

CDx4AC02 Quadruple 2-Input Positive-NOR Gates

1 Features

- AC types feature 1.5V to 5.5V operation and balanced noise immunity at 30% of the supply voltage
- Speed of bipolar F, AS, and S, with significantly ٠ reduced power consumption
- Balanced propagation delays •
- ±24mA output drive current •
 - Fanout to 15 F devices
- SCR-latchup-resistant CMOS process and circuit design
- Exceeds 2kV ESD protection per MIL-STD-883, method 3015

2 Description

The 'AC02 devices contain four independent 2-input NOR gates that perform the Boolean function $Y = \overline{A \cdot B}$ or $Y = \overline{A + B}$ in positive logic.

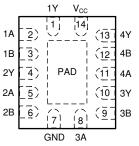
Device Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾	BODY SIZE ⁽³⁾							
CDx4AC02	N (PDIP, 14)	19.3mm × 9.4mm	19.3mm × 6.35mm							
	D (SOIC, 14)	9.9mm × 6mm	9.9mm × 3.9mm							
	PW (TSSOP, 14)		5mm × 4.4mm							
	BQA (WQFN, 14)	3mm × 2.5mm	3mm × 2.5mm							

- For more information, see Section 10. (1)
- (2) The package size (length × width) is a nominal value and includes pins, where applicable.
- (3) The body size (length × width) is a nominal value and does not include pins.

Logic Diagram (Positive Logic)

Table of Contents


1 Features 2 Description	
3 Pin Configuration and Functions	
4 Specifications	4
4.1 Absolute Maximum Ratings	
4.2 ESD Ratings	
4.3 Recommended Operating Conditions	
4.4 Thermal Information	
4.5 Electrical Characteristics	5
4.6 Switching Characteristics, V _{CC} = 1.5 V	6
4.7 Switching Characteristics, V _{CC} = 3.3 V ± 0.3 V	6
4.8 Switching Characteristics, V _{CC} = 5 V ± 0.5 V	6
4.9 Operating Characteristics	6
5 Parameter Measurement Information	
6 Detailed Description	<mark>8</mark>

6.1 Functional Block Diagram	8
6.2 Device Functional Modes	
7 Application and Implementation	9
7.1 Power Supply Recommendations	
7.2 Layout	9
8 Device and Documentation Support	
8.1 Documentation Support	
8.2 Receiving Notification of Documentation Updates	
8.3 Support Resources	. 10
8.4 Electrostatic Discharge Caution	
8.5 Glossary	
9 Revision History	. 10
10 Mechanical, Packaging, and Orderable	
Information	. 11

3 Pin Configuration and Functions

1Y 🗖	10	14	
1A 🖂	2	13	4Y
1B 🗖	3	12	4B
2Y 🗖	4	11	🖵 4A
2A 🖂	5	10	🖵 3Y
2B 🗖	6	9	ЗВ
GND 🗔	7	8	ЗА

CD54AC02 J Package, 14-Pin CDIP; CD74AC02 N, D or PW Package; 14-Pin PDIP, SOIC or TSSOP (Top View)

CD74AC02 BQA Package, 14-Pin WQFN (Top View)

Table 3-1. Pin Functions

PIN				
NAME CDx4AC02 SOIC, PDIP, CDIP, TSSOP, WQFN		TYPE ⁽¹⁾	DESCRIPTION	
			DEGONFTION	
1A	2	I	1A Input	
1B	3	I	1B Input	
1Y	1	0	1Y Output	
2A	5	I	2A Input	
2B	6	I	2B Input	
2Y	4	0	2Y Output	
3A	8	I	3A Input	
3B	9	I	3B Input	
3Y	10	0	3Y Output	
4A	11	I	4A Input	
4B	12	I	4B Input	
4Y	13	0	4Y Output	
GND	7	_	Ground Pin	
NC	_	_	No Connection	
V _{CC}	14	-	Power Pin	
Thermal Pa	d ⁽²⁾	_	The thermal pad can be connected to GND or left floating. Do not connect to any other signal or supply	

(1) I = input, O = output

(2) BQA package only

4 Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	6	V
I _{IK} ⁽²⁾	Input clamp current	$(V_{I} < 0 \text{ or } V_{I} > V_{CC})$		±20	mA
I _{OK} ⁽²⁾	Output clamp current	$(V_O < 0 \text{ or } V_O > V_{CC})$		±50	mA
I _O	Continuous output current	$(V_{O} = 0 \text{ to } V_{CC})$		±50	mA
	Continuous current through V _{CC} or GND			±100	mA
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

4.2 ESD Ratings

			VALUE	UNIT
V (ESD)	Electrostatic discharge	Human-body model (HBM) ¹	±2000	V

(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

4.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			T _A = 25°C -40°C TO 85°C		40°C TO 85°C -55°C TO 125°C		-55°C TO 125°C		
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		1.5	5.5	1.5	5.5	1.5	5.5	V
		V _{CC} = 1.5 V	1.2		1.2		1.2		
V _{IH}	High-level input voltage	V _{CC} = 3 V	2.1		2.1		2.1		V
		V _{CC} = 5.5 V	3.85		3.85		3.85		
V _{IL} Low-level input voltage		V _{CC} = 1.5 V		0.3		0.3		0.3	
	Low-level input voltage	V _{CC} = 3 V		0.9		0.9		0.9	V
		V _{CC} = 5.5 V		1.65		1.65		1.65	
VI	Input voltage		0	V_{CC}	0	V _{CC}	0	V _{CC}	V
Vo	Output voltage		0	V_{CC}	0	V _{CC}	0	V _{CC}	V
I _{OH}	High-level output current	V _{CC} = 4.5 V to 5.5 V		-24		-24		-24	mA
I _{OL}	Low-level output current	V _{CC} = 4.5 V to 5.5 V		24		24		24	mA
		V _{CC} = 1.5 V to 3 V		50		50		50	
∆t/∆v	Input transition rise or fall rate	V _{CC} = 3.6 V to 5.5 V		20		20		20	ns/V

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

4.4 Thermal Information

THERMAL METRIC ⁽¹⁾		D (SOIC)	N (PDIP)	PW (TSSOP)	BQA (WQFN)	UNIT
		14 PINS	14 PINS	14 PINS	14 PINS	UNIT
R _{θJA}	Junction-to-ambient thermal resistance	119.9	80	145.7	91.3	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	_	_	76.5	99.4	°C/W
R _{θJB}	Junction-to-board thermal resistance	_	_	102.0	61.0	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	_	_	18.8	14.5	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	_	_	100.7	60.8	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	_	_	_	37.0	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC package thermal metrics* application note.

4.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEST CONDITIONS		TA = 25°C		-40°C TO	85 °C	-55 °C TO			
PARAMETER			V _{cc}	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
			1.5 V	1.4		1.4		1.4		
		I _{OH} = -50 μA	3 V	2.9		2.9		2.9		
			4.5 V	4.4		4.4		4.4		
V _{OH}	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -4 mA	3 V	2.58		2.48		2.4		V
		I _{OH} = -24 mA	4.5 V	3.94		3.8		3.7		
		I _{OH} = -50 mA ⁽¹⁾	5.5 V					3.85		
		I _{OH} = -75 mA ⁽¹⁾	5.5 V			3.85				
	V _I = V _{IH} or V _{IL}		1.5 V		0.1		0.1		0.1	
		I _{OL} = 50 μΑ	3 V		0.1		0.1		0.1	
			4.5 V		0.1		0.1		0.1	
V _{OL}		I _{OL} = 12 mA	3 V		0.36		0.44		0.5	V
		I _{OL} = 24 mA	4.5 V		0.36		0.44		0.5	
		I _{OL} = 50 mA ⁽¹⁾	5.5 V						1.65	
		I _{OL} = 75 mA ⁽¹⁾	5.5 V				1.65			
l _l	$V_{I} = V_{CC}$ or GND		5.5 V		±0.1		±1		±1	μA
I _{CC}	$V_I = V_{CC}$ or GND,	I _O = 0	5.5 V		4		40		80	μA
Ci					10		10		10	PF

(1) Test one output at a time, not exceeding 1-second duration. Measurement is made by forcing indicated current and measuring voltage to minimize power dissipation. Test verifies a minimum 50-Ω transmission-line drive capability at 85°C and 75-Ω transmission-line drive capability at 125°C.

4.6 Switching Characteristics, V_{CC} = 1.5 V

over recommended operating free-air temperature range, V_{CC} = 1.5 V, C_L = 50 pF (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	–40°C TO 85°C		–55°C T	UNIT	
		10 (001701)	MIN	MAX	MIN	MAX	UNIT
t _{PLH}	A or B	V		131		144	ns
t _{PHL}				131		144	115

4.7 Switching Characteristics, V_{CC} = 3.3 V ± 0.3 V

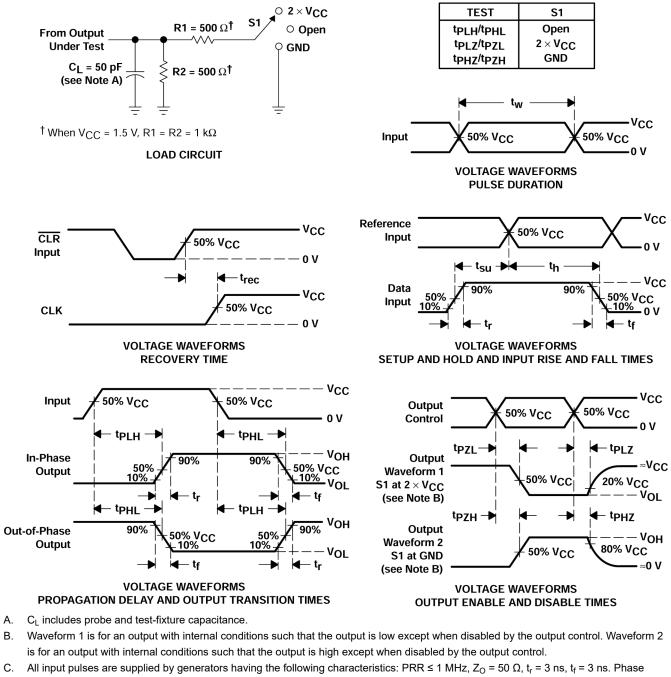
over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V, C_L = 50 pF (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	-	C TO °C		C TO 5°C	UNIT	
			MIN	MAX	MIN	MAX		
t _{PLH}	A or B	V	4.1	14.6	4	16.1	20	
t _{PHL}	AUB	T	4.1	14.6	4	16.1	ns	

4.8 Switching Characteristics, V_{CC} = 5 V ± 0.5 V

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V, C_L = 50 pF (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	–40°C T	O 85°C	–55°C T	UNIT	
		10 (001101)	MIN	MAX	MIN	MAX	UNIT
t _{PLH}	A or B	V	3	10.4	2.9	11.5	ns
t _{PHL}	AUB	I	3	10.4	2.9	11.5	115


4.9 Operating Characteristics

 $V_{CC} = 5 V, T_A = 25^{\circ}C$

PARAMETER	ТҮР	UNIT
C _{pd} Power dissipation capacitance	55	pF

5 Parameter Measurement Information

- relationships between waveforms are arbitrary.
- D. For clock inputs, f_{max} is measured with the input duty cycle at 50%.
- E. The outputs are measured one at a time with one input transition per measurement.
- F. t_{PLH} and t_{PHL} are the same as t_{pd} .
- G. t_{PZL} and t_{PZH} are the same as t_{en} .
- H. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

Figure 5-1. Load Circuit and Voltage Waveforms

6 Detailed Description

6.1 Functional Block Diagram

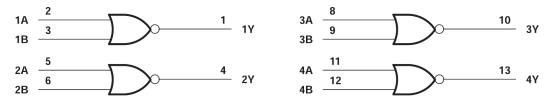


Figure 6-1. Logic Diagram (Positive Logic)

6.2 Device Functional Modes

INF	PUTS	OUTPUT Y
A	В	
Н	X	L
X	н	L
L	L	н

Table 6-1. Function Table (Each	Gate)
---------------------------------	-------

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Power Supply Recommendations

The power supply can be any voltage between the min and max supply voltage rating located in *Recommended Operating Conditions*.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends 0.1 μ F and if there are multiple V_{CC} terminals, then TI recommends .01 μ F or .022 μ F for each power terminal. It is okay to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

7.2 Layout

7.2.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices, inputs must never be left floating. In many cases, functions or parts of functions of digital logic devices are unused (for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used). Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC} , whichever makes more sense for the logic function or is more convenient.

7.2.2 Layout Example

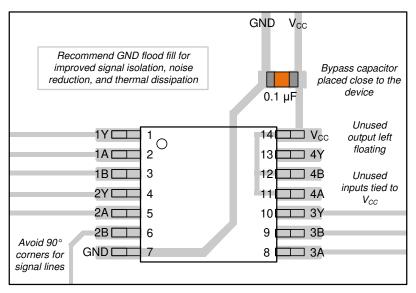


Figure 7-1. Example Layout for the CD74AC02

8 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

8.1 Documentation Support

8.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
CD54AC02	Click here	Click here	Click here	Click here	Click here	
CD74AC02	Click here	Click here	Click here	Click here	Click here	

Table 8-1. Related Links

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision D (July 2024) to Revision E (April 2025)	Page
•	Added PW and BQA packages to the data sheet	1

Changes from Revision C (June 2002) to Revision D (July 2024)

•	Added Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Device	_
	Functional Modes, Application and Implementation section, Device and Documentation Support section, and	
	Mechanical, Packaging, and Orderable Information section1	1
	Lindated PR IA values: $D = 86$ to 110.0, all values in °C/W	=

Updated R0JA values: D = 86 to 119.9, all values in °C/W......

Page

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

11

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
CD54AC02F3A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54AC02F3A
CD54AC02F3A.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54AC02F3A
CD74AC02BQAR	Active	Production	WQFN (BQA) 14	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC02
CD74AC02E	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74AC02E
CD74AC02E.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74AC02E
CD74AC02M	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	-55 to 125	AC02M
CD74AC02M96	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC02M
CD74AC02M96.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC02M
CD74AC02PWR	Active	Production	TSSOP (PW) 14	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-55 to 125	AC02

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

(2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

www.ti.com

PACKAGE OPTION ADDENDUM

29-May-2025

and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

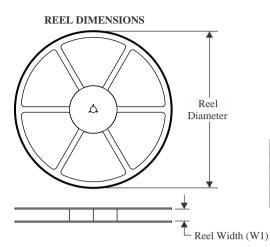
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

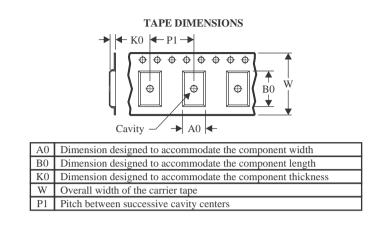
OTHER QUALIFIED VERSIONS OF CD54AC02, CD74AC02 :

• Catalog : CD74AC02

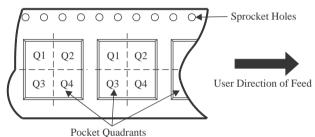
Military : CD54AC02

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

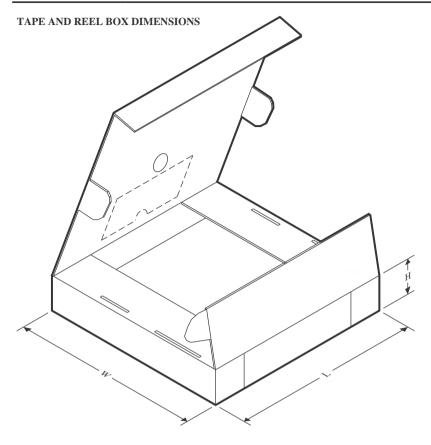


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

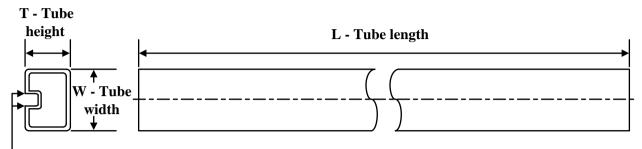

*All dimensions are nominal												
Device	-	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC02BQAR	WQFN	BQA	14	3000	180.0	12.4	2.8	3.3	1.1	4.0	12.0	Q1
CD74AC02M96	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
CD74AC02PWR	TSSOP	PW	14	3000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Jul-2025

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC02BQAR	WQFN	BQA	14	3000	210.0	185.0	35.0
CD74AC02M96	SOIC	D	14	2500	353.0	353.0	32.0
CD74AC02PWR	TSSOP	PW	14	3000	353.0	353.0	32.0

TEXAS INSTRUMENTS

www.ti.com

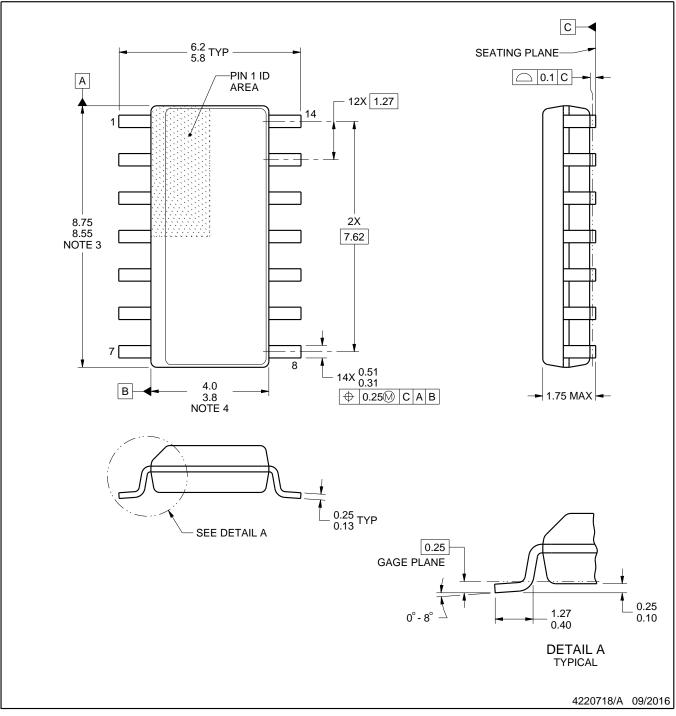
24-Jul-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CD74AC02E	N	PDIP	14	25	506	13.97	11230	4.32
CD74AC02E	N	PDIP	14	25	506	13.97	11230	4.32
CD74AC02E.A	N	PDIP	14	25	506	13.97	11230	4.32
CD74AC02E.A	N	PDIP	14	25	506	13.97	11230	4.32


D0014A

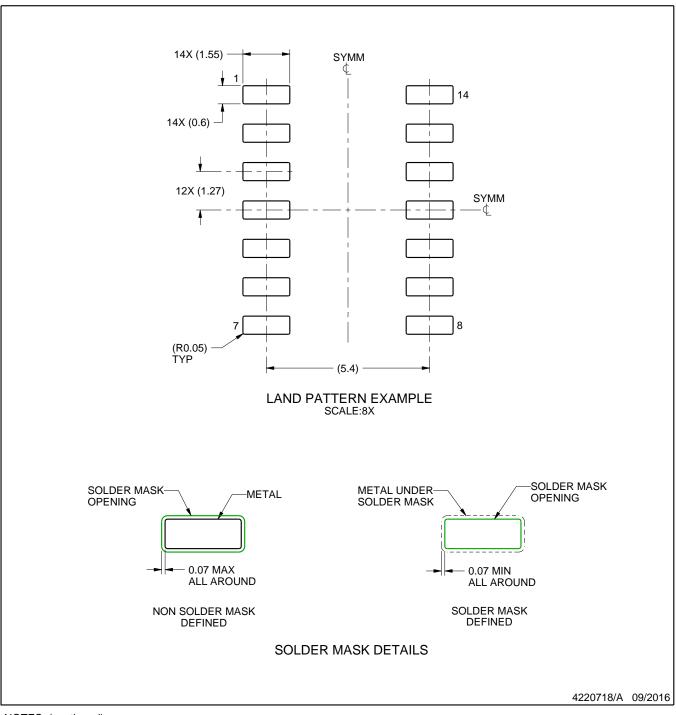
PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.



D0014A

EXAMPLE BOARD LAYOUT

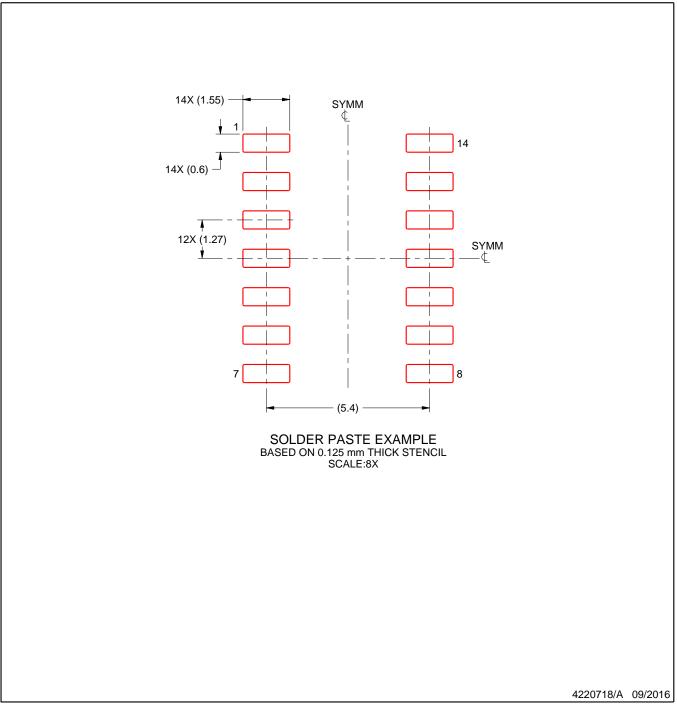
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



D0014A

EXAMPLE STENCIL DESIGN

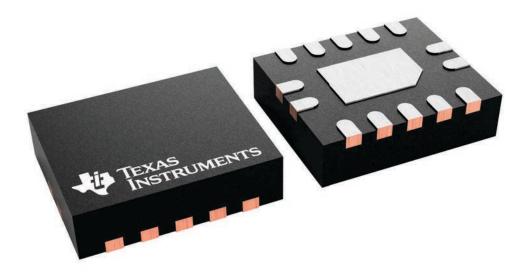
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

BQA 14

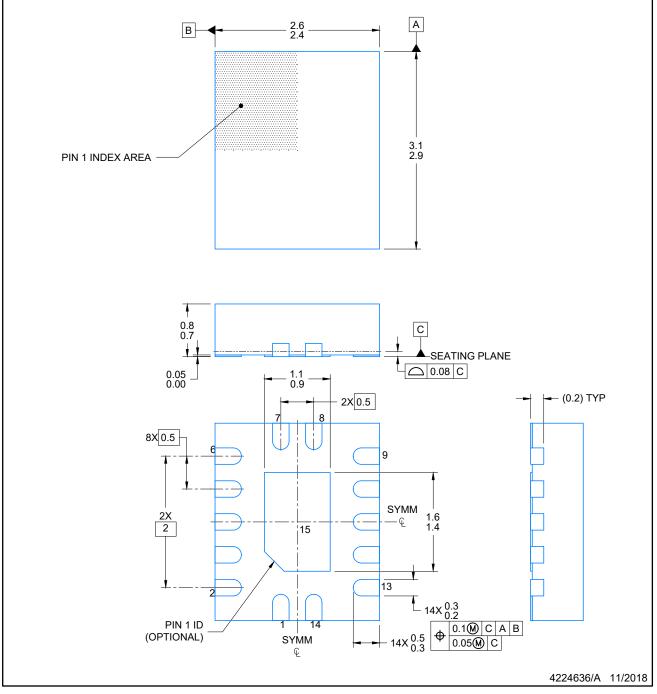

2.5 x 3, 0.5 mm pitch

GENERIC PACKAGE VIEW

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



BQA0014A

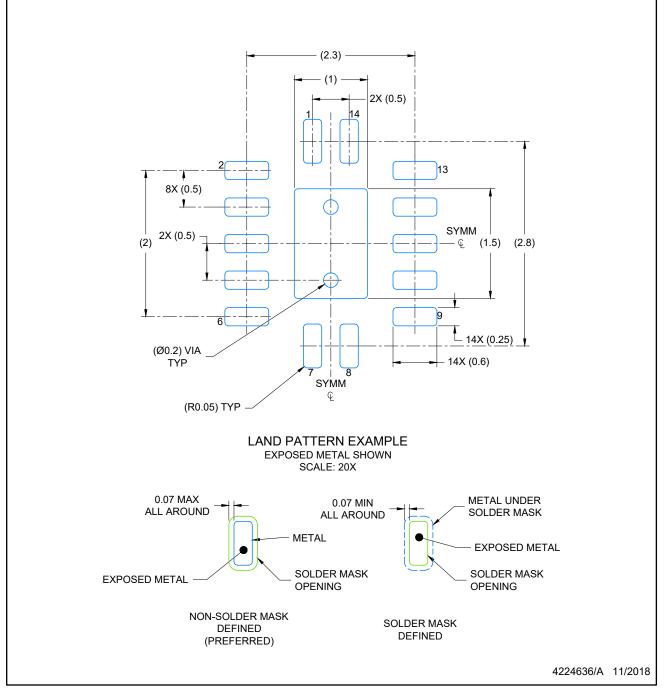
PACKAGE OUTLINE

WQFN - 0.8 mm max height

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.



BQA0014A

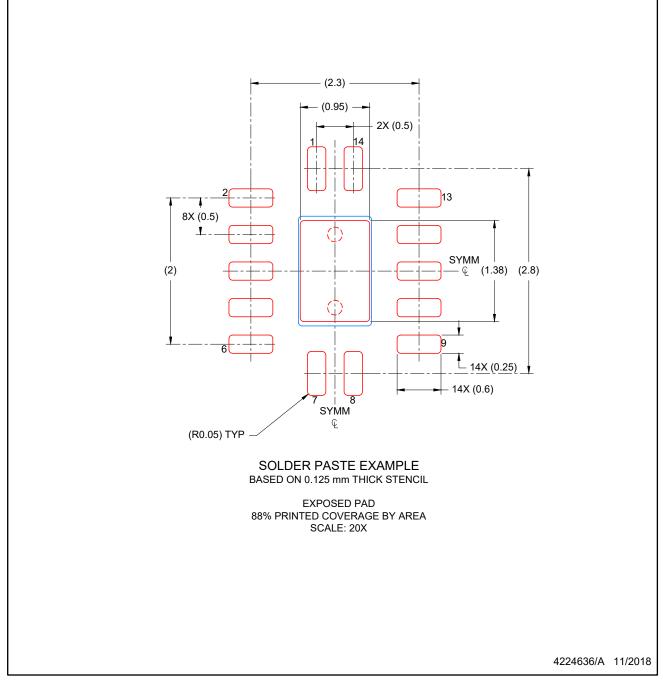
EXAMPLE BOARD LAYOUT

WQFN - 0.8 mm max height

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



BQA0014A

EXAMPLE STENCIL DESIGN

WQFN - 0.8 mm max height

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

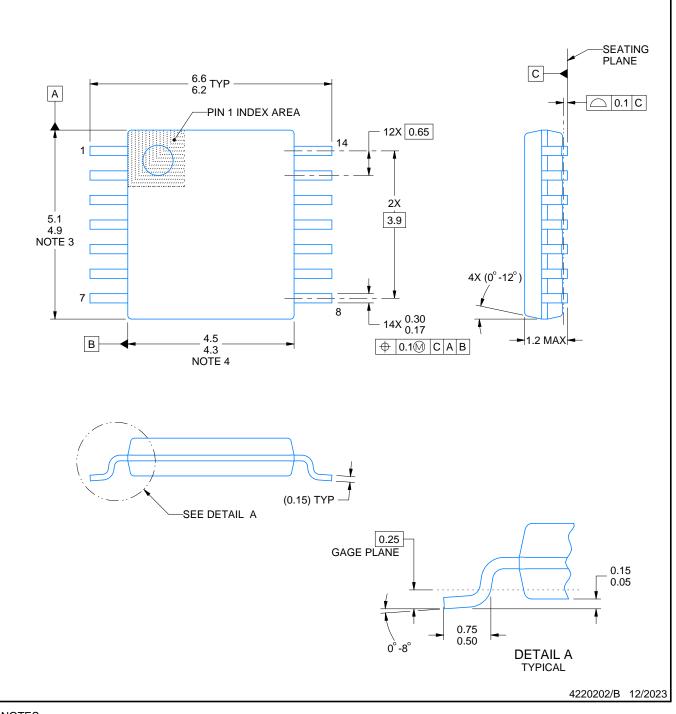
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


PW0014A

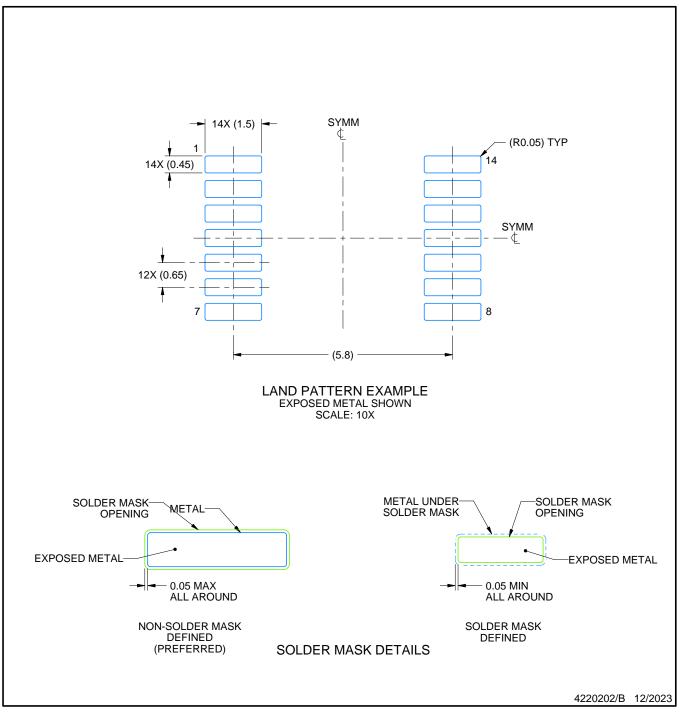
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0014A

EXAMPLE BOARD LAYOUT

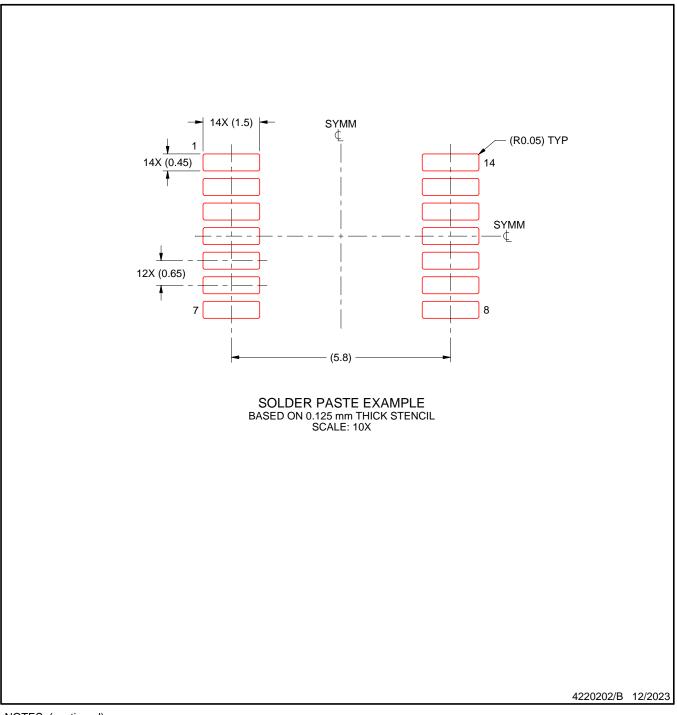
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0014A

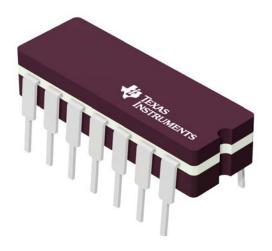
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.



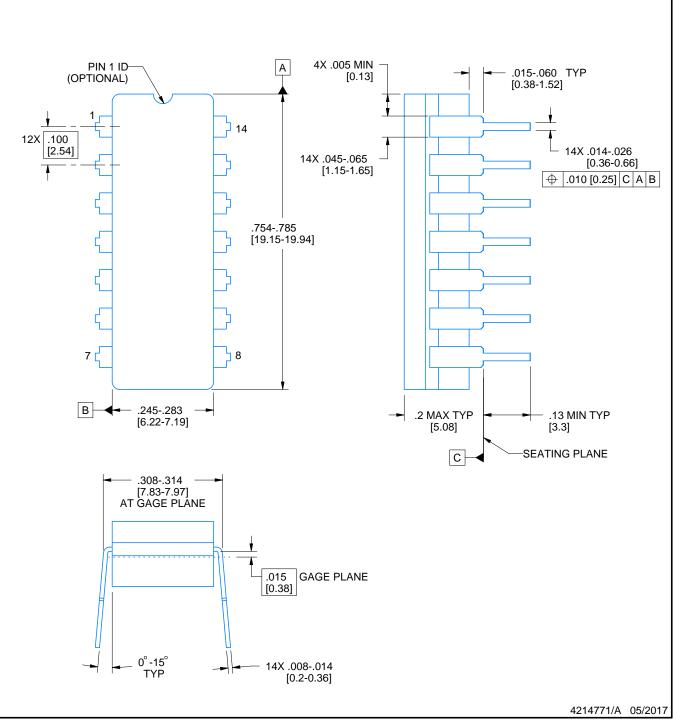
^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

GENERIC PACKAGE VIEW

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


J0014A

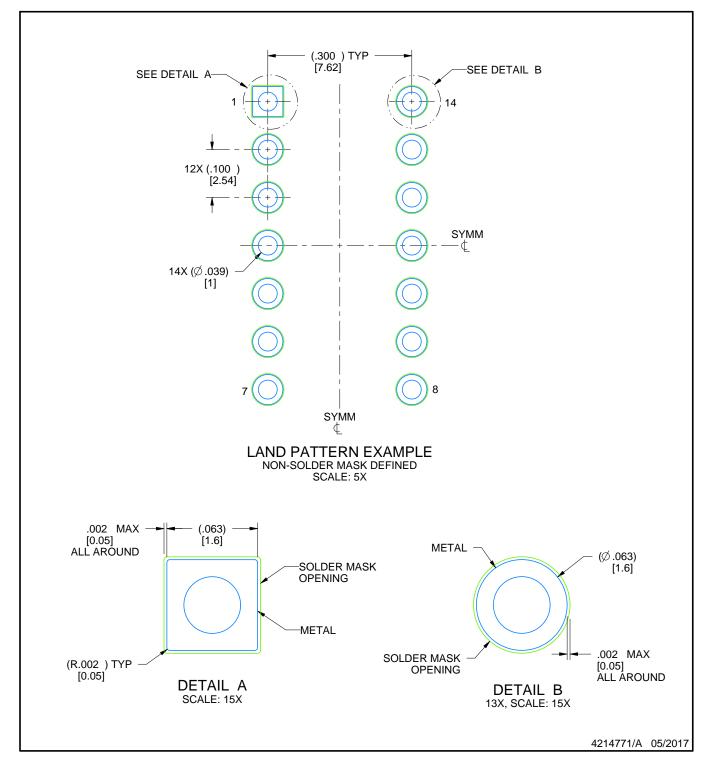
PACKAGE OUTLINE

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

NOTES:

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.



J0014A

EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated