BQ25758 SLUSET4B - DECEMBER 2022 - REVISED MARCH 2024 # BQ25758: I²C Controlled, Bidirectional Buck-Boost Controller with Wide Voltage Range #### 1 Features - Wide input voltage operating range: 4.2V to 60V - Synchronous buck-boost DC/DC controller with NFET drivers - Adjustable switching frequency from 200kHz to 600kHz - Optional synchronization to external clock - Integrated loop compensation with soft start - Selectable PFM operation for light load efficiency improvement (PFM or forced PWM option) - Optional gate driver supply input for optimized efficiency - Support USB-PD Extended Power Range (EPR) in forward and reverse power direction - Adjustable input and output voltage regulation from 3.3V to 60V with 20mV/step - Adjustable input and output current regulation (RAC_SNS, ROUT_SNS) from 400mA to 20A with 50mA/step using 5mΩ resistor - Bypass mode for highest efficiency with VOUT = - **Buck-only mode** - High accuracy - ±2% output voltage regulation - ±3% output current regulation - ±2% input voltage regulation - ±3% input current regulation - I²C controlled for optimal system performance with resistor-programmable option - Hardware adjustable input and output current - Integrated 16-bit ADC for voltage, current, and temperature monitoring - High safety integration - Adjustable input overvoltage and undervoltage - Output overvoltage and overcurrent protection - Thermal shutdown - Status outputs - Adapter present status (PG) - Switcher operation status (STAT) - Package - 36-pin 5mm × 6mm QFN # 2 Applications - **Docking station** - Monitor - USB-PD EPR (Extended Power Range) - Buck-Boost and Buck-only operation # 3 Description BQ25758 is a wide input voltage, bidirectional switched-mode buck-boost controller. The device offers high-efficiency power conversion over a wide voltage range with output CC-CV control. The device integrates all the loop compensation for the buckboost converter, thereby providing a high density solution with ease of use. In reverse mode, the device draws power from the output supply and regulates the input terminal voltage with an added constant current loop for protection. Besides the I²C host-controlled mode, the device also supports programmable hardware limits. Input current, and output current regulation targets can be set with single resistor on the IIN, and IOUT pins, respectively. By default, the device is programmed to provide 5V output, and the target output voltage can be adjusted via the VOUT_REG register bits. #### Package Information | PART
NUMBER | PACKAGE(1) | | BODY SIZE
(NOM) | | |----------------|---------------|---------------|--------------------|--| | BQ25758 | RRV (VQFN 36) | 6.0mm × 5.0mm | 6.0mm × 5.0mm | | - (1) For all available packages, see Section 12. - The package size (length × width) is a nominal value and includes pins, where applicable. Simplified Schematic # **Table of Contents** | 1 Features1 | 7 Ar | |---------------------------------------|------| | 2 Applications | 7. | | 3 Description1 | 7. | | 4 Pin Configuration and Functions3 | 8 Pc | | 5 Specifications6 | 9 La | | 5.1 Absolute Maximum Ratings6 | 9. | | 5.2 ESD Ratings6 | 9. | | 5.3 Recommended Operating Conditions6 | 10 D | | 5.4 Thermal Information7 | 10 | | 5.5 Electrical Characteristics8 | 10 | | 5.6 Timing Requirements12 | 10 | | 5.7 Typical Characteristics13 | 10 | | 6 Detailed Description14 | 10 | | 6.1 Overview14 | 10 | | 6.2 Functional Block Diagram15 | 11 R | | 6.3 Feature Description16 | 12 N | | 6.4 Device Functional Modes29 | In | | 6.5 BQ25758 Registers 31 | | | 7 Application and Implementation | 49 | |---|--------------------| | 7.1 Application Information | 49 | | 7.2 Typical Applications | 49 | | 8 Power Supply Recommendations | 59 | | 9 Layout | 60 | | 9.1 Layout Guidelines | | | 9.2 Layout Example | 61 | | 10 Device and Documentation Support | 63 | | 10.1 Device Support | 63 | | 10.2 Receiving Notification of Documentation Update | es <mark>63</mark> | | 10.3 Support Resources | <mark>63</mark> | | 10.4 Trademarks | 63 | | 10.5 Electrostatic Discharge Caution | 63 | | 10.6 Glossary | 63 | | 11 Revision History | 64 | | 12 Mechanical, Packaging, and Orderable | | | Information | 65 | | | | # **4 Pin Configuration and Functions** Figure 4-1. BQ25758, RRV Package 36-pin VQFN Top View **Table 4-1. Pin Functions** | PIN | | I/O | DESCRIPTION | | |----------|-----|-----|---|--| | NAME | NO. | 1/0 | DESCRIPTION | | | SCL | 1 | DI | I ² C Interface Clock – Connect SCL to the logic rail through a 10-kΩ resistor. | | | SDA | 2 | DIO | I²C Interface Data – Connect SDA to the logic rail through a 10-kΩ resistor. | | | ĪNT | 3 | DO | Open Drain Interrupt Output – Connect the $\overline{\text{INT}}$ pin to a logic rail via 10-kΩ resistor. The $\overline{\text{INT}}$ pin sends an active low, 256-μs pulse to host to report the controller device status and faults. | | | STAT | 4 | DO | Drain Status Output – Connect to the pull up rail via 10-kΩ resistor. The STAT pin function can sabled when DIS_STAT_PIN bit is set to 1. When disabled, this pin can be used as a general use indicator via the FORCE_STAT_ON bit. | | | NC | 5 | - | No Connect - Leave this pin floating, do not tie to PGND | | | PG/STAT3 | 6 | DO | Open Drain Active Low Power Good Indicator – Connect to the pull up rail via 10-kΩ resistor. LOW indicates a good input source if VAC is within the programmed ACUV / ACOV operating window. The PG pin function can be disabled when DIS_PG_PIN bit is set to 1. When disabled, this pin can be used as a general purpose indicator via the FORCE_STAT3_ON bit. | | | CE/STAT4 | 7 | DIO | Active Low Enable Pin – Power conversion is enabled when EN_CHG bit is 1 and $\overline{\text{CE}}$ pin is LOW. $\overline{\text{CE}}$ pin must be pulled HIGH or LOW, do not leave floating. The $\overline{\text{CE}}$ pin function can be disabled when DIS_CE_PIN bit is set to 1. When disabled, this pin can be used as a general purpose indicator via the FORCE_STAT4_ON bit. | | # **Table 4-1. Pin Functions (continued)** | PIN | | | Table 4-1. Fill FullCtions (continued) | | |---------|-----|-----|--|--| | NAME | NO. | I/O | DESCRIPTION | | | | | | Temperature Qualification Voltage Input – This pin's function is normally disabled. If not needed, | | | TS / NC | 8 | AI | leave this pin floating. To enable pin functionality, set EN_TS register bit to 1. Connect a negative temperature coefficient thermistor. Program temperature window with a resistor divider from REGN to TS to PGND. Power conversion suspends when TS pin voltage is out of range. Recommend 103AT-2 10-kΩ thermistor. | | | IOUT | 9 | AI | Output Current Limit Setting – IOUT pin sets the maximum output current, and can be used to monitor the output current. A programming resistor to PGND is used to set the output current limit as $I_{IOUT} = K_{IOUT} / R_{IOUT}$. When the device is under output current regulation, the voltage at IOUT pin is V_{REF_IOUT} . When IOUT pin voltage is less than V_{REF_IOUT} , the actual output current can be calculated as: $IOUT = K_{IOUT} \times V_{IOUT} / (R_{IOUT} \times V_{REF_IOUT})$. The actual output current limit is the lower of the limits set by IOUT pin or the IOUT_REG register bits. This pin function can be disabled when EN_IOUT_PIN bit is 0. If IOUT pin is not used, this pin should be pulled to PGND, do not leave floating. | | | IIN | 10 | AI | Input Current Limit Setting – IIN pin sets the maximum input current, and can be used to monitor the input current. A programming resistor to PGND is used to set the input current limit as $I_{LIM} = K_{ILIM} / R_{IIN}$. When the device is under input current regulation, the voltage at IIN pin is V_{REF_IILIM} . When IIN pin voltage is less than V_{REF_ILIM} , the actual input current can be calculated as: IAC = $K_{ILIM} \times V_{IIN} / (R_{IIN} \times V_{REF_ILIM})$. The actual input current limit is the lower of the limits set by IIN pin or the IAC_DPM register bits. This pin function can be disabled when EN_IIN_PIN bit is 0. If IIN pin is not used, this pin should be pulled to PGND, do not leave floating. | | | NC | 11 | - | No Connect - Leave this pin floating , do not tie to PGND | | | VO_SNS | 12 | Al | Output Voltage Sensing – Kelvin connect directly to the output voltage regulation point. | | | SRN | 13 | Al | Current-Sense Resistor, Negative Input – A 0.47-μF ceramic capacitor is placed from SRN to SRP to provide differential-mode filtering. An optional 0.1-μF ceramic capacitor is placed from the SRN pin to PGND for common-mode filtering. | | | SRP | 14 | Al | Current-Sense Resistor, Positive Input – A 0.47-μF ceramic capacitor is placed from SRN to SRP to provide differential-mode filtering. A 0.1-μF ceramic capacitor is placed from the SRP pin to PGND for common-mode filtering.
| | | NC | 15 | - | No Connect - Leave this pin floating, do not tie to PGND | | | NC | 16 | - | No Connect - Leave this pin floating, do not tie to PGND | | | MODE | 17 | Al | Mode Programming resistor – Connect a resistor from this pin to PGND to select between buck-boost or buck-only operation. Refer to MODE Pin Configuration section for more details. | | | SW2 | 18 | Al | Boost Side Half Bridge Switching Node – | | | HIDRV2 | 19 | AO | Boost Side High-Side Gate Driver – Connect to the boost high-side N-channel MOSFET gate. | | | BTST2 | 20 | Р | Boost Side High-Side Power MOSFET Gate Driver Power Supply – Connect a capacitor between BTST2 and SW2 to provide bias to the high-side MOSFET gate driver. | | | LODRV2 | 21 | AO | Boost Side Low-Side Gate Driver – Connect to the boost low-side N-channel MOSFET gate. | | | PGND | 22 | - | Power Ground Return – The high current ground connection for the low-side gate drivers. | | | DRV_SUP | 23 | Р | Gate Drive Supply Input – Voltage on this pin is used to drive the gates of buck-boost converter switching FET. Connect a 4.7-µF ceramic capacitor from DRV_SUP to power ground. REGN LDO voltage can be used as the gate driver supply for all switching FETs by connecting REGN to DRV_SUP pin. In high-voltage applications, it is possible to directly provide the DRV_SUP voltage with an external supply up to 12 V to achieve higher switching efficiency. See Section 6.3.3.3 for more details. | | | REGN | 24 | Р | Internal Linear Regulator Output – Connect a 4.7-µF ceramic capacitor from REGN to power ground. REGN LDO voltage can be used as the gate driver supply for all switching FETs by connecting REGN to DRV_SUP pin. In high-voltage applications, it is possible to directly provide the DRV_SUP voltage with an external supply up to 12 V to achieve higher switching efficiency. See Section 6.3.3.3 for more details. | | | LODRV1 | 25 | AO | Buck Side Low-Side Gate Driver – Connect to the buck low-side N-channel MOSFET gate. | | | BTST1 | 26 | Р | Buck Side High-Side Power MOSFET Gate Driver Power Supply – Connect a capacitor between BTST1 and SW1 to provide bias to the high-side MOSFET gate driver. | | | HIDRV1 | 27 | AO | Buck Side High-Side Gate Driver – Connect to the buck high-side N-channel MOSFET gate. | | | SW1 | 28 | Al | Buck Side Half Bridge Switching Node – | | # **Table 4-1. Pin Functions (continued)** | PIN | | | DESCRIPTION | | | |-------------|-----|----------|--|--|--| | NAME | NO. | I/O | DESCRIPTION | | | | ACN | 29 | AI | Adapter Current-Sense Resistor, Negative Input A 0.47-μF ceramic capacitor is placed from ACN to ACP to provide differential-mode filtering. An optional 0.1-μF ceramic capacitor is placed from the ACN pin to PGND for common-mode filtering. | | | | ACP | 30 | Al | Adapter Current-Sense Resistor, Positive Input A 0.47-μF ceramic capacitor is placed from ACN to ACP to provide differential-mode filtering. A 0.1-μF ceramic capacitor is placed from the ACP pin to PGND for common-mode filtering | | | | NC | 31 | - | No Connect - Leave this pin floating, do not tie to PGND | | | | VAC 32 P | | D | Input Voltage Detection and Power VAC is the input bias to power the IC. Connect a 1µF capacitor | | | | | | ' | from pin to PGND. When Reverse Mode is enabled, pin 32 is regulated to VAC_REV. | | | | ACUV | 34 | AI | VAC Undervoltage Comparator Input – Connect a resistor divider from VAC to PGND to program the undervoltage protection. When this pin falls below V _{REF_ACUV} , the device stops operation. The hardware limit for input voltage regulation reference is V _{ACUV_DPM} . The actual input voltage regulation setting is the higher of the pin-programmed value and the VAC_DPM register value. If ACUV programming is not used, pull this pin to VAC, do not leave floating. | | | | ACOV | 35 | Al | VAC Overvoltage Comparator Input – Connect a resistor divider from VAC to PGND to program the overvoltage protection. When this pin rises above V _{REF_ACOV} , the device stops operation. If ACOV programming is not used, pull this pin to PGND, do not leave floating. | | | | FSW_SYNC | 36 | DAI | Switching Frequency and Synchronization Input – An external resistor is connected to the FSW_SYNC pin and PGND to set the nominal switching frequency. This pin can also be used to synchronize the PWM controller to an external clock. | | | | Thermal Pad | 37 | - | Exposed pad beneath the IC – Always solder the thermal pad to the board, and have vias on the thermal pad plane star-connecting to PGND and ground plane for high-current power converter. It also serves as a thermal pad to dissipate the heat. | | | Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback # **5 Specifications** # 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |------------------------|--|------|-----|------| | | VAC, ACUV, ACOV, ACP, ACN, SRP, SRN, VO_SNS | -0.3 | 70 | V | | | SW1, SW2 | -2 | 70 | V | | | SW1, SW2 (40ns transient) | -4 | 70 | V | | | PG | -0.3 | 40 | V | | Voltage | BTST1, HIDRV1 with respect to SW1 | -0.3 | 14 | V | | | BTST2, HIDRV2 with respect to SW2 | -0.3 | 14 | V | | | DRV_SUP, LODRV1, LODRV2 | -0.3 | 14 | V | | | ACP - ACN, SRP - SRN | -0.3 | 0.3 | V | | | $\overline{\text{CE}}$, FSW_SYNC, IOUT, IIN, $\overline{\text{INT}}$, REGN, SCL, SDA, MODE, STAT, TS | -0.3 | 6 | V | | Output Sink
Current | CE, PG, STAT | | 5 | mA | | TJ | Junction temperature | -40 | 150 | °C | | T _{stg} | Storage temperature | -65 | 150 | °C | Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. # 5.2 ESD Ratings | | | | VALUE | UNIT | |--------|--|---|-------|------| | V | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/
JEDEC JS-001, all pins ⁽¹⁾ | ±2000 | \/ | | V(ESD) | V _(ESD) Electrostatic discharge | Charged device model (CDM), per ANSI/ESDA/
JEDEC JS-002, all pins ⁽²⁾ | ±500 | V | - JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. # **5.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | 5 1 5 1 | MIN | NOM | MAX | UNIT | |----------------------|--|------|-----|-----|------| | V _{VAC} | Input voltage | 4.2 | | 60 | V | | V _{OUT} | Output voltage | 0 | | 60 | V | | V _{DRV_SUP} | DRV_SUP pin direct drive voltage range | 4.0 | | 12 | V | | F _{SW} | Switching Frequency | 200 | | 600 | kHz | | TJ | Junction temperature | -40 | | 125 | °C | | T _A | Ambient temperature | -40 | | 105 | °C | | C _{IN} | Buck-boost input capacitance | 160 | | | μF | | C _{OUT} | Buck-boost output capacitance | 160 | | | μF | | C _{REGN} | REGN capacitor | 4.7 | | | μF | | C _{DRV_SUP} | DRV_SUP capacitor | 4.7 | | | μF | | L | Switched Inductor | 2.2 | | 15 | μH | | R _{DCR} | Inductor DC Resistance | 1.75 | | 60 | mΩ | | R _{AC_SNS} | Input current sense resistor | 0(1) | 5 | 10 | mΩ | # **5.3 Recommended Operating Conditions (continued)** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM | MAX | UNIT | |----------------------|------------------------------------|-----|-----|-----|------| | R _{OUT_SNS} | Output current sense resistor | | 5 | | mΩ | | R _{IOUT} | IOUT programming pulldown resistor | 0.0 | | 100 | kΩ | | R _{IIN} | IIN programming pulldown resistor | 0.0 | | 50 | kΩ | ⁽¹⁾ When R_{AC_SNS} is $0m\Omega,$ input current limit function is disabled # **5.4 Thermal Information** | | | BQ25758 | | |-----------------------|--|---------|------| | | THERMAL METRIC(1) | RRV | UNIT | | | | 36 PINS | | | R _{0JA} | Junction-to-ambient thermal resistance (JEDEC ⁽¹⁾) | 29.4 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 18.8 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 9.9 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 0.2 | °C/W | | Ψ_{JB} | Junction-to-board characterization parameter | 9.8 | °C/W | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | 2.5 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. # **5.5 Electrical Characteristics** VAC = ACP = ACN = SYS = SRP = SRN = 28V, T_J = -40°C to +125°C, and T_J = 25°C for typical values (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------------
---|--|------------|------|-------|-----------| | QUIESCENT CUI | RRENTS | | | | | | | I _{Q_VAC} | Quiescent input current (I _{VAC}) | Not switching | | 0.75 | 1 | mA | | I _{Q_REV} | Quiescent battery current in Reverse mode (I _{SRN} + I _{SRP}) | Not switching | | 0.75 | 1 | mA | | VAC / BAT POWE | <u>'</u> | | | | | | | V _{VAC_OP} | VAC operating range | | 4.2 | | 60 | V | | V _{VAC_OK} | VAC converter enable threshold | VAC rising, no battery | 4.2 | | | V | | V _{VAC_OKZ} | VAC converter disable threshold | VAC falling, no battery | | | 3.5 | V | | V _{REF_ACUV} | ACUV comparator threshold to enter VAC_UVP | V _{ACUV} falling | 1.095 | 1.1 | 1.106 | V | | V _{REF_ACUV_HYS} | ACUV comparator threshold hysteresis | V _{ACUV} rising | | 50 | | mV | | V _{VAC_INT_OV} | VAC internal threshold to enter VAC_OVP | IN rising | | 66 | | V | | V _{VAC_INT_OVZ} | VAC internal thresholds to exit VAC_OVP | IN falling | | 63 | | ٧ | | V _{REF_ACOV} | ACOV comparator threshold to enter VAC_OVP | V _{ACOV} rising | 1.184 | 1.2 | 1.206 | ٧ | | V _{REF_ACOV_HYS} | ACOV comparator threshold hysteresis | V _{ACOV} falling | | 50 | | mV | | OUTPUT VOLTA | GE REGULATION | | | | | | | V _{OUT_REG_RANGE} | Output voltage regulation range | | 3.3 | | 60 | V | | | I ² C setting output voltage regulation | VOUT_REG = 0x0960 | | 48 | | V | | V | | | -2 | | 2 | % | | V _{OUT_REG_ACC} | accuracy | VOUT_REG = 0x0578 | | 28 | | V | | | | | -2 | | 2 | % | | | | VOUT REG = 0x02EE | | 15 | | V | | V _{OUT_REG_ACC} | I ² C setting output voltage regulation | V661_1126 6X6222 | -2 | | 2 | % | | *OUT_REG_ACC | accuracy | VOUT_REG = 0x00FA | | 5 | | V | | | ACOV comparator threshold to enter VAC_OVP ACOV comparator threshold hysteresis AGE REGULATION Output voltage regulation range I ² C setting output voltage regulation accuracy I ² C setting output voltage regulation accuracy EENT REGULATION Output current regulation range | | -2 | | 2 | % | | OUTPUT CURRE | | | | | | | | I _{OUT_REG_RANGE} | Output current regulation range | | 0.4 | | 20 | Α | | | | $R_{OUT_SNS} = 5m\Omega$, VOUT = 12V, 36V, 55V. | | 15 | | Α | | | | IOUT_REG = 0x012C | -3 | | 3 | % | | IOUT REG ACC | I ² C setting output current regulation | $R_{OUT_SNS} = 5m\Omega$, VOUT = 12V, 36V, 55V. | | 5 | | Α | | 001_1120_7100 | accuracy | IOUT_REG = 0x0064 | -3 | | 3 | % | | | | $R_{OUT_SNS} = 5m\Omega$, VOUT = 12V, 36V, 55V. | | 2 | | Α | | | | IOUT_REG = 0x0028 | – 5 | | 5 | % | | K _{IOUT} | Hardware output current limit set factor (Amperes of output current per $k\Omega$ on IOUT pin) | R_{OUT_SNS} = 5mΩ, R_{IOUT} = 10kΩ, 5kΩ, and 3.33kΩ | 48 | 50 | 52 | A x
kΩ | | V _{REF_IOUT} | IOUT pin voltage when IOUT pin is in regulation | | | 2.0 | | V | # **5.5 Electrical Characteristics (continued)** VAC = ACP = ACN = SYS = SRP = SRN = 28V, T_J = -40°C to +125°C, and T_J = 25°C for typical values (unless otherwise noted) | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--|--|---|---|---
---| | | 0.0.140.5511.0.0015 | | 20 | | Α | | | $R_{AC_SNS} = 2m\Omega$, IAC_DPM = 0x00A0 | -3 | | 3 | % | | I ² C setting input current regulation | D = 200 IAC DDM = 0v0050 | | 10 | | Α | | accuracy in forward mode | R _{AC_SNS} = 2mΩ, IAC_DPIM = 0x0050 | -4 | | 4 | % | | | P 2mO IAC DPM - 0v0028 | | 5.0 | | Α | | | NAC_SNS - ZIIII2, IAC_DFIVI - 0X0020 | -7 | | 7 | % | | Hardware input current limit set factor (Amperes of input current per $k\Omega$ on ILIM_HIZ pin) | R_{AC_SNS} = 2mΩ, R_{ILIM} = 5kΩ, 2.5kΩ, and 1.67kΩ | 48 | 50 | 52 | A x
kΩ | | ILIM_HIZ pin voltage when ILIM_HIZ pin is in regulation | | | 2.0 | | ٧ | | ILIM_HIZ input high threshold to enter HIZ mode | V _{ILIM_HIZ} rising | 3.7 | | | ٧ | | REGULATION | | | | | | | Input voltage DPM regulation range | | 4.2 | | 60 | V | | I ² C setting input voltage regulation | VAC_DPM = 0x076C | | 38 | | V | | accuracy | | -2 | | 2 | % | | | VAC DPM = 0x04E2 | | 25 | | V | | I ² C setting input voltage regulation | | -2 | | 2 | % | | accuracy in forward mode | VAC DPM = 0x03B6 | | 19 | | V | | | _ | -2 | | 2 | % | | ACUV pin voltage when in VDPM regulation | | 1.198 | 1.210 | 1.222 | V | | VOLTAGE REGULATION | | | | | | | VAC Voltage regulation range in Reverse mode | | 3.3 | | 60 | V | | Voltage regulation accuracy in | VAC_REV = 0x0960 | | 48 | | V | | | | -2 | | 2 | % | | Reverse mode | VAC_REV = 0x0578 | | 28 | | V | | | | -2 | | 2 | % | | | VAC REV = 0x02EE | | 15 | | V | | VAC Voltage regulation accuracy in | _ | -2 | | 2 | % | | Reverse mode | VAC_REV = 0x00FA | | 5 | | V | | CURRENT REQUILATION | | -2 | | 2 | % | | CURRENT REGULATION | | T | 20 | | _ | | | $R_{AC_SNS} = 2m\Omega$, IAC_REV = 0x00A0 | - 3.5 | | 2 5 | A
% | | Input current regulation accuracy in Reverse mode | | -3.3 | 5.0 | 3.3 | 70
A | | | $R_{AC_SNS} = 2m\Omega$, IAC_REV = 0x0028 | _5.5 | J.U | 5.5 | % | | RRENT LIMIT (OVERLOAD MODE) | | | | 0.0 | /" | | , , , | EN OVLD = 1 and OVLD ILIM2 = 0 | | 150 | | % | | IIN or IOUT. Percentage above the IAC_REG or IOUT_REG register values. ILIM2 duration is t _{OVLD} | EN_OVLD = 1 and OVLD_ILIM2 = 1 | 200 | | | % | | Maximum temporary current limit for IIN or IOUT. ILIM3 duration is t _{3L OVLD} | Absolute maximum current limit across $5m\Omega$ R _{AC_SNS} and/or $5m\Omega$ R _{OUT_SNS} . EN_OVLD_3L = 1 and EN_OVLD = 1 | | 20 | | А | | | I ² C setting input current regulation accuracy in forward mode Hardware input current limit set factor (Amperes of input current per kΩ on ILIM_HIZ pin) ILIM_HIZ pin voltage when ILIM_HIZ pin is in regulation ILIM_HIZ input high threshold to enter HIZ mode REGULATION Input voltage DPM regulation range I ² C setting input voltage regulation accuracy I ² C setting input voltage regulation accuracy in forward mode ACUV pin voltage when in VDPM regulation VOLTAGE REGULATION VAC Voltage regulation range in Reverse mode Voltage regulation accuracy in Reverse mode CURRENT REGULATION Input current regulation accuracy in Reverse mode CURRENT REGULATION REVERSE mode REENT LIMIT (OVERLOAD MODE) Temporary higher current limit for IIN or IOUT. Percentage above the IAC_REG or IOUT_REG register values. ILIM2 duration is tovLD Maximum temporary current limit for | RAC_SNS = 2mΩ, IAC_DPM = 0x00A0 RAC_SNS = 2mΩ, IAC_DPM = 0x0050 RAC_SNS = 2mΩ, IAC_DPM = 0x0050 RAC_SNS = 2mΩ, IAC_DPM = 0x0050 RAC_SNS = 2mΩ, IAC_DPM = 0x0028 RAC_SNS = 2mΩ, RILIM = 5kΩ, 2.5kΩ, and 1.67kΩ ILIM_HIZ pin voltage when ILIM_HIZ pin is in regulation is in regulation ILIM_HIZ pin voltage when ILIM_HIZ pin is in regulation made ILIM_HIZ pin voltage when in LIM_HIZ pin is in regulation range IPC setting input voltage regulation accuracy IPC setting input voltage regulation accuracy in forward mode IPC setting input voltage regulation accuracy in forward mode VAC_DPM = 0x076C VAC_DPM = 0x04E2 VAC_DPM = 0x03B6 VAC_DPM = 0x03B6 VAC_DPM = 0x04E2 VAC_DPM = 0x03B6 VAC_DPM = 0x04E2 VAC_REV = 0x0960 VAC_REV = 0x0960 VAC_REV = 0x0960 VAC_REV = 0x0078 VAC_SNS = 2mΩ, IAC_REV = 0x0028 RRENT LIMIT (OVERLOAD MODE) Temporary higher current limit for INN or IOUT_Percentage above the IAC_REV or IOUT_REG register values. ILIM2 duration is tout. INN or IOUT_PERCENTAGE is tours of | PC setting input current regulation accuracy in forward mode R _{AC_SNS} = 2mΩ, IAC_DPM = 0x0000 -4 -4 R _{AC_SNS} = 2mΩ, IAC_DPM = 0x0028 -7 -4 R _{AC_SNS} = 2mΩ, IAC_DPM = 0x0028 -7 -4 R _{AC_SNS} = 2mΩ, IAC_DPM = 0x0028 -7 -4 R _{AC_SNS} = 2mΩ, IAC_DPM = 0x0028 -7 -4 R _{AC_SNS} = 2mΩ, IAC_DPM = 0x0028 -7 -5 ILIM_HIZ pin voltage when ILIM_HIZ pin is in regulation in regulation accuracy in forward mode V _{ILIM_HIZ} rising 3.7 -5 ILIM_HIZ pin voltage regulation accuracy in forward mode V _{ILIM_HIZ} rising 3.7 -6 Input voltage DPM regulation range V _{ILIM_HIZ} rising 4.2 -7 Input voltage DPM regulation range V _{ILIM_HIZ} rising 4.2 -7 V _{ILIM_HIZ} rising 3.7 risi | PC setting input current regulation accuracy in forward mode R _{AC_SNS} = 2mΩ, IAC_DPM = 0x00000 -3 10 | Pack | # **5.5 Electrical Characteristics (continued)** VAC = ACP = ACN = SYS = SRP = SRN = 28V, $T_J = -40^{\circ}C$ to $+125^{\circ}C$, and $T_J = 25^{\circ}C$ for typical values (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---|---|---|------|------|------|------| | | Temporary higher current limit for | EN_OVLD = 1 and OVLD_ILIM2 = 0 | | 150 | | % | | ILIM2_IIN | IIN. Percentage above the IAC_REG register value | EN_OVLD = 1 and OVLD_ILIM2 = 1 | | 200 | | % | | | Temporary higher current limit | EN_OVLD = 1 and OVLD_ILIM2 = 0 | | 150 | | % | | ILIM2_IOUT for IOUT. Percentage above the | | EN_OVLD = 1 and OVLD_ILIM2 = 1 | | 200 | | % | | I _{BYPASS_OCP} | Bypass mode over-current threshold | $R_{OUT_SNS} = 5m\Omega$, $V_{SRP} - V_{SRN}$ rising, $I_{OUT_REG} = 5A$ | 4.5 | 5 | 5.5 | Α | | THERMAL SHUT | rdown | · | | | | | | | Thermal shutdown rising threshold | Temperature increasing | | 150 | | °C | | T _{SHUT} | Thermal shutdown falling threshold | Temperature decreasing | | 135 | | °C | | REGN REGULAT | TOR AND GATE DRIVE SUPPLY (DRV_S | SUP) | | | | | | ., | DECNIE DO CARACTERISTA | IREGN = 20mA | 4.8 | 5 | 5.2 | V | | V_{REGN} | REGN LDO output voltage | VAC = 5V, IREGN = 20mA | 4.35 | 4.6 | | V | | I _{REGN} | REGN LDO current limit | VREGN = 4.5V | 70 | | | mA | | V _{REGN_OK} | REGN OK threshold to allow switching | REGN rising | | 3.55 | | V | | V _{DRV_UVPZ} | DRV_SUP under-voltage threshold to allow switching | DRV_SUP rising | | | 3.7 | V | | V _{DRV_OVP} | DRV_SUP over-voltage threshold to disable switching | DRV_SUP rising | 12.8 | 13.2 | 13.6 | V | | SWITCHING FRE | EQUENCY AND SYNC | | | | | | | £ | Out the land Francisco | $R_{FSW_SYNC} = 133k\Omega$ | 212 | 250 | 288 | kHz | | f_{SW} | Switching Frequency | $R_{FSW_SYNC} = 50k\Omega$ | 425 | 500 | 575 | kHz | | V _{IH_SYNC} | FSW_SYNC input high threshold | | 1.3 | | | V | | V _{IL_SYNC} | FSW_SYNC input low threshold | | | | 0.4 | V | | PW _{SYNC} | FSW_SYNC input pulse width | | 80 | | | ns | | PWM DRIVERS | - | | | | | | | R _{HIDRV1_ON} | Buck side high-side turnon resistance | V _{BTST1} - V _{SW1} = 5V | | 3.4 | | Ω | | R _{HIDRV1_OFF} | Buck side high-side turnoff resistance | V _{BTST1} - V _{SW1} = 5V | | 1.0 | | Ω | | V _{BTST1_REFRESH} | Bootstrap refresh comparator threshold voltage | BTST1 falling, V _{BTST1} - V _{SW1} when low-side refresh pulse is requested | 2.7 | 3.1 | 3.9 | V | | R _{LODRV1_ON} | Buck side low-side turnon resistance | VREGN = 5V | | 3.4 | | Ω | | R _{LODRV1 OFF} | Buck side low-side turnoff resistance | VREGN = 5V | | 1.0 | | Ω | | t _{DT1} | Buck side dead time, both edges | | | 45 | | ns | | R _{HIDRV2_ON} | Boost side high-side turnon resistance | V _{BTST2} - V _{SW2} = 5V |
| 3.4 | | Ω | | R _{HIDRV2_OFF} | Boost side high-side turnoff resistance | V _{BTST2} - V _{SW2} = 5V | | 1.0 | | Ω | | V _{BTST2_REFRESH} | Bootstrap refresh comparator threshold voltage | BTST2 falling, V _{BTST2} - V _{SW2} when low-side refresh pulse is requested | 2.7 | 3.1 | 3.9 | V | | R _{LODRV2_ON} | Boost side low-side turnon resistance | VREGN = 5V | | 3.4 | | Ω | | LODITVZ_OIV | | | | | | Ω | | R _{LODRV2_OFF} | Boost side low-side turnoff resistance | VREGN = 5V | | 1.0 | | 12 | # **5.5 Electrical Characteristics (continued)** VAC = ACP = ACN = SYS = SRP = SRN = 28V, $T_J = -40^{\circ}C$ to $+125^{\circ}C$, and $T_J = 25^{\circ}C$ for typical values (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------------|--|-------------------------------------|----------|-------|-------|------| | | | ADC_SAMPLE[1:0] = 00 | | 24 | | ms | | t _{ADC_CONV} | Conversion-time, each measurement | ADC_SAMPLE[1:0] = 01 | | 12 | | ms | | | | ADC_SAMPLE[1:0] = 10 | | 6 | | ms | | | | ADC_SAMPLE[1:0] = 00 | 14 | 15 | | bits | | ADC _{RES} | Effective resolution | ADC_SAMPLE[1:0] = 01 | 13 | 14 | | bits | | | | ADC_SAMPLE[1:0] = 10 | 12 | 13 | | bits | | ADC MEASUR | EMENT RANGE AND LSB | | ' | | | | | | Input current ADC reading (positive or | Range with 2mΩ R _{AC_SNS} | -50000 | | 50000 | mA | | I _{AC_ADC} | negative) | LSB with 2mΩ R _{AC_SNS} | | 2 | | mA | | | Output current ADC reading (positive | Range with 5mΩ R _{BAT_SNS} | -20000 | | 20000 | mA | | I _{OUT_ADC} | or negative) | LSB with 5mΩ R _{BAT_SNS} | | 2 | | mA | | V _{AC_ADC} | In a standard ADO and the a | Range | 0 | | 65534 | mV | | | Input voltage ADC reading | LSB | | 2 | | mV | | V _{OUT_ADC} | VO ONO seeks see ADO see alies se | Range | 0 | | 65534 | mV | | | VO_SNS voltage ADC reading | LSB | | 2 | | mV | | Τ0 | TS voltage ADC reading, as | Range | 0 | | 99.9 | % | | TS _{ADC} | percentage of REGN | LSB | | 0.098 | | % | | I ² C INTERFAC | E (SCL, SDA) | , | 1 | | | | | V _{IH} | Input high threshold level | | 1.3 | | | V | | V _{IL} | Input low threshold level | | | | 0.4 | V | | V _{OL} | Output low threshold level | Sink current = 5mA | | | 0.4 | V | | I _{IN_BIAS} | High-level leakage current | Pull up rail 3.3V | | | 1 | μA | | LOGIC I/O PIN | (CE, PG, STAT) | 1 | <u>'</u> | , | | - | | V _{IH} | Input high threshold level (CE) | | 1.3 | | | V | | V _{OL} | Output low threshold level ($\overline{\text{CE}}$, $\overline{\text{PG}}$, STAT) | Sink current = 5mA | | | 0.4 | V | | V _{IL} | Input low threshold level (CE) | | | | 0.4 | V | | I _{OUT_BIAS} | High-level leakage current (CE, PG, STAT) | Pull up rail 3.3V | | | 1 | μA | Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback # **5.6 Timing Requirements** | | | MIN | NOM | MAX | UNIT | | | |----------------------------|---|---------|-----|----------|------|--|--| | VAC / BAT POWER | UP | | | | | | | | t _{ACOV_DGL} | Enter ACOV deglitch time, ACOV rising | 100 | | | | | | | t _{ACOVZ_DGL} | Exit ACOV deglitch time, ACOV falling | 12 | | | | | | | t _{ACUV_DGL} | Enter ACUV deglitch time, ACUV falling | | 100 | | μs | | | | t _{ACUVZ_DGL} | Exit ACUV deglitch time, ACUV rising | | 12 | | ms | | | | BATTERY-PACK NT | C MONITOR | | | | | | | | t _{TS_DGL} | Deglitch time for TS threshold crossing | | 25 | | ms | | | | MULTI-LEVEL CUR | RENT LIMIT (OVERLOAD MODE) | | | <u> </u> | | | | | | Overload time during which ILIM2 is allowed, TOVLD_SET = 0 | | 25 | | ms | | | | tovld | Overload time during which ILIM2 is allowed, TOVLD_SET = 1 | | 50 | | ms | | | | t _{MAX} | Time required before a new overload event is allowed after an original overload event. EN_OVLD_TMAX = 1 | 100 | | | ms | | | | t _{OVLD_3L} | Deglitch time before engaging ILIM2, allowing maximum current for this time. EN_OVLD_3L = 1 | | 1 | | ms | | | | I ² C INTERFACE | | | | · | | | | | f _{SCL} | SCL clock frequency | | | 1000 | kHZ | | | | DIGITAL CLOCK A | ND WATCHDOG | | | • | | | | | t _{LP_WDT} | I ² C Watchdog reset time (EN_HIZ = 1, WATCHDOG[1:0] = 160s) | 100 160 | | | s | | | | t _{WDT} | I ² C Watchdog reset time (EN_HIZ = 0, WATCHDOG[1:0] = 160s) | 130 160 | | | s | | | ## **5.7 Typical Characteristics** C_{VAC} = 80 μ F, C_{OUT} = 80 μ F, f_{SW} = 250 kHz, L = 10 μ H, T_A = 25°C (unless otherwise specified) # **6 Detailed Description** ### 6.1 Overview BQ25758 is a wide voltage, bidirectional switched-mode synchronous buck-boost controller. The device offers high-efficiency voltage conversion over a wide voltage range with output CC-CV control. The device integrates all the loop compensation and 5-V gate drivers for the buck-boost converter, thereby providing a high density solution with ease of use. The switching frequency of the device can be programmed or forced to follow an external clock frequency via the FSW_SYNC pin. While switching under light-load, the device offers an optional Pulse Frequency Modulation (PFM) scheme to increase efficiency. In reverse mode, the device draws power from the output supply and regulates the input terminal voltage with an added constant current loop for protection. Besides the I^2C host-controlled mode, the device also supports programmable hardware limits. Input current, and output current regulation targets can be set with single resistor on the IIN, and IOUT pins, respectively. By default, the device is programmed to provide 5-V output, and the target output voltage can be adjusted via the VOUT_REG register bits. Forward switching function is controlled via the \overline{CE} pin. The input operating window is programmed via the ACUV and ACOV pins. When the input voltage is outside the programmed window, the device automatically stops switching, and the \overline{PG} pin pulls HIGH. The BQ25758 provides various safety features including over-voltage and over-current protections on the input and the output. The thermal shutdown prevents operating when the junction temperature exceeds the T_{SHUT} limit. The device has two status pins (STAT, and \overline{PG}) to indicate the switcher and input voltage status. These pins can be used to drive LEDs or communicate with a host processor. If needed, these pins can also be used as general purpose indicators and their status controlled directly by the I²C interface. In addition, the \overline{CE} pin can also be used as a general purpose indicator. The \overline{INT} pin immediately notifies host when the device status changes, including faults. The device also provides a 16-bit analog-to-digital converter (ADC) for monitoring input current, output current and input/output/thermistor voltages (IAC, IOUT, VAC, VOUT, TS). The device comes with a 36-pin 5-mm × 6-mm QFN package with 0.5-mm pin pitch. Copyright © 2024 Texas Instruments Incorporated Product Folder Links: BQ25758 # 6.2 Functional Block Diagram ## **6.3 Feature Description** #### 6.3.1 Device Power-On-Reset The internal bias circuits are powered from either VAC or SRN. When VAC rises above V_{VAC OK}, converter operation is allowed. When BAT rises above 3 V, reverse mode operation is allowed. A POR occurs when one of these supplies rises above its corresponding V_{OK} level, while the other supply is below its corresponding V_{OK} level. After the POR, I²C interface is ready for communication and all the registers are reset to default value. The host can access all the registers after POR. #### 6.3.2 Device Power-Up From Battery Without Input Source If only battery is present and the voltage is above 3-V threshold, the device is ready for I2C communication, and the converter is ready to start operation in reverse mode. The REGN LDO stays off to minimize the quiescent current. The ADC can be used to monitor all system parameters. ### 6.3.3 Device Power Up from Input Source When a valid input source (V_{VAC_OK} < VAC and VAC within the ACUV and ACOV operating window) is detected, the PG pin pulls LOW. If converter operation is enabled, the device proceeds to enable the REGN LDO and power up the buck-boost converter. #### 6.3.3.1 VAC Operating Window Programming (ACUV and ACOV) The VAC operating window can be programmed via the ACUV and ACOV pins using a three-resistor divider from VAC to PGND as shown in Figure 6-1. Figure 6-1. ACUV and ACOV Programming When V_{ACUV} falls and reaches V_{ACUV_DPM}, the device enters input voltage regulation, thereby reducing the current. V_{ACUV} continues falling below \overline{V}_{REF} ACUV, the device automatically stops the converter and the \overline{PG} pin System Note: if VAC DPM register is programmed to a value higher than POR, the device regulates the VAC voltage to the higher of VAC_DPM register or V_{ACUV DPM} pin voltage. Refer to Section 6.3.4.3.2 for more When V_{ACOV} rises above $V_{REF-ACOV}$, the device automatically stops the converter and the \overline{PG} pin pulls high. The following equations govern the relationship between the resistor divider and the target operating voltage window programmed by ACOV and ACUV pins: $$V_{ACOV_TARGET} = V_{REF_ACOV} \times \frac{R_{AC1} + R_{AC2} + R_{AC3}}{R_{AC3}}$$ (1) $$V_{ACUV_TARGET} = V_{REF_ACUV} \times \frac{R_{AC1} + R_{AC2} + R_{AC3}}{R_{AC2} + R_{AC3}}$$ (2) If unused, tie ACUV to VAC and ACOV to PGND in order to apply the internal VAC operating window (V_{VAC OP}). #### 6.3.3.2 MODE Pin Configuration The MODE pin can be used to configure the device as either a buck-boost or buck-only configuration. When configured as buck-only typical inductor value used must be provided to appropriately compensate the converter. The closest inductor to the values presented below should be programmed via the MODE pin. When configured in buck-only mode, the device operates as a buck
converter and MOSFETs Q3 and Q4 have to be removed. This is demonstrated in Figure 7-25. At POR, the device detects the MODE pin pull down resistance, then sets the device operating mode as shown below. The MODE pin resistance detection is only done one time at the device POR, after that, the converter will not sense the MODE pin voltage any more. Follow the resistance listed in the table below to set the desired operating mode. The surface mount resistor with ±1% or ±2% tolerance is recommended. | Table 6-1. MODE Pin Resistance Configuration Options | | | | | | | | | |--|----------------|--------------------------------|------------------------|--------------------------------------|--|--|--|--| | OPERATION | L (nom) | R _{DCR} (min) | R _{DCR} (max) | TYPICAL
RESISTANCE AT
MODE PIN | | | | | | Buck-Boost, device detects inductance automatically | 2.2 μΗ - 15 μΗ | L/DCR = 1260 µs ⁽¹⁾ | 60 mΩ | ≤3.0 kΩ | | | | | | Buck-Only | 3.3 µH | 2.6 mΩ | 60 mΩ | 4.7 kΩ | | | | | | Buck-Only | 4.7 µH | 3.7 mΩ | 60 mΩ | 6.04 kΩ | | | | | | Buck-Only | 5.6 µH | 4.4 mΩ | 60 mΩ | 8.2 kΩ | | | | | | Buck-Only | 6.8 µH | 5.4 mΩ | 60 mΩ | 10.5 kΩ | | | | | | Buck-Only | 8.2 μH | 6.5 mΩ | 60 mΩ | 13.7 kΩ | | | | | | Buck-Only | 10 μH | 7.9 mΩ | 60 mΩ | 17.4 kΩ | | | | | | Buck-Only | 15 µH | 11.9 mΩ | 60 mΩ | ≥27.0 kΩ | | | | | #### 6.3.3.3 REGN Regulator (REGN LDO) Copyright © 2024 Texas Instruments Incorporated The REGN LDO regulator provides a regulated bias supply for the IC and the TS external resistors. Additionally, REGN voltage can be used to drive the buck-boost switching FETs directly by tying the DRV SUP pin to REGN. The pull-up rail of PG, STAT can be connected to REGN as well. The REGN LDO is enabled when below conditions are valid: - 1. VAC voltage above V_{VAC OK} and converter operation is enabled in forward mode. - 2. BAT voltage above 3 V in Reverse mode and Reverse Mode is enabled (EN REV = 1) At high input voltages and/or large gate drive requirements, the power loss from gate driving via the REGN LDO can be excessive. This power for the gate drivers can be provided externally by directly driving the DRV SUP pin with a high efficiency supply ranging from 4.5 V to 12 V. This supply should be able to provide at least 50 mA or more as required to drive the switching FET gate charge. The power dissipation for driving the gates via the REGN LDO is: $P_{REGN} = (VAC - V_{REGN}) \times Q_{G(TOT)1.2.3.4} \times f_{SW}$, where $Q_{G(TOT)1,2,3,4}$ is the sum of the total gate charge for all switching FETs and f_{SW} is the programmed switching frequency. The Safe Operating Area (SOA) below is based on a 1-W power loss limit. The minimum DCR varies as a function of selected inductor: for example, a 10-μH inductor supports 7.9 mΩ as the minimum DCR. Figure 6-2. REGN LDO Safe Operating Area (SOA) #### 6.3.3.4 Compensation-Free Buck-Boost Converter Operation The device integrates all the loop compensation, thereby providing a high density solution with ease of use. The converter employs a synchronous buck-boost converter that allows conversion from a wide range of input voltage sources. The converter operates in buck, buck-boost or boost mode. The converter can operate uninterruptedly and continuously across the three operation modes. During buck-boost mode, the converter alternates a SW1 pulse with a SW2 pulse, with effective switching frequency interleaved among these pulses for highest efficiency operation. During boost mode operation, the HS FET is forced to turn on for 225 ns in each switching cycle to ensure inductor energy is delivered to the output, effectively limiting the maximum boosting ratio. For example, when device is configured to switch at 500 kHz, the switching period is 2 μ s, yielding a duty cycle limit of (1 - 0.225 μ s/2 μ s) = 88.75%. Given a 5-V input, this translates to a maximum 44-V output assuming 100% efficiency. The true output will be lower than this ideal limit. At lower switching frequencies, the maximum duty cycle increases, making the limitation less significant. MODE BUCK **BUCK-BOOST** BOOST Switching (f_{SW} interleaved HS BUCK FET Switching at f_{SW} ON between SW1 and SW2) Switching (f_{SW} interleaved LS BUCK FET OFF Switching at f_{SW} between SW1 and SW2) Switching (f_{SW} interleaved LS BOOST FET OFF Switching at f_{SW} between SW1 and SW2) Switching (f_{SW} interleaved HS BOOST FET ON Switching at f_{SW} between SW1 and SW2) Table 6-2. Switching MOSFET Operation ### 6.3.3.4.1 Light-Load Operation In order to improve converter light-load efficiency, the device switches to Pulse Frequency Modulation (PFM) control at light load when the EN_PFM bit is set to 1. The effective switching frequency will decrease accordingly when output load decreases. EN_PFM bit is automatically cleared to 0 every time the converter starts and a valid SYNC clock input is detected on the FSW_SYNC pin, thereby ensuring fixed frequency operation regardless of output current. The bit can be overwritten to 1 to allow PFM after startup even when SYNC signal is present. Light-load PFM mode can be disabled by clearing the EN_PFM bit. In this case, the device switches in PWM mode at a fixed switching frequency. # 6.3.3.5 Switching Frequency and Synchronization (FSW_SYNC) The device switching frequency can be programmed between 200 kHz to 600 kHz using a resistor from the FSW_SYNC pin to PGND. The R_{FSW} resistor is related to the nominal switching frequency (f_{SW}) by the equation: $$R_{FSW} = \frac{1}{10 \times (f_{SW} \times 5 \times 10^{-12} - 500 \times 10^{-9})}$$ (3) This pin must be pulled to PGND using a R_{FSW} , do not leave floating. In addition to programming the nominal switching frequency, the FSW_SYNC pin can also be used to synchronize the internal oscillator to an external clock signal. The synchronization feature works over the same range as the switching frequency: 200-kHz to 600-kHz range. Table 6-3. Common R_{FSW} and Switching Frequency Values | R _{FSW} (kΩ) | SWITCHING FREQUENCY (kHz) | |-----------------------|---------------------------| | 200 | 200 | | 133 | 250 | | 100 | 300 | | 80 | 350 | | 66.67 | 400 | | 57.1 | 450 | | 50 | 500 | | 44.4 | 550 | | 40 | 600 | #### 6.3.3.6 Device HIZ Mode When a valid input supply is present, it is possible to force the device into HIZ Mode which disables switching, disables REGN LDO. The system load is provided by the battery in this mode. The controller enters HIZ Mode when EN_HIZ bit is set to 1 or the IIN pin is pulled above $V_{IH\ ILIM\ HIZ}$ (refer to Section 6.3.4.3.1.1). If the device is operating in reverse mode with the converter turned on, and the device enters HIZ mode (EN_HIZ bit is set to 1 or IIN pin is pulled above $V_{IH_ILIM_HIZ}$), switching stops. Once HIZ mode condition is cleared by the host, the device resumes reverse mode operation. The device exits HIZ Mode when the EN_HIZ bit is cleared to 0 and the IIN pin is pulled below 0.4 V. #### 6.3.4 Power Management The device accommodates a wide range of input sources from 4.2 V up to 60 V. # 6.3.4.1 Output Voltage Programming (VOUT_REG) The output voltage at VO_SNS pin can be programmed via the I2C register setting (VOUT_REG). The output voltage range is from 3.3V to 60V with 20mV/step. The default VOUT_REG is set to 5V. ## 6.3.4.2 Output Current Programming (IOUT pin and IOUT_REG) There are two distinct thresholds to limit the output current regulation point (if both are enabled, the lowest limit of these will apply): - 1. IOUT pin pull down resistor (hardware control) - 2. IOUT_REG register bits (host software control) To set the maximum output current using the IOUT pin, a pull-down resistor to PGND is used. It is required to use a 5-m Ω R_{OUT_SNS} sense resistor. The output current limit is controlled by: Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback $$I_{OUT_MAX} = \frac{K_{IOUT}}{R_{IOUT}} \tag{4}$$ The actual output current limit is the lower value between IOUT pin setting and I2C register setting (IOUT REG). For example, if the register setting is 10A (0xC8), and ICHG pin has a 10-k Ω resistor (K_{ICHG} = 50 A-k Ω) to ground for 5A, the actual output current limit is 5A. The device regulates IOUT pin at 2V. If ICHG pin voltage exceeds 2V, the device enters output current regulation (CC mode). The IOUT pin can also be used to monitor output current when device is not in output current regulation. The voltage on IOUT pin (V_{IOUT}) is proportional to the actual output current. IOUT pin can be used to monitor output current with the following relationship: $$I_{OUT} = \frac{K_{IOUT} \times V_{IOUT}}{R_{IOUT} \times 2V} \tag{5}$$ For example, if IOUT pin is set with 10-k Ω resistor, and the IOUT voltage 1.0V, the actual output current is between 2.4A to 2.6A (based on K_{IOUT} specified). If IOUT pin is shorted to PGND, the current limit is set by the IOUT REG register. If hardware output current limit function is not needed, it is recommended to short this pin to PGND. The IOUT pin function can be disabled by setting the EN IOUT PIN bit to 0 (recommended when pin is shorted to PGND). When the pin is disabled, output current limit and monitoring functions via IOUT pin are not available. To set the maximum output current using the IOUT REG register bits, write to the IOUT REG register bits. The current limit range is from 400mA to 20,000mA with 50mA/step. The default IOUT REG is set to maximum code, allowing IOUT pin to limit the current in hardware. ### 6.3.4.3 Dynamic Power Management: Input Voltage and Input Current Regulation The device features Dynamic Power Management (DPM), which continuously monitors the input current and input voltage. When input source is over-loaded, either the current exceeds the input current limit (lower of IAC_DPM or IIN pin setting), or the voltage falls below the input voltage limit (higher of
VAC_DPM or ACUV pin setting, V_{ACUV DPM}). The device then reduces the current until the input current falls below the input current limit and the input voltage rises above the input voltage limit. When the current is reduced to zero, but the input source is still overloaded, the input voltage continues to drop. Once the input voltage drops below the ACUV limit (V_{ACUV} < V_{REF ACUV}), the controller stops switching. #### 6.3.4.3.1 Input Current Regulation The total input current is a function of the system supply current and the current. System current normally fluctuates as portions of the systems are powered up or down. Without DPM, the source must be able to supply the maximum system current and the maximum input current simultaneously. By using DPM, the converter reduces the current when the input current exceeds the input current limit set by the lower of IAC DPM register bits, or IIN pin. This allows the current capability of the input source to be lowered, reducing system cost. There are two thresholds to limit the input current (if both are enabled, the lower limit of these two will apply): - IAC DPM register bits (host software control) - 2. IIN pull down resistor (hardware control) To set the maximum current using the IAC_DPM register bits, write to the IAC_DPM register bits. When using a 2-mΩ resistor, the input current limit range is from 1 A to 50 A with 125 mA/step. The default IAC DPM is set to maximum code, allowing IIN pin to limit the current in hardware. To set the maximum current using the IIN pin, refer to Section 6.3.4.3.1.1. Although both limits are referenced to a $2-m\Omega$ sense resistor, other values can also be used. A larger sense resistor provides a larger sense voltage and higher regulation accuracy, but at the expense of higher conduction loss. For example, using a 5-m Ω resistor yields programmability from 400 mA to 20 A with 50 mA/step. #### 6.3.4.3.1.1 IIN Pin To set the maximum input current using the IIN pin, a pull-down resistor to PGND is used. When using a 2-m Ω R_{AC SNS} resistor, the input current limit is controlled by: I_{AC MAX} = K_{ILIM} / R_{IIN}. The actual input current limit is the lower value between IIN pin setting and register setting (IAC_DPM). For example, if the register setting is 20 A, and IIN pin has a 5-k Ω resistor (K_{ILIM} = 50 A-k Ω) to ground for 10 A, the actual input current limit is 10 A. IIN pin can be used to set the input current limit when EN_IIN_PIN bit is set to 1. The device regulates the pin at $V_{REF_ILIM_HIZ}$. If pin voltage exceeds $V_{REF_ILIM_HIZ}$, the device enters input current regulation. Entering input current regulation through the pin sets the IAC_DPM_STAT and FLAG bits, and produces an interrupt to host. The interrupt can be masked via the IAC_DPM_MASK bit. The IIN pin can also be used to monitor input current. When not in input current regulation, the voltage on IIN pin (V_{IIN}) is proportional to the input current. Pin voltage can be used to monitor input current with the following relationship: IAC = $K_{ILIM} \times V_{IIN} / (R_{IIN} \times V_{REF})$. For example, if the pin is set with 5-k Ω resistor, and the pin voltage is 1.0 V, the actual input current is between 4.8 A to 5.2 A (based on K_{ILIM} specified). If IIN pin is shorted, the input current limit is set by the IAC_DPM register. If hardware input current limit function is not needed, it is recommended to short this pin to GND. If IIN pin is pulled above $V_{IH_ILIM_HIZ}$, the device enters HIZ mode (refer to Section 6.3.3.6). The IIN pin function can be disabled by setting the EN_IIN_PIN bit to 0. When the pin is disabled, input current limit and monitoring functions as well as HIZ mode control via the pin are not available. #### 6.3.4.3.2 Input Voltage Regulation In addition to input current regulation, the device also offers input voltage regulation to limit the input power. This is especially useful when dealing with input sources such as solar panels, where the operating voltage must be controlled to extract the maximum power. Alternatively, if the input source current limitation is not known, input voltage regulation can be used to limit the power draw from the input source. By using input voltage regulation, the converter reduces the current when the input voltage falls below the input voltage limit set by the higher of VAC DPM register bits, or ACUV pin. There are two thresholds to limit the input voltage (the higher limit of these will apply) - VAC DPM register bits (host software control) - 2. ACUV pin falling threshold (hardware control) To set the minimum input voltage using the VAC_DPM register bits, write the desired value directly to the VAC_DPM register bits. The default VAC_DPM is set to minimum code, allowing ACUV pin to limit the input voltage in hardware. To set the minimum input voltage using the ACUV pin, refer to Section 6.3.3.1. #### 6.3.4.4 Bypass Mode Copyright © 2024 Texas Instruments Incorporated The device supports bypass mode to allow VOUT = VAC without regulation and highest efficiency. In this operating mode, the buck and boost high-side FETs (Q1 and Q4) are both turned on, while the Buck and Boost low-side FETs (Q2 and Q3) remain off. The input power is directly passed through the power stage to the output. The switching losses of MOSFETs and the inductor core loss are eliminated, thereby providing highest efficiency. The bypass mode can be enabled by setting the EN_BYPASS register bit to 1. While device is in bypass mode, the current through R_{OUT_SNS} is monitored and compared against the IOUT_REG register setting. If the output current exceeds the register setting, the device automatically exits bypass mode and enters HIZ mode (completely disabling the power stage). The IBAT_OCP_STAT bit is set, and an INT pulse is asserted to signal the host. To recover from this fault, it is recommended to clear the EN HIZ bit. Figure 6-3. BQ25758 Bypass Mode Protection ## 6.3.5 Bidirectional Power Flow and Programmability The device supports buck-boost bidirectional power flow with programmable parameters via the I2C. In the forward direction, the power flows from INPUT to OUTPUT, and the device controls the output current, output voltage, as well as the input current and input voltage. The IOUT_REG register bits control the current across the sense resistor connected at SRP and SRN (R_{OUT_SNS}). The VOUT_REG register bits control the voltage regulation setpoint at VO_SNS pin. The IAC_DPM register bits control the input current across the sense resistor connected at ACP and ACN (R_{AC_SNS}). The VAC_DPM register bits control the input voltage at the VAC pin. Figure 6-4. Programmability in Forward Mode In the reverse direction, power flows from OUTPUT to INPUT, and the device control the input current as well as the input voltage. Reverse direction power flow can be enabled by setting the EN_REV bit to 1. The IAC_REV register bits control the reverse input current across the sense resistor connected at ACP and ACN (R_{AC_SNS}). The VAC_REV register bits control the reverse input voltage at the VAC pin. Figure 6-5. Programmability in Reverse Mode The reverse mode operation can be stopped at any time by setting EN REV bit to 0; this action disables the switching converter. Note: When operating as buck-only configuration via the MODE pin, it is recommended to set EN CHG = 0 before enabling reverse mode operation. ### 6.3.6 Integrated 16-Bit ADC for Monitoring The device includes a 16-bit ADC to monitor critical system information based on the device's modes of operation. The ADC is allowed to operate if either the V_{VAC}>V_{VAC} or VBAT>V_{REGN OK} is valid. The ADC_EN bit provides the ability to enable and disable the ADC to conserve power. The ADC_RATE bit allows continuous conversion or one-shot behavior. After a one-shot conversion finishes, the ADC EN bit is cleared, and must be re-asserted to start a new conversion. The ADC SAMPLE bits control the resolution and sample speed of the ADC. By default, ADC channels will be converted in one-shot or continuous conversion mode unless disabled in the ADC Function Disable register. If an ADC parameter is disabled by setting the corresponding bit, then the read-back value in the corresponding register will be from the last valid ADC conversion or the default POR value (all zeros if no conversions have taken place). If an ADC parameter is disabled in the middle of an ADC measurement cycle, the device will finish the conversion of that parameter, but will not convert the parameter starting the next conversion cycle. If all channels are disabled in one-shot conversion mode, the ADC EN bit is cleared. The ADC_DONE_STAT and ADC_DONE_FLAG bits signal when a conversion is complete in one-shot mode only. This event produces an INT pulse, which can be masked with ADC_DONE_MASK. During continuous conversion mode, the ADC DONE STAT bit has no meaning and will be '0'. The ADC DONE FLAG bit will remain unchanged in continuous conversion mode. ADC conversion operates independently of the faults present in the device. ADC conversion will continue even after a fault has occurred (such as one that causes the power stage to be disabled), and the host must set ADC_EN = '0' to disable the ADC. ADC readings are only valid for DC states and not for transients. When host writes ADC EN = 0, the ADC stops immediately, and ADC measurement values correspond to last valid ADC reading. If the host wants to exit ADC more gracefully, it is possible to do either of the following: - 1. Write ADC_RATE to one-shot, and the ADC will stop at the end of a complete cycle of conversions, or - 2. Disable all ADC conversion channels, and the ADC will stop at the end of the current measurement. When system load is powered from the battery (input source is removed, or device in HIZ mode), enabling the ADC automatically powers up REGN and increases the quiescent
current. To keep the battery leakage low, it is recommended to duty cycle or completely disable the ADC. #### 6.3.7 Status Outputs (PG, STAT and INT) #### 6.3.7.1 Power Good Indicator (PG) The PG STAT bit goes HIGH and the PG pin pulls LOW to indicate a good input source when a valid VAC voltage is detected. The PG pin can drive an LED. All conditions must be met to indicate power good: - 1. V_{VAC OK} < V_{VAC} < V_{VAC INT OV} - 2. $V_{ACUV} > V_{REF_ACUV}$ - 3. V_{ACOV} < V_{REF_ACOV} - 4. Device not in HIZ mode The PG pin can be disabled via the DIS_PG_PIN bit. When disabled, this pin can be controlled to pull LOW using the FORCE_STAT3_ON bit. ### 6.3.7.2 Interrupt to Host (INT) In some applications, the host does not always monitor the controller operation. The INT pin notifies the system host on the device operation. By default, the following events will generate an active-low, 256-µs INT pulse. Valid input source conditions detected (see conditions for PG pin) 2. Valid input source conditions removed (see conditions for PG pin) - 3. Entering IAC DPM regulation through register or IIN pin - 4. Entering VAC DPM regulation through register or ACUV pin - 5. I²C Watchdog timer expired - 6. TS_STAT changes state (TS_STAT value change) - 7. Junction temperature shutdown (TSHUT) - 8. A rising edge on any of the * STAT bits Each one of these INT sources can be masked off to prevent INT pulses from being sent out when they occur. Three bits exist for each one of these events: - The STAT bit holds the current status of each INT source - · The FLAG bit holds information on which source produced an INT, regardless of the current status - The MASK bit is used to prevent the device from sending out INT for each particular event When one of the above conditions occurs (a rising edge on any of the *_STAT bits), the device sends out an INT pulse and keeps track of which source generated the INT via the FLAG registers. The FLAG register bits are automatically reset to zero after the host reads them, and a new edge on STAT bit is required to re-assert the FLAG. Figure 6-6. INT Generation Behavior Example #### 6.3.8 Protections The device closely monitors the input and battery voltage, as well as switching FET currents for safe switch-mode operation. #### 6.3.8.1 Voltage and Current Monitoring ## 6.3.8.1.1 VAC Over-voltage Protection (VAC_OVP) In order to protect downstream devices on the system rail, the input over-voltage threshold can be programed with the ACOV pin as $V_{VACOV} = V_{REF_ACOV}$ (refer to Section 6.3.3.1). The device also features an internal over-voltage protection preset at $V_{VAC_INT_OV}$. When the input voltage rises above the lower of these two thresholds, the device disables the controller. During input over-voltage, an INT pulse is asserted to signal the host, and the VAC_OV_STAT, and _FLAG bits are set. Additionally, the PG_STAT bit is cleared and the \overline{PG} pin pulls HIGH. The device automatically resumes operation when the over-voltage condition goes away. #### 6.3.8.1.2 VAC Under-voltage Protection (VAC_UVP) In order to maintain a minimum operating voltage on the system rail, the input under-voltage threshold can be programed with the ACUV pin as $V_{VACUV} = V_{REF\ ACUV}$ (refer to Section 6.3.3.1). The device also features an internal under-voltage protection preset at $V_{VAC\ OK}$. When the input voltage falls below the higher of these two thresholds, the device disables the controller. During input under-voltage, an INT pulse is asserted to signal the host, and the VAC_UV_STAT, and _FLAG bits are set. Additionally, the PG_STAT bit is cleared and the PG pin pulls HIGH. The device automatically resumes operation when the under-voltage condition goes away. #### 6.3.8.1.3 Reverse Mode Over-voltage Protection (REV_OVP) While operating the converter in reverse mode, the device monitors the reverse voltage, V_{VAC}. When V_{VAC} rises above regulation target and exceeds V_{REV OVP}, the device stops switching, and waits for the voltage to fall below the threshold to resume switching. An INT pulse is asserted to the host. #### 6.3.8.1.4 Reverse Mode Under-voltage Protection (REV_UVP) While operating the converter in reverse mode, the device monitors the reverse voltage, V_{VAC} . When V_{VAC} falls below the undervoltage threshold (programmable via SYSREV_UV register bit), the device stops switching, clears the EN REV bit, and exits Reverse mode. During the over-voltage event duration, the REVERSE STAT bit is cleared and the REVERSE FLAG bit is set to indicate a fault in reverse mode. An INT pulse is also asserted to the host #### 6.3.8.1.5 DRV SUP Under-voltage and Over-voltage Protection (DRV OKZ) The DRV SUP pin must maintain a valid voltage between DRV UVP and DRV OVP for proper operation of the switching power converter stage. This is true both in forward mode and in reverse mode. When DRV SUP pin voltage falls below DRV UVP threshold, the switching converter stops operation, an INT pulse is asserted to signal the host, the DRV OKZ STAT, and DRV OKZ FLAG bits are set to signal the fault. When DRV SUP pin voltage rises above DRV OVP threshold, the switching converter stops operation, an INT pulse is asserted to signal the host, the DRV OKZ STAT, and DRV OKZ FLAG bit are set to signal the fault. When the DRV pin returns to normal operating range, the device automatically resumes switching in either forward or reverse mode as configured before the fault. # 6.3.8.1.6 REGN Under-voltage Protection (REGN_OKZ) The REGN pin is driven by an internal regulator, and must maintain a voltage above REGN_OKZ for proper device operation. This is true both in forward mode and in reverse mode, and for the ADC to function in battery only mode. If the internal regulator is overloaded externally, the pin voltage may drop. When REGN falls below REGN OKZ threshold, the switching converter stops operation. When the fault is removed, the REGN voltage recovers automatically and switching resumes in either forward or reverse mode as configured before the fault. #### 6.3.8.2 Thermal Shutdown (TSHUT) The device has thermal shutdown to turn off the converter when IC surface temperature exceeds TSHUT. The fault register bits TSHUT STAT and TSHUT FLAG are set and an INT pulse is asserted to the host. The converter turns back on when IC temperature is below TSHUT_HYS. Note that TSHUT protection is active both in forward and reverse mode of operation. #### 6.3.9 Serial Interface The device uses I²C compatible interface for flexible parameter programming and instantaneous device status reporting. I²C is a bi-directional 2-wire serial interface. Only two open-drain bus lines are required: a serial data line (SDA), and a serial clock line (SCL). Devices can be considered as controllers or targets when performing data transfers. A controller is a device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered a target. The device operates as a target device with address 0x6B, receiving control inputs from the controller device like a micro-controller or digital signal processor through the registers defined in the Register Map. Registers read outside those defined in the map, return 0xFF. The I²C interface supports standard mode (up to 100 kbits/s), fast mode (up to 400 kbits/s), and fast mode plus (up to 1 Mbit/s). When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain and must be connected to the positive supply voltage via a current source or pull-up resistor. **System Note:** All 16-bit registers are defined as Little Endian, with the most-significant byte allocated to the higher address. 16-bit register writes must be done sequentially and are recommended to be programmed using multi-write approach described in the Section 6.3.9.7. #### 6.3.9.1 Data Validity The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on SCL line is LOW. One clock pulse is generated for each data bit transferred. Figure 6-7. Bit Transfers on the I²C Bus #### 6.3.9.2 START and STOP Conditions All transactions begin with a START (S) and are terminated with a STOP (P). A HIGH to LOW transition on the SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the SCL is HIGH defines a STOP condition. START and STOP conditions are always generated by the controller. The bus is considered busy after the START condition, and free after the STOP condition. When timeout condition is met, for example START condition is active for more than 2 seconds and there is no STOP condition triggered, the I²C communication will automatically reset and communication lines are free for another transmission. Figure 6-8. START and STOP Conditions on the I²C Bus #### 6.3.9.3 Byte Format Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is unrestricted. Each byte has to be followed by an ACKNOWLEDGE (ACK) bit. Data is transferred with the Most Significant Bit (MSB) first. If a target cannot receive or transmit another complete byte of data until it has performed some other function, it can hold the SCL line low to force the controller into a wait state (clock Copyright © 2024 Texas Instruments Incorporated stretching). Data transfer then continues when the target is ready for another byte of data and releases the SCL line. Figure 6-9. Data Transfer on the I²C Bus #### 6.3.9.4 Acknowledge (ACK) and Not Acknowledge (NACK) The ACK signaling takes place after byte. The ACK bit allows the target to signal the controller that the byte was successfully received and another byte may be sent. All clock pulses, including the acknowledge 9th clock pulse, are generated by the controller. The controller releases the SDA line during the acknowledge clock pulse so the
target can pull the SDA line LOW and it remains stable LOW during the HIGH period of this 9th clock pulse. A NACK is signaled when the SDA line remains HIGH during the 9th clock pulse. The controller can then generate either a STOP to abort the transfer or a repeated START to start a new transfer. ### 6.3.9.5 Target Address and Data Direction Bit After the START signal, a target address is sent. This address is 7 bits long, followed by the 8 bit as a data direction bit (bit R/ \overline{W}). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ). The device 7-bit address is defined as 1101 011' (0x6B) by default. Figure 6-10. Complete Data Transfer on the I²C Bus #### 6.3.9.6 Single Write and Read Figure 6-11. Single Write Figure 6-12. Single Read Copyright © 2024 Texas Instruments Incorporated Product Folder Links: BQ25758 If the register address is not defined, the IC sends back NACK and returns to the idle state. #### 6.3.9.7 Multi-Write and Multi-Read The device supports multi-read and multi-write of all registers. Figure 6-13. Multi-Write Figure 6-14. Multi-Read #### **6.4 Device Functional Modes** ### 6.4.1 Host Mode and Default Mode The device is a host controlled converter, but it can operate in default mode without host management. In default mode, the device can be used as an autonomous converter with no host or while host is in sleep mode. When the converter is in default mode, WD_STAT bit becomes HIGH, WD_FLAG is set to 1, and a $\overline{\text{INT}}$ is asserted low to alert the host (unless masked by WD_MASK). The WD_FLAG bit would read as a '1' upon the first read and then '0' upon subsequent reads. When the converter is in host mode, WD_STAT bit is LOW. After power-on-reset, the device starts in default mode with watchdog timer expired. All the registers are in the default settings. In default mode, the device regulates the output voltage to 5 V, with current limit as set by the IOUT pin (refer to Section 6.3.4.2). A write to any I^2C register transitions the converter from default mode to host mode, and initiates the watchdog timer. All the device parameters can be programmed by the host. To keep the device in host mode, the host has to reset the watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WD_STAT bit is set), or disable watchdog timer by setting WATCHDOG bits = 00. When the watchdog timer is expired, the device returns to default mode and select registers are reset to default values as detailed in the Register Map section. The Watchdog timer will be reset on any write if the watchdog timer has expired. When watchdog timer expires, WD_STAT and WD_FLAG is set to 1, and /INT is asserted low to alert the host (unless masked by WD_MASK). Copyright © 2024 Texas Instruments Incorporated Figure 6-15. Watchdog Timer Flow Chart ## 6.4.2 Register Bit Reset Beside the register reset by the watchdog timer in the default mode, the register and the timer could be reset to the default value by writing the REG_RST bit to 1. The register bits which can be reset by the REG_RST bit, are noted in the Register Map section. After the register reset, the REG_RST bit will go back from 1 to 0 automatically. # 6.5 BQ25758 Registers Table 6-4 lists the memory-mapped registers for the BQ25758 registers. All register offset addresses not listed in Table 6-4 should be considered as reserved locations and the register contents should not be modified. Table 6-4. BQ25758 Registers | Address | Acronym | Register Name | Section | |---------|---|-------------------------------------|---------| | 0x2 | REG0x02_Output_Current_Limit | Output Current Limit | Go | | 0x4 | REG0x04_Output_Voltage_Limit | Output Voltage Limit | Go | | 0x6 | REG0x06_Input_Current_DPM_Limit | Input Current DPM Limit | Go | | 0x8 | REG0x08_Input_Voltage_DPM_Limit | Input Voltage DPM Limit | Go | | 0xA | REG0x0A_Reverse_Mode_Input_Current_Limit | Reverse Mode Input Current Limit | Go | | 0xC | REG0x0C_Reverse_Mode_Input_Voltage_Limit | Reverse Mode Input Voltage Limit | Go | | 0x15 | REG0x15_Timer_Control | Timer Control | Go | | 0x17 | REG0x17_Converter_Control | Converter Control | Go | | 0x18 | REG0x18_Pin_Control | Pin Control | Go | | 0x19 | REG0x19_Power_Path_and_Reverse_Mode_Control | Power Path and Reverse Mode Control | Go | | 0x1B | REG0x1B_TS_Threshold_Control | TS Threshold Control | Go | | 0x1C | REG0x1C_TS_Region_Behavior_Control | TS Region Behavior Control | Go | | 0x1D | REG0x1D_TS_Reverse_Mode_Threshold_Control | TS Reverse Mode Threshold Control | Go | | 0x1E | REG0x1E_Bypass_and_Overload_Control | Bypass and Overload Control | Go | | 0x21 | REG0x21_Status_1 | Status 1 | Go | | 0x22 | REG0x22_Status_2 | Status 2 | Go | | 0x23 | REG0x23_Status_3 | Status 3 | Go | | 0x24 | REG0x24_Fault_Status | Fault Status | Go | | 0x25 | REG0x25_Flag_1 | Flag 1 | Go | | 0x26 | REG0x26_Flag_2 | Flag 2 | Go | | 0x27 | REG0x27_Fault_Flag | Fault Flag | Go | | 0x28 | REG0x28_Mask_1 | Mask 1 | Go | | 0x29 | REG0x29_Mask_2 | Mask 2 | Go | | 0x2A | REG0x2A_Fault_Mask | Fault Mask | Go | | 0x2B | REG0x2B_ADC_Control | ADC Control | Go | | 0x2C | REG0x2C_ADC_Channel_Control | ADC Channel Control | Go | | 0x2D | REG0x2D_IAC_ADC | IAC ADC | Go | | 0x2F | REG0x2F_IOUT_ADC | IOUT ADC | Go | | 0x31 | REG0x31_VAC_ADC | VAC ADC | Go | | 0x33 | REG0x33_VOUT_ADC | VOUT ADC | Go | | 0x37 | REG0x37_TS_ADC | TS ADC | Go | | 0x3B | REG0x3B_Gate_Driver_Strength_Control | Gate Driver Strength Control | Go | | 0x3C | REG0x3C_Gate_Driver_Dead_Time_Control | Gate Driver Dead Time Control | Go | | 0x3D | REG0x3D_Part_Information | Part Information | Go | | 0x62 | REG0x62_Reverse_Mode_Current | Reverse Mode Current | Go | Complex bit access types are encoded to fit into small table cells. Table 6-5 shows the codes that are used for access types in this section. Table 6-5. BQ25758 Access Type Codes | | - | <i>J</i> 1 | |-------------|------|-------------| | Access Type | Code | Description | | Read Type | | | Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback Table 6-5. BQ25758 Access Type Codes (continued) | Access Type | Code | Description | |------------------|------|--| | R | R | Read | | Write Type | | | | W | W | Write | | Reset or Default | | | | -n | | Value after reset or the default value | # 6.5.1 REG0x02_Output_Current_Limit Register (Address = 0x2) [Reset = 0x0640] REG0x02_Output_Current_Limit is shown in Table 6-6. Return to the Summary Table. I2C REG0x03=[15:8], I2C REG0x02=[7:0] Table 6-6. REG0x02 Output Current Limit Register Field Descriptions | | Table of the content | | | | | | | | |-------|---|------|-------|------------------------------------|--|--|--|--| | Bit | Field | Туре | Reset | Notes | Description | | | | | 15:11 | RESERVED | R | 0x0 | | Reserved | | | | | 10:2 | IOUT_REG | R/W | 0x190 | Reset by:
REG_RESET
WATCHDOG | Output Current Regulation Limit with 5mΩ ROUT_SNS: Actual current is the lower of IOUT_REG and IOUT pin POR: 20000mA (190h) Range: 400mA-20000mA (8h-190h) Clamped Low Clamped High Bit Step: 50mA | | | | | 1:0 | RESERVED | R | 0x0 | | Reserved | | | | ### 6.5.2 REG0x04_Output_Voltage_Limit Register (Address = 0x4) [Reset = 0x03E8] REG0x04_Output_Voltage_Limit is shown in Table 6-7. Return to the Summary Table. I2C REG0x05=[15:8], I2C REG0x04=[7:0] Table 6-7. REG0x04_Output_Voltage_Limit Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-------|----------|------|-------|------------------------|--| | 15:14 | RESERVED
 R | 0x0 | | Reserved | | 13:2 | VOUT_REG | R/W | | Reset by:
REG_RESET | Output Voltage Regulation Limit: POR: 5000mV (FAh) Range: 3300mV-60000mV (A5h-BB8h) Clamped Low Clamped High Bit Step: 20mV | | 1:0 | RESERVED | R | 0x0 | | Reserved | # 6.5.3 REG0x06_Input_Current_DPM_Limit Register (Address = 0x6) [Reset = 0x0640] REG0x06_Input_Current_DPM_Limit is shown in Table 6-8. Return to the Summary Table. I2C REG0x07=[15:8], I2C REG0x06=[7:0] Table 6-8. REG0x06_Input_Current_DPM_Limit Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-------|----------|------|-------|------------------------|--| | 15:11 | RESERVED | R | 0x0 | | Reserved | | 10:2 | IAC_DPM | R/W | 0x190 | Reset by:
REG_RESET | Input Current DPM Regulation Limit with 5mΩ RAC_SNS: Actual input current limit is the lower of IAC_DPM and IIN pin POR: 20000mA (190h) Range: 400mA-20000mA (8h-190h) Clamped Low Clamped High Bit Step: 50mA | | 1:0 | RESERVED | R | 0x0 | | Reserved | ## 6.5.4 REG0x08_Input_Voltage_DPM_Limit Register (Address = 0x8) [Reset = 0x0348] REG0x08_Input_Voltage_DPM_Limit is shown in Table 6-9. Return to the Summary Table. I2C REG0x09=[15:8], I2C REG0x08=[7:0] Table 6-9. REG0x08_Input_Voltage_DPM_Limit Register Field Descriptions | | idolo o di ita obbos, inpat, i voltago, pri inclui i toglicitori i iola podoli pilolici | | | | | | | |-------|---|------|-------|------------------------|---|--|--| | Bit | Field | Туре | Reset | Notes | Description | | | | 15:14 | RESERVED | R | 0x0 | | Reserved | | | | 13:2 | VAC_DPM | R/W | 0xD2 | Reset by:
REG_RESET | Input Voltage Regulation Limit: POR: 4200mV (D2h) Range: 4200mV-60000mV (D2h-BB8h) Clamped Low Clamped High Bit Step: 20mV | | | | 1:0 | RESERVED | R | 0x0 | | Reserved | | | ### 6.5.5 REG0x0A_Reverse_Mode_Input_Current_Limit Register (Address = 0xA) [Reset = 0x0640] REG0x0A_Reverse_Mode_Input_Current_Limit is shown in Table 6-10. Return to the Summary Table. I2C REG0x0B=[15:8], I2C REG0x0A=[7:0] Table 6-10. REG0x0A_Reverse_Mode_Input_Current_Limit Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-------|----------|------|-------|------------------------|--| | 15:11 | RESERVED | R | 0x0 | | Reserved | | 10:2 | IAC_REV | R/W | 0x190 | Reset by:
REG_RESET | Input Current Regulation in Reverse Mode with 5mΩ RAC_SNS: POR: 20000mA (190h) Range: 400mA-20000mA (8h-190h) Clamped Low Clamped High Bit Step: 50mA | | 1:0 | RESERVED | R | 0x0 | | Reserved | ### 6.5.6 REG0x0C_Reverse_Mode_Input_Voltage_Limit Register (Address = 0xC) [Reset = 0x03E8] REG0x0C_Reverse_Mode_Input_Voltage_Limit is shown in Table 6-11. Return to the Summary Table. I2C REG0x0D=[15:8], I2C REG0x0C=[7:0] Table 6-11. REG0x0C_Reverse_Mode_Input_Voltage_Limit Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-------|----------|------|-------|------------------------|--| | 15:14 | RESERVED | R | 0x0 | | Reserved | | 13:2 | VAC_REV | R/W | 0xFA | Reset by:
REG_RESET | VAC Voltage Regulation in Reverse Mode: POR: 5000mV (FAh) Range: 3300mV-60000mV (A5h-BB8h) Clamped Low Clamped High Bit Step: 20mV | | 1:0 | RESERVED | R | 0x0 | | Reserved | # 6.5.7 REG0x15_Timer_Control Register (Address = 0x15) [Reset = 0x10] REG0x15_Timer_Control is shown in Table 6-12. Return to the Summary Table. Table 6-12. REG0x15 Timer Control Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|----------|------|-------|------------------------|--| | 7:6 | RESERVED | R | 0x0 | | Reserved | | 5:4 | WATCHDOG | R/W | 0x1 | Reset by:
REG_RESET | Watchdog timer control: 00b = Disable 01b = 40s 10b = 80s 11b = 160s | | 3 | RESERVED | R | 0x0 | | Reserved | | 2:1 | RESERVED | R | 0x0 | | Reserved | | 0 | RESERVED | R | 0x0 | | Reserved | # 6.5.8 REG0x17_Converter_Control Register (Address = 0x17) [Reset = 0x09] REG0x17_Converter_Control is shown in Table 6-13. Return to the Summary Table. Table 6-13. REG0x17_Converter_Control Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|-------------------------------|------|-------|------------------------|---| | 7:6 | RESERVED | R | 0x0 | | Reserved | | 5 | WD_RST | R/W | 0x0 | Reset by:
REG_RESET | I2C Watchdog timer reset control: 0b = Normal 1b = Reset (bit goes back to 0 after timer reset) | | 4 | DIS_CE_PIN | R/W | 0x0 | Reset by:
REG_RESET | /CE pin function disable: 0b = /CE pin enabled 1b = /CE pin disabled | | 3 | EN_CHG_BIT_RES
ET_BEHAVIOR | R/W | 0x1 | Reset by:
REG_RESET | Controls the EN_CHG bit behavior when WATCHDOG expires: 0b = EN_CHG bit resets to 0 1b = EN_CHG bit resets to 1 | Table 6-13. REG0x17_Converter_Control Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Notes | Description | |-----|--------------|------|-------|--|---| | 2 | EN_HIZ | R/W | 0x0 | Reset by:
REG_RESET
WATCHDOG
Adapter Plug In | HIZ mode enable: 0b = Disable 1b = Enable | | 1 | EN_IBAT_LOAD | R/W | 0x0 | Sinks current from SRN to GND. Recommend to disable IBAT ADC (IBAT_ADC_DIS = 1) while this bit is active. Reset by: REG_RESET WATCHDOG | Battery Load (IBAT_LOAD) Enable: 0b = Disabled 1b = Enabled | | 0 | EN_CHG | R/W | 0x1 | Reset by:
REG_RESET
WATCHDOG | Enable control: 0b = Disable 1b = Enable | # 6.5.9 REG0x18_Pin_Control Register (Address = 0x18) [Reset = 0xC0] REG0x18_Pin_Control is shown in Table 6-14. Return to the Summary Table. Table 6-14. REG0x18_Pin_Control Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|----------------|------|-------|------------------------------------|--| | 7 | EN_IOUT_PIN | R/W | 0x1 | Reset by:
REG_RESET
WATCHDOG | IOUT pin function enable: 0b = IOUT pin disabled 1b = IOUT pin enabled | | 6 | EN_IIN_PIN | R/W | 0x1 | Reset by:
REG_RESET
WATCHDOG | IIN pin function enable: 0b = IIN pin disabled 1b = IIN pin enabled | | 5 | DIS_PG_PIN | R/W | 0x0 | Reset by:
REG_RESET | PG pin function disable: 0b = PG pin enabled 1b = PG pin disabled | | 4 | DIS_STAT_PIN | R/W | 0x0 | Reset by:
REG_RESET | STAT pin function disable: 0b = STAT pin enabled 1b = STAT pin disabled | | 3 | FORCE_STAT4_ON | R/W | 0x0 | Reset by:
REG_RESET | CE_STAT4 pin override: Can only be forced on if DIS_CE_PIN = 1 0b = CE_STAT4 open-drain off 1b = CE_STAT4 pulls LOW | | 2 | FORCE_STAT3_ON | R/W | 0x0 | Reset by:
REG_RESET | PG_STAT3 pin override: Can only be forced on if DIS_PG_PIN = 1 0b = PG_STAT3 open-drain off 1b = PG_STAT3 pulls LOW | | 1 | RESERVED | R | 0x0 | | Reserved | | 0 | FORCE_STAT_ON | R/W | 0x0 | Reset by:
REG_RESET | STAT pin override: Can only be forced on if DIS_STAT_PIN = 1 | | | | | | | 0b = STAT open-drain off
1b = STAT pulls LOW | # 6.5.10 REG0x19_Power_Path_and_Reverse_Mode_Control Register (Address = 0x19) [Reset = 0x00] REG0x19_Power_Path_and_Reverse_Mode_Control is shown in Table 6-15. Copyright © 2024 Texas Instruments Incorporated Return to the Summary Table. Table 6-15. REG0x19_Power_Path_and_Reverse_Mode_Control Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|-------------------------|------|-------|---|--| | 7 | REG_RST | R/W | 0x0 | Reset by:
REG_RESET | Register reset to default values: 0b = Not reset 1b = Reset (bit goes back to 0 after register reset) | | 6 | EN_IAC_LOAD | R/W | 0x0 | Reset by:
REG_RESET
WATCHDOG | VAC Load (IAC_LOAD) Enable: 0b = Disabled 1b = Enabled | | 5 | EN_PFM | R/W | 0x0 | This bit is reset upon a valid SYNC signal detection on FSW_SYNC pin. Host can set this bit back to 1 to force PFM operation even with a valid SYNC input Reset by: REG_RESET | Enable PFM mode to improve light-load efficiency: 0b = Disable (Fixed-frequency DCM operation) 1b = Enable (PFM operation) | | 4 | RESERVED | R | 0x0 | | Reserved | | 3 | PWRPATH_REDUC
E_VDRV | R/W | 0x0 | Reset by:
REG_RESET
WATCHDOG | Bypass Mode Gate-Drive Voltage Select:
0b = 10V
1b = 7V | | 2 | RESERVED | R | 0x0 | | Reserved | | 1 | RESERVED | R | 0x0 | | | | 0 | EN_REV | R/W | 0x0 | Reset by:
REG_RESET
WATCHDOG
Adapter Plug In | Reverse Mode control: 0b = Disable 1b = Enable | # 6.5.11 REG0x1B_TS_Threshold_Control Register (Address = 0x1B) [Reset = 0x82] REG0x1B_TS_Threshold_Control is shown in Table 6-16. Return to the Summary Table. Table 6-16. REG0x1B_TS_Threshold_Control Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|----------|------|-------
-------|-------------| | 7:6 | TS_T5 | R/W | 0x2 | | Reserved | | 5:4 | RESERVED | R | 0x0 | | Reserved | | 3:2 | RESERVED | R | 0x0 | | Reserved | | 1:0 | RESERVED | R/W | 0x2 | | Reserved | # 6.5.12 REG0x1C_TS_Region_Behavior_Control Register (Address = 0x1C) [Reset = 0x00] REG0x1C_TS_Region_Behavior_Control is shown in Table 6-17. Return to the Summary Table. Table 6-17. REG0x1C_TS_Region_Behavior_Control Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|----------|------|-------|-------|-------------| | 7 | RESERVED | R | 0x0 | | Reserved | | 6:5 | RESERVED | R | 0x0 | | Reserved | | 4 | RESERVED | R | 0x0 | | Reserved | | 3:2 | RESERVED | R | 0x0 | | Reserved | Table 6-17. REG0x1C_TS_Region_Behavior_Control Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Notes | Description | |-----|----------|------|-------|---|-------------| | 1 | RESERVED | R | 0x0 | EN_VREG_TEMP_COMP and EN_JEITA cannot be set to 1 at the same time. | Reserved | | 0 | RESERVED | R/W | 0x0 | Reset by:
REG_RESET | Reserved | ## 6.5.13 REG0x1D_TS_Reverse_Mode_Threshold_Control Register (Address = 0x1D) [Reset = 0x40] REG0x1D_TS_Reverse_Mode_Threshold_Control is shown in Table 6-18. Return to the Summary Table. Table 6-18. REG0x1D TS Reverse Mode Threshold Control Register Field Descriptions | | Table 6 16. REGGET DE TO_REVERSE_MODE_THICSHOIL_GOILLOF REGISTER FICIA DESCRIPTIONS | | | | | | | | | |-----|---|------|-------|------------------------|--|--|--|--|--| | Bit | Field | Туре | Reset | Notes | Description | | | | | | 7:6 | ВНОТ | R/W | 0x1 | Reset by:
REG_RESET | Reverse Mode TS HOT temperature threshold control:
00b = 37.7% (55C)
01b = 34.2% (60C)
10b = 31.25%(65C)
11b = Disable | | | | | | 5 | BCOLD | R/W | 0x0 | Reset by:
REG_RESET | Reverse Mode TS COLD temperature threshold control: 0b = 77.15% (-10C) 1b = 80% (-20C) | | | | | | 4:0 | RESERVED | R | 0x0 | | Reserved | | | | | ## 6.5.14 REG0x1E_Bypass_and_Overload_Control Register (Address = 0x1E) [Reset = 0x20] REG0x1E Bypass and Overload Control is shown in Table 6-19. Return to the Summary Table. Table 6-19. REG0x1E_Bypass_and_Overload_Control Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|--------------|------|-------|---|---| | 7 | RESERVED | R | 0x0 | | Reserved | | 6 | TOVLD_SET | R/W | 0x0 | Reset by:
REG_RESET | TOVLD timer control: 0b = 25ms 1b = 50ms | | 5 | SYSREV_UV | R/W | 0x1 | Reset by:
REG_RESET | Reverse Mode System UVP: 0b = 80% of VSYS_REV target 1b = Fixed at 3.3V | | 4 | EN_BYPASS | R/W | 0x0 | Bypass mode only
supported in forward
mode, not operational in
reverse mode.
Reset by:
REG_RESET
WATCHDOG | Bypass mode control: Note the device automatically clears this bit and sets EN_HIZ bit when the output current exceeds IOUT_REG register value in bypass mode. 0b = Disable 1b = Enable | | 3 | EN_OVLD_TMAX | R/W | 0x0 | Reset by:
REG_RESET | TMAX counter control: 0b = Disable TMAX: allows new overload event after tOVLD and current falling below ILIM1 1b = Enable TMAX: allow new overload event after tMAX, even if current does not fall below ILIM1 | Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback Table 6-19. REG0x1E_Bypass_and_Overload_Control Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Notes | Description | |-----|------------|------|-------|------------------------|--| | 2 | EN_OVLD_3L | R/W | 0x0 | Reset by:
REG_RESET | Three-level overload mode control: 0b = Disable 1b = Enable | | 1 | OVLD_ILIM2 | R/W | 0x0 | Reset by:
REG_RESET | Overload higher current limit (percentage above IIN or IOUT): 0b = 1.5 1b = 2 | | 0 | EN_OVLD | R/W | 0x0 | Reset by:
REG_RESET | Overload Mode control: 0b = Disable 1b = Enable | ## 6.5.15 REG0x21_Status_1 Register (Address = 0x21) [Reset = 0x00] REG0x21_Status_1 is shown in Table 6-20. Return to the Summary Table. Table 6-20. REG0x21 Status 1 Register Field Descriptions | | | able 0-2 | O. INECO | xz i_Status_ i Register | i ielu Descriptions | |-----|---------------|----------|----------|-------------------------|---| | Bit | Field | Туре | Reset | Notes | Description | | 7 | ADC_DONE_STAT | R | 0x0 | | ADC conversion status (in one-shot mode only): | | | | | | | 0b = Conversion not complete
1b = Conversion complete | | 6 | IAC_DPM_STAT | R | 0x0 | | Input Current regulation status: | | | | | | | 0b = Normal
1b = In Input Current regulation (ILIM pin or IAC_DPM) | | 5 | VAC_DPM_STAT | R | 0x0 | | Input Voltage regulation status: | | | | | | | 0b = Normal
1b = In Input Voltage regulation (VAC_DPM or
VSYS_REV) | | 4 | RESERVED | R | 0x0 | | Reserved | | 3 | WD_STAT | R | 0x0 | | I2C Watchdog timer status: | | | | | | | 0b = Normal
1b = WD timer expired | | 2:0 | CHARGE_STAT | R | 0x0 | | Converter status: | | | | | | | 000b = Not switching
001b = Reserved
010b = Reserved
011b = CC Mode
100b = CV Mode
101b = CV Mode
110b = CV Mode
111b = Reserved | ## 6.5.16 REG0x22_Status_2 Register (Address = 0x22) [Reset = 0x00] REG0x22_Status_2 is shown in Table 6-21. Return to the Summary Table. Table 6-21. REG0x22_Status_2 Register Field Descriptions | | Table 0-21. NEGOXZZ_Status_Z Register Field Descriptions | | | | | | | | | | |---|--|----------|------|-------|-------|--|--|--|--|--| | | Bit | Field | Туре | Reset | Notes | Description | | | | | | | 7 | PG_STAT | R | 0x0 | | Input Power Good status: 0b = Not Power Good 1b = Power Good | | | | | | - | 6:4 | TS_STAT | R | 0x0 | | TS status: 000b = Normal 001b = TS Warm 010b = TS Cool 011b = TS Cold 100b = TS Hot | | | | | | Ī | 3:2 | RESERVED | R | 0x0 | | Reserved | | | | | | | 1:0 | RESERVED | R | 0x0 | | Reserved | | | | | ## 6.5.17 REG0x23_Status_3 Register (Address = 0x23) [Reset = 0x00] REG0x23_Status_3 is shown in Table 6-22. Return to the Summary Table. Table 6-22. REG0x23 Status 3 Register Field Descriptions | | | 1010 0 LL | i leiu bescriptions | | | |-----|---------------|-----------|---------------------|-------|---| | Bit | Field | Туре | Reset | Notes | Description | | 7:6 | RESERVED | R | 0x0 | | Reserved | | 5:4 | FSW_SYNC_STAT | R | 0x0 | | FSW_SYNC pin status: 00b = Normal, no external clock detected 01b = Valid ext. clock detected 10b = Pin fault (frequency out-of-range) 11b = Reserved | | 3 | RESERVED | R | 0x0 | | Reserved | | 2 | REVERSE_STAT | R | 0x0 | | Converter Reverse Mode status: 0b = Reverse Mode off 1b = Reverse Mode On | | 1 | RESERVED | R | 0x0 | | Reserved | | 0 | RESERVED | R | 0x0 | | Reserved | ## 6.5.18 REG0x24_Fault_Status Register (Address = 0x24) [Reset = 0x00] REG0x24_Fault_Status is shown in Table 6-23. Return to the Summary Table. Table 6-23. REG0x24_Fault_Status Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|---------------|------|-------|-------|--| | 7 | VAC_UV_STAT | R | 0x0 | | Input under-voltage status: | | | | | | | 0b = Input Normal
1b = Device in Input under-voltage protection | | 6 | VAC_OV_STAT | R | 0x0 | | Input over-voltage status: | | | | | | | 0b = Input Normal
1b = Device in Input over-voltage protection | | 5 | IBAT_OCP_STAT | R | 0x0 | | Battery over-current status: | | | | | | | 0b = Battery current normal
1b = Battery over-current detected | Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback Table 6-23. REG0x24_Fault_Status Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Notes | Description | |-----|--------------|------|-------|---|--| | 4 | VBAT_OV_STAT | R | 0x0 | | Battery over-voltage status: | | | | | | | 0b = Normal
1b = Device in Battery over-voltage protection | | 3 | TSHUT_STAT | R | 0x0 | | Thermal shutdown status: | | | | | | | 0b = Normal
1b = Device in thermal shutdown protection | | 2 | RESERVED | R | 0x0 | | Reserved | | 1 | DRV_OKZ_STAT | R | 0x0 | In battery-only mode with ADC disabled, this bit always reads '1' | DRV_SUP pin voltage status: 0b = Normal 1b = DRV_SUP pin voltage is out of valid range | | 0 | RESERVED | R | 0x0 | | Reserved | ## $6.5.19 REG0x25_Flag_1 Register (Address = 0x25) [Reset = 0x00]$ REG0x25_Flag_1 is shown in Table 6-24. Return to the Summary Table. Table 6-24. REG0x25_Flag_1 Register Field Descriptions | | | . 45.5 5 2 | .T. IXEOU | i ielu Descriptions | | |-----|---------------|------------|-----------|---------------------|---| | Bit | Field | Туре | Reset | Notes | Description | | 7 | ADC_DONE_FLAG | R | 0x0 | | ADC conversion
INT flag (in one-shot mode only):
Note: always reads 0 in continuous mode | | | | | | | Access: R (ClearOnRead) 0b = Conversion not complete 1b = Conversion complete | | 6 | IAC_DPM_FLAG | R | 0x0 | | Input Current regulation INT flag: | | | | | | | Access: R (ClearOnRead) 0b = Normal 1b = Device entered Input Current regulation | | 5 | VAC_DPM_FLAG | R | 0x0 | | Input Voltage regulation INT flag: | | | | | | | Access: R (ClearOnRead) 0b = Normal 1b = Device entered Input Voltage regulation | | 4 | RESERVED | R | 0x0 | | Reserved | | 3 | WD_FLAG | R | 0x0 | | I2C Watchdog timer INT flag: | | | | | | | Access: R (ClearOnRead) 0b = Normal 1b = WD_STAT rising edge detected | | 2 | RESERVED | R | 0x0 | | Reserved | | 1 | RESERVED | R | 0x0 | | Reserved | | 0 | RESERVED | R | 0x0 | | Reserved | ## $6.5.20 \text{ REG0x26_Flag_2 Register}$ (Address = 0x26) [Reset = 0x00] REG0x26_Flag_2 is shown in Table 6-25. Return to the Summary Table. Table 6-25. REG0x26_Flag_2 Register Field Descriptions | | | Table 0- | 23. KEG | egister Field Descriptions | | |-----|---------------|----------|---------|----------------------------|---| | Bit | Field | Туре | Reset | Notes | Description | | 7 | PG_FLAG | R | 0x0 | | Input Power Good INT flag: | | | | | | | Access: R (ClearOnRead) | | | | | | | 0b = Normal | | | | | | | 1b = PG signal toggle detected | | 6 | RESERVED | R | 0x0 | | Reserved | | 5 | RESERVED | R | 0x0 | | Reserved | | 4 | TS_FLAG | R | 0x0 | | TS INT flag: | | | | | | | Access: R (ClearOnRead) | | | | | | | 0b = Normal | | | | | | | 1b = TS STAT[2:0] bits changed (transitioned to any | | | | | | | state) | | 3 | REVERSE_FLAG | R | 0x0 | | Reverse Mode INT flag: | | | | | | | Access: R (ClearOnRead) | | | | | | | 0b = Normal | | | | | | | 1b = Reverse Mode toggle detected | | 2 | RESERVED | R | 0x0 | | Reserved | | 1 | FSW_SYNC_FLAG | R | 0x0 | | FSW_SYNC pin signal INT flag: | | | | | | | Access: R (ClearOnRead) | | | | | | | 0b = Normal | | | | | | | 1b = FSW_SYNC status changed | | 0 | RESERVED | R | 0x0 | | Reserved | ## 6.5.21 REG0x27_Fault_Flag Register (Address = 0x27) [Reset = 0x00] REG0x27_Fault_Flag is shown in Table 6-26. Return to the Summary Table. Table 6-26. REG0x27_Fault_Flag Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|---------------|------|-------|-------|---| | 7 | VAC_UV_FLAG | R | 0x0 | | Input under-voltage INT flag: | | | | | | | Access: R (ClearOnRead) 0b = Normal 1b = Entered input under-voltage fault | | 6 | VAC_OV_FLAG | R | 0x0 | | Input over-voltage INT flag: | | | | | | | Access: R (ClearOnRead) 0b = Normal 1b = Entered Input over-voltage fault | | 5 | IBAT_OCP_FLAG | R | 0x0 | | Battery over-current INT flag: | | | | | | | Access: R (ClearOnRead) 0b = Normal 1b = Entered Battery over-current fault | | 4 | VBAT_OV_FLAG | R | 0x0 | | Battery over-voltage INT flag: | | | | | | | Access: R (ClearOnRead) 0b = Normal 1b = Entered battery over-voltage fault | | 3 | TSHUT_FLAG | R | 0x0 | | Thermal shutdown INT flag: | | | | | | | Access: R (ClearOnRead) 0b = Normal 1b = Entered TSHUT fault | | 2 | RESERVED | R | 0x0 | | Reserved | Table 6-26. REG0x27_Fault_Flag Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Notes | Description | |-----|--------------|------|-------|-------|---| | 1 | DRV_OKZ_FLAG | R | 0x0 | | DRV_SUP pin voltage INT flag: | | | | | | | Access: R (ClearOnRead) 0b = Normal 1b = DRV_SUP pin fault detected | | 0 | RESERVED | R | 0x0 | | Reserved | ## 6.5.22 REG0x28_Mask_1 Register (Address = 0x28) [Reset = 0x00] REG0x28_Mask_1 is shown in Table 6-27. Return to the Summary Table. ## Table 6-27. REG0x28_Mask_1 Register Field Descriptions | | Table 0 27. REGOX20_Indox_1 Register 1 leid Besoniptions | | | | | | | | | |-----|--|--------------------|-------|------------------------|--|--|--|--|--| | Bit | Field | Туре | Reset | Notes | Description | | | | | | 7 | ADC_DONE_MASK | R/W | 0x0 | Reset by: | ADC conversion INT mask (in one-shot mode only): | | | | | | | | | | REG_RESET | 0b = ADC_DONE produces INT pulse
1b = ADC_DONE does not produce INT pulse | | | | | | 6 | IAC_DPM_MASK | R/W | 0x0 | Reset by: | Input Current regulation INT mask: | | | | | | | | | | REG_RESET | 0b = IAC_DPM_FLAG produces INT pulse
1b = IAC_DPM_FLAG does not produce INT pulse | | | | | | 5 | VAC_DPM_MASK | C_DPM_MASK R/W 0x0 | 0x0 | 0x0 Reset by: | Input Voltage regulation INT mask: | | | | | | | | | | REG_RESET | 0b = VAC_DPM_FLAG produces INT pulse
1b = VAC_DPM_FLAG does not produce INT pulse | | | | | | 4 | RESERVED | R | 0x0 | | Reserved | | | | | | 3 | WD_MASK | R/W | 0x0 | Reset by:
REG_RESET | I2C Watchdog timer INT mask: | | | | | | | | | | | 0b = WD expiration produces INT pulse
1b = WD expiration does not produce INT pulse | | | | | | 2 | RESERVED | R | 0x0 | | Reserved | | | | | | 1 | RESERVED | R | 0x0 | | Reserved | | | | | | 0 | RESERVED | R/W | 0x0 | Reset by:
REG_RESET | Reserved | | | | | ## $6.5.23 \text{ REG0x29_Mask_2 Register}$ (Address = 0x29) [Reset = 0x00] REG0x29_Mask_2 is shown in Table 6-28. Return to the Summary Table. ### Table 6-28. REG0x29_Mask_2 Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|----------|------|-------|------------------------|---| | 7 | PG_MASK | R/W | 0x0 | Reset by:
REG_RESET | Input Power Good INT mask: 0b = PG toggle produces INT pulse 1b = PG toggle does not produce INT pulse | | 6 | RESERVED | R | 0x0 | | Reserved | | 5 | RESERVED | R | 0x0 | | Reserved | | 4 | TS_MASK | R/W | 0x0 | Reset by:
REG_RESET | TS INT mask: 0b = TS_STAT change produces INT pulse 1b = TS_STAT change does not produce INT pulse | Table 6-28. REG0x29_Mask_2 Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Notes | Description | | | | | |-----|---------------|------|-------|------------------------|--|--|--|--|--| | 3 | REVERSE_MASK | R/W | 0x0 | Reset by:
REG_RESET | Reverse Mode INT mask: 0b = REVERSE_STAT toggle produces INT pulse 1b = REVERSE_STAT toggle does no produce INT pulse | | | | | | 2 | RESERVED | R | 0x0 | | Reserved | | | | | | 1 | FSW_SYNC_MASK | R/W | 0x0 | Reset by:
REG_RESET | FSW_SYNC pin signal INT mask: 0b = FSW_SYNC status change produces INT pulse 1b = FSW_SYNC status change does not produce INT pulse | | | | | | 0 | RESERVED | R | 0x0 | | Reserved | | | | | ## 6.5.24 REG0x2A_Fault_Mask Register (Address = 0x2A) [Reset = 0x00] REG0x2A_Fault_Mask is shown in Table 6-29. Return to the Summary Table. Table 6-29. REG0x2A_Fault_Mask Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|---------------|------|-----------|--|---| | 7 | VAC_UV_MASK | R/W | 0x0 | Reset by: | Input under-voltage INT mask: | | | | | | REG_RESET | 0b = Input under-voltage event produces INT pulse
1b = Input under-voltage event does not produce INT
pulse | | 6 | VAC_OV_MASK | R/W | 0x0 | Reset by: | Input over-voltage INT mask: | | | | | | REG_RESET | 0b = Input over-voltage event produces INT pulse
1b = Input over-voltage event does not produce INT
pulse | | 5 | IBAT_OCP_MASK | R/W | 0x0 | Reset by: | Battery over-current INT mask: | | | | | | REG_RESET | 0b = Battery over-current event produces INT pulse
1b = Battery over-current event does not produce INT
pulse | | 4 | VBAT_OV_MASK | R/W | 0x0 | Reset by: | Battery over-voltage INT mask: | | | | | | REG_RESET | 0b = Battery over-voltage event produces INT pulse
1b = Battery over-voltage event does not produce INT
pulse | | 3 | TSHUT_MASK | R/W | 0x0 | Reset by: | Thermal shutdown INT mask: | | | | | | REG_RESET | 0b = TSHUT event produces INT pulse
1b = TSHUT event does not produce INT pulse | | 2 | RESERVED | R | 0x0 | | Reserved | | 1 | DRV_OKZ_MASK | R/W | 0x0 | Reset by: | DRV_SUP pin voltage INT mask: | | | | | REG_RESET | 0b = DRV_SUP pin fault produces INT pulse
1b = DRV_SUP pin fault does not produce INT pulse | | | 0 | RESERVED | R | 0x0 | | Reserved | ## 6.5.25 REG0x2B_ADC_Control Register (Address = 0x2B) [Reset = 0x60] REG0x2B_ADC_Control is shown in Table 6-30. Return to the Summary Table. Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback Table 6-30. REG0x2B_ADC_Control Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|--------------|------|-------|--|--| | 7 | ADC_EN | R/W | 0x0 | When EN_VREG_TEMP_COMP = 1, the ADC will be automatically enabled, regardless of the status of ADC_EN Reset by: REG_RESET WATCHDOG | ADC control: 0b = Disable ADC 1b = Enable ADC | | 6 | ADC_RATE | R/W | 0x1 | Reset by:
REG_RESET | ADC conversion rate control: 0b = Continuous conversion 1b = One-shot conversion | | 5:4 | ADC_SAMPLE | R/W | 0x2 | Reset by:
REG_RESET | ADC sample speed: 00b = 15 bit effective resolution 01b = 14 bit effective resolution 10b = 13 bit effective resolution 11b = Reserved | | 3 | ADC_AVG | R/W | 0x0 |
Reset by:
REG_RESET | ADC average control: 0b = Single value 1b = Running average | | 2 | ADC_AVG_INIT | R/W | 0x0 | Reset by:
REG_RESET | ADC average initial value control: 0b = Start average using existing register value 1b = Start average using new ADC conversion | | 1:0 | RESERVED | R | 0x0 | | Reserved | # 6.5.26 REG0x2C_ADC_Channel_Control Register (Address = 0x2C) [Reset = 0x0A] REG0x2C_ADC_Channel_Control is shown in Table 6-31. Return to the Summary Table. Table 6-31. REG0x2C_ADC_Channel_Control Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|--------------|------|-------|--|--| | 7 | IAC_ADC_DIS | R/W | 0x0 | Reset by:
REG_RESET | IAC ADC control 0b = Enable 1b = Disable | | 6 | IOUT_ADC_DIS | R/W | 0x0 | Recommend to disable
IOUT ADC channel when
EN_IBAT_LOAD bit is 1
Reset by:
REG_RESET | IOUT ADC control 0b = Enable 1b = Disable | | 5 | VAC_ADC_DIS | R/W | 0x0 | Reset by:
REG_RESET | VAC ADC control 0b = Enable 1b = Disable | | 4 | VOUT_ADC_DIS | R/W | 0x0 | Reset by:
REG_RESET | VOUT ADC control 0b = Enable 1b = Disable | | 3 | RESERVED | R | 0x0 | | Reserved | | 2 | TS_ADC_DIS | R/W | 0x0 | Reset by:
REG_RESET | TS ADC control 0b = Enable 1b = Disable | | 1 | RESERVED | R | 0x0 | | Reserved | | 0 | RESERVED | R | 0x0 | | Reserved | ## 6.5.27 REG0x2D_IAC_ADC Register (Address = 0x2D) [Reset = 0x0000] REG0x2D_IAC_ADC is shown in Table 6-32. Return to the Summary Table. I2C REG0x2E=[15:8], I2C REG0x2D=[7:0] ### Table 6-32. REG0x2D_IAC_ADC Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |------|---------|------|-------|-------|---| | 15:0 | IAC_ADC | R | 0x0 | | IAC ADC reading with 5mΩ RAC_SNS: Reported as 2s complement | | | | | | | POR: 0mA(0h) Format: 2s Complement Range: -20000mA - 20000mA (9E58h-61A8h) Clamped Low Clamped High Bit Step: 0.8mA | ## 6.5.28 REG0x2F_IOUT_ADC Register (Address = 0x2F) [Reset = 0x0000] REG0x2F_IOUT_ADC is shown in Table 6-33. Return to the Summary Table. I2C REG0x30=[15:8], I2C REG0x2F=[7:0] ## Table 6-33. REG0x2F_IOUT_ADC Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |------|----------|------|-------|-------|--| | 15:0 | IOUT_ADC | R | 0x0 | | IOUT ADC reading with 5mΩ RBAT_SNS:
Reported as 2s complement | | | | | | | POR: 0mA (0h) Format: 2s Complement Range: -20000mA-20000mA (D8F0h-2710h) Clamped Low Clamped High Bit Step: 2mA | ## 6.5.29 REG0x31_VAC_ADC Register (Address = 0x31) [Reset = 0x0000] REG0x31_VAC_ADC is shown in Table 6-34. Return to the Summary Table. I2C REG0x32=[15:8], I2C REG0x31=[7:0] ### Table 6-34. REG0x31_VAC_ADC Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |------|---------|------|-------|-------|---| | 15:0 | VAC_ADC | R | 0x0 | | VAC ADC reading:
Reported as unsigned integer | | | | | | | POR: 0mV (0h) Format: 2s Complement Range: 0mV-65534mV (0h-7FFFh) Clamped Low Bit Step: 2mV | ## 6.5.30 REG0x33_VOUT_ADC Register (Address = 0x33) [Reset = 0x0000] REG0x33_VOUT_ADC is shown in Table 6-35. Return to the Summary Table. I2C REG0x34=[15:8], I2C REG0x33=[7:0] ## Table 6-35. REG0x33_VOUT_ADC Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |------|----------|------|-------|-------|--| | 15:0 | VOUT_ADC | R | 0x0 | | VOUT ADC reading: Reported as unsigned integer POR: 0mV (0h) Format: 2s Complement Range: 0mV-65534mV (0h-7FFFh) Clamped Low Bit Step: 2mV | ## $6.5.31 \text{ REG0x37_TS_ADC Register (Address = 0x37) [Reset = 0x0000]}$ REG0x37_TS_ADC is shown in Table 6-36. Return to the Summary Table. I2C REG0x38=[15:8], I2C REG0x37=[7:0] ## Table 6-36. REG0x37_TS_ADC Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |------|--------|------|-------|-------|--| | 15:0 | TS_ADC | R | 0x0 | | TS ADC reading as percentage of REGN: Reported as unsigned integer POR: 0%(0h) | | | | | | | Range: 0% - 99.90234375% (0h-3FFh) Clamped High Bit Step: 0.09765625% | ## 6.5.32 REG0x3B_Gate_Driver_Strength_Control Register (Address = 0x3B) [Reset = 0x00] REG0x3B_Gate_Driver_Strength_Control is shown in Table 6-37. Return to the Summary Table. ## Table 6-37. REG0x3B_Gate_Driver_Strength_Control Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|--------------|------|-------|------------------------|--| | 7:6 | BOOST_HS_DRV | R/W | 0x0 | Reset by:
REG_RESET | Boost High Side FET Gate Driver Strength: 00b = Fastest 01b = Faster 10b = Slower 11b = Slowest | | 5:4 | BUCK_HS_DRV | R/W | 0x0 | Reset by:
REG_RESET | Buck High Side FET Gate Driver Strength: 00b = Fastest 01b = Faster 10b = Slower 11b = Slowest | | 3:2 | BOOST_LS_DRV | R/W | 0x0 | Reset by:
REG_RESET | Boost Low Side FET Gate Driver Strength: 00b = Fastest 01b = Faster 10b = Slower 11b = Slowest | Table 6-37. REG0x3B_Gate_Driver_Strength_Control Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Notes | Description | |-----|-------------|------|-------|------------------------|--| | 1:0 | BUCK_LS_DRV | R/W | 0x0 | Reset by:
REG_RESET | Buck Low Side FET Gate Driver Strength: 00b = Fastest 01b = Faster 10b = Slower 11b = Slowest | ## 6.5.33 REG0x3C_Gate_Driver_Dead_Time_Control Register (Address = 0x3C) [Reset = 0x00] REG0x3C_Gate_Driver_Dead_Time_Control is shown in Table 6-38. Return to the Summary Table. Table 6-38. REG0x3C_Gate_Driver_Dead_Time_Control Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | | |-----|---------------------|------|-------|--|-----------------------------------|--| | 7:4 | RESERVED | R | 0x0 | Reserved | | | | 3:2 | BOOST_DEAD_TIM
E | R/W | 0x0 | Reset by: REG_RESET Boost Side FETs Dead Time Control: 00b = 45ns | | | | 1:0 | BUCK_DEAD_TIME | R/W | 0x0 | Reset by:
REG_RESET | Buck Side FETs Dead Time Control: | | ### 6.5.34 REG0x3D_Part_Information Register (Address = 0x3D) [Reset = 0x22] REG0x3D Part Information is shown in Table 6-39. Return to the Summary Table. Table 6-39. REG0x3D_Part_Information Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | |-----|----------|------|-------|-------|-------------------------------| | 7 | RESERVED | R | 0x0 | | Reserved | | 6:3 | PART_NUM | R | 0x4 | | Part Number:
100 - BQ25758 | | 2:0 | DEV_REV | R | 0x2 | | Device Revision: | ## 6.5.35 REG0x62_Reverse_Mode_Current Register (Address = 0x62) [Reset = 0x02] REG0x62_Reverse_Mode_Current is shown in Table 6-40. Return to the Summary Table. Table 6-40. REG0x62_Reverse_Mode_Current Register Field Descriptions | Bit | Field | Туре | Reset | Notes | Description | | |-----|----------|------|-------|------------------------|--|--| | 7:6 | IBAT_REV | R/W | 0x0 | Reset by:
REG_RESET | Reverse mode current limit: 00b = 20A 01b = 15A 10b = 10A 11b = 5A | | | 5:2 | RESERVED | R | 0x0 | | Reserved | | Copyright © 2024 Texas Instruments Incorporated # Table 6-40. REG0x62_Reverse_Mode_Current Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Notes | Description | |-----|----------------------------|------|-------|------------------------|--| | 1 | EN_CONV_FAST_T
RANSIENT | R/W | 0x1 | Reset by:
REG_RESET | Enable converter fast transient response - 0b = Disable 1b = Enable | | 0 | RESERVED | R | 0x0 | | Reserved | ## 7 Application and Implementation #### **Note** Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ## 7.1 Application Information The BQ25758 controller is ideal for high current applications (up-to 20 A). The BQ25758EVM evaluation module is a complete module for evaluating the device performance. The application curves were taken using the BQ25758EVM. ## 7.2 Typical Applications #### 7.2.1 Typical Application (Buck-Boost configuration) The device is configured as a buck-boost with input range from 4.2 V to 60 V. An optional gate drive voltage can be provided using the DRV_SUP pin to reduce switching losses. Figure 7-1 shows a typical schematic when using the device with 19.5-V or 48-V input, configurable output voltage for USB-PD EPR and 5-A output current. Figure 7-1. BQ25758: 19.5-V or 48-Vin, Buck-Boost with Configurable Output Voltage for USB-PD EPR, and 5-A Output Current Table 7-1. Recommended Part Numbers for up-to 48-V EPR (5-A output): | COMPONENT | VALUE | RECOMMENDED PART NO. | | |----------------|--------------|----------------------|--| | Q1, Q2, Q3, Q4 | 80 V, 6.2 mΩ | SiR880BDP | | Table 7-1. Recommended Part Numbers for up-to 48-V EPR (5-A output): (continued) | COMPONENT | VALUE | RECOMMENDED PART NO. | | | |-----------
----------------------|----------------------|--|--| | L1 | 10 μH, 22 m Ω | CMLB135T-100MS | | | Table 7-2. Recommended Part Numbers for 28-V EPR only (5-A output): | COMPONENT | VALUE | RECOMMENDED PART NO. | | |----------------|---------------|----------------------|--| | Q1, Q2, Q3, Q4 | 40 V, 3.5 mΩ | AONS66408 | | | L1 | 4.7 μH, 22 mΩ | CMLE104T-4R7MS | | ### 7.2.1.1 Design Requirements For this design example, use the parameters shown in the table below. **Table 7-3. Design Parameters** | PARAMETER | VALUE | | | |--|--|--|--| | Input voltage operating range (V _{AC}) | 4.2 V to 60 V | | | | Input current limit (I _{AC}) | No limit | | | | Output current limit (I _{OUT}) | 5 A | | | | Output voltage (V _{OUT_REG}) | 5 V, 9 V, 15 V, 20 V, 28 V, 36 V, 48 V | | | | Switching frequency | 450 kHz | | | #### 7.2.1.2 Detailed Design Procedure #### 7.2.1.2.1 ACUV / ACOV Input Voltage Operating Window Programming The input voltage operating window is programmed by an ACUV / ACOV window with a resistor divider from VAC to GND. The top resistor, RAC1 is typically selected as 1,000 k Ω to minimize the input voltage leakage current. Assuming the desired trip-points for under-voltage and over-voltage protection are labeled V_{VACUVP} and V_{VACOVP}, the resistor divider required can be calculated as follows. The internal reference for the over-voltage threshold (VREF ACOV) is 1.2 V. The internal reference for the under-voltage threshold (VREF ACUV) is 1.1 V. Figure 7-2. ACUV and ACOV Resistor Divider $$V_{VACOVP} = \frac{1.2V(1,000k\Omega + R_{AC2} + R_{AC3})}{R_{AC3}}$$ (6) $$V_{VACUVP} = \frac{1.1V(1,000k\Omega + R_{AC2} + R_{AC3})}{R_{AC2} + R_{AC3}}$$ (7) For the default device operating window of 4.2 V to 60 V, the ACUV can be pulled up directly to VAC, while the ACOV can be pulled directly to GND. ### 7.2.1.2.2 Switching Frequency Selection The switching frequency is set by a resistor connected from the FSW_SYNC pin to PGND. The RFSW resistor required to set the desired frequency is calculated using Equation 3 or Table 6-3. A 0.1% standard resistor of 56.9 k Ω is selected to set f_{SW} = 450 kHz. #### 7.2.1.2.3 Inductor Selection Higher switching frequency allows the use of smaller inductor and capacitor values. Inductor saturation current should be higher than the inductor current (I_I) plus half the ripple current ($I_{RIPPI,F}$): $$I_{SAT} \ge I_L + \frac{1}{2} I_{RIPPLE} \tag{8}$$ The inductor ripple current in buck operation depends on input voltage (V_{AC}), duty cycle ($D_{BUCK} = V_{BAT}/V_{AC}$), switching frequency (f_{SW}) and inductance (L): $$I_{RIPPLE_BUCK} = \frac{V_{AC} \times D_{BUCK} \times (1 - D_{BUCK})}{f_{SW} \times L}$$ (9) During boost operation, the duty cycle is: $D_{BOOST} = 1 - (V_{AC}/V_{BAT})$. The inductor ripple current is: $$I_{RIPPLE_BOOST} = \frac{V_{AC} \times D_{BOOST}}{f_{SW} \times L} \tag{10}$$ The maximum inductor ripple current happens with D = 0.5 or close to 0.5. Ripple calculations should be analyzed for both forward and reverse operating modes if applicable. Usually inductor ripple is designed in the range of (20 - 40%) maximum inductor current (in either forward or reverse mode) as a trade-off between inductor size and efficiency for a practical design. #### 7.2.1.2.4 Input (VAC) Capacitor Input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst case RMS ripple current is half of the output when duty cycle is 0.5 in forward buck mode, or reverse boost mode. If the converter does not operate at 50% duty cycle, then the worst case capacitor RMS current occurs where the duty cycle is closest to 50% and can be estimated by Equation 11: $$I_{CIN} = I_{CHG} \times \sqrt{D \times (1 - D)} \tag{11}$$ A combination of ceramic and bulk capacitors should be used to provide a short path for high di/dt current and to reduce the voltage ripple. Ceramic capacitors should be placed close to the switching half-bridge. Given total bulk input capacitance, it is recommended to distribute equally on either side of R_{AC_SNS}. The complete schematic is a good starting point for input capacitor for typical applications. #### 7.2.1.2.5 Output (VBAT) Capacitor In forward boost mode or reverse buck mode, the output capacitor conducts high ripple current. The output capacitor RMS ripple current is given by where the minimum VAC corresponds to the maximum capacitor current. $$I_{CBAT} = I_{BAT} \sqrt{\frac{V_{BAT}}{V_{AC}} - 1} \tag{12}$$ A 5-mΩ output capacitor ESR causes an output voltage ripple of 74 mV as given by: $$\Delta V_{RIPPLE(ESR)} = I_{BAT} \times \frac{V_{BAT}}{V_{AC.min}} \times ESR \tag{13}$$ A 140-µF output capacitor causes a capacitive ripple voltage of 66 mV as given by: $$\Delta V_{RIPPLE(CBAT)} = I_{BAT} \times \frac{\left(1 - \frac{V_{AC,min}}{V_{BAT}}\right)}{C_{BAT} \times f_{SW}}$$ (14) Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback A combination of ceramic and bulk capacitors should be used to provide low ESR and high ripple current capacity. Ceramic capacitors should be placed close to the switching half-bridge. Given total bulk output capacitance, it is recommended to distribute equally on either side of R_{BAT_SNS} . The complete schematic is a good starting point for C_{BAT} for typical applications. ### 7.2.1.2.6 Sense Resistor (R_{AC_SNS} and R_{BAT_SNS}) and Current Programming The battery current sense resistor between SRP and SRN is fixed at 5 m Ω ; using a different value is not recommended. The input current sense resistor between ACP and ACN is typically 2 m Ω , but can be increased to achieve better accuracy at lower sensed currents. In USB-PD EPR applications, a 5-m Ω sense resistor is recommended to achieve programmability in 50 mA/step. In addition, if input current limit function is not desired, ACP and ACN may be shorted together. For both of these sense resistors, a filter network is recommended as shown in the Typical Application. For both the input current and the output current, the limits may be programmed using the I²C interface or an external programming resistor on IIN and IOUT pins, respectively. | IUD | rable 7-4. Delise Resistor and Current Frogramming | | | | | | | |-------------------------------|--|---|--|--|--|--|--| | PARAMETER | FORMULA | VALUE | | | | | | | Input Current Hardware Limit | Unused | Pull IIN pin to GND | | | | | | | Input Current Software Limit | Unused | REG06 = $0x0640$ (50 A with $2-m\Omega$ R _{AC_SNS}) | | | | | | | Output Current Hardware Limit | R _{IOUT} = K _{ICHG} / 8 A | 6.25 kΩ for 8 A with 5 -mΩ R_{BAT_SNS} | | | | | | | Output Current Software Limit | ICHG = 5 A | REG02 = 0x0190 (5 A) | | | | | | Table 7-4. Sense Resistor and Current Programming The default input sense resistor (R_{AC_SNS}) is 2 m Ω , and the register allows for a range of up-to 50-A input current limit. If lower currents are desired, it is possible to use a higher resistor, such as 5 m Ω . In this case, the IAC_DPM register value should be multiplied by a factor of 2/5 to program the correct current. For example, if a 5-m Ω R_{AC_SNS} is used, and the register is programmed to a value of 0x60, the true maximum current across the R_{AC_SNS} will be: 12A * 2/5 = 4.8 A. Similarly, the K_{ILIM} parameter used to set the IIN pull-down resistor should be scaled by 2/5. For example, with a 5-m Ω R_{AC_SNS} resistor, a 6-A current limit would be achieved as: R_{ILIM} = K_{ILIM} * (2/5) / 6A = 3.3 k Ω . #### 7.2.1.2.7 Converter Fast Transient Response The device integrates all the loop compensation, thereby providing a high density solution with ease of use. For faster transient reponse, the EN_CONV_FAST_TRANSIENT bit can be set to 1. If device is not used in boost mode operation, this section can be disregarded. When the converter is operating in boost mode, the non-continuous inductor current flow to the load results in a right-half plane (RHP) zero. The RHP zero location is: $$RHPz = \frac{VIN, boost}{IIN, boost} \frac{1}{2\pi L} \tag{15}$$ For good phase margin, the unity gain bandwidth (UGBW) of the converter should be about 1/3 of the RHPz. The boost output capacitor (C_{load}), and the converter transient parameters (R_1 , gm_1) need to be scaled to move the location of the UGBW of the converter. $$1 \approx \frac{Adiv \times gm_1(sR_1C_1 + 1)}{sC_1} \left[\frac{V_i}{I_o \times 50m} \right] \left[\frac{1}{1 + s\frac{C_{load}R_{load}}{2}} \right]$$ (16) The device adjusts Adiv, gm_1 and R_1 based on the output voltage and the EN_CONV_FAST_TRANSIENT bit setting per the table below. During some boost case scenarios, the C_{load} needs to be adjusted to limit the converter bandwidth. Table 7-5. Converter Fast Transient Response | iable i di contental i act manerem i topone | | | | | | | | |---|------|---------------------|-----------------|----------------------------|-----------------|----------------------------|--| | BOOST OUTPUT | Adiv | Adiv C ₁ | | EN_CONV_FAST_TRANSIENT = 0 | | EN_CONV_FAST_TRANSIENT = 1 | | | VOLTAGE | | 61 | gm ₁ | R ₁ | gm ₁ | R ₁ | | | ≤8 V | 1/5 | 75 pF | 0.4 μ | 600 kΩ | 2 μ | 1.3 ΜΩ | | | 8 V to 16 V | 1/10 | 75 pF | 0.47 μ | 1 ΜΩ | 2 μ | 1.8 ΜΩ | | | 16 V to 32 V | 1/20 | 75 pF | 0.67 μ | 2.8 ΜΩ | 2 μ | 2.8 ΜΩ | | | >32 V | 1/40 | 75 pF | 2 μ | 2.8 ΜΩ | 2 μ | 2.8 ΜΩ | | As an example, assume the device operates in boost mode from a 5V supply to provide a 7V boost output voltage with load up-to 5A and 10µH inductor. The RHPz is approximately located at: $$RHPz = \frac{V_{IN,boost}}{I_{IN,boost}} \frac{1}{2\pi L} = 11.4kHz \tag{17}$$ For best stability, the UGBW of the
converter should be limited to 1/3 of the RHP zero, or 3.8kHz. If EN_CONV_FAST_TRANSIENT = 1, the equation becomes: $$1 \approx \frac{0.2 \times 2\mu \left(j\omega \times 1.3M\Omega \times 75pF + 1\right)}{j\omega \times 75pF} \left[\frac{5V}{5A \times 50m}\right] \left[\frac{1}{1 + j\omega \frac{C_{load} \times 1.4}{2}}\right]$$ (18) Solving the above for C_{load} gives \geq 674 µF capacitor requirement. Conversely, if EN_CONV_FAST_TRANSIENT = 0, the UGBW equation becomes: $$1 \approx \frac{0.2 \times 0.4\mu \left(j\omega \times 0.6M\Omega \times 75pF + 1\right)}{j\omega \times 75pF} \left[\frac{5V}{5A \times 50m}\right] \left[\frac{1}{1 + j\omega \frac{C_{load} \times 1.4}{2}}\right]$$ (19) Solving the above for C_{load} gives \geq 51 μ F capacitor requirement. However, the minimum recommended capacitor for converter stability is 80 μ F, so this minimum value should be used. ## 7.2.1.3 Application Curves C_{VAC} = 160 μ F, C_{OUT} = 160 μ F, V_{VAC} = 20 V, V_{OUT} = 5 V (unless otherwise specified) Submit Document Feedback Copyright © 2024 Texas Instruments Incorporated ### 7.2.2 Typical Application (Buck-only configuration) The device can be configured as buck-only using the MODE pin as described in MODE Pin Configuration section. In this mode, the Q3 and Q4 FETs must be removed from the system. Please see the diagram below showing buck-only mode without the boost FETs Q3 and Q4. An optional gate drive voltage can be provided using the DRV_SUP pin to reduce switching losses. Figure 7-25 shows a typical schematic when using the device as a buck with 48-V input, configurable output voltage for USB-PD EPR and 5-A output current. Figure 7-25. BQ25758: 48-Vin, Buck-Only with Configurable Output Voltage for USB-PD EPR, and 5-A Output Current ### **Table 7-6. Recommended Part Numbers:** | COMPONENT | VALUE | RECOMMENDED PART NO. | | | |-----------|--------------|----------------------|--|--| | Q1, Q2 | 80 V, 6.2 mΩ | SiR880BDP | | | | L1 | 10 μH, 22 mΩ | CMLB135T-100MS | | | ## 7.2.2.1 Design Requirements For this design example, use the parameters shown in the table below. **Table 7-7. Design Parameters** | PARAMETER | VALUE | | | | |--|----------------------------------|--|--|--| | Input voltage operating range (V _{AC}) | 43 V to 53 V | | | | | Input current limit (I _{AC}) | No limit | | | | | Output current limit (I _{OUT}) | 5 A | | | | | Output voltage (V _{OUT_REG}) | 5 V, 9 V, 15 V, 20 V, 28 V, 36 V | | | | | Switching frequency | 450 kHz | | | | # 8 Power Supply Recommendations The power supply for the device is any DC voltage source within the specified input range. The supply should also be capable of supplying sufficient current based on the programmed input current limit. The input supply should be bypassed with a combination of electrolytic and ceramic capacitors to avoid ringing due to the parasitic impedance of the connecting cables. When device is operating in the reverse direction, the supply at the OUTPUT should follow the same recommendations as the input supply mentioned above. Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback # 9 Layout ## 9.1 Layout Guidelines Proper layout of the components to minimize high frequency current path loops is important to prevent electrical and magnetic field radiation and high frequency resonant problems. Here is a PCB layout priority list for proper layout. Table 9-1. PCB Layout Guidelines | COMPONENTS | FUNCTION | IMPACT | GUIDELINES | |---|--------------------------|---|--| | Buck high side FET,
Buck low side FET, input
capacitors | Buck input loop | High frequency noise, ripple, efficiency | This path forms a high frequency switching loop due to the pulsating current at the input of the buck. Place components on the same side of the board. Minimize loop area to reduce parasitic inductance. Maximize trace width to reduce parasitic resistance. Place input ceramic capacitors close to the switching FETs. | | Boost low side FET, boost high side FET, output capacitors | Boost output loop | High frequency noise, ripple, efficiency | This path forms a high frequency switching loop due to the pulsating current at the output of the boost. Place components on the same side of the board. Minimize loop area to reduce parasitic inductance. Maximize trace width to reduce parasitic resistance. Place output ceramic capacitors close to the switching FETs. | | Sense resistors, switching FETs, inductor | Current path | Efficiency | The current path from input to output through the power stage and sense resistors has low impedance. Pay attention to via resistance if they are not on the same side. The number of vias can be estimated as 1- to 2-A per via for a 10-mil via with 1 oz. copper thickness. | | Switching FETs, inductor | Power stage | Thermal, efficiency | The switching FETs and inductor are the components with highest power loss. Allow enough copper area for heat dissipation. Multiple thermal vias can be used to connect more copper layers together and dissipate more heat. | | DRV_SUP, BTST1, BTST2 capacitors | Switching FET gate drive | High frequency noise,
parasitic ringing, gate
drive integrity | The DRV_SUP capacitor is used to supply the power to drive the low side FETs. The BTST capacitors are used to drive the high side FETs. It is recommended to place the capacitors as close as possible to the IC. | | LODRV1, LODRV2 | Low side gate drive | High frequency noise, parasitic ringing, gate drive integrity | LODRV1 and LODRV2 supplies the gate drive current to turn on the low side FETs. The return of LODRV1 and LODRV2 is PGND. As current take the path of least impedance, a ground plane close to the low side gate drive traces is recommended. Minimize gate drive length and aim for at least 20-mil gate drive trace width. | | HIDRV1, HIDRV2, SW1
(pin trace), SW2 (pin
trace) | High side gate drive | High frequency noise, parasitic ringing, gate drive integrity | HIDRV1 and HIDRV2 supplies the gate drive current to turn on the high side FETs. The return of HIDRV1 and HIDRV2 are SW1 and SW2, respectively. Route HIDRV1/SW1 and HIDRV2/SW2 pair next to each other to reduce gate drive parasitic inductance. Minimize gate drive length and aim for at least 20-mil gate drive trace width. | **Table 9-1. PCB Layout Guidelines (continued)** | COMPONENTS | FUNCTION | IMPACT | GUIDELINES | |---|------------------------------|--|---| | Current limit resistors,
FSW_SYNC resistor | IC programmable settings | Regulation accuracy, switching integrity | Pin voltage determines the settings for input current limit, output current limit and switching frequency. Ground noise on these could lead to inacuracy. Minimize ground return from these resistors to the IC ground pin. | | Input (ACP, ACN) and output (SRP, SRN) current sense | Current regulation | Regulation accuracy | Use Kelvin-sensing technique for input and output current sense resistors. Connect the current sense traces to the center of the pads, and run current sense traces as differential pairs, away from switching nodes. | | Input (ACUV), and output
(FB, VO_SNS) voltage
sensing | Voltage sense and regulation | Regulation accuracy | ACUV divider sets internal input voltage regulation in forward mode (V _{ACUV_DPM}). Route the top of the divider point to the target regulation location. VO_SNS sets the output voltage regulation in forward mode (V _{OUT_REG_ACC}). Route directly to the target regulation location. Avoid routing close to high power switching nodes. | | Bypass capacitors | Noise filter | Noise immunity | Place lowest value capacitors closest to the IC. | ## 9.2 Layout Example Based on the above layout guidelines, the buck-boost PCB layout example top view is shown below including all the key power components. Figure 9-1. PCB Layout Reference Example Top View For both input and output current sensing resistors, differential sensing and routing method are suggested and highlighted in figure below. Use wide trace for gate drive traces, minimum 20-mil trace width. Connect all analog grounds to a dedicated low-impedance copper plane, which is tied to the power ground underneath the IC exposed pad. Figure 9-2. PCB Layout Gate Drive and Current Sensing Signal Layer Routing ## 10 Device and Documentation Support ## 10.1 Device Support ## 10.1.1 Third-Party Products Disclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE. ## 10.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ##
10.3 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 10.4 Trademarks TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners. ## 10.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### 10.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. # 11 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | Changes from Revision A (July 2023) to Revision B (March 2024) Changed from Private to Public release | | | | |---|------|--|--| | Changes from Revision * (December 2022) to Revision A (July 2023) Added Bidirectional/Reverse mode throughout the data sheet. Added Buck-only mode throughout the data sheet. Updated CIN/COUT requirement. Improve 5V regulation accuracy. Added KIOUT factor. Updated VACUV_DPM limits. Added Reverse Mode Regulation parameters to EC table. Added IBYPASS_OCP. Updated VREGN limts. Increased IAC_LOAD and IBAT_LOAD values. Updated tooklob typical value. Added Section 6.3.5 | 1 | | | | Changes from Revision * (December 2022) to Revision A (July 2023) | Page | | | | Added Bidirectional/Reverse mode throughout the data sheet | 1 | | | | Added Buck-only mode throughout the data sheet | | | | | Updated CIN/COUT requirement | 6 | | | | Improve 5V regulation accuracy | 8 | | | | Added KIOUT factor | 8 | | | | Updated VACUV_DPM limits | 8 | | | | Added Reverse Mode Regulation parameters to EC table | 8 | | | | Added IBYPASS_OCP | 8 | | | | | | | | | Increased IAC_LOAD and IBAT_LOAD values | 8 | | | | Updated t _{OVLD} typical value | 12 | | | | Added Section 6.3.5 | 22 | | | | Added Section 6.3.8.1.3 | 26 | | | # 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2024 Texas Instruments Incorporated Submit Document Feedback www.ti.com 30-Jun-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|-----------------|-----------------------|------|-------------------------------|----------------------------|--------------|------------------| | BQ25758RRVR | Active | Production | VQFN (RRV) 36 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | BQ25758 | | BQ25758RRVR.A | Active | Production | VQFN (RRV) 36 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | BQ25758 | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE MATERIALS INFORMATION** www.ti.com 26-Mar-2024 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | | | | | | |----|---|--|--|--|--|--| | В0 | Dimension designed to accommodate the component length | | | | | | | K0 | Dimension designed to accommodate the component thickness | | | | | | | W | Overall width of the carrier tape | | | | | | | P1 | Pitch between successive cavity centers | | | | | | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | U | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------|------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | BQ25758RRVR | VQFN | RRV | 36 | 3000 | 330.0 | 12.4 | 5.3 | 6.3 | 1.15 | 8.0 | 12.0 | Q1 | **PACKAGE MATERIALS INFORMATION** www.ti.com 26-Mar-2024 ## *All dimensions are nominal | | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | |---|-------------|--------------|-----------------|------|------|-------------|------------|-------------|--| | ı | BQ25758RRVR | VQFN | RRV | 36 | 3000 | 367.0 | 367.0 | 35.0 | | 5 x 6, 0.5 mm pitch PLASTIC QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. INSTRUMENTS www.ti.com PLASTIC QUAD FLATPACK-NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance. PLASTIC QUAD FLATPACK-NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK-NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY
INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated