TEXAS INSTRUMENTS

Data sheet acquired from Harris Semiconductor SCHS062B – Revised July 2003

CMOS Binary Rate Multiplier

High-Voltage Types (20-Volt Rating)

■ CD4089B is a low-power 4-bit digital rate multiplier that provides an output pulse rate that is the clock-input-pulse rate multiplied by 1/16 times the binary input. For example, when the binary input number is 13, there will be 13 output pulses for every 16 input pulses. This device may be used in conjunction with an up/down counter and control logic used to perform arithmetic operations (adds, subtract, divide, raise to a power), solve algebraic and differential equations, generate natural logarithms and trigometric functions, A/D and D/A conversions, and frequency division.

For words of more than 4 bits, CD4089B devices may be cascaded in two different modes: an Add mode and a Multiply mode (see Figs.14 and 15). In the Add mode some of the gaps left by the more significant unit at the count of 15 are filled in by the less significant units. For example, when two units are cascaded in the Add mode and programmed to 11 and 13, respectively, the more significant unit will have 11 output pulses for every 16 input pulses and the other unit will have 13 output pulses for every 256 input pulses for a total of

<u>11 13 189</u> 16 256 256

In the Multiply mode the fraction programmed into the first rate multiplier is multiplied by the fraction programmed into the second multiplier. Thus the output rate will be 11, 13, 143

16 16 256

Features:

- Cascadable in multiples of 4-bits
- Set to "15" input and "15" detect output
- = 100% tested for guescent current at 20 V
- = 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) =

1 V at $V_{DD} = 5 V$ 2 V at $V_{DD} = 10 V$ 2.5 V at $V_{DD} = 15 V$

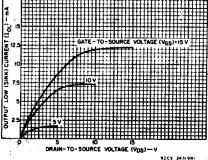
Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard

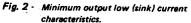
Specifications for Description of 'B' Series CMOS Devices''

Applications:

- Numerical control
- Instrumentation
- Digital filtering
- Frequency synthesis

The CD4089B has an internal synchronous 4-bit counter which, together with one of the four binary input bits, produces pulse trains as shown in Fig. 2.


If more than one binary input bit is high, the resulting pulse train is a combination of the separate pulse trains as shown in Fig. 2.


The CD4089B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

3

COMMERCIAL CMOS HIGH VOLTAGE ICS

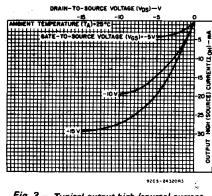


Fig. 3 — Typical output high (source) current characteristics.

CD4089B Types

RECOMMENDED OPERATING CONDITIONS at T_A = 25°C, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC		V _{DD}	LIŇ	UNITS	
		(V)	Min.	Max.	
Supply-Voltage Range (For T _A Temperature Range)	= Full Package-		3	18	V
Set or Clear Pulse Width,	tw	5 10 15	160 90 60	- - -	ns
Clock Pulse Width,	tw	5 10 15	330 170 100	-	ns
Clock Frequency,	^f CL	5 10 15	dc	1.2 2.5 3.5	MHz
Clock Rise or Fall Time,	trCL or tfCL	5, 10,15	-	15	μs
Inhibit In Setup Time,	ts∪	5 10 15	100 40 20	·	ns
Inhibit In Removal Time,	^t REM	5 10 15	240 130 110	_ <u>_ </u> > ^	ns
Set Removal Time,	tREM	5 10 15	150 80 50		ns
Clear Removal Time,	^t REM	5 10 15	60 40 30	_ _ _	ns

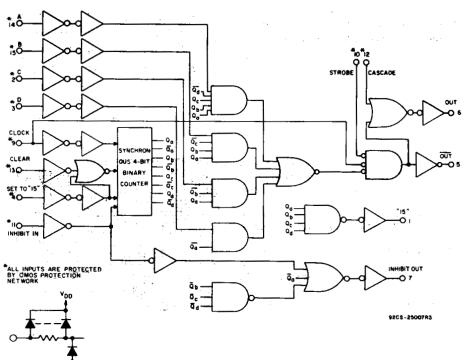


Fig. 4 — Logic diagram.

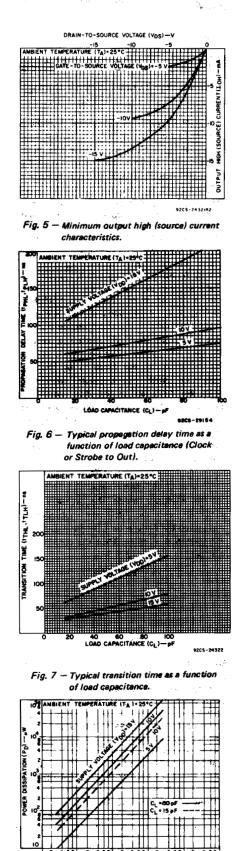


Fig. 8 – Typical dynamic power dissipation as a function of input frequency.

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C; Input t_r, t_f = 20 ns, C_L = 50 pF, R₁ = 200 k Ω

CHARACTERISTIC	TES CONDIT					UNITS
		VDD	<u> </u>	LIMITS		01113
		v	Min.	Тур.	Max.	[
Propagation Delay Time, tpHL, tpLH		5	_	110	220	
Clock to Out		10	-	55	110	
		15		45	90	ns
		5	-	150	300	
Clock or Strobe to Out		10	-	75	150	
·		15	-	60	120	
Clock to Inhibit Out		5	-	360	720	
High Level to Low Level		10	-	160	320	ns
<u> </u>		15		110	220	
Low doubte High Lowel		5	-	250	500	
Low Level to High Level		10 15		100	200	ns
				75	150	
Clear to Out		5 10	-	380	760	
		15	_	175 130	350 260	ns
		5				
Clock to "9" or "15" Out		10	_	300 125	600 250	ns
		15	_	90	180	115
·····		5	_	90	180	
Cascade to Out		10		45	90	ns
		15	_	35	70	
		5	-	160	320	
Inhibit In to Inhibit Out		10	_	75	150	
		15	-	55	110	กร
		5	_	330	660	113
Set to Out		10	-	150	300	
		15		110	220	
		5	- 1	100	200	
Transition Time, ^t THL ^{, t} TLH	÷.	10	-	50	100	ns
		15	-	40	80	
		5	1.2	2.4	- 1	
Maximum Clock Frequency, f _{CL}		10	2.5	5	-	MHz
		15	3.5	7		
		5	-	165	330	
Minimum Clock Pulse Width, t _W		10	- ,	85	170	ns
		15		50	100	
Clock Rise or Fall Time, t _{rCL} , t _{fCL}		5	-	-	15	
Clock Rise or Fall Time, t _{rCL} , t _{fCL}		10 15			15 15	μs
Minimum Set or Clear Pulse Width, tw	1	5 10		80 45	160 90	ns
		15	_	45 30	60	115
		5		50	100	
Minimum Inhibit-In Setup Time, t _{SU}		5 10		50 20	40	ns
		15	_	10	20	
		5	_	120	240	<u> </u>
Minimum Inhibit In		10	_	65	130	ns
Removal Time, ^t REM	:	15	_	55	110	

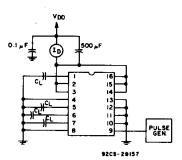


Fig. 9 - Dynamic power dissipation test circuit.

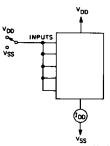


Fig. 10 - Quiescent device current test circuit.

92CS-27401R1

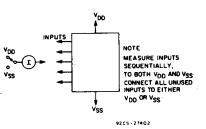


Fig. 11 - Input-current test circuit.

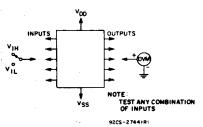
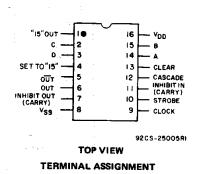
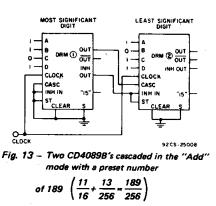
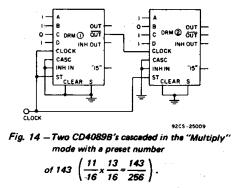



Fig. 12 - Input-voltage test circuit.

CHARACTERISTIC	TEST CONDITIO	NS					
		VDD		LIMITS			
	. ÷	v	Min.	Тур. Мах.			
		5	·	75	150		
Minimum Set Removal Time, tRE	м	10	-	40	80	ns	
		15	— ·	25	50		
		5		30	60		
Minimum Clear Removal Time, tR	EM	10		20	40	ns	
		15		. 15	30		
Input Capacitance, CI	Any Input	-	:- "	5	7.5	pF	

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C (cont'd) Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

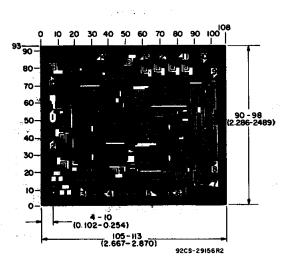

STATIC ELECTRICAL CHARACTERISTICS


-

CHARAC- TERISTIC	CON	DITIO	NS	L.IN	NITS AT	INDICAT	ED TEM	PERAT		C)					
	V ₀ (V)	V _{IN} (V)		55	40	+85	+125	Min.	+25 Typ.	Max.	S				
	_	0,5	5	5	5	150	150		0.04	5					
Quiescent Device	_	0,10	10	10	10	300	300	_	0.04	10	μA				
Current,	_	0,15	15	20	20	600	600		0.04	20	μΑ				
IDD Max.	-	0,20	20	100	. 100	3000	3000	-	0.08	100					
Output Law	0.4	0,5	5	0.64	0.61	0.42	0:36	0.51	1	-					
Output Low (Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6						
OL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8		1				
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	[m/				
(Source)	2.5	0,5	5	2	-1.8	-1.3	-1.15	-1.6	-3.2	_					
Current,	9.5	0,10	10	- 1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-					
¹ OH ^{Min.}	13.5	0,15	15	-4.2	-4	-2.8	- 2.4	-3.4	-6.8						
Output Voltage:	_	0,5	5		0	.05		0	0.05						
Low-Level,	-	0,10	10		0	.05		0	0.05						
VOL Max.	-	0,15	15		0	.05		-	0	0.05	l v				
Output	-	0,5	5		4	.95		4.95	5	_					
Voltage	-	0,10	10		9	.95		9.95	10	-	1				
High-Level, VOH ^{Min.}	-	0,15	15		14	.95		14.95	15	-	1				
	0.5,4.5	-	5			1.5		-	-	1.5					
Input Low Voltage	1,9	_	10	•		3		-		3	1				
VIL Max.	1.5,13.5	-	15			4		-	-	4	۱ _v				
Input High	0.5,4.5		5			3.5		3.5	. –	-					
Voltage,	1,9	·	10			7		7	-	-					
V _{IH} Min.	1.5,13.5	_	15			11		11	-	-					
Input Current		0,18	18.	±0.1	±0.1	±1	±1.	. –	±10-5	±0.1	μ				

. ...

							IRU	JTH TA	BLE				
						INPUT	S				OUTPL	ITS	
	Number of Pulses orNumber ofInput Logic LevelOutput Log(0 = Low; 1 = High; X = Don't Care)(L = Low; H								ic Level				
D	С	В	A	CLK	INH IN	STR	CAS	CLR	SET	OUT	OUT	INH OUT	"15" OUT
0	0	0	0	16	0	0	0	0	0	L	н	1	1
0	0	0	1	16	0	0	0	0	0.	1	1	1	1
0	0	1	0	16	0	0	0	0	0	2	2	1	1.
0	0	1	1	16	0	0	0	0	0	- 3	. 3	1.	1
0	1	0	0	16	0	0	0	0	0	4	4	1	1
0	1	0	1	16	0	0	0	0	0	5	5	1	1
0	1	1	0	16	0	0	0	0	0	6	6	1	1
0	1	1	1	16	0	0	0	0	0	7	7	1	1
1	0	0	0	16	0	0	0	0	0	8	8	1	1
1	0	0	1	16	0	0	0	0	0	9	9	1	1
1	0	1	0	16	0	. 0	0	0	0	10	10	1	1
1	0	1	1	16	0	0	0	0	0	11	11	. 1	1
1	1	0	0	16	0	• 0	0	0	0	12	12	1	1
1	1	0	1	16	0	0	0	0	0	13	13	1	1
1	1	1	0	16	0	0	0	0	0	14	14	1	1
1	1	1	1	16	0	0	0	0	0	15	15	1	1
x	x	x	x	16	1	0	~ 0	0	0	t	t	н	+
x	х	х	X	16	0	1	0	0	0	ι	н	1	1
X	х	х	х	16	0	0	1	0	0	Ĥ	*	1	1
1	х	х	х	16	0	0	0	1	0	16	16	н	L
0	х	х	X	16	0	0	0	1	0	L	н	н	L
X	Х	Х	X	16	0	0	0	X	1	L	н	L	н



COMMERCIAL CMOS HIGH VOLTAGE ICS

3

* Output same as the first 16 lines of this truth table (depending on values of A, B, C, D).

[†] Depends on internal state of counter.

Dimensions and Pad Layout for CD4089BH

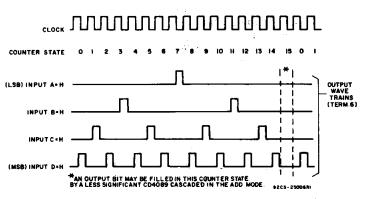


Fig. 15 - Timing diagram.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

3-213

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
CD4089BE	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD4089BE
CD4089BE.A	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD4089BE
CD4089BEE4	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD4089BE
CD4089BNSR	Active	Production	SOP (NS) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4089B
CD4089BNSR.A	Active	Production	SOP (NS) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4089B
CD4089BPWR	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM089B
CD4089BPWR.A	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM089B

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

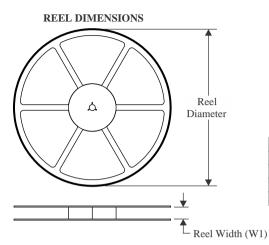
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

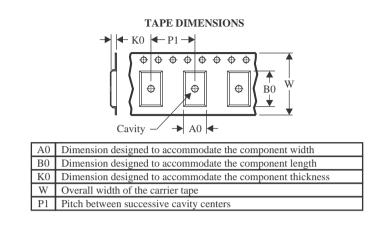
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

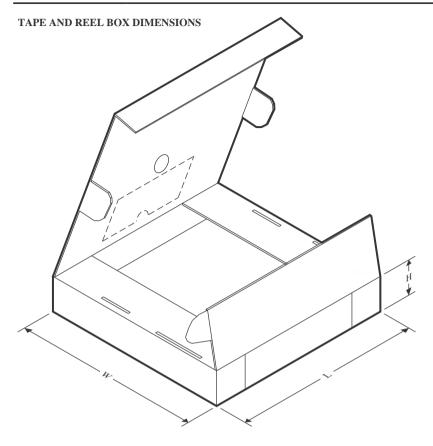

PACKAGE OPTION ADDENDUM


23-May-2025

www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

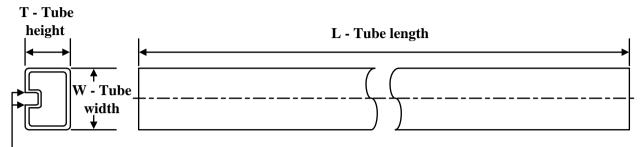

*Al	dimensions are nominal												
	Device	-	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	CD4089BNSR	SOP	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
	CD4089BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

23-May-2025

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
CD4089BNSR	SOP	NS	16	2000	356.0	356.0	35.0	
CD4089BPWR	TSSOP	PW	16	2000	356.0	356.0	35.0	

TEXAS INSTRUMENTS

www.ti.com

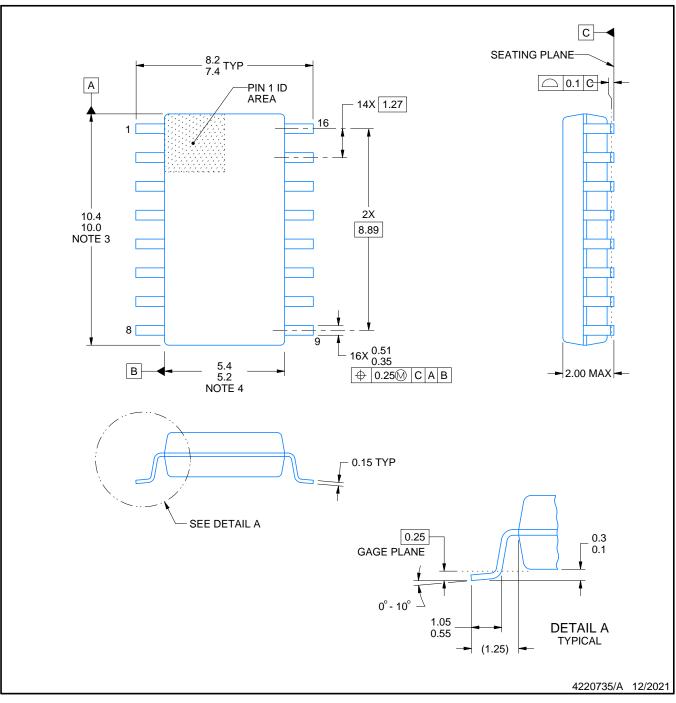
23-May-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
CD4089BE	N	PDIP	16	25	506	13.97	11230	4.32
CD4089BE	N	PDIP	16	25	506	13.97	11230	4.32
CD4089BE.A	N	PDIP	16	25	506	13.97	11230	4.32
CD4089BE.A	N	PDIP	16	25	506	13.97	11230	4.32
CD4089BEE4	N	PDIP	16	25	506	13.97	11230	4.32
CD4089BEE4	N	PDIP	16	25	506	13.97	11230	4.32


NS0016A

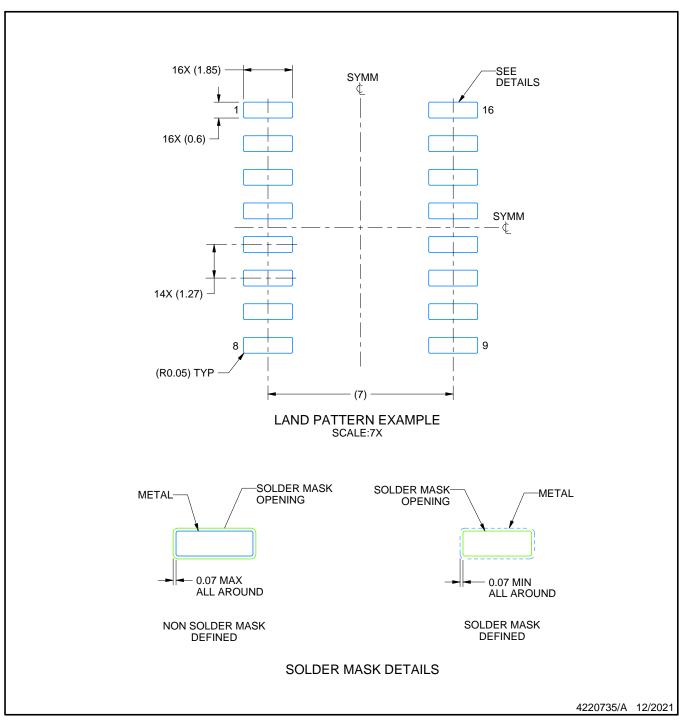
PACKAGE OUTLINE

SOP - 2.00 mm max height

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.



NS0016A

EXAMPLE BOARD LAYOUT

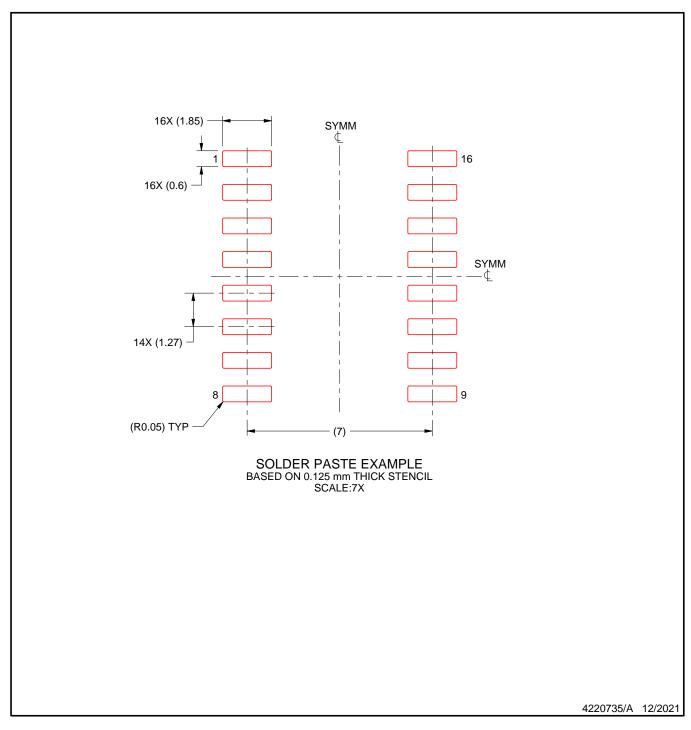
SOP - 2.00 mm max height

SOP

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NS0016A

EXAMPLE STENCIL DESIGN

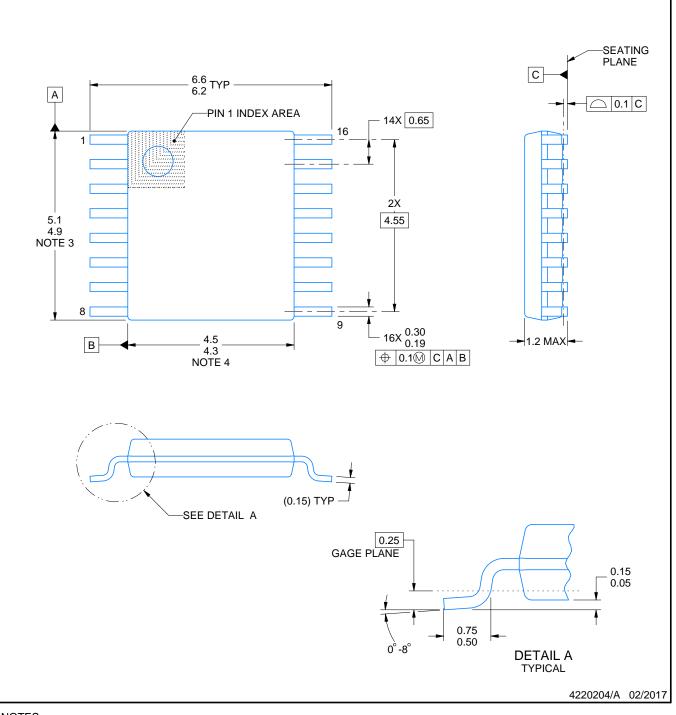
SOP - 2.00 mm max height

SOP

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.


PW0016A

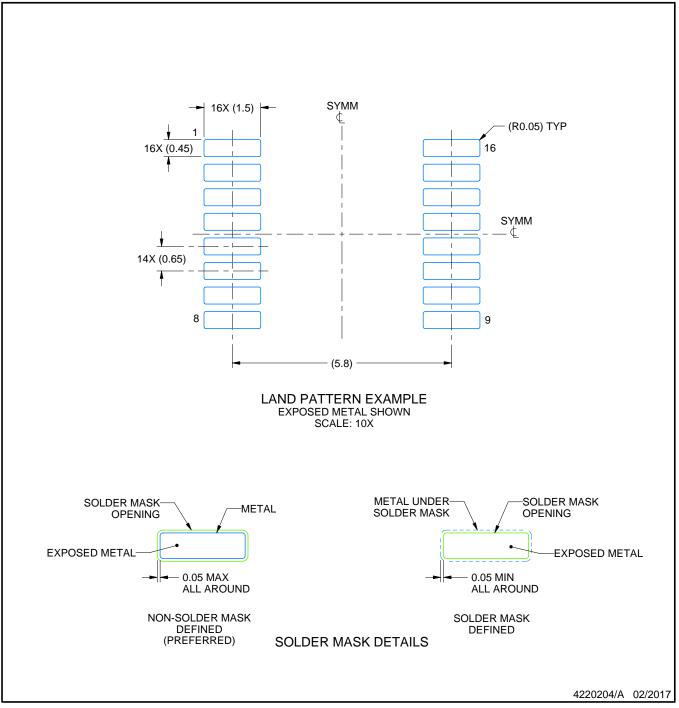
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

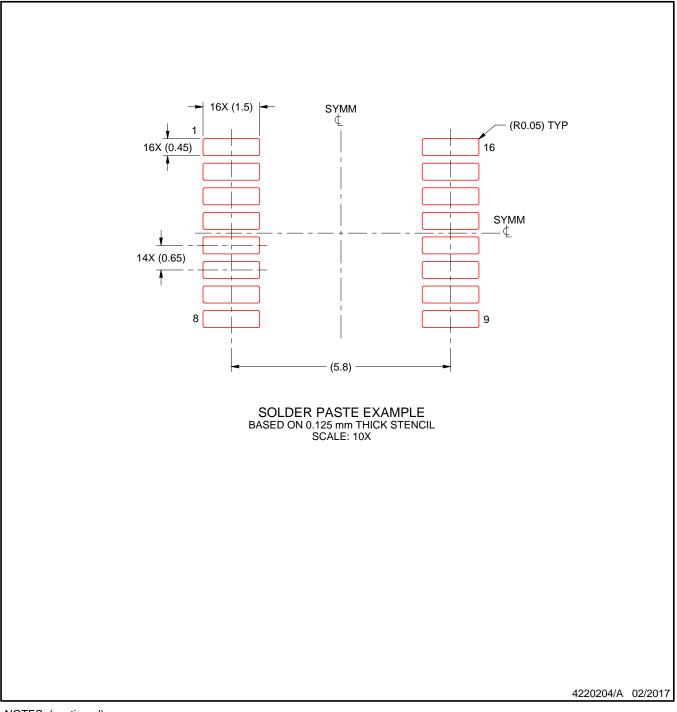
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

MECHANICAL DATA

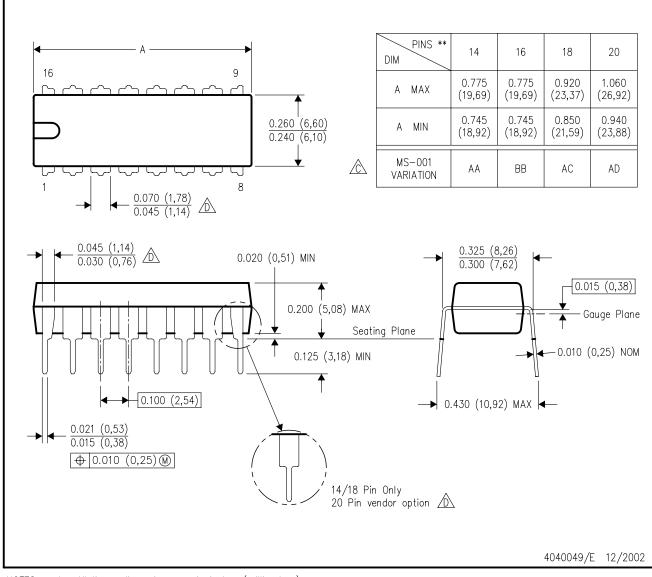
PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated