SCBS739 - JULY 2000

-						
•	BiCMOS Technology With Low Quiescent Power	E, M, OR SM PACKAGE (TOP VIEW)				
•	3-State Outputs Drive Bus Lines Directly		20] V _{CC}			
٠	Buffered Inputs	1Q 2	19 8Q			
•	Noninverted Outputs	1D 🛛 3	18 8D			
	Input/Output Isolation From V _{CC}	2D 🛛 4	17 7D			
	Controlled Output Edge Rates	2Q [5	16 7Q			
•	48-mA Output Sink Current		15 6Q			
•	Output Voltage Swing Limited to 3.7 V	3D [] 7 4D [] 8	14 6D 13 5D			
•	SCR Latch-Up-Resistant BiCMOS Process	4Q [] 9	12 1 5Q			
•	and Circuit Design	GND [10				
•	Package Options Include Plastic					

Small-Outline (M) and Shrink Small-Outline (SM) Packages and Standard Plastic (E) DIP

description

The CD74FCT374 is an octal, edge-triggered, D-type flip-flop that uses a small-geometry BiCMOS technology and features 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. This device is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The output stage is a combination of bipolar and CMOS transistors that limits the output high level to two diode drops below V_{CC} . This resultant lowering of output swing (0 V to 3.7 V) reduces power-bus ringing [a source of electromagnetic interference (EMI)] and minimizes V_{CC} bounce and ground bounce and their effects during simultaneous output switching. The output configuration also enhances switching speed and is capable of sinking 48 mA.

The eight flip-flops enter data into their registers on the low-to-high transition of the clock (CLK). The output-enable (\overline{OE}) input controls the 3-state outputs and is independent of the register operation. When \overline{OE} is high, the outputs are in the high-impedance state.

A buffered \overline{OE} input can be used to place the eight outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without interface or pullup components.

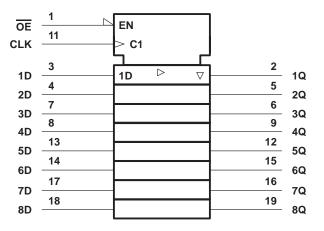
OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The CD74FCT374 is characterized for operation from 0°C to 70°C.

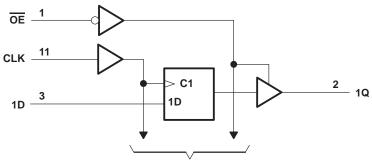
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2000, Texas Instruments Incorporated

SCBS739 - JULY 2000


FUNCTION TABLE (each flip-flop)								
	INPUTS	OUTPUT						
OE	CLK	Q						
L	\uparrow	Н	Н					
L	\uparrow	L	L					
L	H or L	Х	Q ₀					
Н	Х	Х	Z					

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

SCBS739 - JULY 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

DC supply voltage range, V_{CC}	20 mA 50 mA 70 mA 30 mA 140 mA 400 mA 69°C/W 58°C/W 70°C/W
Storage temperature range, T _{stg} 65°	C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 2)

		MIN	MAX	UNIT
VCC	Supply voltage	4.75	5.25	V
VIH	High-level input voltage	2		V
VIL	Low-level input voltage		0.8	V
VI	Input voltage	0	VCC	V
Vo	Output voltage	0	VCC	V
ЮН	High-level output current		-15	mA
IOL	Low-level output current		48	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	0	10	ns/V
ТА	Operating free-air temperature	0	70	°C

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vaa	T _A = 25°C	MIN MAX	UNIT
PARAMETER	TEST CONDITIONS	Vcc	MIN MAX		UNIT
VIK	lj = -18 mA	4.75 V	-1.2	-1.2	V
VOH	I _{OH} = –15 mA	4.75 V	2.4	2.4	V
VOL	I _{OL} = 48 mA	4.75 V	0.55	0.55	V
li	$V_I = V_{CC}$ or GND	5.25 V	±0.1	±1	μΑ
I _{OZ}	$V_{O} = V_{CC}$ or GND	5.25 V	±0.5	±10	μΑ
los‡	$V_{I} = V_{CC} \text{ or GND}, \qquad V_{O} = 0$	5.25 V	-60	-60	mA
ICC	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.25 V	8	80	μΑ
∆I _{CC} §	One input at 3.4 V, Other inputs at V_{CC} or GND	5.25 V	1.6	1.6	mA
Ci	$V_I = V_{CC}$ or GND		10	10	pF
Co	$V_{O} = V_{CC} \text{ or } GND$		15	15	pF

[‡]Not more than one output should be tested at a time, and the duration of the test should not exceed 100 ms.

§ This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

SCBS739 - JULY 2000

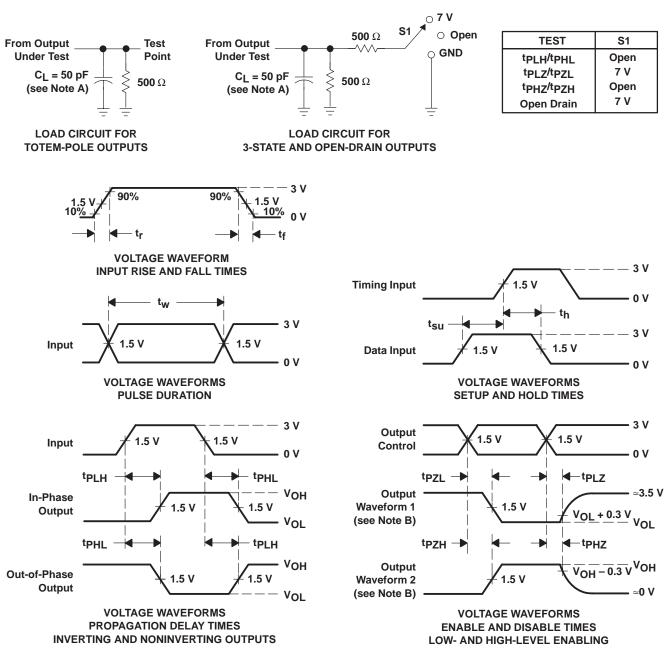
timing requirements over recommended operating conditions, (unless otherwise noted) (see Figure 1)

	MIN	MAX	UNIT		
f _{clock} Clock frequency				70	MHz
tw	Pulse duration	CLK high or low	7		ns
t _{su}	Setup time	Data before CLK↑	2		ns
th	Hold time	Data after CLK↑	2		ns

switching characteristics over recommended operating conditions, V_{CC} = 5 V \pm 0.25 V (unless otherwise noted) (see Figure 1)

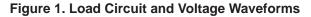
PARAMETER	FROM	то	T _A = 25°C	MIN	МАХ	UNIT
	(INPUT)	(OUTPUT)	ТҮР			UNIT
fmax				70		MHz
^t pd	CLK	Q	6.6	2	10	ns
ten	OE	Q	9	1.5	12.5	ns
^t dis	OE	Q	6	1.5	8	ns

noise characteristics, V_{CC} = 5 V, C_L = 50 pF, T_A = 25^{\circ}C


	PARAMETER	MIN	TYP	MAX	UNIT
VOL(P)	Quiet output, maximum dynamic V _{OL}		1		V
VOH(V)	Quiet output, minimum dynamic V _{OH}		0.5		V
V _{IH(D)}	High-level dynamic input voltage	2			V
VIL(D)	Low-level dynamic input voltage			0.8	V

operating characteristics, V_{CC} = 5 V, T_A = 25°

PARAMET	TEST CO	ONDITIONS	TYP	UNIT	
C _{pd} Power dissipation capacitance		No load,	f = 1 MHz	33	pF



SCBS739 - JULY 2000

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f and t_f = 2.5 ns. D. The outputs are measured one at a time with one input transition per measurement.
 - E. tpl $_{7}$ and tpH $_{7}$ are the same as t_{dis}.
 - E. tpLZ and tpHZ are the same as tdi
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. tpHL and tpLH are the same as tpd.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
CD74FCT374M	Active	Production	SOIC (DW) 20	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74FCT374M
CD74FCT374M.A	Active	Production	SOIC (DW) 20	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74FCT374M

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

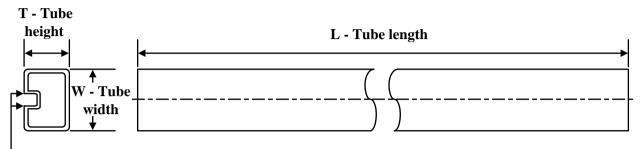
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TEXAS INSTRUMENTS

www.ti.com

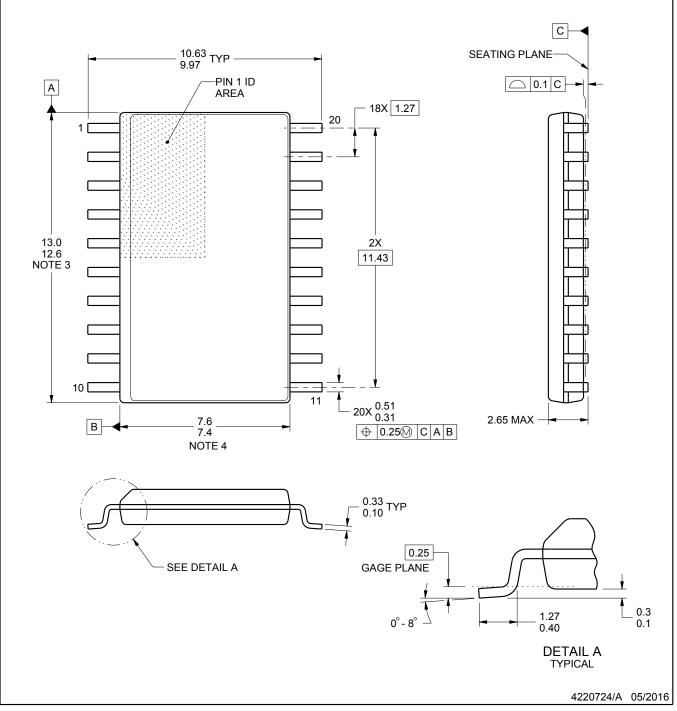
23-May-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
CD74FCT374M	DW	SOIC	20	25	507	12.83	5080	6.6
CD74FCT374M.A	DW	SOIC	20	25	507	12.83	5080	6.6


DW0020A

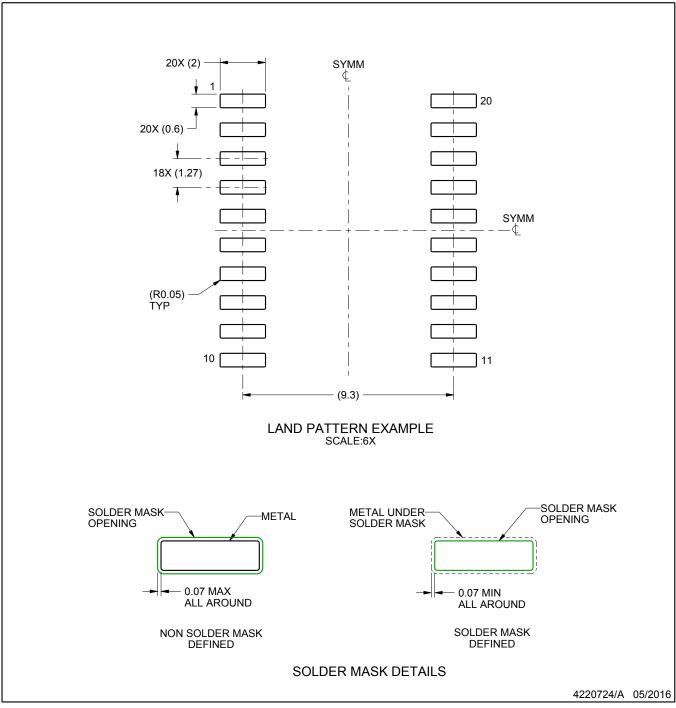
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.



DW0020A

EXAMPLE BOARD LAYOUT

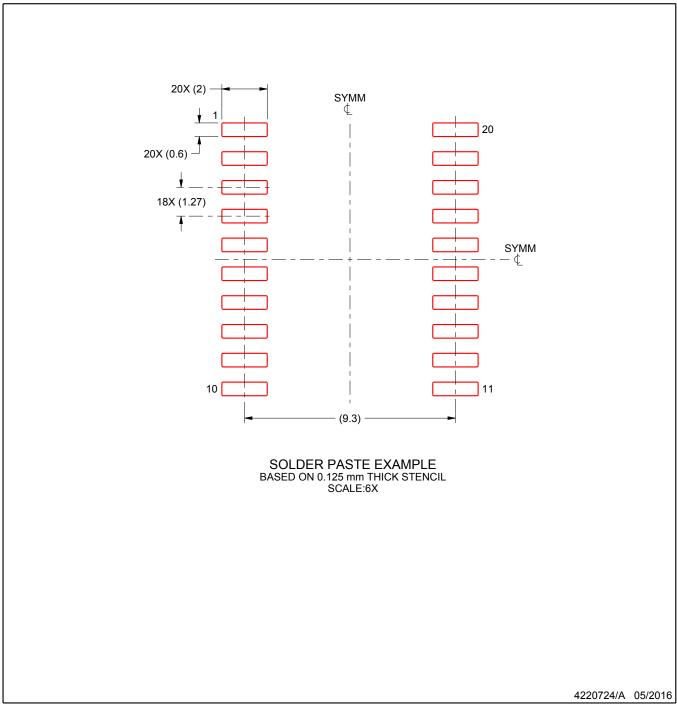
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0020A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated