

CSD19537Q3

SLPS549B - AUGUST 2015 - REVISED NOVEMBER 2022

CSD19537Q3 100-V N-Channel NexFET™ Power MOSFET

1 Features

- Ultra-low \mathbf{Q}_{g} and \mathbf{Q}_{gd} Low thermal resistance
- Avalanche rated
- Lead free terminal plating
- RoHS compliant
- Halogen free
- SON 3.3-mm × 3.3-mm plastic package

2 Applications

- Primary Side Isolated Converters
- Motor Control

3 Description

This 100-V, 12.1-m Ω , SON 3.3-mm × 3.3-mm NexFET™ power MOSFET is designed to minimize losses in power conversion applications.

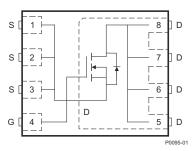
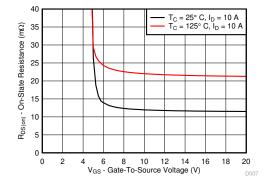



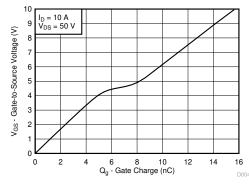
Figure 3-1. **Top View**

R_{DS(on)} vs V_{GS}

Product Summary

T _A = 25°	С	TYPICAL VA	UNIT	
V _{DS}	Drain-to-Source Voltage 100			
Qg	Gate Charge Total (10 V)	16		nC
Q _{gd}	Gate Charge Gate-to-Drain	2.9	nC	
В	Drain-to-Source On-Resistance	V _{GS} = 6 V	13.8	mΩ
R _{DS(on)}	Drain-to-Source On-Resistance	V _{GS} = 10 V	12.1	mΩ
V _{GS(th)}	Threshold Voltage	3	٧	

Ordering Information⁽¹⁾


DEVICE	MEDIA	QTY	PACKAGE	SHIP					
CSD19537Q3	13-Inch Reel	2500	SON 3.3- x 3.3-mm	Tape and					
CSD19537Q3T	13-Inch Reel	250	Plastic Package	Reel					

For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

T _A = 2	5°C	VALUE	UNIT
V _{DS}	Drain-to-Source Voltage	100	V
V _{GS}	Gate-to-Source Voltage	±20	V
	Continuous Drain Current (Package Limited)	50	Α
I _D	Continuous Drain Current (Silicon Limited), T _C = 25°C	53	Α
	Continuous Drain Current (1)	9.7	Α
I _{DM}	Pulsed Drain Current (2)	219	Α
D	Power Dissipation (1)	2.8	W
P _D	Power Dissipation, T _C = 25°C	83	W
T _J , T _{stg}	Operating Junction Temperature, Storage Temperature	-55 to 150	°C
E _{AS}	Avalanche Energy, Single Pulse I_D = 33 A, L = 0.1 mH, R_G = 25 Ω	55	mJ

- Typical $R_{A,IA} = 45$ °C/W on a 1-in², 2-oz Cu pad on a 0.06-in (1) thick FR4 PCB.
- Max $R_{\theta JC}$ = 1.5°C/W, pulse duration \leq 100 μs , duty cycle \leq (2) 1%.

Gate Charge

Table of Contents

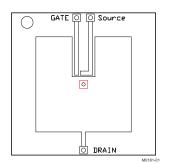
1 Features	1 6.1 Community Resources	7
2 Applications	1 6.2 Trademarks	
3 Description	1 6.3 Electrostatic Discharge Caution	
4 Revision History		
5 Specifications		
5.1 Electrical Characteristics		8
5.2 Thermal Information		9
5.3 Typical MOSFET Characteristics	4 7.3 Recommended Stencil Opening	9
6 Device and Documentation Support	7 7.4 Q3 Tape and Reel Information	10
4 Revision History		
Changes from Revision A (May 2016) to Revision	on B (November 2022)	Page
Corrected legend on Figure 5-11		4
Changes from Revision * (August 2015) to Revis	ision A (May 2016)	Page

5 Specifications

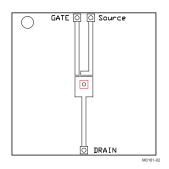
5.1 Electrical Characteristics

 $T_A = 25^{\circ}C$ (unless otherwise stated)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
STATIC	CHARACTERISTICS				
BV _{DSS}	Drain-to-source voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	100		V
I _{DSS}	Drain-to-source leakage current	V _{GS} = 0 V, V _{DS} = 80 V		1	μA
I _{GSS}	Gate-to-source leakage current	V _{DS} = 0 V, V _{GS} = 20 V		100	nA
V _{GS(th)}	Gate-to-source threshold voltage	V _{DS} = V _{GS} , I _D = 250 μA	2.6 3	3.6	V
D	Drain-to-source on-resistance	V _{GS} = 6 V, I _D = 10 A	13.8	16.6	mΩ
R _{DS(on)}	Dialii-to-source off-resistance	V _{GS} = 10 V, I _D = 10 A	12.1	14.5	mΩ
g _{fs}	Transconductance	V _{DS} = 10 V, I _D = 10 A	45		S
DYNAM	IC CHARACTERISTICS			•	
C _{iss}	Input capacitance		1290	1680	pF
C _{oss}	Output capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 50 \text{ V}, f = 1 \text{ MHz}$	251	326	pF
C _{rss}	Reverse transfer capacitance		13.3	17.3	pF
R _G	Series gate resistance		1.2	2.4	Ω
Qg	Gate charge total (10 V)		16	21	nC
Q _{gd}	Gate charge gate-to-drain	V _{DS} = 50 V, I _D = 10 A	2.9		nC
Q_{gs}	Gate charge gate-to-source	V _{DS} - 50 V, I _D - 10 A	5.5		nC
Q _{g(th)}	Gate charge at V _{th}		3.8		nC
Q _{oss}	Output charge	V _{DS} = 50 V, V _{GS} = 0 V	44		nC
t _{d(on)}	Turn on delay time		5		ns
t _r	Rise time	V _{DS} = 50 V, V _{GS} = 10 V,	3		ns
t _{d(off)}	Turn off delay time	$I_{DS} = 10 \text{ A}, R_G = 0 \Omega$	10		ns
t _f	Fall time		3		ns
DIODE (CHARACTERISTICS				
V_{SD}	Diode forward voltage	I _{SD} = 10 A, V _{GS} = 0 V	0.8	1	V
Q _{rr}	Reverse recovery charge	V _{DS} = 50 V, I _F = 10 A,	134		nC
t _{rr}	Reverse recovery time	di/dt = 300 A/μs	36		ns


5.2 Thermal Information

 $T_A = 25$ °C (unless otherwise stated)


	THERMAL METRIC	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-case thermal resistance (1)			1.5	°C/W
$R_{\theta JA}$	Junction-to-ambient thermal resistance, Note 1 and Note 2 ⁽¹⁾ (2)			55	°C/W

 ⁽¹⁾ R_{θJC} is determined with the device mounted on a 1-in² (6.45-cm²), 2-oz (0.071-mm) thick Cu pad on a 1.5-in × 1.5-in (3.81-cm × 3.81-cm), 0.06-in (1.52-mm) thick FR4 PCB. R_{θJC} is specified by design, whereas R_{θJA} is determined by the user's board design.
 (2) Device mounted on FR4 material with 1-in² (6.45-cm²), 2-oz (0.071-mm) thick Cu.

$$\label{eq:maxRejar} \begin{split} \text{Max RejJA} &= 55^{\circ}\text{C/W when} \\ \text{mounted on 1 in}^2 \ (6.45 \ \text{cm}^2) \ \text{of} \\ \text{2-oz} \ (0.071\text{-mm}) \ \text{thick Cu}. \end{split}$$

Max $R_{\theta JA}$ = 160°C/W when mounted on a minimum pad area of 2-oz (0.071-mm) thick Cu.

5.3 Typical MOSFET Characteristics

 $T_A = 25$ °C (unless otherwise stated)

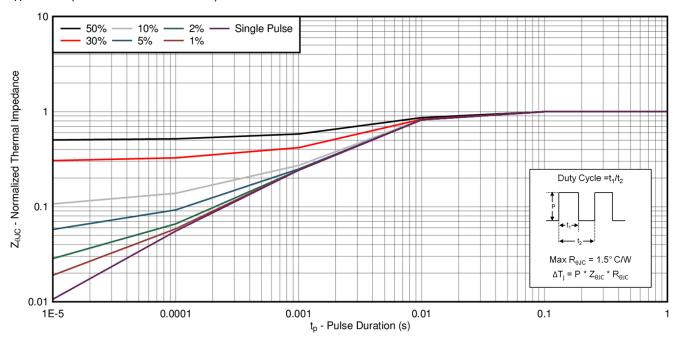
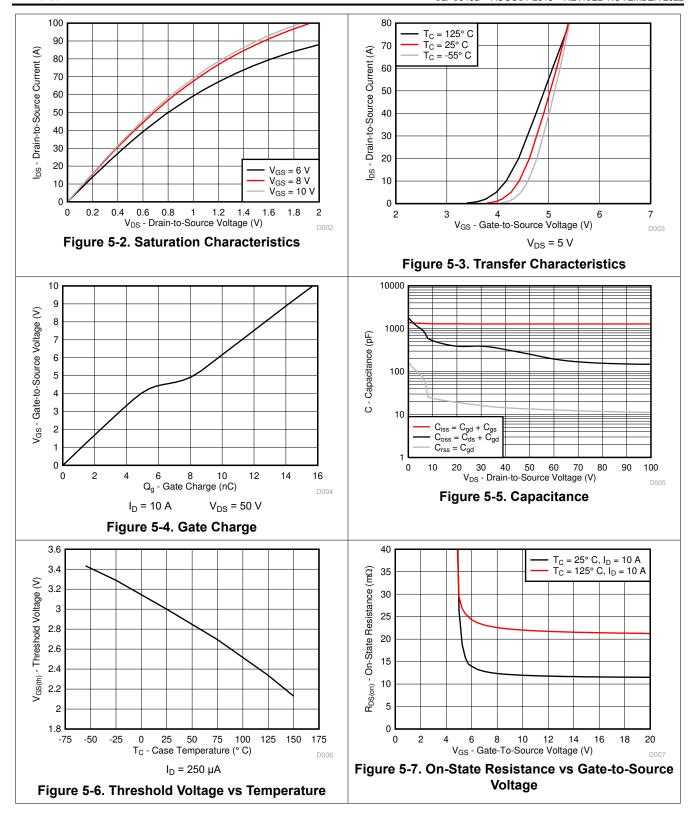
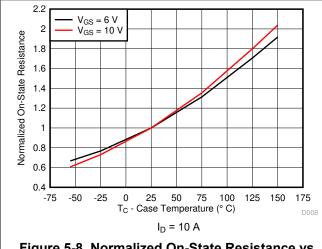




Figure 5-1. Transient Thermal Impedance

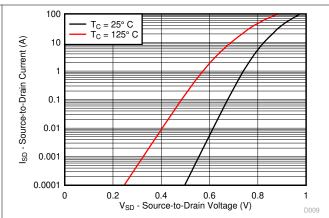
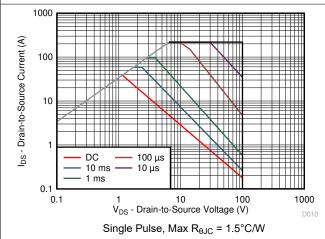
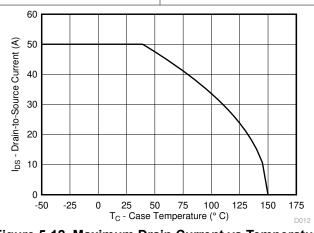



Figure 5-9. Typical Diode Forward Voltage


Figure 5-8. Normalized On-State Resistance vs
Temperature

T_C = 25° C
T_C = 125° C
T_C = 125° C
T_C = 125° C

Figure 5-10. Maximum Safe Operating Area

Figure 5-11. Single Pulse Unclamped Inductive Switching

100

Figure 5-12. Maximum Drain Current vs Temperature

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

6 Device and Documentation Support

6.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

6.2 Trademarks

NexFET[™] is a trademark of Texas Instruments.

E2E[™] are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

6.3 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

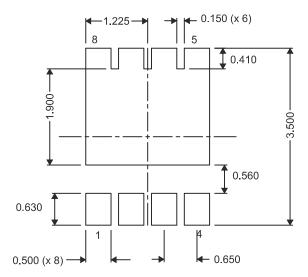
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

6.4 Glossary

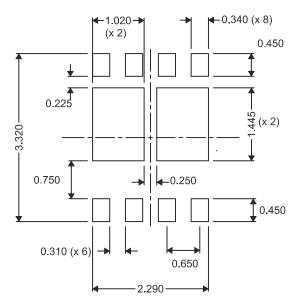
TI Glossary


This glossary lists and explains terms, acronyms, and definitions.

7 Mechanical, Packaging, and Orderable Information

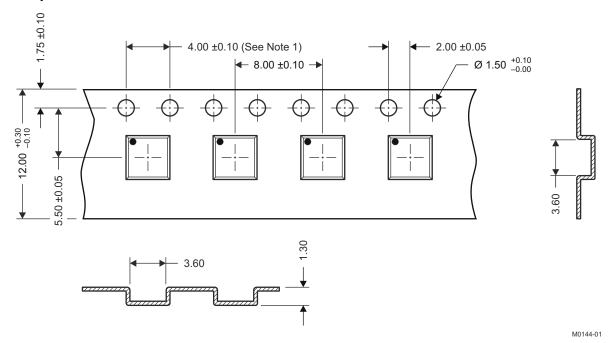

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

7.1 Q3 Package Dimensions


DIM	M	IILLIMETERS		INCHES		
DIW	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.950	1.000	1.100	0.037	0.039	0.043
A1	0.000	0.000	0.050	0.000	0.000	0.002
b	0.280	0.340	0.400	0.011	0.013	0.016
b1		0.310 NOM			0.012 NOM	
С	0.150	0.200	0.250	0.006	0.008	0.010
D	3.200	3.300	3.400	0.126	0.130	0.134
D2	1.650	1.750	1.800	0.065	0.069	0.071
d	0.150	0.200	0.250	0.006	0.008	0.010
d1	0.300	0.350	0.400	0.012	0.014	0.016
E	3.200	3.300	3.400	0.126	0.130	0.134
E2	2.350	2.450	2.550	0.093	0.096	0.100
е		0.650 TYP			0.026 TYP	
Н	0.35	0.450	0.550	0.014	0.018	0.022
К	0.650 TYP				0.026 TYP	
L	0.35	0.450	0.550	0.014	0.018	0.022
L1	0	_	0	0	_	0
θ	0	_	0	0	_	0

7.2 Recommended PCB Pattern

For recommended circuit layout for PCB designs, see application note SLPA005 – Reducing Ringing Through PCB Layout Techniques.


7.3 Recommended Stencil Opening

All dimensions are in mm, unless otherwise specified.

7.4 Q3 Tape and Reel Information

Notes:

- 1. 10 sprocket hole pitch cumulative tolerance ±0.2
- 2. Camber not to exceed 1 mm in 100 mm, noncumulative over 250 mm
- 3. Material: black static dissipative polystyrene
- 4. All dimensions are in mm (unless otherwise specified).
- 5. Thickness: 0.30 ±0.05 mm
- 6. MSL1 260°C (IR and Convection) PbF-Reflow Compatible

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
CSD19537Q3	Active	Production	VSON-CLIP (DQG) 8	2500 LARGE T&R	ROHS Exempt	SN	Level-1-260C-UNLIM	-55 to 150	CSD19537
CSD19537Q3.B	Active	Production	VSON-CLIP (DQG) 8	2500 LARGE T&R	ROHS Exempt	SN	Level-1-260C-UNLIM	-55 to 150	CSD19537
CSD19537Q3T	Active	Production	VSON-CLIP (DQG) 8	250 SMALL T&R	ROHS Exempt	SN	Level-1-260C-UNLIM	-55 to 150	CSD19537
CSD19537Q3T.B	Active	Production	VSON-CLIP (DQG) 8	250 SMALL T&R	ROHS Exempt	SN	Level-1-260C-UNLIM	-55 to 150	CSD19537

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025