

TEXAS INSTRUMENTS

CD4067B, CD4097B SCHS052D – JUNE 2003 – REVISED AUGUST 2024

CD40x7B CMOS Analog Multiplexers or Demultiplexers

1 Features

- High-voltage types (20V rating)
 - CD4067B single 16-channel multiplexer or demultiplexer
- Low ON resistance: 125Ω (typ) over $15V_{p-p}$ signalinput range for $V_{DD}-V_{SS} = 15V$
- High OFF resistance: channel leakage of ±10pA (typ) at V_{DD} – V_{SS} = 10V
- Matched switch characteristics: R_{ON} = 5 Ω (typ) for $V_{DD}-V_{SS}$ = 15V
- Very low quiescent power dissipation under all digital-control input and supply conditions: 0.2µW (typ) at V_{DD} – V_{SS} = 10V
- Binary address decoding on chip
- 5V, 10V, and 15V parametric ratings
- 100% tested for quiescent current at 20V
- · Standardized symmetrical output characteristics
- Maximum input current of 1µA at 18V over full package temperature range: 100nA at 18V and 25°C
- Meets all requirements of JEDEC tentative standard No. 13-B, Standard Specifications for Description of "B" Series CMOS Devices

2 Applications

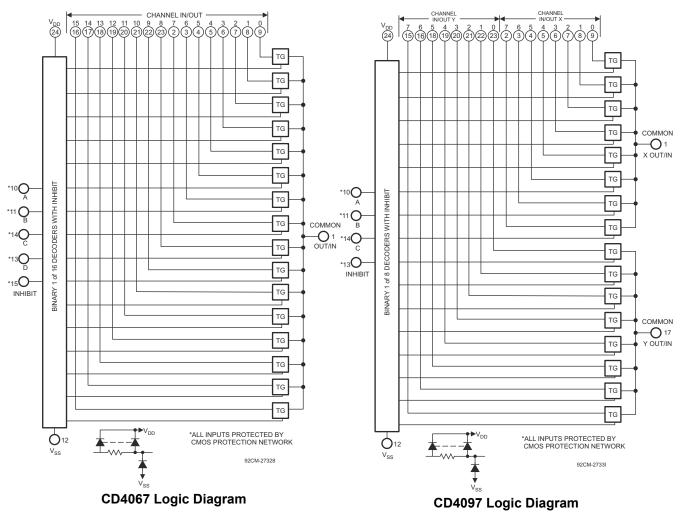
- · Analog signal and digital multiplexing
- Transmission-gate logic implementation
- A/DI and D/A conversion
- Signal gating

3 Description

CD40x7B CMOS analog multiplexers or demultiplexers are digitally controlled analog switches having low ON impedance, low OFF leakage current, and internal address decoding. When these devices are used as demultiplexers, the channel in or out terminals are the outputs and the common out or in terminals are the inputs. In addition, the ON resistance is relatively constant over the full inputsignal range.

The CD4067B is a 16-channel multiplexer with four binary control inputs, A, B, C, D, and an inhibit input, arranged so that any combination of the inputs selects one switch.

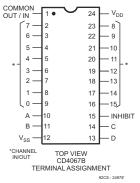
A logic "1" present at the inhibit input turns all channels off.


The CD40x7B types are supplied in 24-lead hermetic dual-in-line ceramic packages (F3A suffix), 24-lead dual-in-line plastic packages (E suffix), 24-lead small-outline packages (M, M96, and NSR suffixes), and 24-lead thin shrink small-outline packages (P and PWR suffixes).

Device Information

PART NUMBER	CHANNEL	PACKAGE (1)		
CD4067B		PW (TSSOP, 24)		
	8:1 differential multiplexer	DW (SOIC, 24)		

(1) For more information, see Section 11.


Table of Contents

1 Features	1
2 Applications	1
3 Description	
4 Pin Configuration and Functions	4
5 Specifications	5
5.1 Absolute Maximum Ratings	5
5.2 ESD Ratings	
5.3 Recommended Operating Conditions	
5.4 Thermal Information	6
5.5 Electrical Characteristics	<mark>6</mark>
5.6 AC Performance Characteristics	
5.7 Typical Characteristics	8
6 Parameter Measurement Information	
6.1 Test Circuits	9
7 Detailed Description	
•	

7.1 Functional Block Diagram	. 12
7.2 Device Functional Modes	.12
8 Application and Implementation	. 14
8.1 Application Information	
8.2 Typical Application	
9 Device and Documentation Support	
9.1 Receiving Notification of Documentation Updates	.15
9.2 Support Resources	. 15
9.3 Trademarks	.15
9.4 Electrostatic Discharge Caution	.15
9.5 Glossary	
10 Revision History	
11 Mechanical, Packaging, and Orderable	
Information	. 15

4 Pin Configuration and Functions

Figure 4-1. CD4067B 24 Pins (Top View)

			D4067 TRUTH TAE	BLE						
A	В	С	D	inh	Selected Channel					
Х	X	Х	Х	1	None					
0	0	0	0	0	0					
1	0	0	0	0	1					
0	1	0	0	0	2					
1	1	0	0	0	3					
0	0	1	0	0	4					
1	0	1	0	0	5					
0	1	1	0	0	6					
1	1	1	0	0	7					
0	0	0	1	0	8					
1	0	0	1	0	9					
0	1	0	1	0	10					
1	1	0	1	0	11					
0	0	1	1	0	12					
1	0	1	1	0	13					
0	1	1	1	0	14					
1	1	1	1	0	15					
1		1	1							

Table 4-1. Function Table

Table 4-2. Function Table

	CD4097 TRUTH TABLE									
Α	В	С	inh	Selected Channel						
Х	Х	Х	1	None						
0	0	0	0	0X, 0Y						
1	0	0	0	1X, 1Y						
0	1	0	0	2X, 2Y						
1	1	0	0	3X, 3Y						
0	0	1	0	4X, 4Y						
1	0	1	0	5X, 5Y						
0	1	1	0	6X, 6Y						
1	1	1	0	7X, 7Y						

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾ (2)

		MIN	MAX	UNIT
$V_{DD} - V_{SS}$			20	V
V _{DD}	Supply voltage	-0.5	20	V
V _{SS}		-20	0.5	V
I _{SEL} or I _{EN}	Logic control input pin current (EN, Ax, SELx)	-30	30	mA
V_{S} or V_{D}	Source or drain voltage (Sx, D)	V _{SS} -0.5	V _{DD} +0.5	V
I _S or I _{D (CONT)}	Source or drain continuous current (Sx, D)	-20	20	mA
TJ	Junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to ground, unless otherwise specified.

5.2 ESD Ratings

			VALUE	UNIT
	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±2000	M	
V _(ESD)		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±200	v

(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V _{DD} – V _{SS} ⁽¹⁾	Power supply voltage differential	3	18	V
V _{DD}	Positive power supply voltage	3	18	V
$V_{S} \text{ or } V_{D}$	Signal path input/output voltage (source or drain pin) (Sx, D)	V _{SS}	'ss V _{DD}	
V_{SEL} or V_{EN}	Address or enable pin voltage	0	V _{DD}	V
$I_S \text{ or } I_D (CONT)$	Source or drain continuous current (Sx, D)	Irain continuous current (Sx, D) -10 10		mA
T _A	Ambient temperature	-55	125	°C

(1) V_{DD} and V_{SS} can be any value as long as $3V \le (V_{DD} - V_{SS}) \le 24V$, and the minimum V_{DD} is met.

5.4 Thermal Information

THERMAL METRIC ⁽¹⁾		CD406x	CD406x	
		D (SOIC)	PW (TSSOP)	UNIT
		14 PINS	14 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	109.7	101.8	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	69.4	44.3	°C/W
R _{θJB}	Junction-to-board thermal resistance	67.9	68.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	25.8	3.2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	67.1	67.6	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

5.5 Electrical Characteristics

Over operating free-air temperature range, $V_{SUPPLY} = \pm 5V$, and $R_L = 100\Omega$, (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	TEST CONDITIONS	TEST CONDITIONS	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
SIGNAL INF	PUTS (V _{IS}) AND OUTPUTS (V _{OS})			•					
			T _A = -55°C					13	
			T _A = -40°C					13	
		$V_{is} = 0 \text{ to } 5V$ $V_{DD} = 5V$	T _A = 25°C				5	14.5	
			T _A = 85°C					150	
			T _A = 125°C					150	
			T _A = -55°C					14	
			T _A = -40°C					14	
		$V_{is} = 0 \text{ to } 5V$ $V_{DD} = 10V$	T _A = 25°C				6	15.5	
		100 - 100	T _A = 85°C					300	
DD	Quiescent Device Current		T _A = 125°C					300	
66			T _A = -55°C					20	μA
			T _A = -40°C					20	
		$V_{is} = 0 \text{ to } 5V$ $V_{DD} = 15V$	T _A = 25°C				6	20	-
		VDD - 15V	T _A = 85°C					600	
			T _A = 125°C					600	
			T _A = -55°C					100	
			T _A = -40°C					100	
		$V_{is} = 0 \text{ to } 5V$ $V_{DD} = 20V$	T _A = 25°C				7	100	
		V _{DD} - 20V	T _A = 85°C					3000	
			T _A = 125°C					3000	
				T _A = -55°C				800	
				T _A = -40°C				850	
			V _{DD} = 5V	T _A = 25°C			470	1050	
				T _A = 85°C				1200	
				T _A = 125°C				1300	_
				T _A = -55°C				310	
		to (V _{DD} -V _{SS})/2 ,		$T_A = -40^{\circ}C$				330	
r _{ON}	ON Resistance r _{ON} Max	$V_{\rm C} = V_{\rm DD},$ RL = 10k Ω	V _{DD} = 10V	T _A = 25°C			180	400	Ω
		returned V _{is} = V _{SS}		T _A = 85°C				520	
		to V _{DD}		T _A = 125°C				550	
				T _A = -55°C				200	
				$T_A = -40^{\circ}C$				210	
			V _{DD} = 15V	$T_A = 25^{\circ}C$			125	240	
				$T_A = 85^{\circ}C$			-	300	-
			V _{DD} = 15V	T _A = 125°C				320	

5.5 Electrical Characteristics (continued)

Over operating free-air temperature range, $V_{SUPPLY} = \pm 5V$, and $R_L = 100\Omega$, (unless otherwise noted)⁽¹⁾

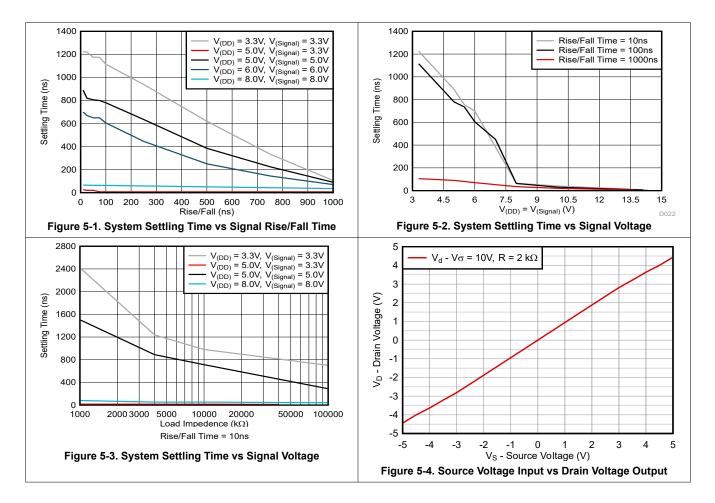
	PARAMETER		TEST CONDITIONS	TEST CONDITIONS	TEST CONDITIONS	TEST CONDITIONS	MIN T	ΥP	MAX	UNIT
	On-state resistance diffe	rence between any		V _{DD} = 5V				15		
ΔR _{ON}	On-state resistance difference between any two switches	difference between any difference		V _{DD} = 10V				10		Ω
	On-state resistance difference between any two switches	On-state resistance difference between any two switches		V _{DD} = 15V				5		
					T _A = -55°C				± 100	
					T _A = -40°C				± 100	
OFF Channel	I Leakage Current: Any Channe	l OFF (Max)		V _{DD} - V _{SS} = 18V	T _A = 25°C		± (0.1 ±	: 100 <mark>(2)</mark>	nA
or ALL Chanr	nels OFF (COMMON ÓUT/IN) (Max)		V _{DD} - V _{SS} - 10V	T _A = 85°C				± 1000 ⁽²⁾	ΠA
					T _A = 125°C				± 1000 ⁽²⁾	
C _{IS}	Input capacitance	V _S = 0V f = 1MHz CD4067	V _{DD} = 5V, VC = V _{SS} = -5V	V _{DD} = 5V, VC = V _{SS} = -5V	V _{DD} = 5V, VC = V _{SS} = -5V	V _{DD} = 5V, VC = V _{SS} = -5V		5		pF
C _{OS}	Output capacitance	V _S = 0V f = 1MHz CD4067	V _{DD} = 5V, VC = V _{SS} = -5V	V _{DD} = 5V, VC = V _{SS} = -5V	V _{DD} = 5V, VC = V _{SS} = -5V	V _{DD} = 5V, VC = V _{SS} = -5V		55		pF
C _{OS}	Output capacitance	V _S = 0V f = 1MHz CD4097	V _{DD} = 5V, VC = V _{SS} = -5V	V _{DD} = 5V, VC = V _{SS} = -5V	V _{DD} = 5V, VC = V _{SS} = -5V	V _{DD} = 5V, VC = V _{SS} = -5V		35		pF
C _{IOS}	Feed through	V _S = 0V f = 1MHz	V _{DD} = 5V, VC = V _{SS} = -5V	V _{DD} = 5V, VC = V _{SS} = -5V	V _{DD} = 5V, VC = V _{SS} = -5V	V _{DD} = 5V, VC = V _{SS} = -5V	(0.2		pF
			00	V _{DD} = 5V	00	00			3.5	V
V _{IHC}	Control input, high voltage	ge	See Figure 6-1 V _{DD} = 10V						7	V
			_	V _{DD} = 15V					11	V
				V _{DD} = 5V			1			V
VILC	Control input, low voltage (max)			V _{DD} = 10V			1			V
				V _{DD} = 15V			1			V
				T _A = -55°C			-0.1		1	
	Input current (max)		$V_{is} \le V_{DD}, V_{DD} -$	T _A = -40°C			-0.1		1	
I _{IN}		Input current	$V_{SS} = V_{DD}, V_{DD} = V_{SS} = 18V, V_{CC} \le V_{DD} = V_{SS} V_{DD} = 0$	T _A = 25°C			-0.1 0.00	01	1	μA
	Input current (max)	(max)	18V	T _A = 85°C			-1			
	Input current (max)	(max)		T _A = 125°C			-1		1	
C _{IN}	Input Capacitance							5	7.5	pF
	-3dB cutoff frequency (switch on)	CD4067	V _C = V _{DD} = 5V, V _S Common Out/In	$_{\rm S}$ = -5V, V _{is(p-p)} = 5V	(sine wave centere	d on 0V), $R_L = 1k\Omega$		14		
BW	-3dB cutoff frequency (s	CD4097 witch on)		_S = -5V, V _{is(p-p)} = 5V	(sine wave centere	d on 0V), $R_L = 1k\Omega$		20 60		MHz
			V _C = V _{DD} = 5V, V _{SS} f _{is} = 1-kHz sine wa	_S = 0V, V _{is(p-p)} = 2V (ve	sine wave centered	on 0V), $R_L = 10k\Omega$,	(0.3		
THD	Total Harmonic Distortion	Total Harmonic Distortion		_{SS} = 0V, V _{is(p-p)} = 3V	(sine wave centere	d on 0V), $R_L = 10k\Omega$,	(0.2		%
			$V_{\rm C} = V_{\rm DD} = 15V, V_{\rm S}$ $f_{\rm is} = 1$ -kHz sine wa	_{SS} = 0V, V _{is(p-p)} = 5V ve	(sine wave centere	ed on 0V), $R_L = 10k\Omega$,	0.	12		
	-40dB feed through	CD4067	V _C = V _{DD} = 5V, V _{SS}	, V_{SS} = –5V, $V_{is(p-p)}$ = 5V (sine wave centered on 0V), R_L = 1k Ω				20		
OISO	frequency (switch off)	CD4097	Common Out/In	w. F/				12		MHz
	-40dB feed through freq	uency (switch off)	V _C = V _{DD} = 5V, V _S Any channel	= V_{DD} = 5V, V_{SS} = –5V, V $_{is(p-p)}$ = 5V (sine wave centered on 0V), RL = 1k Ω channel				8		
		Any 2 Channels						1		
XTALK	-40dB crosstalk frequency	CD4097 on Common	$V_{\rm C} = V_{\rm DD} = 5V, V_{\rm SS}$	_S = -5V, V _{is(p-p)} = 5V	(sine wave centere	d on 0V), $R_L = 1k\Omega$		10		MHz
		CD4097 on Any						18		

5.5 Electrical Characteristics (continued)

Over operating free-air temperature range, $V_{SUPPLY} = \pm 5V$, and $R_L = 100\Omega$, (unless otherwise noted)⁽¹⁾

PARAMETER	TEST CONDITIONS	TEST CONDITIONS	TEST CONDITIONS	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
Crosstalk (control input to signal output)	V_{C} = 10V (square wave), R_{L} = 10k Ω V_{DD} = 10V					75		mV

Peak-to-Peak voltage symmetrical about (V_{DD} - V_{EE}) / 2. (1)


Determined by minimum feasible leakage measurement for automatic testing. (2)

5.6 AC Performance Characteristics

 V_{DD} = +15V, V_{SS} = V_{EE} = 0V, T_A = 25°C (unless otherwise noted)

PARAMETER	FROM	то	TEST CONDITIONS	V _{cc}	MIN TYP	MAX	UNIT
				5V	30	60	
t _{pd}	Signal Input	Signal Output	$R_L = 1 K \Omega$	10V	15	30	ns
				15V	7	20	
	Signal Input	Signal Output	$V_{IN} = V_{DD}, C_L = 50 \text{ pF},$ $R_L = 1k\Omega$	5V	325	650	ns
t _{plh}				10V	135	270	
				15V	95	190	
		Signal Output	$V_{IN} = V_{DD}, C_L = 50 \text{ pF},$ $R_L = 1k\Omega$	5V	220	440	
t _{phl}	Signal Input			10V	90	180	ns
				15V	65	130	

5.7 Typical Characteristics

6 Parameter Measurement Information

6.1 Test Circuits

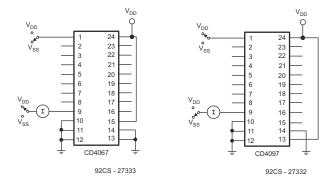


Figure 6-1. OFF Channel Leakage Current – Any Channel OFF

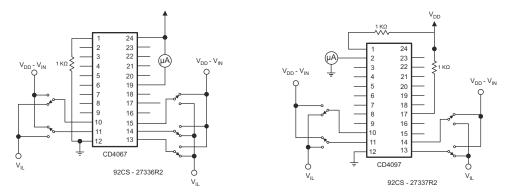


Figure 6-2. Input Voltage – Measure <2µA on all OFF Channels (For Example, Channel 12)

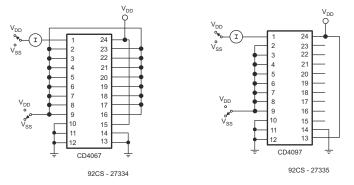
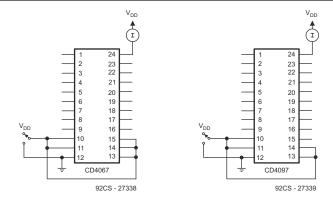



Figure 6-3. OFF Channel Leakage Current – All Channels OFF

Figure 6-4. Quiescent Device Current

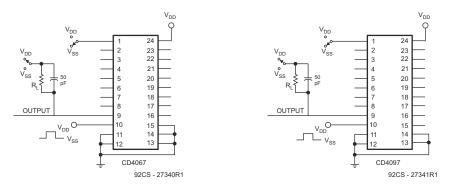
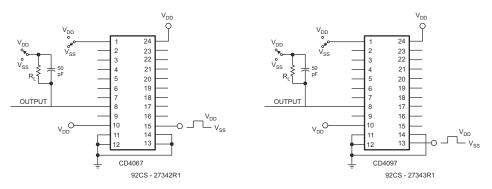



Figure 6-5. Turn-on and Turn-off Propagation Delay – Address Select Input to Signal Output (For Example,, Measured on Channel 0)

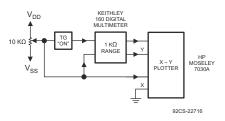


Figure 6-7. Channel ON Resistance Measurement Circuit

Figure 6-8. Propagation Delay Waveform Channel Being turned ON ($R_L = 10k\Omega$, $C_L = 50 \text{ pF}$)

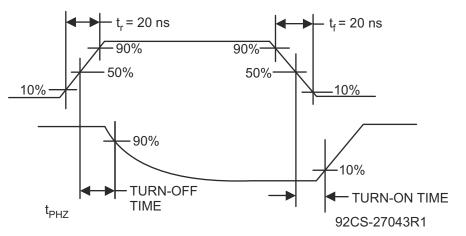


Figure 6-9. Propagation Delay Waveform Channel Being turned OFF (R_L = 300 Ω , C_L = 50 pF)

7 Detailed Description

7.1 Functional Block Diagram

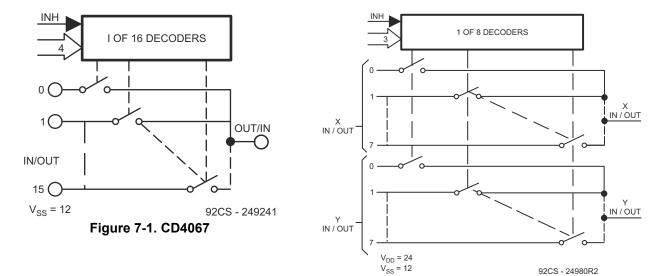


Figure 7-2. CD4097

7.2 Device Functional Modes

		C	D4067 TRUTH TAB	LE	
Α	В	С	D	inh	Selected Channel
Х	X	Х	Х	1	None
0	0	0	0	0	0
1	0	0	0	0	1
0	1	0	0	0	2
1	1	0	0	0	3
0	0	1	0	0	4
1	0	1	0	0	5
0	1	1	0	0	6
1	1	1	0	0	7
0	0	0	1	0	8
1	0	0	1	0	9
0	1	0	1	0	10
1	1	0	1	0	11
0	0	1	1	0	12
1	0	1	1	0	13
0	1	1	1	0	14
1	1	1	1	0	15

Table 7-2. Function Table

	CD4097 TRUTH TABLE										
A	В	С	inh	Selected Channel							
X	X	X	1	None							
0	0	0	0	0X, 0Y							
1	0	0	0	1X, 1Y							
0	1	0	0	2X, 2Y							
1	1	0	0	3X, 3Y							
0	0	1	0	4X, 4Y							
1	0	1	0	5X, 5Y							
0	1	1	0	6X, 6Y							
1	1	1	0	7X, 7Y							

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 Special Considerations

In applications where separate power sources are used to drive V_{DD} and the signal inputs, the V_{DD} current capability should exceed V_{DD}/R_L (R_L = effective external load). This provision avoids permanent current flow or clamp action on the V_{DD} supply when power is applied or removed from the CD40x7B.

When switching from one address to another, some of the ON periods of the channels of the multiplexers will overlap momentarily, which may be objectionable in certain applications. Also, when a channel is turned on or off by an address input, there is a momentary conductive path from the channel to V_{SS} , which will dump some charge from any capacitor connected to the input or output of the channel. the inhibit input turning on a channel will similarly dump some charge to V_{SS} .

The amount of charge dumped is mostly a function of the signal lave above V_{SS} . Typically, at $V_{DD}-V_{SS} = 10V$, a 100pF capacitor connected to the input or output of the channel will lose 3-4% of its voltage at the moment the channel turns on or off. This loss of voltage is essentially independent of the address or inhibit signal transition time, if the transition time is less than 1-2µs. When the inhibit signal turns a channel off, there is no charge dumping to V_{SS} . Rather, there is a slight rise in the channel voltage level (65mV typical) due to capacitive coupling from inhibit input to channel input or output. Address inputs also couple some voltage steps onto the channel signal levels.

In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.8V (calculated from RTON values shown in *Electrical Characteristics* tables). No V_{DD} current will flow through R_L if the switch current flows into terminal 1 on the CD4067B, terminals 1 and 17 on the CD4097B.

8.2 Typical Application

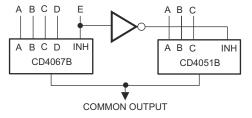


Figure 8-1. 18-24-to-1 MUX Addressing

9 Device and Documentation Support

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision C (July 2024) to Revision D (August 2024)	Page
•	Added Settling Time plots	8

C	hanges from Revision B (June 2003) to Revision C (July 2024)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document	1
•	Changed max and typ IDD for lower supply voltages	6
	Changed max IIN at low temperature	

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
CD4067BF	Active	Production	CDIP (J) 24	15 TUBE	No	(4) Call TI	⁽⁵⁾ N/A for Pkg Type	-55 to 125	CD4067BF
CD4067BF.A	Active	Production	CDIP (J) 24	15 TUBE	No	Call TI	N/A for Pkg Type	-55 to 125	CD4067BF
CD4067BF3A	Active	Production	CDIP (J) 24	15 TUBE	No	Call TI	N/A for Pkg Type	-55 to 125	CD4067BF3A
CD4067BF3A.A	Active	Production	CDIP (J) 24	15 TUBE	No	Call TI	N/A for Pkg Type	-55 to 125	CD4067BF3A
CD4067BM	Obsolete	Production	SOIC (DW) 24	-	-	Call TI	Call TI	-55 to 125	CD4067BM
CD4067BM96	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4067BM
CD4067BM96.A	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4067BM
CD4067BM96G4	Obsolete	Production	SOIC (DW) 24	-	-	Call TI	Call TI	-55 to 125	CD4067BM
CD4067BPW	Obsolete	Production	TSSOP (PW) 24	-	-	Call TI	Call TI	-55 to 125	CM067B
CD4067BPWR	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM067B
CD4067BPWR.A	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM067B
CD4097BF	Active	Production	CDIP (J) 24	15 TUBE	No	Call TI	N/A for Pkg Type	-55 to 125	CD4097BF
CD4097BF.A	Active	Production	CDIP (J) 24	15 TUBE	No	Call TI	N/A for Pkg Type	-55 to 125	CD4097BF
CD4097BM	NRND	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4097BM
CD4097BM.A	NRND	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4097BM
CD4097BME4	NRND	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4097BM
CD4097BMG4	NRND	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4097BM
CD4097BPW	NRND	Production	TSSOP (PW) 24	60 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM097B
CD4097BPW.A	NRND	Production	TSSOP (PW) 24	60 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM097B
CD4097BPWR	NRND	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM097B
CD4097BPWR.A	NRND	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM097B
CD4097BPWRE4	NRND	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM097B

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

www.ti.com

23-May-2025

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

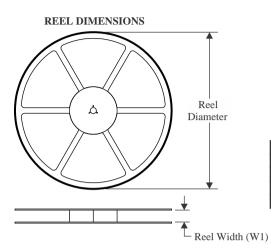
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

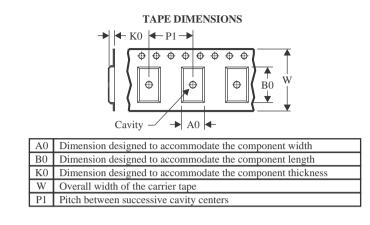
OTHER QUALIFIED VERSIONS OF CD4067B, CD4067B-MIL, CD4097B, CD4097B-MIL :

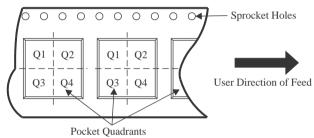
• Catalog : CD4067B, CD4097B

Military : CD4067B-MIL, CD4097B-MIL

NOTE: Qualified Version Definitions:

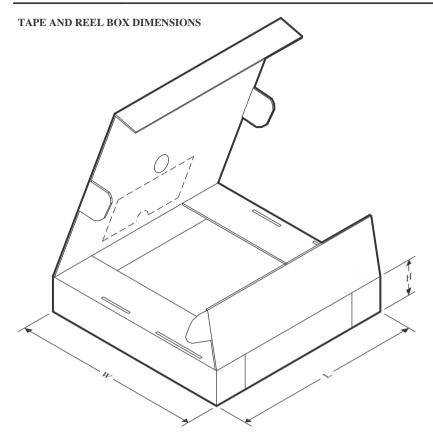

• Catalog - TI's standard catalog product


• Military - QML certified for Military and Defense Applications


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

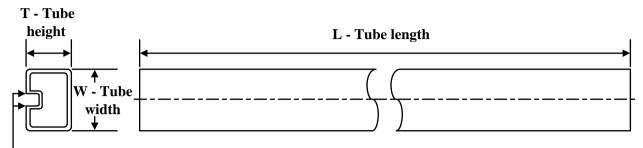

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD4067BM96	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

18-Jul-2025

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4067BM96	SOIC	DW	24	2000	350.0	350.0	43.0

TEXAS INSTRUMENTS

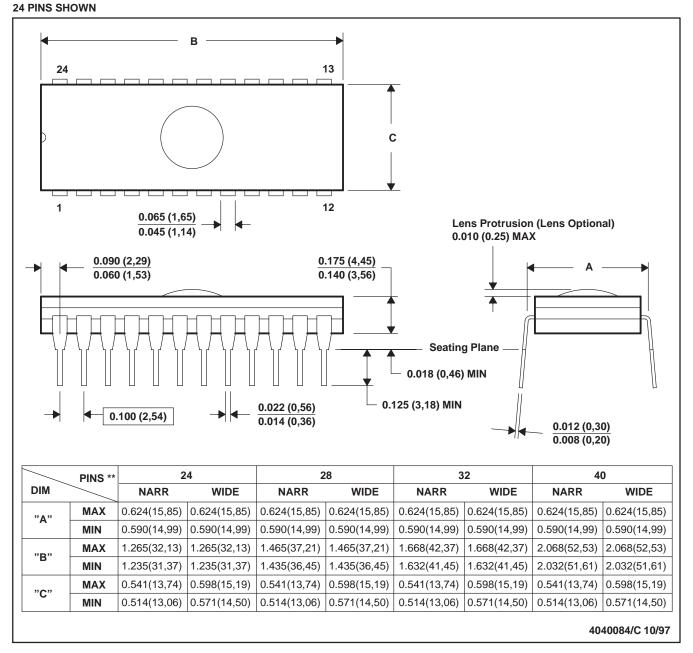
www.ti.com

18-Jul-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal


Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
CD4097BM	DW	SOIC	24	25	506.98	12.7	4826	6.6
CD4097BM.A	DW	SOIC	24	25	506.98	12.7	4826	6.6
CD4097BME4	DW	SOIC	24	25	506.98	12.7	4826	6.6
CD4097BMG4	DW	SOIC	24	25	506.98	12.7	4826	6.6
CD4097BPW	PW	TSSOP	24	60	530	10.2	3600	3.5
CD4097BPW.A	PW	TSSOP	24	60	530	10.2	3600	3.5

MECHANICAL DATA

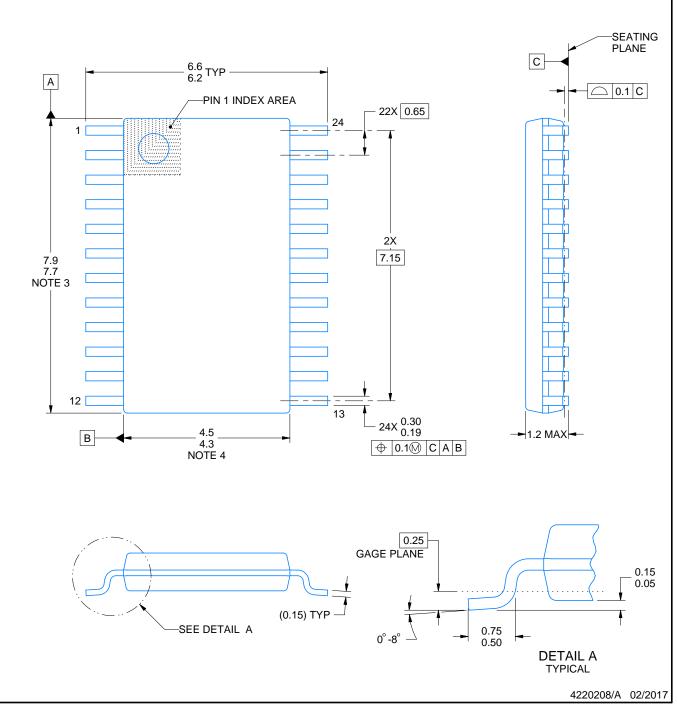
MCDI004A - JANUARY 1995 - REVISED NOVEMBER 1997

CERAMIC DUAL-IN-LINE PACKAGE

J (R-GDIP-T**)

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Window (lens) added to this group of packages (24-, 28-, 32-, 40-pin).
- D. This package can be hermetically sealed with a ceramic lid using glass frit.
- E. Index point is provided on cap for terminal identification.


PW0024A

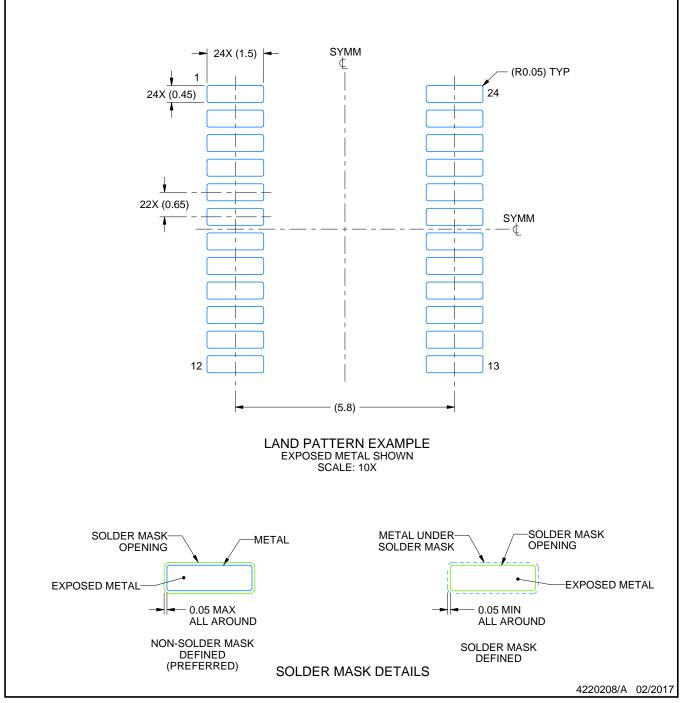
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0024A

EXAMPLE BOARD LAYOUT

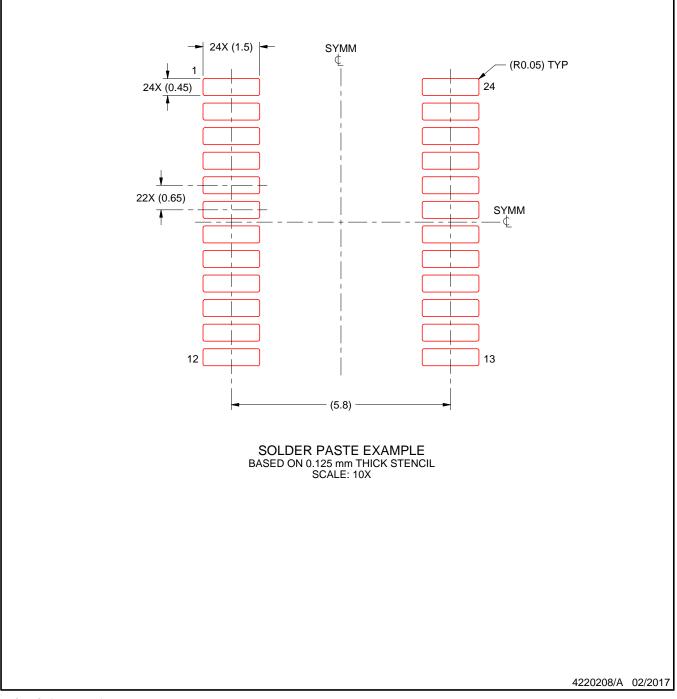
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

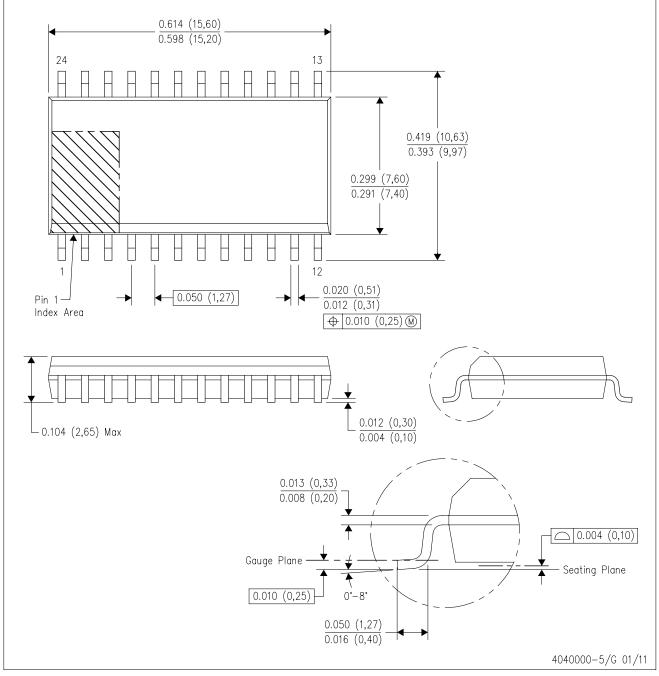


PW0024A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AD.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated