

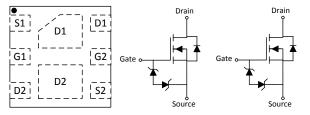
CSD87502Q2

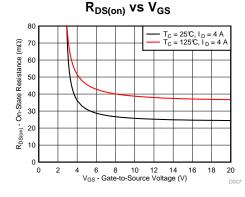
SLPS560-DECEMBER 2015

CSD87502Q2 30 V Dual N-Channel NexFET™ Power MOSFETs

Features

- Low On-Resistance
- **Dual Independent MOSFETs**
- Space Saving SON 2 x 2 mm Plastic Package
- Optimized for 5 V Gate Driver
- Avalanche Rated
- Pb and Halogen Free
- **RoHS Compliant**


2 Applications


- Point-of-Load Synchronous Buck Converter for Applications in Networking, Telecom, and Computing Systems
- Adaptor or USB Input Protection for Notebook PCs and Tablets
- **Battery Protection**

3 Description

The CSD87502Q2 is a 30 V, 27 m Ω N-Channel device with dual independent MOSFETs in a SON 2 x 2 mm plastic package. The two FETs were designed to be used in a half-bridge configuration for synchronous and other power buck applications. Additionally, these NexFET™ power MOSFETs can be used for adaptor, USB input protection, and battery charging applications. The dual FETs feature low drain-to-source on-resistance that minimizes losses and offers low component count for space-constrained applications.

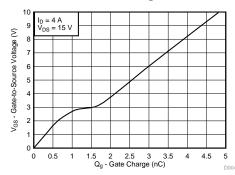
Top View and Circuit Image

Product Summary

$T_A = 25^\circ$	С	TYPICAL VALUE		
V_{DS}	Drain-to-Source Voltage	30	30	
Q_g	Gate Charge Total (4.5 V)	2.2		nC
Q_{gd}	Gate Charge Gate to Drain	0.5	nC	
		$V_{GS} = 3.8 \text{ V}$	42.0	mΩ
R _{DS(on)}	Drain-to-Source On Resistance	$V_{GS} = 4.5 \text{ V}$	35.5	mΩ
		V _{GS} = 10 V 27.0		mΩ
V _{GS(th)}	Threshold Voltage	1.6		٧

Ordering Information⁽¹⁾

DEVICE	MEDIA	QTY	PACKAGE	SHIP
CSD87502Q2	7-Inch Reel	3000	SON 2 x 2 mm	Tape and
CSD87502Q2T	7-Inch Reel	250	Plastic Package	Reel


(1) For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

		•	
T _A = 2	5°C	VALUE	UNIT
V_{DS}	Drain-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	±20	V
I_D	Continuous Drain Current (Package limited)	5.0	Α
I _{DM}	Pulsed Drain Current ⁽¹⁾	23	Α
P_D	Power Dissipation ⁽²⁾	2.3	W
T _J , T _{stg}	Operating Junction Temperature, Storage Temperature	-55 to 150	°C
E _{AS}	Avalanche Energy, single pulse $I_D = 7.9 \text{ A}, L = 0.1 \text{ mH}, R_G = 25 \Omega$	3.1	mJ

- (1) Max $R_{\theta JA}$ = 185 °C/W, pulse duration ≤100 µs, duty cycle
- (2) Typical $R_{\theta,JA} = 55$ °C/W on a 1 inch², 2 oz. Cu pad on a 0.06 inch thick FR4 PCB.

Gate Charge

Table of Contents

2 3 4	Features Applications Description Revision History Specifications 5.1 Electrical Characteristics 5.2 Thermal Information 5.3 Typical MOSFET Characteristics	1 2 3 3	6.2 6.3 6.4 7 Med Info 7.1 7.2	Community Resources Trademarks Electrostatic Discharge Caution Glossary Chanical, Packaging, and Orderable ormation Package Dimensions PCB Land Pattern
6	5.3 Typical MOSFET Characteristics	4	7.3	PCB Land Pattern

4 Revision History

DATE	REVISION	NOTES
December 2015	*	Initial release.

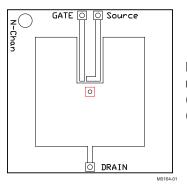
Submit Documentation Feedback

5 Specifications

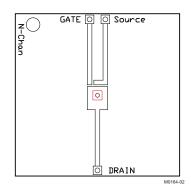
5.1 Electrical Characteristics

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC	CHARACTERISTICS					
BV _{DSS}	Drain-to-source voltage	V _{GS} = 0 V, I _D = 250 μA	30			V
I _{DSS}	Drain-to-source leakage current	V _{GS} = 0 V, V _{DS} = 24 V			1	μΑ
I _{GSS}	Gate-to-source leakage current	V _{DS} = 0 V, V _{GS} = 20 V			4	μΑ
V _{GS(th)}	Gate-to-source threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.2	1.6	2.0	V
		V _{GS} = 3.8 V, I _D = 4 A		42.0	60.0	mΩ
R _{DS(on)}	Drain-to-source on-resistance	V _{GS} = 4.5 V, I _D = 4 A		35.5	42.0	mΩ
		V _{GS} = 10 V, I _D = 4 A		27.0	32.4	mΩ
9 _{fs}	Transconductance	V _{DS} = 3 V, I _D = 4 A		75		S
DYNAMI	C CHARACTERISTICS				,	
C _{iss}	Input capacitance			272	353	pF
C _{oss}	Output capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 15 \text{ V}, f = 1 \text{ MHz}$		42	55	pF
C _{rss}	Reverse transfer capacitance			22	29	pF
R _G	Series gate resistance			6.9		Ω
Qg	Gate charge total (4.5 V)			2.2	2.9	nC
Qg	Gate charge total (10 V)			4.6	6.0	nC
Q _{gd}	Gate charge gate to drain	$V_{DS} = 15 \text{ V}, I_D = 4 \text{ A}$		0.5		nC
Q _{gs}	Gate charge gate to source			1.0		nC
Q _{g(th)}	Gate charge at V _{th}			0.5		nC
Q _{oss}	Output charge	V _{DS} = 15 V, V _{GS} = 0 V		1.4		nC
t _{d(on)}	Turn on delay time			3		ns
t _r	Rise time	V _{DS} = 15 V, V _{GS} = 5 V,		11		ns
t _{d(off)}	Turn off delay time	$I_{DS} = 4 \text{ A}, R_G = 0 \Omega$		12		ns
t _f	Fall time	3				ns
DIODE C	CHARACTERISTICS				'	
V_{SD}	Diode forward voltage	I _{SD} = 4 A, V _{GS} = 0 V		0.85	1.0	V
Q _{rr}	Reverse recovery charge	V _{DS} = 15 V, I _F = 4 A,		4.0		nC
t _{rr}	Reverse recovery time	di/dt = 300 A/µs		6.4		ns

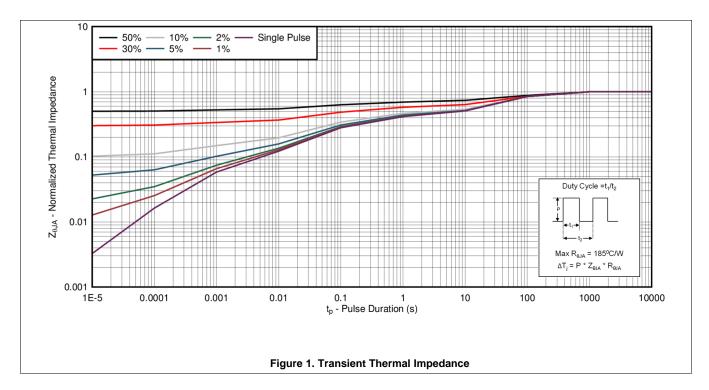

5.2 Thermal Information

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

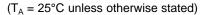

	THERMAL METRIC	MIN	TYP	MAX	UNIT
D	Junction-to-ambient thermal resistance ⁽¹⁾			70	°C/W
$R_{\theta JA}$	Junction-to-ambient thermal resistance ⁽²⁾			185	C/VV

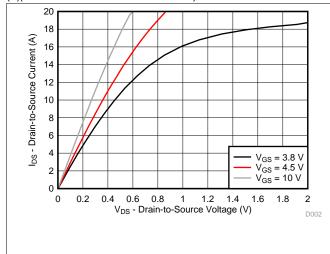
 ⁽¹⁾ Device mounted on FR4 material with 1 inch² (6.45 cm²), 2 oz. (0.071 mm thick) Cu.
 (2) Device mounted on FR4 material with minimum Cu mounting area.

Product Folder Links: CSD87502Q2


Max $R_{\theta JA} = 70$ when mounted on 1 inch² (6.45 cm²) of 2 oz. (0.071 mm thick) Cu.

Max $R_{\theta JA} = 185$ when mounted on minimum pad area of 2 oz. (0.071 mm thick) Cu.


5.3 Typical MOSFET Characteristics


 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

Typical MOSFET Characteristics (continued)

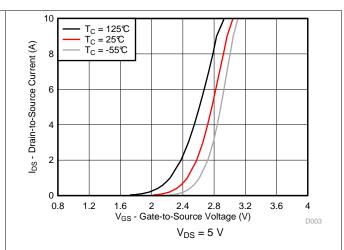


Figure 2. Saturation Characteristics

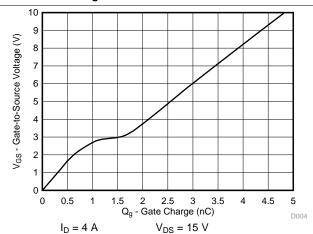


Figure 3. Transfer Characteristics

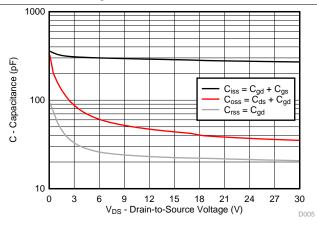


Figure 4. Gate Charge

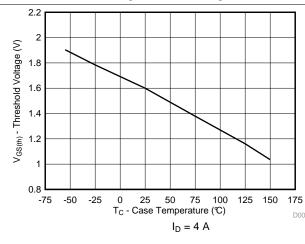


Figure 5. Capacitance

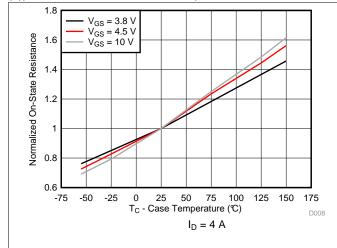

Figure 6. Threshold Voltage vs Temperature Figu

Figure 7. On-State Resistance vs Gate-to-Source Voltage

TEXAS INSTRUMENTS

Typical MOSFET Characteristics (continued)

(T_A = 25°C unless otherwise stated)

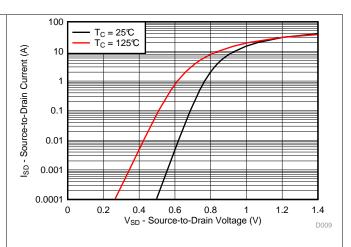
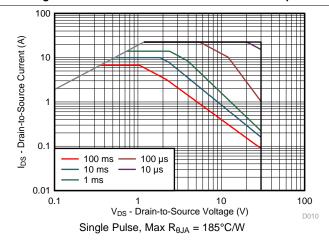



Figure 8. Normalized On-State Resistance vs Temperature

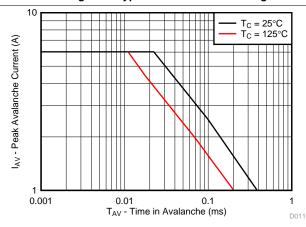


Figure 10. Maximum Safe Operating Area

Figure 11. Single Pulse Unclamped Inductive Switching

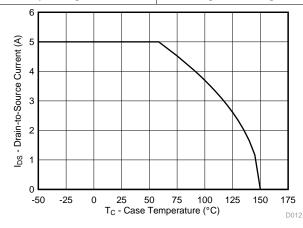


Figure 12. Maximum Drain Current vs Temperature

6 Device and Documentation Support

6.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Lise

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

6.2 Trademarks

NexFET, E2E are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

6.3 Electrostatic Discharge Caution

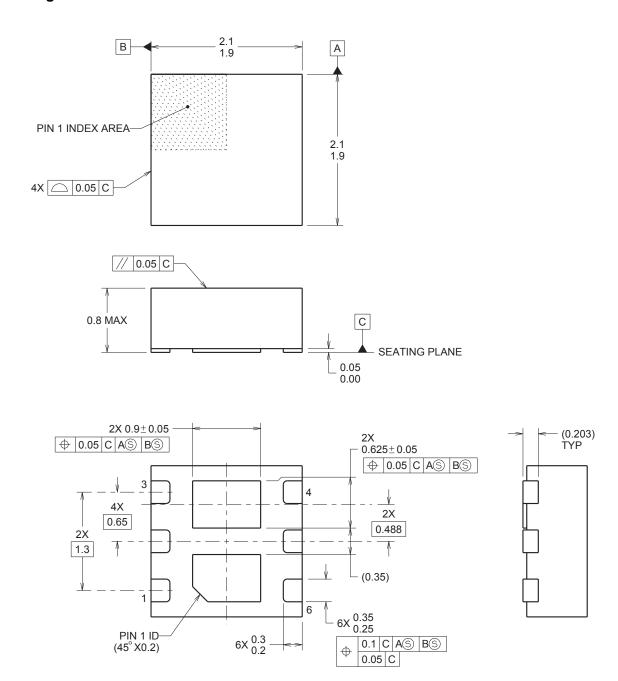
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

6.4 Glossary

SLYZ022 — TI Glossary.

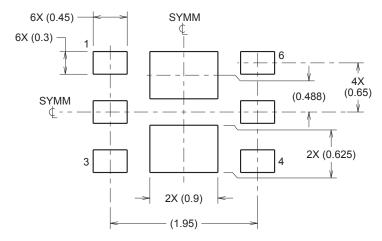
This glossary lists and explains terms, acronyms, and definitions.

Product Folder Links: CSD87502Q2

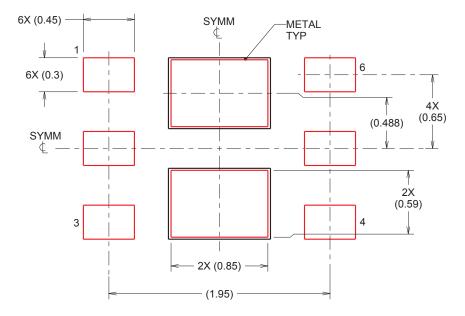

SLPS560 – DECEMBER 2015 www.ti.com

TEXAS INSTRUMENTS

7 Mechanical, Packaging, and Orderable Information

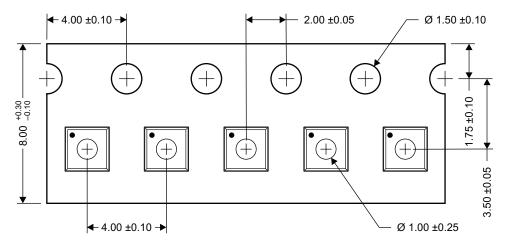

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

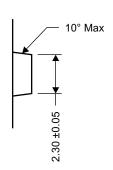
7.1 Package Dimensions

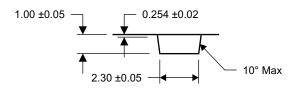

All dimensions are in mm, unless otherwise stated.

7.2 PCB Land Pattern

For recommended circuit layout for PCB designs, see application note SLPA005 – Reducing Ringing Through PCB Layout Techniques.


7.3 Recommended Stencil Opening




All dimensions are in mm, unless otherwise stated.

TEXAS INSTRUMENTS

7.4 Q2 Tape and Reel Information

M0168-01

Notes: 1. Measured from centerline of sprocket hole to centerline of pocket

- 2. Cumulative tolerance of 10 sprocket holes is ±0.20
- 3. Other material available
- 4. Typical SR of form tape Max 109 OHM/SQ
- 5. All dimensions are in mm, unless otherwise specified.

Submit Documentation Feedback

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
CSD87502Q2	Active	Production	WSON (DLV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 150	8752
CSD87502Q2.B	Active	Production	WSON (DLV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 150	8752
CSD87502Q2G4.B	Active	Production	WSON (DLV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 150	8752
CSD87502Q2T	Active	Production	WSON (DLV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 150	8752
CSD87502Q2T.B	Active	Production	WSON (DLV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 150	8752

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025