t PHZ	ŌE	Y	$C_L = 50 \text{ pF},$		8		7.5		6.5	ns
tPLZ) L	ı	$R_L = 500 \Omega$		8		7.5		6.5	110

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
CY74FCT825ATSOC	Active	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT825A
CY74FCT825ATSOC.B	Active	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT825A
CY74FCT825CTQCT	Active	Production	SSOP (DBQ) 24	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FCT825C
CY74FCT825CTQCT.B	Active	Production	SSOP (DBQ) 24	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FCT825C

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

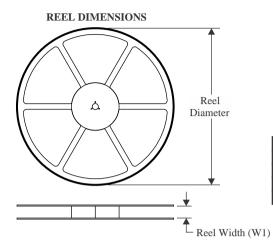
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

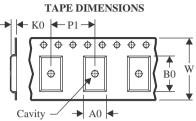
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

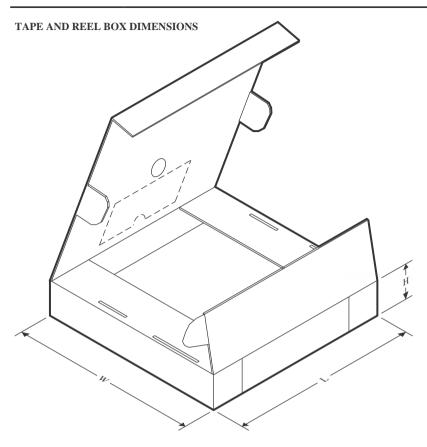
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

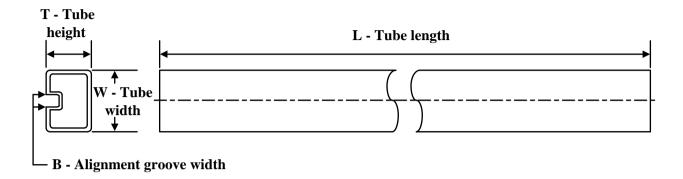


*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CY74FCT825CTQCT	SSOP	DBQ	24	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

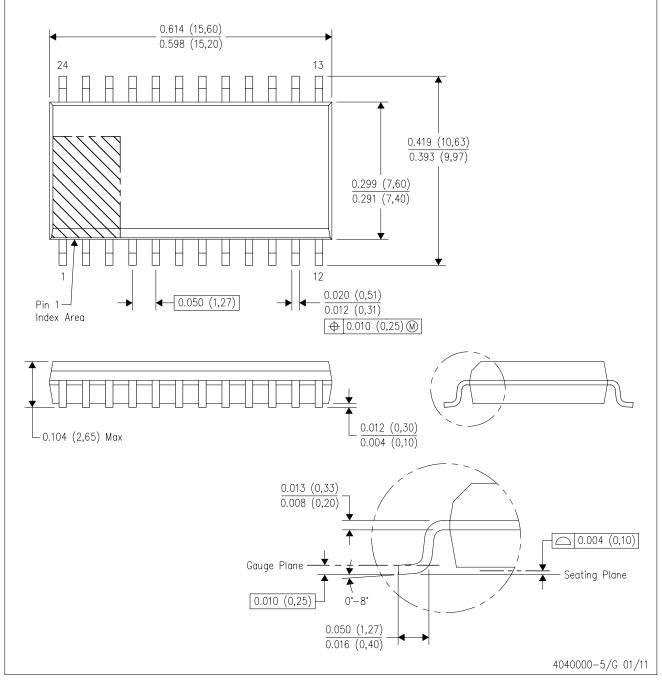

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CY74FCT825CTQCT	SSOP	DBQ	24	2500	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE

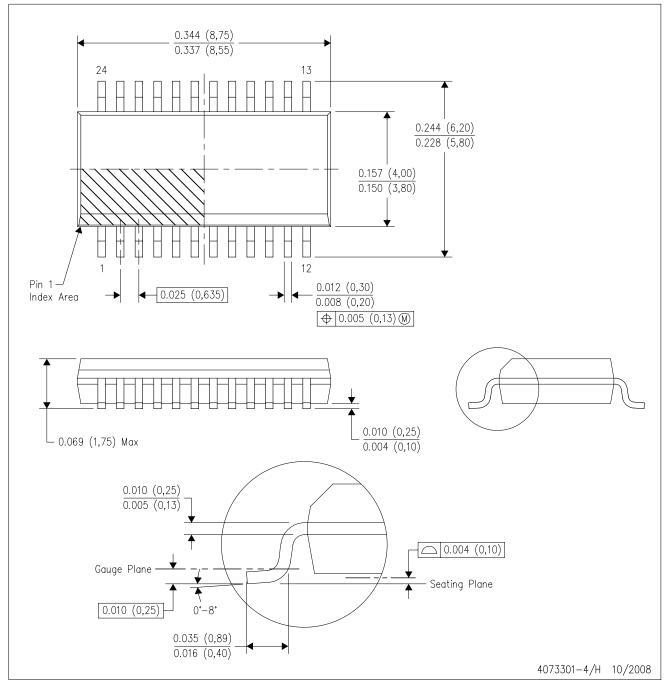


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CY74FCT825ATSOC	DW	SOIC	24	25	506.98	12.7	4826	6.6
CY74FCT825ATSOC.B	DW	SOIC	24	25	506.98	12.7	4826	6.6

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.

DBQ (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.
- D. Falls within JEDEC MO-137 variation AE.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated