CSD18502KCS SLPS367C - OCTOBER 2011 - REVISED MARCH 2024 # CSD18502KCS 40V N-Channel NexFET™ Power MOSFET #### 1 Features - Ultra-low \mathbf{Q}_{g} and \mathbf{Q}_{gd} Low thermal resistance - Avalanche rated - Logic level - Pb free terminal plating - RoHS compliant - Halogen free - TO-220 plastic package # 2 Applications - DC-DC conversion - Secondary side synchronous rectifier - Motor control ## 3 Description This 40V, 2.4mΩ, TO-220 NexFET™ power MOSFET is designed to minimize losses in power conversion applications. **Product Summary** | T _A = 25° | С | TYPICAL VA | UNIT | | |----------------------|-------------------------------|----------------------------|------|----| | V _{DS} | Drain-to-Source Voltage | 40 | | V | | Qg | Gate Charge Total (10V) | 52 | | nC | | Q _{gd} | Gate Charge Gate-to-Drain | 8.4 | | nC | | | Drain-to-Source On Resistance | V _{GS} = 4.5V 3.3 | | mΩ | | R _{DS(on)} | Drain-to-Source On Resistance | V _{GS} = 10V 2.4 | | mΩ | | V _{GS(th)} | n) Threshold Voltage 1.8 | | | V | # Ordering Information⁽¹⁾ | Device | Package | Media | Qty | Ship | |-------------|---------------------------|-------|-----|------| | CSD18502KCS | TO-220 Plastic
Package | Tube | 50 | Tube | For all available packages, see the orderable addendum at the end of the data sheet. #### **Absolute Maximum Ratings** | $T_A = 2$ | 25°C | VALUE | UNIT | | |--------------------------------------|--|------------|------|--| | V _{DS} | Drain-to-Source Voltage | 40 | V | | | V_{GS} | Gate-to-Source Voltage | ±20 | V | | | | Continuous Drain Current (Package limited) | 100 | | | | I _D | Continuous Drain Current (Silicon limited), T _C = 25°C | 212 | Α | | | | Continuous Drain Current (Silicon limited), T _C = 100°C | 150 | | | | I _{DM} | Pulsed Drain Current (1) | 400 | Α | | | P _D | Power Dissipation | 259 | W | | | T _J ,
T _{stg} | Operating Junction and
Storage Temperature Range | -55 to 175 | °C | | | E _{AS} | Avalanche Energy, single pulse I_D = 81A, L = 0.1mH, R_G = 25 Ω | 330 | mJ | | (1) Max R_{θJC} = 0.6°C/W, pulse duration ≤100μs, duty cycle ≤1% **Gate Charge** # **Table of Contents** | 1 Features1 | 5.1 Receiving Notification of Documentation Updates7 | |-------------------------------------|--| | 2 Applications1 | 5.2 Support Resources7 | | 3 Description | | | 4 Specifications3 | | | 4.1 Electrical Characteristics3 | | | 4.2 Thermal Information3 | | | 4.3 Typical MOSFET Characteristics4 | 7 Mechanical, Packaging, and Orderable Information9 | | 5 Device and Documentation Support7 | | # 4 Specifications ## **4.1 Electrical Characteristics** (T_A = 25°C unless otherwise stated) | PARAMETER | TEST CONDITIONS | MIN TYP | MAX | UNIT | |----------------------------------|---|---|--|--| | CHARACTERISTICS | | - | | | | Drain-to-Source Voltage | V _{GS} = 0V, I _D = 250μA | 40 | | V | | Drain-to-Source Leakage Current | V _{GS} = 0V, V _{DS} = 32V | | 1 | μA | | Gate-to-Source Leakage Current | V _{DS} = 0V, V _{GS} = 20V | | 100 | nA | | Gate-to-Source Threshold Voltage | $V_{DS} = V_{GS}, I_D = 250 \mu A$ | 1.5 1.8 | 2.1 | V | | Duein to Course On Bosistanos | V _{GS} = 4.5V, I _D = 100A | 3.3 | 4.3 | mΩ | | Drain-to-Source On Resistance | V _{GS} = 10V, I _D = 100A | 2.4 | 2.9 | mΩ | | Transconductance | V _{DS} = 20V, I _D = 100A | 138 | | S | | IC CHARACTERISTICS | · | | | | | Input Capacitance | | 3900 | 4680 | pF | | Output Capacitance | $V_{GS} = 0V, V_{DS} = 20V, f = 1MHz$ | 900 | 1080 | pF | | Reverse Transfer Capacitance | | 21 | 26 | pF | | Series Gate Resistance | | 1.2 | 2.4 | Ω | | Gate Charge Total (4.5 V) | | 25 | 30 | nC | | Gate Charge Total (10 V) | | 52 | 62 | nC | | Gate Charge Gate-to-Drain | $V_{DS} = 20V, I_D = 100A$ | 8.4 | | nC | | Gate Charge Gate-to-Source | | 10.3 | | nC | | Gate Charge at V _{th} | | 7.5 | | nC | | Output Charge | V _{DS} = 20V, V _{GS} = 0V | 52 | | nC | | Turn On Delay Time | | 11 | | ns | | Rise Time | V _{DS} = 20V, V _{GS} = 10V, | 7.3 | | ns | | Turn Off Delay Time | $I_{DS} = 100A, R_G = 0\Omega$ | 33 | | ns | | Fall Time | | 9.3 | | ns | | CHARACTERISTICS | · | | | | | Diode Forward Voltage | I _{SD} = 100A, V _{GS} = 0V | 0.8 | 1 | V | | Reverse Recovery Charge | V _{DS} = 20V, I _F = 100A, | 105 | | nC | | Reverse Recovery Time | di/dt = 300A/μs | 48 | | ns | | | Drain-to-Source Voltage Drain-to-Source Leakage Current Gate-to-Source Leakage Current Gate-to-Source Threshold Voltage Drain-to-Source On Resistance Transconductance C CHARACTERISTICS Input Capacitance Output Capacitance Reverse Transfer Capacitance Series Gate Resistance Gate Charge Total (4.5 V) Gate Charge Total (10 V) Gate Charge Gate-to-Drain Gate Charge Gate-to-Source Gate Charge at V _{th} Output Charge Turn On Delay Time Rise Time Turn Off Delay Time Fall Time CHARACTERISTICS Diode Forward Voltage Reverse Recovery Charge | CHARACTERISTICS Drain-to-Source Voltage $V_{GS} = 0V$, $I_{D} = 250\mu$ A Drain-to-Source Leakage Current $V_{DS} = 0V$, $V_{DS} = 32V$ Gate-to-Source Threshold Voltage $V_{DS} = 0V$, V_{CS} , $I_{D} = 250\mu$ A Drain-to-Source On Resistance $V_{DS} = V_{CS}$, $I_{D} = 250\mu$ A Transconductance $V_{CS} = 10V$, $I_{D} = 100A$ C CHARACTERISTICS Input Capacitance Input Capacitance $V_{CS} = 0V$, $V_{DS} = 20V$, $f = 1$ MHz Reverse Transfer Capacitance $V_{CS} = 0V$, $V_{DS} = 20V$, $f = 1$ MHz Reverse Gate Resistance $V_{CS} = 0V$, $V_{DS} = 20V$, $V_{CS} = 10V$ $ | CHARACTERISTICS Drain-to-Source Voltage $V_{GS} = 0$ V, $I_D = 250 \mu A$ 40 Drain-to-Source Leakage Current $V_{GS} = 0$ V, $V_{DS} = 32$ V Gate-to-Source Threshold Voltage $V_{DS} = 0$ V, $V_{GS} = 20$ V Gate-to-Source Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ 1.5 1.8 Drain-to-Source On Resistance $V_{GS} = 4.5$ V, $I_D = 100$ A 3.3 Transconductance $V_{DS} = 20$ V, $I_D = 100$ A 2.4 Transconductance $V_{DS} = 20$ V, $I_D = 100$ A 3.3 C CHARACTERISTICS 3900 Input Capacitance 3900 Output Capacitance $V_{CS} = 0$ V, $V_{DS} = 20$ V, $I_D = 100$ A 3900 Reverse Transfer Capacitance 21 Series Gate Resistance 1.2 Gate Charge Total (4.5 V) 25 Gate Charge Total (10 V) 52 Gate Charge Gate-to-Prain $V_{DS} = 20$ V, | CHARACTERISTICS Drain-to-Source Voltage V _{GS} = 0V, I _D = 250μA 40 Drain-to-Source Leakage Current V _{GS} = 0V, V _{DS} = 32V 1 Gate-to-Source Leakage Current V _{DS} = 0V, V _{DS} = 20V 100 Gate-to-Source Threshold Voltage V _{DS} = 20V, V _{DS} = 250µA 1.5 1.8 2.1 Drain-to-Source On Resistance V _{GS} = 4.5V, I _D = 100A 2.4 2.9 Transconductance V _{DS} = 20V, I _D = 100A 2.4 2.9 Transconductance V _{DS} = 20V, I _D = 100A 330 4680 CC CHARACTERISTICS Input Capacitance 3900 4680 Input Capacitance V _{GS} = 0V, V _{DS} = 20V, J = 1MHz 900 1080 Reverse Transfer Capacitance 3900 4680 4680 Reverse Gate Resistance 1.2 2.4 2.9 Gate Charge Total (4.5 V) 25 30 Gate Charge Total (10 V) 52 62 Gate Charge Gate-to-Drain V _{DS} = 20V, I _D = 100A 8.4 Gate Charge at V _{Ih} 7.5 | # 4.2 Thermal Information (T_A = 25°C unless otherwise stated) | | THERMAL METRIC | MIN | TYP | MAX | UNIT | |-----------------|--|-----|-----|-----|------| | $R_{\theta JC}$ | Junction-to-Case Thermal Resistance | | | 0.6 | °C/W | | $R_{\theta JA}$ | Junction-to-Ambient Thermal Resistance | | | 62 | C/VV | Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback ## 4.3 Typical MOSFET Characteristics $(T_A = 25^{\circ}C \text{ unless otherwise stated})$ ## www.ti.com Figure 4-6. Threshold Voltage vs. Temperature Figure 4-7. On-State Resistance vs. Gate-to-Source Voltage Figure 4-8. Normalized On-State Resistance vs. **Temperature** Figure 4-9. Typical Diode Forward Voltage Figure 4-10. Maximum Safe Operating Area Figure 4-11. Single Pulse Unclamped Inductive **Switching** ## **5 Device and Documentation Support** ### 5.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. #### **5.2 Support Resources** TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 5.3 Trademarks NexFET™ is a trademark of Texas Instruments. TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. #### 5.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 5.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. # 6 Revision History | N | OTE: Page numbers for previous revisions may differ from page numbers in the current version. | | |---|--|------| | С | hanges from Revision B (July 2014) to Revision C (March 2024) | Page | | • | Updated the numbering format for tables, figures, and cross-references throughout the document | 1 | | | | | | С | hanges from Revision A (October 2012) to Revision B (July 2014) | Page | | • | Increased the T _C = 25° continuous drain current to 212A | 1 | | • | Increased the T _C = 125° continuous drain current to 150A | 1 | | • | Increased the pulsed drain current to 400A | 1 | | • | Increased the max power dissipation to 259W | 1 | | • | Increased the max operating junction and storage temperature to 175° | 1 | | • | Updated the pulsed current conditions | | | • | Updated Figure 4-1 from a normalized R _{θJA} to an R _{θJC} curve | | | • | Updated Figure 4-6 to extend to 175°C | 4 | | • | Updated Figure 4-8 to extend to 175°C | 4 | | • | Updated the SOA in Figure 4-10 | 4 | | • | Updated Figure 4-12 to extend to 175°C | 4 | | | | | | С | hanges from Revision * (August 2012) to Revision A (October 2012) | Page | | • | Changed the Transconductance TYP value From: 149S To: 138S | 3 | | • | Changed R _{0JA} From: 65°C/W To: 62°C/W | 3 | # 7 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS (3) | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|------------------|-----------------------|-----------------|-------------------------------|----------------------------|--------------|------------------| | CSD18502KCS | Active | Production | TO-220 (KCS) 3 | 50 TUBE | ROHS Exempt | SN | N/A for Pkg Type | -55 to 175 | CSD18502KCS | | CSD18502KCS.B | Active | Production | TO-220 (KCS) 3 | 50 TUBE | ROHS Exempt | SN | N/A for Pkg Type | -55 to 175 | CSD18502KCS | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE MATERIALS INFORMATION** www.ti.com 23-May-2025 #### **TUBE** *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |---------------|--------------|--------------|------|-----|--------|--------|--------|--------| | CSD18502KCS | KCS | TO-220 | 3 | 50 | 532 | 34.1 | 700 | 9.6 | | CSD18502KCS | KCS | TO-220 | 3 | 50 | 532 | 34.1 | 700 | 9.6 | | CSD18502KCS.B | KCS | TO-220 | 3 | 50 | 532 | 34.1 | 700 | 9.6 | | CSD18502KCS.B | KCS | TO-220 | 3 | 50 | 532 | 34.1 | 700 | 9.6 | TO-220 #### NOTES: - 1. Dimensions are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC registration TO-220. TO-220 #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated