

AM3358-EP

SLUSC35B - APRIL 2015 - REVISED APRIL 2019

AM3358-EP Sitara[™] Processor

Device Overview

INSTRUMENTS

1.1 Features

Texas

- Up to 800-MHz Sitara[™] ARM[®] Cortex[®]-A8 32-bit **RISC** processor
 - NEON[™] SIMD coprocessor
 - 32KB of L1 instruction and 32KB of data cache with single-error detection (parity)
 - 256KB of L2 cache with error correcting code (ECC)
 - 176KB of on-chip boot ROM
 - 64KB of dedicated RAM
 - Emulation and debug JTAG
 - Interrupt controller (up to 128 interrupt requests)
- On-chip memory (shared L3 RAM)
 - 64KB of general-purpose on-chip memory controller (OCMC) RAM
 - Accessible to all masters
 - Supports retention for fast wakeup
- External memory interfaces (EMIF)
 - mDDR(LPDDR), DDR2, DDR3, DDR3L controller:
 - mDDR: 200-MHz clock (400-MHz data rate)
 - DDR2: 266-MHz clock (532-MHz data rate)
 - DDR3: 400-MHz clock (800-MHz data rate)
 - DDR3L: 400-MHz clock (800-MHz data rate)
 - 16-bit data bus
 - 1GB of total addressable space
 - Supports one x16 or two x8 memory device configurations
 - General-purpose memory controller (GPMC)
 - Flexible 8-bit and 16-bit asynchronous memory interface with up to seven chip selects (NAND, NOR, Muxed-NOR, SRAM)
 - Uses BCH code to support 4-, 8-, or 16-bit ECC
 - Uses hamming code to support 1-bit ECC
 - Error locator module (ELM)
 - Used in conjunction with the GPMC to locate addresses of data errors from syndrome polynomials generated using a BCH algorithm
 - Supports 4-, 8-, and 16-bit per 512-byte block error location based on BCH algorithms
- · Programmable real-time unit subsystem and industrial communication sSubsystem (PRU-ICSS)
 - Supports protocols such as PROFIBUS, PROFINET, EtherNet/IP™, and more
 - Two programmable real-time units (PRUs)

- 32-bit load/store RISC processor capable of running at 200 MHz
- 8KB of instruction RAM with single-error detection (parity)
- 8KB of data RAM with single-error detection (parity)
- Single-cycle 32-bit multiplier with 64-bit accumulator
- Enhanced GPIO module provides shift-in/out support and parallel latch on external signal
- 12KB of shared RAM with single-error detection (parity)
- Three 120-byte register banks accessible by each PRU
- Interrupt controller (INTC) for handling system input events
- Local interconnect bus for connecting internal and external masters to the resources inside the PRU-ICSS
- Peripherals inside the PRU-ICSS:
 - One UART port with flow control pins, supports up to 12 Mbps
 - One enhanced capture (eCAP) module
 - Two MII Ethernet ports that support industrial ethernet
 - One MDIO port
- Power, reset, and clock management (PRCM) module
 - Controls the entry and exit of stand-by and deep-sleep modes
 - Responsible for sleep sequencing, power domain switch-off sequencing, wake-up sequencing, and power domain switch-on sequencing
 - Clocks
 - Integrated 15- to 35-MHz high-frequency oscillator used to generate a reference clock for various system and peripheral clocks
 - Supports individual clock enable and disable control for subsystems and peripherals to facilitate reduced power consumption
 - Five ADPLLs to generate system clocks (MPU subsystem, DDR interface, USB and peripherals [MMC and SD, UART, SPI, I²C], L3, L4, Ethernet, GFX [SGX530], LCD pixel clock)
 - Power
 - Two nonswitchable power domains (real-time)

clock [RTC], wake-up logic [WAKEUP])

- Three switchable power domains (MPU subsystem [MPU], SGX530 [GFX], peripherals and infrastructure [PER])
- Implements SmartReflex[™] class 2B for core voltage scaling based on die temperature, process variation, and performance (adaptive voltage scaling [AVS])
- Dynamic voltage frequency scaling (DVFS)
- Real-time clock (RTC)
 - Real-time date (Day-Month-Year-Day of Week) and time (Hours-Minutes-Seconds) information
 - Internal 32.768-kHz oscillator, RTC logic and 1.1-V internal LDO
 - Independent power-on-reset (RTC_PWRONRSTn) input
 - Dedicated input pin (EXT_WAKEUP) for external wake events
 - Programmable alarm can be used to generate internal interrupts to the PRCM (for wakeup) or Cortex-A8 (for event notification)
 - Programmable alarm can be used with external output (PMIC_POWER_EN) to enable the power management IC to restore non-RTC power domains
- Peripherals
 - Up to two USB 2.0 High-Speed DRD (Dual-Role Device) ports with integrated PHY
 - Up to two industrial gigabit ethernet MACs (10, 100, 1000 Mbps)
 - Integrated switch
 - Each MAC supports MII, RMII, RGMII, and MDIO interfaces
 - Ethernet MACs and switch can operate independent of other functions
 - IEEE 1588v2 precision time protocol (PTP)
 - Up to two controller-area network (CAN) ports
 - Supports CAN version 2 parts A and B
 - Up to two multichannel audio serial ports (McASPs)
 - Transmit and receive clocks up to 50 MHz
 - Up to four serial data pins per McASP port with independent TX and RX clocks
 - Supports time division multiplexing (TDM), inter-IC sound (I2S), and similar formats

- Supports digital audio interface transmission (SPDIF, IEC60958-1, and AES-3 formats)
- FIFO buffers for transmit and receive (256 bytes)
- Up to six UARTs
 - All UARTs support IrDA and CIR modes
 - All UARTs support RTS and CTS flow control
 UART1 supports full modem control
- Up to two master and slave McSPI serial interfaces
 - Up to two chip selects
 - Up to 48 MHz
- Up to three MMC, SD, SDIO ports
 - 1-, 4-, and 8-bit MMC, SD, SDIO modes
 - MMCSD0 has dedicated power rail for 1.8-V or 3.3-V operation
 - Up to 48-MHz data transfer rate
 - Supports card detect and write protect
 - Complies with MMC4.3, SD, SDIO 2.0 specifications
- Up to three I²C master and slave interfaces
 - Standard mode (up to 100 kHz)
 - Fast mode (up to 400 kHz)
- Up to four banks of general-purpose I/O (GPIO) pins
 - 32 GPIO pins per bank (multiplexed with other functional pins)
 - GPIO pins can be used as interrupt inputs (up to two interrupt inputs per bank)
- Up to three external DMA event inputs that can also be used as interrupt inputs
- Eight 32-bit general-purpose timers
 - DMTIMER1 is a 1-ms timer used for operating system (OS) ticks
 - DMTIMER4–DMTIMER7 are pinned out
- One watchdog timer
- SGX530 3D graphics engine
 - Tile-based architecture delivering up to 20 million polygons per second
 - Universal scalable shader engine (USSE) is a multithreaded engine incorporating pixel and vertex shader functionality
 - Advanced shader feature set in excess of Microsoft VS3.0, PS3.0, and OGL2.0
 - Industry standard API support of Direct3D mobile, OGL-ES 1.1 and 2.0, and OpenMax
 - Fine-grained task switching, load balancing, and power management
 - Advanced geometry DMA-driven operation for minimum CPU interaction

AM3358-EP SLUSC35B – APRIL 2015 – REVISED APRIL 2019

- Programmable high-quality image antialiasing
- Fully virtualized memory addressing for OS operation in a unified memory architecture
- LCD controller
 - Up to 24-bit data output; 8 bits per pixel (RGB)
 - Resolution up to 2048 × 2048 (with maximum 126-MHz pixel clock)
 - Integrated LCD interface display driver (LIDD) controller
 - Integrated raster controller
 - Integrated DMA engine to pull data from the external frame buffer without burdening the processor via interrupts or a firmware timer
 - 512-word deep internal FIFO
 - Supported display types:
 - Character displays uses LIDD controller to program these displays
 - Passive matrix LCD displays uses LCD raster display controller to provide timing and data for constant graphics refresh to a passive display
 - Active matrix LCD displays uses external frame buffer space and the internal DMA engine to drive streaming data to the panel
- 12-bit successive approximation register (SAR) ADC
 - 200K samples per second
 - Input can be selected from any of the eight analog inputs multiplexed through an 8:1 analog switch
 - Can be configured to operate as a 4-Wire, 5-Wire, or 8-Wire resistive touch screen controller (TSC) interface
- Up to three 32-bit eCAP modules
 - Configurable as three capture inputs or three auxiliary PWM outputs
- Up to three enhanced high-resolution PWM modules (eHRPWMs)
 - Dedicated 16-bit time-base counter with time and frequency controls
 - Configurable as six single-ended, six dualedge symmetric, or three dual-edge asymmetric outputs

- Up to three 32-bit enhanced quadrature encoder pulse (eQEP) modules
- Device identification
 - Contains electrical fuse farm (FuseFarm) of which some bits are factory programmable
 - Production ID
 - Device part number (unique JTAG ID)
 - Device revision (readable by host ARM)
- Debug interface support
 - JTAG and cJTAG for ARM (Cortex-A8 and PRCM)
 - Supports device boundary scan
 - Supports IEEE 1500
- DMA
 - On-chip enhanced DMA controller (EDMA) has three third-party transfer controllers (TPTCs) and one third-party channel controller (TPCC), which supports up to 64 programmable logical channels and eight QDMA channels. EDMA is used for:
 - Transfers to and from on-chip memories
 - Transfers to and from external storage (EMIF, GPMC, slave peripherals)
- Inter-processor communication (IPC)
 - Integrates hardware-based mailbox for IPC and spinlock for process synchronization between Cortex-A8, PRCM, and PRU-ICSS
 - Mailbox registers that generate interrupts
 Initiators (Cortex-A8, PRCM)
 - Spinlock has 128 software-assigned lock registers
- Security
 - Crypto hardware accelerators (AES, SHA, PKA, RNG)
- Boot modes
 - Boot mode is selected through boot configuration pins latched on the rising edge of the PWRONRSTn reset input pin
- Package:
 - 324-pin S-PBGA-N324 package (GCZ suffix), 0.80-mm ball pitch

1.2 Applications

- Supports defense, aerospace, and medical applications:
- Controlled baseline
- One assembly and test site
- One fabrication site

1.3 Description

- Available in -40°C to 105°C temperature range
- Extended product life cycle
- Extended product change notification
- Product traceability

The AM3358-EP microprocessor, based on the ARM Cortex-A8 processor, is enhanced with image, graphics processing, peripherals and industrial interface options such as PROFIBUS. The device supports high-level operating systems (HLOS). Linux[®] and Android[™] are available free of charge from TI.

The AM3358-EP microprocessor contains the subsystems shown in the Functional Block Diagram and a brief description of each follows:

The microprocessor unit (MPU) subsystem is based on the ARM Cortex-A8 processor and the PowerVR SGX[™] Graphics Accelerator subsystem provides 3D graphics acceleration to support display and gaming effects.

The PRU-ICSS is separate from the ARM core, allowing independent operation and clocking for greater efficiency and flexibility. The PRU-ICSS enables additional peripheral interfaces and real-time protocols such as PROFINET, EtherNet/IP, PROFIBUS, Ethernet Powerlink, Sercos, and others. Additionally, the programmable nature of the PRU-ICSS, along with its access to pins, events and all system-on-chip (SoC) resources, provides flexibility in implementing fast, real-time responses, specialized data handling operations, custom peripheral interfaces, and in offloading tasks from the other processor cores of SoC.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE
AM3358BGCZA80EP	GCZ (324)	15.00 mm × 15.00 mm

(1) For more information, see Section 9, Mechanical, Packaging, and Orderable Information.

1.4 Functional Block Diagram

Figure 1-1 shows the AM3358-EP microprocessor functional block diagram.

Figure 1-1. AM3358-EP Functional Block Diagram

Table of Contents

1	Devid	ce Overview <u>1</u>
	1.1	Features 1
	1.2	Applications 4
	1.3	Description 4
	1.4	Functional Block Diagram5
2	Revis	sion History 7
3	Devid	ce Features 9
	3.1	Related Products
4	Term	inal Configuration and Functions 11
	4.1	Pin Diagram 11
	4.2	Pin Attributes
	4.3	Signal Descriptions
5	Spec	ifications
	5.1	Absolute Maximum Ratings
	5.2	ESD Ratings 74
	5.3	Power-On Hours (POH)
	5.4	Operating Performance Points (OPPs) 75
	5.5	Recommended Operating Conditions
	5.6	Power Consumption Summary 79
	5.7	DC Electrical Characteristics
	5.8	Thermal Resistance Characteristics for GCZ
		Package
	5.9	External Capacitors
	5.10	Touch Screen Controller and Analog-to-Digital
6	Dowe	ar and Clocking
U	6 1	Power Supplies
	6.2	Clock Specifications
7	0.2 Dorin	boral Information and Timings
'	7 4	Parameter Information
	1.1	

	7.2	Recommended Clock and Control Signal Transition	107
	70		107
	7.3	Capitallar Area Naturals (CAN)	107
	7.4		108
	7.5	DMTImer	<u>109</u>
	7.6	Switch	<u>110</u>
	7.7	External Memory Interfaces	<u>118</u>
	7.8	I ² C	<u>181</u>
	7.9	JTAG Electrical Data and Timing	182
	7.10	LCD Controller (LCDC)	184
	7.11	Multichannel Audio Serial Port (McASP)	200
	7.12	Multichannel Serial Port Interface (McSPI)	<u>205</u>
	7.13	Multimedia Card (MMC) Interface	<u>211</u>
	7.14	Programmable Real-Time Unit Subsystem and	
		Industrial Communication Subsystem (PRU-ICSS)	<u>214</u>
	7.15	Universal Asynchronous Receiver Transmitter (UART)	221
8	Devi	ce and Documentation Support	224
	8.1	Device Nomenclature	224
	8.2	Tools and Software	225
	8.3	Documentation Support	229
	8.4	Community Resources	<u>231</u>
	8.5	Trademarks	<u>232</u>
	8.6	Electrostatic Discharge Caution	<u>232</u>
	8.7	Glossary	<u>232</u>
9	Mech	nanical, Packaging, and Orderable	
	Infor	mation	<u>233</u>
	9.1	Via Channel	<u>233</u>
	9.2	Packaging Information	<u>233</u>

2 Revision History

Page

Changes from Revision A (April 2015) to Revision B

•	Added / changed OTG to DRD (Dual-Role Device)	2
٠	Deleted OpenVG 1.0	2
٠	Changed / Updated "OTG" to "DRD"	<u>5</u>
٠	Changed PRU-ICSS description	<u>9</u>
•	Added Section 3.1, Related Products	<u>9</u>
•	Changed Section 4 title to Terminal Configuration and Functions	<u>11</u>
•	Changed Section 4.1 title to Pin Diagrams	<u>11</u>
•	Changed Section 4.2 title to Pin Attributes	<u>15</u>
•	Changed link to Footnote (25) to apply to all pins with content in the Ball Reset State column in Table 4-1	. <u>16</u>
•	Added Latch-up performance info	<u>73</u>
•	Deleted redundant OPP tables	<u>75</u>
•	Changed OPP table entries to device Rev. "B"	<u>75</u>
•	Changed footnote for Output Capacitor Characteristics from "RTC_KLDO_ENn" to "RTC_KALDO_ENn"	. <u>86</u>
•	Added ADC clock frequency to TSC_ADC Electrical Parameters	<u>89</u>
•	Changed Sampling Dynamics section of TSC_ADC Electrical Parameters table	<u>89</u>
•	Added new footnotes	<u>91</u>
•	Added DCAN Timing Conditions	<u>108</u>
•	Added DMTimer Timing Conditions	109
•	Deleted NO. 4, I ransition time, MDC	110
•	Changed Updated Switching Characteristics for MDIO_DATA	111
•	Deleted NO. 3 from Switching Characteristics for RMII[x]_1XD[1:0], and RMII[x]_1XEN - RMII Mode	<u>115</u>
•	Deleted Transition time, RD and Transition time, RX_CTL from Timing Requirements for RGMII[X]_RD[3:0], and	440
	RGMII[X]_RGTL - RGMII Mode	110
•	Deleted Transition time, TXC from Switching Characteristics for RGMII[X]_TCLK - RGMII Mode	<u>117</u>
•	Deleted Transition time, TD and Transition time, TA_CTL from Switching Characteristics for RGMin[x]_TD[3.0],	117
•	Changed Decemeter E7, E15, and E17 ODDE0 MAX value and added Easthate to E7, E15 and E17; added	<u> </u>
•	changed Parameters F7, F15, and F17 OPP50 MAX value and added F00thole to F7, F15 and F17, added	110
•	Deleted content from CDMC and NOP Elech Switching Characteristics - Synchronous Mode	119
	Changed No. E11 values	110
	Changed swapped E22 and E21 in GPMC and NOP Elash—Synchronous Burst Pead—1x16.Bit	119
•	(ComeECLKDivider – 0)	12/
•	Deleted content from GPMC and NOR Flash Switching Characteristics—Asynchronous Mode	127
•	Deleted content from GPMC and NAND Flash Switching Characteristics—Asynchronous Mode	137
•	Deleted Rise time and Fall time info from Switching Characteristics for I ² C Output Timings	182
•	Changed callout numbers to correspond with Switching Characteristics for I2C Output Timings table in Figure 7-	102
	69	182
•	Added JTAG Timing Conditions	183
•	Added content to LCD Controller Timing Conditions	184
•	Deleted content from Switching Characteristics for LCD LIDD Mode	185
•	Deleted content from Switching Characteristics for LCD Raster Mode	194
•	Deleted content from Switching Characteristics for McSPI Output Timings – Master Mode	208
•	Deleted content from Switching Characteristics for MMC[x] CLK	212
•	Changed OPP50 and OPP100 MIN Parameter values to, Switching Characteristics for MMC[x]_CMD and	
	MMC[x]_DAT[7:0]—High-Speed Mode	212
•	Deleted content from PRU-ICSS PRU Switching Requirements – Direct Output Mode	214
•	Deleted content from PRU-ICSS PRU Switching Requirements - Shift Out Mode	216
•	Deleted transition time, MDC from PRU-ICSS MDIO Switching Characteristics - MDIO_CLK	217
٠	Changed PRU-ICSS MDIO Switching Characteristics - MDIO_DATA	217
•	Added note in PRU-ICSS MII_RT Electrical Data and Timing	217
•	Added UART Timing Conditions	220
•	Changed formatting and added content to Section 8, Device and Documentation Support	224

Changed device status to Production Data <u>1</u>

Changes from Original (April 2015) to Revision A

www

Page

3 Device Features

Table 3-1 lists the features supported by AM3358-EP device.

FUNCTION	AM3358-EP
ARM [®] Cortex [®] -A8	Yes
Frequency	800 MHz
MIPS	1600
On-chip L1 cache	64KB
On-chip L2 cache	256KB
Graphics accelerator (SGX530)	3D
Hardware acceleration	Crypto accelerator
Programmable real-time unit subsystem and industrial communication subsystem (PRU-ICSS)	Features including all Industrial protocols
On-chip memory	128KB
Display options	LCD
General-purpose memory	1 16-bit (GPMC, NAND flash, NOR flash, SRAM)
DRAM(1)	1 16-bit (LPDDR-400, DDR2-532, DDR3-800)
Universal serial bus (USB)	GCZ: 2 ports
Ethernet media access controller (EMAC) with 2-port switch	10/100/1000
Multimedia card (MMC)	3
Controller-area network (CAN)	2
Universal asynchronous receiver and transmitter (UART)	6
Analog-to-digital converter (ADC)	8-ch 12-bit
Enhanced high-resolution PWM modules (eHRPWM)	3
Enhanced capture modules (eCAP)	3
Enhanced quadrature encoder pulse (eQEP)	3
Real-time clock (RTC)	1
Inter-integrated circuit (I ² C)	3
Multichannel audio serial port (McASP)	2
Multichannel serial port interface (McSPI)	2
Enhanced direct memory access (EDMA)	64-Ch
Input/output (I/O) supply	1.8 V, 3.3 V
Operating temperature range	–40 to 105°C

Table 3-1. Device Features

(1) DRAM speeds listed are data rates.

3.1 Related Products

For information about other devices in this family of products, see the following links:

- Sitara Processors Scalable processors based on ARM Cortex-A cores with flexible peripherals, connectivity and unified software support perfect for sensors to servers.
- TI's ARM Cortex-A8 Advantage The ARM Cortex-A8 core is highly-optimized by ARM for performance and power efficiency. With the ability to scale in speed from 300 MHz to 1.35 GHz, the ARM Cortex-A8-based processor can meet the requirements for power optimized devices with a power budget of less than the Cortex-A8 core a dual-issue superscalar, achieving twice the instructions executed per clock cycle at 2 DMIPS/MHz.
- AM335x Sitara Processors Scalable ARM Cortex-A8-based core from 300 MHz up to 1 GHz, 3D graphics option for enhanced user interface, dual-core PRU-ICSS for industrial Ethernet protocols and position feedback control, and premium secure boot option.
- Companion Products for AM335x Sitara Processors Review products that are frequently purchased or used with this product.

TI Designs for AM335x Sitara Processors The TI Designs Reference Design Library is a robust reference design library spanning analog, embedded processor and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include schematic or block diagrams, BOMs and design files to speed your time to market. Search and download designs at ti.com/tidesigns.

4 Terminal Configuration and Functions

4.1 Pin Diagram

NOTE

The terms 'ball', 'pin', and 'terminal' are used interchangeably throughout the document. An attempt is made to use 'ball' only when referring to the physical package.

4.1.1 GCZ Package Pin Maps (Top View)

The pin maps that follow show the pin assignments on the GCZ package in three sections (left, middle, and right).

GCZ Pin Map [Section Left - Top View]

	Α	В	С	D	E	F
18	VSS	EXTINTn	ECAP0_IN_PWM0_OUT	UART1_CTSn	UART0_CTSn	MMC0_DAT2
17	SPI0_SCLK	SPI0_D0	I2C0_SDA	UART1_RTSn	UART0_RTSn	MMC0_DAT3
16	SPI0_CS0	SPI0_D1	I2C0_SCL	UART1_RXD	UART0_TXD	USB0_DRVVBUS
15	XDMA_EVENT_INTR0	PWRONRSTn	SPI0_CS1	UART1_TXD	UART0_RXD	USB1_DRVVBUS
14	MCASP0_AHCLKX	EMU1	EMU0	XDMA_EVENT_INTR1	VDDS	VDDSHV6
13	MCASP0_ACLKX	MCASP0_FSX	MCASP0_FSR	MCASP0_AXR1	VDDSHV6	VDD_MPU
12	тск	MCASP0_ACLKR	MCASP0_AHCLKR	MCASP0_AXR0	VDDSHV6	VDD_MPU
11	TDO	TDI	TMS	CAP_VDD_SRAM_MPU	VDDSHV6	VDD_MPU
10	WARMRSTn	TRSTn	CAP_VBB_MPU	VDDS_SRAM_MPU_BB	VDDSHV6	VDD_MPU
9	VREFN	VREFP	AIN7	CAP_VDD_SRAM_CORE	VDDS_SRAM_CORE_BG	VDDS
8	AIN6	AIN5	AIN4	VDDA_ADC	VSSA_ADC	VSS
7	AIN3	AIN2	AIN1	VDDS_RTC	VDDS_PLL_DDR	VDD_CORE
6	RTC_XTALIN	AINO	PMIC_POWER_EN	CAP_VDD_RTC	VDDS	VDD_CORE
5	VSS_RTC	RTC_PWRONRSTn	EXT_WAKEUP	DDR_A6	VDDS_DDR	VDDS_DDR
4	RTC_XTALOUT	RTC_KALDO_ENn	DDR_BA0	DDR_A8	DDR_A2	DDR_A10
3	RESERVED	DDR_BA2	DDR_A3	DDR_A15	DDR_A12	DDR_A0
2	VDD_MPU_MON	DDR_WEn	DDR_A4	DDR_CK	DDR_A7	DDR_A11
1	VSS	DDR_A5	DDR_A9	DDR_CKn	DDR_BA1	DDR_CASn

Pin map section location

GCZ Pin Map [Section Middle - Top View]

	G	н	J	K L		м
18	MMC0_CMD	RMII1_REF_CLK	MII1_TXD3	MII1_TX_CLK	MII1_RX_CLK	MDC
17	MMC0_CLK	MII1_CRS	MII1_RX_DV	MII1_TXD0	MII1_RXD3	MDIO
16	MMC0_DAT0	MII1_COL	MII1_TX_EN	MII1_TXD1	MII1_RXD2	MII1_RXD0
15	MMC0_DAT1	VDDS_PLL_MPU	MII1_RX_ER	MII1_TXD2	MII1_RXD1	USB0_CE
14	VDDSHV6	VDDSHV4	VDDSHV4	VDDSHV5	VDDSHV5	VSSA_USB
13	VDD_MPU	VDD_MPU	VDD_MPU	VDDS	VSS	VDD_CORE
12	VSS	VSS	VDD_CORE	VDD_CORE	VSS	VSS
11	VSS	VDD_CORE	VSS	VSS VSS		VDD_CORE
10	VDD_CORE	VSS	VSS	VSS VSS		VSS
9	VSS	VSS	VSS	VSS	VDD_CORE	VSS
8	VSS	VSS	VSS	VDD_CORE	VDD_CORE	VSS
7	VDD_CORE	VSS	VSS	VSS	VDD_CORE	VSS
6	VDD_CORE	VSS	VSS	VDD_CORE	VDD_CORE	VSS
5	VDDS_DDR	VDDS_DDR	VDDS_DDR	VDDS_DDR	VDDS_DDR	VPP
4	DDR_RASn	DDR_A14	DDR_VREF	DDR_D12	DDR_D14	DDR_D1
3	DDR_CKE	DDR_A13	DDR_VTP	DDR_D11	DDR_D13	DDR_D0
2	DDR_RESETn	DDR_CSn0	DDR_DQM1	DDR_D10	DDR_DQSn1	DDR_DQM0
1	DDR_ODT	DDR_A1	DDR_D8	DDR_D9	DDR_DQS1	DDR_D15

Pin map section location

GCZ Pin Map [Section Right - Top View]

	Ν	Р	R	т	U	v	
18	USB0_DM	USB1_CE	USB1_DM	USB1_VBUS	GPMC_BEn1	VSS	
17	USB0_DP	USB1_ID	USB1_DP	GPMC_WAIT0	GPMC_WPn	GPMC_A11	
16	VDDA1P8V_USB0	USB0_ID	VDDA1P8V_USB1	GPMC_A10	GPMC_A9	GPMC_A8	
15	VDDA3P3V_USB0	USB0_VBUS	VDDA3P3V_USB1	GPMC_A7	GPMC_A6	GPMC_A5	
14	VSSA_USB	VDDS	GPMC_A4	GPMC_A3	GPMC_A2	GPMC_A1	
13	VDD_CORE	VDDSHV3	GPMC_A0	GPMC_CSn3	GPMC_AD15	GPMC_AD14	
12	VDD_CORE	VDDSHV3	GPMC_AD13	GPMC_AD12	GPMC_AD11	GPMC_CLK	
11	VSS	VDDSHV2	VDDS_OSC	GPMC_AD10	XTALOUT	VSS_OSC	
10	VSS	VDDSHV2	VDDS_PLL_CORE_LCD	GPMC_AD9	GPMC_AD8	XTALIN	
9	VDD_CORE	VDDS	GPMC_AD6	GPMC_AD7	GPMC_CSn1	GPMC_CSn2	
8	VDD_CORE	VDDSHV1	GPMC_AD2	GPMC_AD3	GPMC_AD4	GPMC_AD5	
7	VSS	VDDSHV1	GPMC_ADVn_ALE	GPMC_OEn_REn	GPMC_AD0	GPMC_AD1	
6	VDDS	VDDSHV6	LCD_AC_BIAS_EN	GPMC_BEn0_CLE	GPMC_WEn	GPMC_CSn0	
5	VDDSHV6	VDDSHV6	LCD_HSYNC	LCD_DATA15	LCD_VSYNC	LCD_PCLK	
4	DDR_D5	DDR_D7	LCD_DATA3	LCD_DATA7	LCD_DATA11	LCD_DATA14	
3	DDR_D4	DDR_D6	LCD_DATA2	LCD_DATA6	LCD_DATA10	LCD_DATA13	
2	DDR_D3	DDR_DQSn0	LCD_DATA1	LCD_DATA5	LCD_DATA9	LCD_DATA12	
1	DDR_D2	DDR_DQS0	LCD_DATA0	LCD_DATA4	LCD_DATA8	VSS	

Pin map section location

INSTRUMENTS

The AM335x and AMIC110 Sitara Processors Technical Reference Manual and this document may reference internal signal names when discussing peripheral input and output signals because many of the AM3358-EP package terminals can be multiplexed to one of several peripheral signals. The following table has a Pin Name column that lists all device terminal names and a Signal Name column that lists all internal signal names multiplexed to each terminal which provides a cross reference of internal signal names. This table also identifies other important terminal characteristics.

- (1) BALL NUMBER: Package ball numbers associated with each signals.
- (2) **PIN NAME:** The name of the package pin or terminal.
- Note: The table does not take into account subsystem terminal multiplexing options.
- (3) SIGNAL NAME: The signal name for that pin in the mode being used.
- (4) **MODE:** Multiplexing mode number.
 - a. Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the terminal corresponds to the name of the terminal. There is always a function mapped on the primary mode. Notice that primary mode is not necessarily the default mode.
 - Note: The default mode is the mode at the release of the reset; also see the RESET REL. MODE column.
 - b. Modes 1 to 7 are possible modes for alternate functions. On each terminal, some modes are effectively used for alternate functions, while some modes are not used and do not correspond to a functional configuration.
- (5) **TYPE:** Signal direction
 - I = Input
 - O = Output
 - I/O = Input and Output
 - D = Open drain
 - DS = Differential
 - A = Analog
 - PWR = Power
 GND = Ground

Note: In the safe_mode, the buffer is configured in high-impedance.

- (6) BALL RESET STATE: State of the terminal while the active low PWRONRSTn terminal is low.
 - 0: The buffer drives V_{OL} (pulldown or pullup resistor not activated)
 - O(PD): The buffer drives V_{OL} with an active pulldown resistor
 - 1: The buffer drives V_{OH} (pulldown or pullup resistor not activated) 1(PU): The buffer drives V_{OH} with an active pullup resistor
 - Z: High-impedance
 - L: High-impedance with an active pulldown resistor
 - H : High-impedance with an active pullup resistor
- (7) BALL RESET REL. STATE: State of the terminal after the active low PWRONRSTn terminal transitions from low to high.
 - 0: The buffer drives V_{OL} (pulldown or pullup resistor not activated)
 - 0(PD): The buffer drives V_{OL} with an active pulldown resistor
 - 1: The buffer drives V_{OH} (pulldown or pullup resistor not activated)
 - 1(PU): The buffer drives V_{OH} with an active pullup resistor
 - Z: High-impedance.
 - L: High-impedance with an active pulldown resistor
 - H : High-impedance with an active pullup resistor
- (8) RESET REL. MODE: The mode is automatically configured after the active low PWRONRSTn terminal transitions from low to high.
- (9) **POWER:** The voltage supply that powers the I/O buffers of the terminal.
- (10) HYS: Indicates if the input buffer is with hysteresis.
- (11) BUFFER STRENGTH: Drive strength of the associated output buffer.
- (12) **PULLUP OR PULLDOWN TYPE:** Denotes the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled via software.
- (13) I/O CELL: I/O cell information.

Note: Configuring two terminals to the same input signal is not supported as it can yield unexpected results. This can be easily prevented with the proper software configuration.

Table 4-1. Pin Attributes GCZ Package

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS [10]	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
B6	AINO	AINO	0	A ⁽²²⁾	Z	Z	0	VDDA_ADC	NA	25	NA	Analog
C7	AIN1	AIN1	0	A ⁽²¹⁾	Z	Z	0	VDDA_ADC	NA	25	NA	Analog
B7	AIN2	AIN2	0	A ⁽²¹⁾	Z	Z	0	VDDA_ADC	NA	25	NA	Analog
A7	AIN3	AIN3	0	A ⁽²⁰⁾	Z	Z	0	VDDA_ADC	NA	25	NA	Analog
C8	AIN4	AIN4	0	A ⁽²⁰⁾	Z	Z	0	VDDA_ADC	NA	25	NA	Analog
B8	AIN5	AIN5	0	A	Z	Z	0	VDDA_ADC	NA	NA	NA	Analog
A8	AIN6	AIN6	0	A	Z	Z	0	VDDA_ADC	NA	NA	NA	Analog
C 9	AIN7	AIN7	0	А	Z	Z	0	VDDA_ADC	NA	NA	NA	Analog
C10	CAP_VBB_MPU	CAP_VBB_MPU	NA	A								
D6	CAP_VDD_RTC	CAP_VDD_RTC	NA	A								
D9	CAP_VDD_SRAM_CORE	CAP_VDD_SRAM_CORE	NA	А								
D11	CAP_VDD_SRAM_MPU	CAP_VDD_SRAM_MPU	NA	A								
F3	DDR_A0	ddr_a0	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
H1	DDR_A1	ddr_a1	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
E4	DDR_A2	ddr_a2	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
C3	DDR_A3	ddr_a3	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
C2	DDR_A4	ddr_a4	0	0	Н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
B1	DDR_A5	ddr_a5	0	0	Н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
D5	DDR_A6	ddr_a6	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
E2	DDR_A7	ddr_a7	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
D4	DDR_A8	ddr_a8	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
C1	DDR_A9	ddr_a9	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
F4	DDR_A10	ddr_a10	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
F2	DDR_A11	ddr_a11	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
E3	DDR_A12	ddr_a12	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
H3	DDR_A13	ddr_a13	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
H4	DDR_A14	ddr_a14	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
D3	DDR_A15	ddr_a15	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL

16 Terminal Configuration and Functions

Copyright © 2015–2019, Texas Instruments Incorporated

Table 4-1	. Pin	Attributes	GCZ	Package	(continued)
-----------	-------	------------	-----	---------	-------------

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	VO CELL [13]
C4	DDR_BA0	ddr_ba0	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
E1	DDR_BA1	ddr_ba1	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
B3	DDR_BA2	ddr_ba2	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
F1	DDR_CASn	ddr_casn	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
D2	DDR_CK	ddr_ck	0	0	L	0	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
G3	DDR_CKE	ddr_cke	0	0	L	0	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
D1	DDR_CKn	ddr_nck	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
H2	DDR_CSn0	ddr_csn0	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
M3	DDR_D0	ddr_d0	0	I/O	L	Z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
M4	DDR_D1	ddr_d1	0	I/O	L	Z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
N1	DDR_D2	ddr_d2	0	I/O	L	Z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
N2	DDR_D3	ddr_d3	0	I/O	L	Z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
N3	DDR_D4	ddr_d4	0	I/O	L	Z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
N4	DDR_D5	ddr_d5	0	I/O	L	Z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
P3	DDR_D6	ddr_d6	0	I/O	L	Z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
P4	DDR_D7	ddr_d7	0	I/O	L	Z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
J1	DDR_D8	ddr_d8	0	I/O	L	z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
К1	DDR_D9	ddr_d9	0	I/O	L	z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
К2	DDR_D10	ddr_d10	0	I/O	L	Z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
КЗ	DDR_D11	ddr_d11	0	I/O	L	Z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
K4	DDR_D12	ddr_d12	0	I/O	L	z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
L3	DDR_D13	ddr_d13	0	I/O	L	Z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
L4	DDR_D14	ddr_d14	0	I/O	L	Z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL

Table 4-1. Pin Attributes GCZ Package (continued)

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS [10]	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
M1	DDR_D15	ddr_d15	0	I/O	L	z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
M2	DDR_DQM0	ddr_dqm0	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
J2	DDR_DQM1	ddr_dqm1	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
P1	DDR_DQS0	ddr_dqs0	0	I/O	L	z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
L1	DDR_DQS1	ddr_dqs1	0	I/O	L	z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
P2	DDR_DQSn0	ddr_dqsn0	0	I/O	н	z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
L2	DDR_DQSn1	ddr_dqsn1	0	I/O	н	z	0	VDDS_DDR	Yes	8	PU/PD	LVCMOS/SSTL/ HSTL
G1	DDR_ODT	ddr_odt	0	0	L	0	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
G4	DDR_RASn	ddr_rasn	0	0	н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
G2	DDR_RESETn	ddr_resetn	0	0	L	0	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
J4	DDR_VREF	ddr_vref	0	A ⁽¹⁸⁾	NA	NA	NA	VDDS_DDR	NA	NA	NA	Analog
J3	DDR_VTP	ddr_vtp	0	⁽¹⁹⁾	NA	NA	NA	VDDS_DDR	NA	NA	NA	Analog
B2	DDR_WEn	ddr_wen	0	0	Н	1	0	VDDS_DDR	NA	8	PU/PD	LVCMOS/SSTL/ HSTL
C18	ECAP0_IN_PWM0_OUT	eCAP0_in_PWM0_out	0	I/O	Z	L	7	VDDSHV6	Yes	4	PU/PD	LVCMOS
		uart3_txd	1	0								
		spi1_cs1	2	I/O								
		pr1_ecap0_ecap_capin_apwm_o	3	I/O								
		spi1_sclk	4	I/O								
		mmc0_sdwp	5	I								
		xdma_event_intr2	6	I								
		gpio0_7	7	I/O								
C14	EMU0	EMU0	0	I/O	н	н	0	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpio3_7	7	I/O								
B14	EMU1	EMU1	0	I/O	н	н	0	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpio3_8	7	I/O								
B18	EXTINTn	nNMI	0	I	Z	Н	0	VDDSHV6	Yes	NA	PU/PD	LVCMOS
C5	EXT_WAKEUP	EXT_WAKEUP	0	I	L	Z	0	VDDS_RTC	Yes	NA	NA	LVCMOS

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
R13	GPMC_A0	gpmc_a0	0	0	L	L	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_txen	1	0								
		rgmii2_tctl	2	0								
		rmii2_txen	3	0								
		gpmc_a16	4	0								
		pr1_mii_mt1_clk	5	I								
		ehrpwm1_tripzone_input	6	I								
		gpio1_16	7	I/O								
V14	GPMC_A1	gpmc_a1	0	0	L	L	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_rxdv	1	I								
		rgmii2_rctl	2	I								
		mmc2_dat0	3	I/O								
		gpmc_a17	4	0								
		pr1_mii1_txd3	5	0								
		ehrpwm0_synco	6	0								
		gpio1_17	7	I/O								
U14	GPMC_A2	gpmc_a2	0	0	L	L	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_txd3	1	0								
		rgmii2_td3	2	0								
		mmc2_dat1	3	I/O								
		gpmc_a18	4	0	-							
		pr1_mii1_txd2	5	0								
		ehrpwm1A	6	0								
		gpio1_18	7	I/O								
T14	GPMC_A3	gpmc_a3	0	0	L	L	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_txd2	1	0								
		rgmii2_td2	2	0								
		mmc2_dat2	3	I/O								
		gpmc_a19	4	0								
		pr1_mii1_txd1	5	0							1	
		ehrpwm1B	6	0							1	
		gpio1_19	7	I/O							1	

Table 4-1. Pin Attributes GCZ Package (continued
--

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
R14	GPMC_A4	gpmc_a4	0	0	L	L	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_txd1	1	0								
		rgmii2_td1	2	0								
		rmii2_txd1	3	0								
		gpmc_a20	4	0								
		pr1_mii1_txd0	5	0								
		eQEP1A_in	6	I								
		gpio1_20	7	I/O								
V15	GPMC_A5	gpmc_a5	0	0		L	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_txd0	1	0								
		rgmii2_td0	2	0								
		rmii2_txd0	3	0								
		gpmc_a21	4	0								
		pr1_mii1_rxd3	5	I								
		eQEP1B_in	6	-								
		gpio1_21	7	I/O								
U15	GPMC_A6	gpmc_a6	0	0	L 	L	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_txclk	1	I								
		rgmii2_tclk	2	0								
		mmc2_dat4	3	I/O								
		gpmc_a22	4	0								
		pr1_mii1_rxd2	5	-								
		eQEP1_index	6	I/O								
		gpio1_22	7	I/O								
T15	GPMC_A7	gpmc_a7	0	0	L	L	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_rxclk	1	I								
		rgmii2_rclk	2	I								
		mmc2_dat5	3	I/O								
		gpmc_a23	4	0								
		pr1_mii1_rxd1	5	I								
		eQEP1_strobe	6	I/O								
		gpio1_23	7	I/O								

Table 4-1. Pin	Attributes	GCZ	Package	(continued)
				(••••••••••••••••••••••••••••••••••••••

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
V16	GPMC_A8	gpmc_a8	0	0	L	L	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_rxd3	1	I								
		rgmii2_rd3	2	I								
		mmc2_dat6	3	I/O								
		gpmc_a24	4	0								
		pr1_mii1_rxd0	5	I								
		mcasp0_aclkx	6	I/O								
		gpio1_24	7	I/O								
U16	GPMC_A9 (10)	gpmc_a9	0	0	L	L	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_rxd2	1	I								
		rgmii2_rd2	2	I								
		mmc2_dat7 / rmii2_crs_dv	3	I/O								
		gpmc_a25	4	0								
		pr1_mii_mr1_clk	5	I								
		mcasp0_fsx	6	I/O								
		gpio1_25	7	I/O								
T16	GPMC_A10	gpmc_a10	0	0	L	L	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_rxd1	1	I								
		rgmii2_rd1	2	I								
		rmii2_rxd1	3	I								
		gpmc_a26	4	0								
		pr1_mii1_rxdv	5	I								
		mcasp0_axr0	6	I/O								
		gpio1_26	7	I/O								
V17	GPMC_A11	gpmc_a11	0	0	L	L	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_rxd0	1	I								
		rgmii2_rd0	2	I								
		rmii2_rxd0	3	I								
		gpmc_a27	4	0								
		pr1_mii1_rxer	5	I								
		mcasp0_axr1	6	I/O								
		gpio1_27	7	I/O								
U7	GPMC_AD0	gpmc_ad0	0	I/O	L	L	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		mmc1_dat0	1	I/O								
		gpio1_0	7	I/O								
V7	GPMC_AD1	gpmc_ad1	0	I/O	L	L	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		mmc1_dat1	1	I/O								
		gpio1_1	7	I/O								

Table 4-1. Pin Attributes GCZ Package (continued)

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS [10]	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
R8	GPMC_AD2	gpmc_ad2	0	I/O	L	L	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		mmc1_dat2	1	I/O								
		gpio1_2	7	I/O								
Т8	GPMC_AD3	gpmc_ad3	0	I/O	L	L	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		mmc1_dat3	1	I/O								
		gpio1_3	7	I/O								
U8	GPMC_AD4	gpmc_ad4	0	I/O	L	L	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		mmc1_dat4	1	I/O								
		gpio1_4	7	I/O								
V8	GPMC_AD5	gpmc_ad5	0	I/O	L	L	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		mmc1_dat5	1	I/O								
		gpio1_5	7	I/O								
R9	GPMC_AD6	gpmc_ad6	0	I/O	L	L	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		mmc1_dat6	1	I/O								
		gpio1_6	7	I/O								
Т9	GPMC_AD7	gpmc_ad7	0	I/O	L 	L	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		mmc1_dat7	1	I/O								
		gpio1_7	7	I/O								
U10	GPMC_AD8	gpmc_ad8	0	I/O	L	L	7	VDDSHV2	Yes	6	PU/PD	LVCMOS
		lcd_data23	1	0								
		mmc1_dat0	2	I/O								
		mmc2_dat4	3	I/O								
		ehrpwm2A	4	0								
		pr1_mii_mt0_clk	5	I								
		gpio0_22	7	I/O								
T10	GPMC_AD9	gpmc_ad9	0	I/O	L	L	7	VDDSHV2	Yes	6	PU/PD	LVCMOS
		lcd_data22	1	0								
		mmc1_dat1	2	I/O								
		mmc2_dat5	3	I/O								
		ehrpwm2B	4	0								
		pr1_mii0_col	5	I								
		gpio0_23	7	I/O								

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
T11	GPMC_AD10	gpmc_ad10	0	I/O	L	L	7	VDDSHV2	Yes	6	PU/PD	LVCMOS
		lcd_data21	1	0								
		mmc1_dat2	2	I/O								
		mmc2_dat6	3	I/O								
		ehrpwm2_tripzone_input	4	I								
		pr1_mii0_txen	5	0								
		gpio0_26	7	I/O								
U12	GPMC_AD11	gpmc_ad11	0	I/O	L	L	7	VDDSHV2	Yes	6	PU/PD	LVCMOS
		lcd_data20	1	0								
		mmc1_dat3	2	I/O								
		mmc2_dat7	3	I/O								
		ehrpwm0_synco	4	0								
		pr1_mii0_txd3	5	0								
		gpio0_27	7	I/O								
T12	GPMC_AD12	gpmc_ad12	0	I/O	L	L	7	VDDSHV2	Yes	6	PU/PD	LVCMOS
		lcd_data19	1	0								
		mmc1_dat4	2	I/O								
		mmc2_dat0	3	I/O								
		eQEP2A_in	4	I								
		pr1_mii0_txd2	5	0								
		pr1_pru0_pru_r30_14	6	0								
		gpio1_12	7	I/O								
R12	GPMC_AD13	gpmc_ad13	0	I/O	L	L	7	VDDSHV2	Yes	6	PU/PD	LVCMOS
		lcd_data18	1	0								
		mmc1_dat5	2	I/O								
		mmc2_dat1	3	I/O								
		eQEP2B_in	4	I								
		pr1_mii0_txd1	5	0								
		pr1_pru0_pru_r30_15	6	0								
		gpio1_13	7	I/O								
V13	GPMC_AD14	gpmc_ad14	0	I/O	L	L	7	VDDSHV2	Yes	6	PU/PD	LVCMOS
		lcd_data17	1	0								
		mmc1_dat6	2	I/O								
		mmc2_dat2	3	I/O								
		eQEP2_index	4	I/O								
		pr1_mii0_txd0	5	0								
		pr1_pru0_pru_r31_14	6	I								
		gpio1_14	7	I/O								

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS [10]	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
U13	GPMC_AD15	gpmc_ad15	0	I/O	L	L	7	VDDSHV2	Yes	6	PU/PD	LVCMOS
		lcd_data16	1	0								
		mmc1_dat7	2	I/O								
		mmc2_dat3	3	I/O								
		eQEP2_strobe	4	I/O								
		pr1_ecap0_ecap_capin_apwm_o	5	I/O								
		pr1_pru0_pru_r31_15	6	I								
		gpio1_15	7	I/O								
R7	GPMC_ADVn_ALE	gpmc_advn_ale	0	0	н	н	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		timer4	2	I/O								
		gpio2_2	7	I/O								
Т6	GPMC_BEn0_CLE	gpmc_be0n_cle	0	0	н	н	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		timer5	2	I/O								
		gpio2_5	7	I/O								
U18	GPMC_BEn1	gpmc_be1n	0	0	н	н	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_col	1	I								
		gpmc_csn6	2	0								
		mmc2_dat3	3	I/O	_							
		gpmc_dir	4	0								
		pr1_mii1_rxlink	5	I								
		mcasp0_aclkr	6	I/O								
		gpio1_28	7	I/O								
V12	GPMC_CLK	gpmc_clk	0	I/O	L	L	7	VDDSHV2	Yes	6	PU/PD	LVCMOS
		lcd_memory_clk	1	0								
		gpmc_wait1	2	I								
		mmc2_clk	3	I/O								
		pr1_mii1_crs	4	I								
		pr1_mdio_mdclk	5	0								
		mcasp0_fsr	6	I/O								
		gpio2_1	7	I/O								
V6	GPMC_CSn0	gpmc_csn0	0	0	н	н	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		gpio1_29	7	I/O								

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
U9	GPMC_CSn1	gpmc_csn1	0	0	н	н	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		gpmc_clk	1	I/O								
		mmc1_clk	2	I/O								
		pr1_edio_data_in6	3	I								
		pr1_edio_data_out6	4	0								
		pr1_pru1_pru_r30_12	5	0								
		pr1_pru1_pru_r31_12	6	I								
		gpio1_30	7	I/O								
V9	GPMC_CSn2	gpmc_csn2	0	0	н	н	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		gpmc_be1n	1	0								
		mmc1_cmd	2	I/O								
		pr1_edio_data_in7	3	I								
		pr1_edio_data_out7	4	0								
		pr1_pru1_pru_r30_13	5	0								
		pr1_pru1_pru_r31_13	6	I								
		gpio1_31	7	I/O								
T13	GPMC_CSn3 ⁽⁶⁾	gpmc_csn3	0	0	н	н	7	VDDSHV2	Yes	6	PU/PD	LVCMOS
		gpmc_a3	1	0								
		rmii2_crs_dv	2	I								
		mmc2_cmd	3	I/O								
		pr1_mii0_crs	4	I								
		pr1_mdio_data	5	I/O								
		EMU4	6	I/O								
		gpio2_0	7	I/O								
Т7	GPMC_OEn_REn	gpmc_oen_ren	0	0	н	н	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		timer7	2	I/O								
		gpio2_3	7	I/O								
T17	GPMC_WAIT0	gpmc_wait0	0	I	н	н	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_crs	1	I								
		gpmc_csn4	2	0								
		rmii2_crs_dv	3	I								
		mmc1_sdcd	4	I								
		pr1_mii1_col	5	I								
		uart4_rxd	6	I								
		gpio0_30	7	I/O								
U6	GPMC_WEn	gpmc_wen	0	0	н	н	7	VDDSHV1	Yes	6	PU/PD	LVCMOS
		timer6	2	I/O								
		gpio2_4	7	I/O								

Table 4-1. Pin Attributes GCZ Package (continued
--

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
U17	GPMC_WPn	gpmc_wpn	0	0	н	н	7	VDDSHV3	Yes	6	PU/PD	LVCMOS
		gmii2_rxerr	1	I	_							
		gpmc_csn5	2	0								
		rmii2_rxerr	3	I								
		mmc2_sdcd	4	I								
		pr1_mii1_txen	5	0	_							
		uart4_txd	6	0	_							
		gpio0_31	7	I/O								
C17	I2C0_SDA	I2C0_SDA	0	I/OD	Z ł	н	7	VDDSHV6	Yes	4	PU/PD	LVCMOS
		timer4	1	I/O	_							
		uart2_ctsn	2	I								
		eCAP2_in_PWM2_out	3	I/O								
		gpio3_5	7	I/O								
C16	I2C0_SCL	I2C0_SCL	0	I/OD	Z	н	7	VDDSHV6	Yes	4	PU/PD	LVCMOS
		timer7	1	I/O								
		uart2_rtsn	2	0								
		eCAP1_in_PWM1_out	3	I/O								
		gpio3_6	7	I/O								
R6	LCD_AC_BIAS_EN	lcd_ac_bias_en	0	0	Z	L	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a11	1	0								
		pr1_mii1_crs	2	I								
		pr1_edio_data_in5	3	I								
		pr1_edio_data_out5	4	0								
		pr1_pru1_pru_r30_11	5	0								
		pr1_pru1_pru_r31_11	6	I								
		gpio2_25	7	I/O								
R1	LCD_DATA0 ⁽⁵⁾	lcd_data0	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a0	1	0								
		pr1_mii_mt0_clk	2	I								
		ehrpwm2A	3	0								
		pr1_pru1_pru_r30_0	5	0								
	bi	pr1_pru1_pru_r31_0	6	I]							
		gpio2_6	7	I/O	1							

Table 4-1	. Pin	Attributes	GCZ	Package	(continued)
-----------	-------	------------	-----	---------	-------------

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
R2	LCD_DATA1 ⁽⁵⁾	lcd_data1	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a1	1	0								
		pr1_mii0_txen	2	0								
		ehrpwm2B	3	0								
		pr1_pru1_pru_r30_1	5	0								
		pr1_pru1_pru_r31_1	6	I								
		gpio2_7	7	I/O								
R3	LCD_DATA2 ⁽⁵⁾	lcd_data2	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a2	1	0								
		pr1_mii0_txd3	2	0								
		ehrpwm2_tripzone_input	3	I								
		pr1_pru1_pru_r30_2	5	0								
		pr1_pru1_pru_r31_2	6	I								
		gpio2_8	7	I/O								
R4	LCD_DATA3 ⁽⁵⁾	lcd_data3	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a3	1	0								
		pr1_mii0_txd2	2	0								
		ehrpwm0_synco	3	0								
		pr1_pru1_pru_r30_3	5	0								
		pr1_pru1_pru_r31_3	6	I								
		gpio2_9	7	I/O								
T1	LCD_DATA4 ⁽⁵⁾	lcd_data4	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a4	1	0								
		pr1_mii0_txd1	2	0								
		eQEP2A_in	3	I								
		pr1_pru1_pru_r30_4	5	0								
		pr1_pru1_pru_r31_4	6	I								
		gpio2_10	7	I/O								
T2	LCD_DATA5 ⁽⁵⁾	lcd_data5	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a5	1	0	_							
		pr1_mii0_txd0	2	0	_							
		eQEP2B_in	3	I	_							
		pr1_pru1_pru_r30_5	5	0	1							
	pr gp	pr1_pru1_pru_r31_5	6	I	1							
		gpio2_11	7	I/O								

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
Т3	LCD_DATA6 ⁽⁵⁾	lcd_data6	0	I/O	Z	z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a6	1	0								
		pr1_edio_data_in6	2	I								
		eQEP2_index	3	I/O								
		pr1_edio_data_out6	4	0								
		pr1_pru1_pru_r30_6	5	0								
		pr1_pru1_pru_r31_6	6	I								
		gpio2_12	7	I/O								
T4	LCD_DATA7 ⁽⁵⁾	lcd_data7	0	I/O	Z	z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a7	1	0								
		pr1_edio_data_in7	2	I								
		eQEP2_strobe	3	I/O								
		pr1_edio_data_out7	4	0								
		pr1_pru1_pru_r30_7	5	0								
		pr1_pru1_pru_r31_7	6	I								
		gpio2_13	7	I/O								
U1	LCD_DATA8 ⁽⁵⁾	lcd_data8	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a12	1	0								
		ehrpwm1_tripzone_input	2	I								
		mcasp0_aclkx	3	I/O								
		uart5_txd	4	0								
		pr1_mii0_rxd3	5	I								
		uart2_ctsn	6	I								
		gpio2_14	7	I/O								
U2	LCD_DATA9 ⁽⁵⁾	lcd_data9	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a13	1	0								
		ehrpwm0_synco	2	0								
		mcasp0_fsx	3	I/O								
		uart5_rxd	4	I								
		pr1_mii0_rxd2	5	I								
		uart2_rtsn	6	0								
		gpio2_15	7	I/O								

Table 4-1	. Pin	Attributes	GCZ	Package	(continued)
-----------	-------	------------	-----	---------	-------------

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS [10]	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
U3	LCD_DATA10 ⁽⁵⁾	lcd_data10	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a14	1	0								
		ehrpwm1A	2	0								
		mcasp0_axr0	3	I/O								
		pr1_mii0_rxd1	5	I								
		uart3_ctsn	6	I								
		gpio2_16	7	I/O								
U4	LCD_DATA11 ⁽⁵⁾	lcd_data11	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a15	1	0								
		ehrpwm1B	2	0								
		mcasp0_ahclkr	3	I/O								
		mcasp0_axr2	4	I/O								
		pr1_mii0_rxd0	5	I								
		uart3_rtsn	6	0								
		gpio2_17	7	I/O								
V2	LCD_DATA12 ⁽⁵⁾	lcd_data12	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a16	1	0								
		eQEP1A_in	2	I								
		mcasp0_aclkr	3	I/O								
		mcasp0_axr2	4	I/O								
		pr1_mii0_rxlink	5	I								
		uart4_ctsn	6	I								
		gpio0_8	7	I/O								
V3	LCD_DATA13 ⁽⁵⁾	lcd_data13	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a17	1	0								
		eQEP1B_in	2	I								
		mcasp0_fsr	3	I/O								
		mcasp0_axr3	4	I/O								
		pr1_mii0_rxer	5	I								
		uart4_rtsn	6	0								
		gpio0_9	7	I/O								

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
V4	LCD_DATA14 ⁽⁵⁾	lcd_data14	0	I/O	z	z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a18	1	0								
		eQEP1_index	2	I/O								
		mcasp0_axr1	3	I/O								
		uart5_rxd	4	I								
		pr1_mii_mr0_clk	5	I								
		uart5_ctsn	6	I								
		gpio0_10	7	I/O								
T5	LCD_DATA15 ⁽⁵⁾	lcd_data15	0	I/O	Z	Z	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a19	1	0								
		eQEP1_strobe	2	I/O								
		mcasp0_ahclkx	3	I/O								
		mcasp0_axr3	4	I/O								
		pr1_mii0_rxdv	5	I								
		uart5_rtsn	6	0								
		gpio0_11	7	I/O								
R5	LCD_HSYNC ⁽⁷⁾	lcd_hsync	0	0	Z	L	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a9	1	0								
		gpmc_a2	2	0								
		pr1_edio_data_in3	3	I								
		pr1_edio_data_out3	4	0								
		pr1_pru1_pru_r30_9	5	0								
		pr1_pru1_pru_r31_9	6	I								
		gpio2_23	7	I/O								
V5	LCD_PCLK	lcd_pclk	0	0	Z	L	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a10	1	0								
		pr1_mii0_crs	2	I								
		pr1_edio_data_in4	3	I								
		pr1_edio_data_out4	4	0								
		pr1_pru1_pru_r30_10	5	0	1							
		pr1_pru1_pru_r31_10	6	I	1							
	g	gpio2_24	7	I/O	1							

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
U5	LCD_VSYNC ⁽⁷⁾	Icd_vsync	0	0	Z	L	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		gpmc_a8	1	0								
		gpmc_a1	2	0								
		pr1_edio_data_in2	3	I								
		pr1_edio_data_out2	4	0								
		pr1_pru1_pru_r30_8	5	0								
		pr1_pru1_pru_r31_8	6	I								
		gpio2_22	7	I/O								
B13	MCASP0_FSX	mcasp0_fsx	0	I/O	L	L	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		ehrpwm0B	1	0								
		spi1_d0	3	I/O								
		mmc1_sdcd	4	I								
		pr1_pru0_pru_r30_1	5	0								
		pr1_pru0_pru_r31_1	6	I								
		gpio3_15	7	I/O								
B12	MCASP0_ACLKR	mcasp0_aclkr	0	I/O	L	L	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		eQEP0A_in	1	I								
		mcasp0_axr2	2	I/O								
		mcasp1_aclkx	3	I/O								
		mmc0_sdwp	4	I								
		pr1_pru0_pru_r30_4	5	0								
		pr1_pru0_pru_r31_4	6	I								
		gpio3_18	7	I/O								
C12	MCASP0_AHCLKR	mcasp0_ahclkr	0	I/O	L	L	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		ehrpwm0_synci	1	I								
		mcasp0_axr2	2	I/O								
		spi1_cs0	3	I/O								
		eCAP2_in_PWM2_out	4	I/O								
		pr1_pru0_pru_r30_3	5	0								
		pr1_pru0_pru_r31_3	6	I								
		gpio3_17	7	I/O								

Table 4-1. Pin Attributes GCZ Package (continued	GCZ Package (continued)
--	-------------------------

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS [10]	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
A14	MCASP0_AHCLKX	mcasp0_ahclkx	0	I/O	L	L	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		eQEP0_strobe	1	I/O								
		mcasp0_axr3	2	I/O								
		mcasp1_axr1	3	I/O								
		EMU4	4	I/O								
		pr1_pru0_pru_r30_7	5	0								
		pr1_pru0_pru_r31_7	6	I								
		gpio3_21	7	I/O								
A13	MCASP0_ACLKX	mcasp0_aclkx	0	I/O	L	L	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		ehrpwm0A	1	0								
		spi1_sclk	3	I/O								
		mmc0_sdcd	4	I								
		pr1_pru0_pru_r30_0	5	0								
		pr1_pru0_pru_r31_0	6	I								
		gpio3_14	7	I/O								
C13	MCASP0_FSR	mcasp0_fsr	0	I/O	L	L	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		eQEP0B_in	1	I								
		mcasp0_axr3	2	I/O								
		mcasp1_fsx	3	I/O								
		EMU2	4	I/O								
		pr1_pru0_pru_r30_5	5	0								
		pr1_pru0_pru_r31_5	6	I								
		gpio3_19	7	I/O								
D12	MCASP0_AXR0	mcasp0_axr0	0	I/O	L	L	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		ehrpwm0_tripzone_input	1	I								
		spi1_d1	3	I/O								
		mmc2_sdcd	4	I								
		pr1_pru0_pru_r30_2	5	0								
		pr1_pru0_pru_r31_2	6	I								
		gpio3_16	7	I/O								
D13	MCASP0_AXR1	mcasp0_axr1	0	I/O	L	L	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		eQEP0_index	1	I/O								
		mcasp1_axr0	3	I/O								
		EMU3	4	I/O								
		pr1_pru0_pru_r30_6	5	0	1							
		pr1_pru0_pru_r31_6	6	I	1							
		gpio3_20	7	I/O	1							

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
M18	MDC	mdio_clk	0	0	н	н	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		timer5	1	I/O								
		uart5_txd	2	0								
		uart3_rtsn	3	0								
		mmc0_sdwp	4	I								
		mmc1_clk	5	I/O								
		mmc2_clk	6	I/O								
		gpio0_1	7	I/O								
M17	MDIO	mdio_data	0	I/O	н	н	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		timer6	1	I/O								
		uart5_rxd	2	-								
		uart3_ctsn	3	-								
		mmc0_sdcd	4	-								
		mmc1_cmd	5	I/O								
		mmc2_cmd	6	I/O								
		gpio0_0	7	I/O								
J17	MII1_RX_DV	gmii1_rxdv	0	I	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		lcd_memory_clk	1	0								
		rgmii1_rctl	2	-								
		uart5_txd	3	0								
		mcasp1_aclkx	4	I/O								
		mmc2_dat0	5	I/O								
		mcasp0_aclkr	6	I/O								
		gpio3_4	7	I/O								
J16	MII1_TX_EN	gmii1_txen	0	0	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		rmii1_txen	1	0								
		rgmii1_tctl	2	0								
		timer4	3	I/O								
		mcasp1_axr0	4	I/O								
		eQEP0_index	5	I/O								
		mmc2_cmd	6	I/O								
		gpio3_3	7	I/O								

Table 4-1. Fill Allibules GCZ Fackage (continueu)	Table 4-1.	Pin Attr	ibutes GCZ	Z Package	(continued)
---	------------	----------	------------	-----------	-------------

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
J15	MII1_RX_ER	gmii1_rxerr	0	I	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		rmii1_rxerr	1	I								
		spi1_d1	2	I/O								
		I2C1_SCL	3	I/OD								
		mcasp1_fsx	4	I/O								
		uart5_rtsn	5	0								
		uart2_txd	6	0								
		gpio3_2	7	I/O								
L18	MII1_RX_CLK	gmii1_rxclk	0	I	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		uart2_txd	1	0								
		rgmii1_rclk	2	I								
		mmc0_dat6	3	I/O								
		mmc1_dat1	4	I/O								
		uart1_dsrn	5	I								
		mcasp0_fsx	6	I/O								
		gpio3_10	7	I/O								
K18	MII1_TX_CLK	gmii1_txclk	0	I	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		uart2_rxd	1	I								
		rgmii1_tclk	2	0								
		mmc0_dat7	3	I/O								
		mmc1_dat0	4	I/O								
		uart1_dcdn	5	I								
		mcasp0_aclkx	6	I/O								
		gpio3_9	7	I/O								
H16	MII1_COL	gmii1_col	0	I	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		rmii2_refclk	1	I/O								
		spi1_sclk	2	I/O								
		uart5_rxd	3	I								
		mcasp1_axr2	4	I/O								
		mmc2_dat3	5	I/O	1							
		mcasp0_axr2	6	I/O	1							
		gpio3_0	7	I/O	1							

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
H17	MII1_CRS	gmii1_crs	0	I	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		rmii1_crs_dv	1	I								
		spi1_d0	2	I/O								
		I2C1_SDA	3	I/OD								
		mcasp1_aclkx	4	I/O								
		uart5_ctsn	5	I								
		uart2_rxd	6	I								
		gpio3_1	7	I/O								
M16	MII1_RXD0	gmii1_rxd0	0	I	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		rmii1_rxd0	1	I								
		rgmii1_rd0	2	I								
		mcasp1_ahclkx	3	I/O								
		mcasp1_ahclkr	4	I/O								
		mcasp1_aclkr	5	I/O								
		mcasp0_axr3	6	I/O								
		gpio2_21	7	I/O								
L15	MII1_RXD1	gmii1_rxd1	0	I	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		rmii1_rxd1	1	I								
		rgmii1_rd1	2	-								
		mcasp1_axr3	3	I/O								
		mcasp1_fsr	4	I/O								
		eQEP0_strobe	5	I/O								
		mmc2_clk	6	I/O								
		gpio2_20	7	I/O								
L16	MII1_RXD2	gmii1_rxd2	0	I	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		uart3_txd	1	0								
		rgmii1_rd2	2	I								
		mmc0_dat4	3	I/O								
		mmc1_dat3	4	I/O								
		uart1_rin	5	I								
		mcasp0_axr1	6	I/O								
		gpio2_19	7	I/O								

Table 4-1. Fill Allibules GCZ Fackage (continueu)	Table 4-1.	Pin Attr	ibutes GCZ	Z Package	(continued)
---	------------	----------	------------	-----------	-------------

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
L17	MII1_RXD3	gmii1_rxd3	0	I	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		uart3_rxd	1	I								
		rgmii1_rd3	2	I								
		mmc0_dat5	3	I/O								
		mmc1_dat2	4	I/O								
		uart1_dtrn	5	0								
		mcasp0_axr0	6	I/O								
		gpio2_18	7	I/O								
K17	MII1_TXD0	gmii1_txd0	0	0	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		rmii1_txd0	1	0								
		rgmii1_td0	2	0								
		mcasp1_axr2	3	I/O								
		mcasp1_aclkr	4	I/O								
		eQEP0B_in	5	I								
		mmc1_clk	6	I/O								
		gpio0_28	7	I/O								
K16	MII1_TXD1	gmii1_txd1	0	0	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		rmii1_txd1	1	0								
		rgmii1_td1	2	0								
		mcasp1_fsr	3	I/O								
		mcasp1_axr1	4	I/O								
		eQEP0A_in	5	I								
		mmc1_cmd	6	I/O								
		gpio0_21	7	I/O								
K15	MII1_TXD2	gmii1_txd2	0	0	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		dcan0_rx	1	I								
		rgmii1_td2	2	0								
		uart4_txd	3	0								
		mcasp1_axr0	4	I/O								
		mmc2_dat2	5	I/O								
		mcasp0_ahclkx	6	I/O								
		gpio0_17	7	I/O								

Table 4-1	. Pin	Attributes	GCZ	Package	(continued)
-----------	-------	------------	-----	---------	-------------

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
J18	MII1_TXD3	gmii1_txd3	0	0	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		dcan0_tx	1	0								
		rgmii1_td3	2	0								
		uart4_rxd	3	I								
		mcasp1_fsx	4	I/O								
		mmc2_dat1	5	I/O								
		mcasp0_fsr	6	I/O								
		gpio0_16	7	I/O								
G18	MMC0_CMD	mmc0_cmd	0	I/O	н	н	7	VDDSHV4	Yes	6	PU/PD	LVCMOS
		gpmc_a25	1	0								
		uart3_rtsn	2	0								
		uart2_txd	3	0								
		dcan1_rx	4	I								
		pr1_pru0_pru_r30_13	5	0								
		pr1_pru0_pru_r31_13	6	I								
		gpio2_31	7	I/O								
G17	MMC0_CLK	mmc0_clk	0	I/O	н	н	7	VDDSHV4	Yes	6	PU/PD	LVCMOS
		gpmc_a24	1	0								
		uart3_ctsn	2	I								
		uart2_rxd	3	I								
		dcan1_tx	4	0								
		pr1_pru0_pru_r30_12	5	0								
		pr1_pru0_pru_r31_12	6	I								
		gpio2_30	7	I/O								
G16	MMC0_DAT0	mmc0_dat0	0	I/O	н	н	7	VDDSHV4	Yes	6	PU/PD	LVCMOS
		gpmc_a23	1	0								
		uart5_rtsn	2	0								
		uart3_txd	3	0								
		uart1_rin	4	I								
		pr1_pru0_pru_r30_11	5	0								
		pr1_pru0_pru_r31_11	6	I								
		gpio2_29	7	I/O								

Table 4-1. Pin Attributes GCZ Package (continued
--

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
G15	MMC0_DAT1	mmc0_dat1	0	I/O	н	н	7	VDDSHV4	Yes	6	PU/PD	LVCMOS
		gpmc_a22	1	0								
		uart5_ctsn	2	I								
		uart3_rxd	3	I								
		uart1_dtrn	4	0								
		pr1_pru0_pru_r30_10	5	0								
		pr1_pru0_pru_r31_10	6	I								
		gpio2_28	7	I/O								
F18	MMC0_DAT2	mmc0_dat2	0	I/O	н	н	7	VDDSHV4	Yes	6	PU/PD	LVCMOS
		gpmc_a21	1	0								
		uart4_rtsn	2	0								
		timer6	3	I/O								
		uart1_dsrn	4	I								
		pr1_pru0_pru_r30_9	5	0								
		pr1_pru0_pru_r31_9	6	I								
		gpio2_27	7	I/O								
F17	MMC0_DAT3	mmc0_dat3	0	I/O	Н	н	7	VDDSHV4	Yes	6	PU/PD	LVCMOS
		gpmc_a20	1	0								
		uart4_ctsn	2	I								
		timer5	3	I/O								
		uart1_dcdn	4	I								
		pr1_pru0_pru_r30_8	5	0								
		pr1_pru0_pru_r31_8	6	I								
		gpio2_26	7	I/O								
C6	PMIC_POWER_EN	PMIC_POWER_EN	0	0	н	1	0	VDDS_RTC	NA	6	NA	LVCMOS
B15	PWRONRSTn	porz	0	I	Z	Z	0	VDDSHV6 (12)	Yes	NA	NA	LVCMOS
A3	RESERVED (3)	testout	0	0	NA	NA	NA	VDDSHV6	NA	NA	NA	Analog
H18	RMII1_REF_CLK	rmii1_refclk	0	I/O	L	L	7	VDDSHV5	Yes	6	PU/PD	LVCMOS
		xdma_event_intr2	1	I								
		spi1_cs0	2	I/O								
		uart5_txd	3	0								
		mcasp1_axr3	4	I/O								
		mmc0_pow	5	0								
		mcasp1_ahclkx	6	I/O								
		gpio0_29	7	I/O								
B4	RTC_KALDO_ENn	ENZ_KALDO_1P8V	0	1	Z	Z	0	VDDS_RTC	NA	NA	NA	Analog
B5	RTC_PWRONRSTn	RTC_PORz	0	I	Z	Z	0	VDDS_RTC	Yes	NA	NA	LVCMOS
A6	RTC_XTALIN	OSC1_IN	0	I	н	н	0	VDDS_RTC	Yes	NA	PU ⁽¹⁾	LVCMOS

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
A4	RTC_XTALOUT	OSC1_OUT	0	0	Z ⁽²³⁾	Z ⁽²³⁾	0	VDDS_RTC	NA	NA ⁽¹⁵⁾	NA	LVCMOS
A17	SPI0_SCLK	spi0_sclk	0	I/O	Z	н	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		uart2_rxd	1	I								
		I2C2_SDA	2	I/OD								
		ehrpwm0A	3	0								
		pr1_uart0_cts_n	4	I								
		pr1_edio_sof	5	0								
		EMU2	6	I/O								
		gpio0_2	7	I/O								
A16	SPI0_CS0	spi0_cs0	0	I/O	Z	н	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		mmc2_sdwp	1	I								
		I2C1_SCL	2	I/OD	-							
		ehrpwm0_synci	3	I								
		pr1_uart0_txd	4	0								
		pr1_edio_data_in1	5	I								
		pr1_edio_data_out1	6	0								
		gpio0_5	7	I/O								
C15	SPI0_CS1	spi0_cs1	0	I/O	Z	н	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		uart3_rxd	1	I								
		eCAP1_in_PWM1_out	2	I/O								
		mmc0_pow	3	0								
		xdma_event_intr2	4	I								
		mmc0_sdcd	5	I								
		EMU4	6	I/O								
		gpio0_6	7	I/O								
B17	SPI0_D0	spi0_d0	0	I/O	Z	н	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		uart2_txd	1	0								
		I2C2_SCL	2	I/OD								
		ehrpwm0B	3	0								
		pr1_uart0_rts_n	4	0								
		pr1_edio_latch_in	5	I								
	EML gpio	EMU3	6	I/O								
		gpio0_3	7	I/O								

Table 4-1.	Pin	Attributes	GCZ	Package	(continued)
					(••••••••••••••••••••••••••••••••••••••

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS [10]	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
B16	SPI0_D1	spi0_d1	0	I/O	Z	Н	7	VDDSHV6	Yes	6	PU/PD	LVCMOS
		mmc1_sdwp	1	I								
		I2C1_SDA	2	I/OD								
		ehrpwm0_tripzone_input	3	I								
		pr1_uart0_rxd	4	I								
		pr1_edio_data_in0	5	I								
		pr1_edio_data_out0	6	0								
		gpio0_4	7	I/O								
A12	тск	тск	0	I	н	Н	0	VDDSHV6	Yes	NA	PU/PD	LVCMOS
B11	TDI	TDI	0	I	н	Н	0	VDDSHV6	Yes	NA	PU/PD	LVCMOS
A11	TDO	TDO	0	0	н	н	0	VDDSHV6	NA	4	PU/PD	LVCMOS
C11	TMS	TMS	0	I	н	Н	0	VDDSHV6	Yes	NA	PU/PD	LVCMOS
B10	TRSTn	nTRST	0	I	L	L	0	VDDSHV6	Yes	NA	PU/PD	LVCMOS
E16	UART0_TXD	uart0_txd	0	0	Z	Н	7	VDDSHV6	Yes	4	PU/PD	LVCMOS
		spi1_cs1	1	I/O								
		dcan0_rx	2	I								
		I2C2_SCL	3	I/OD								
		eCAP1_in_PWM1_out	4	I/O								
		pr1_pru1_pru_r30_15	5	0								
		pr1_pru1_pru_r31_15	6	I								
		gpio1_11	7	I/O								
E18	UART0_CTSn	uart0_ctsn	0	I	Z	Н	7	VDDSHV6	Yes	4	PU/PD	LVCMOS
		uart4_rxd	1	I								
		dcan1_tx	2	0								
		I2C1_SDA	3	I/OD								
		spi1_d0	4	I/O								
		timer7	5	I/O								
		pr1_edc_sync0_out	6	0								
		gpio1_8	7	I/O								
E15	UART0_RXD	uart0_rxd	0	I	Z	н	7	VDDSHV6	Yes	4	PU/PD	LVCMOS
		spi1_cs0	1	I/O								
		dcan0_tx	2	0								
		I2C2_SDA	3	I/OD								
		eCAP2_in_PWM2_out	4	I/O	1							
		pr1_pru1_pru_r30_14	5	0	1							
		pr1_pru1_pru_r31_14	6	I	1							
		gpio1_10	7	I/O	1							

Table 4-1. Pin	Attributes	GCZ	Package	(continued)
				(••••••••••••••••••••••••••••••••••••••

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
E17	UART0_RTSn	uart0_rtsn	0	0	z	н	7	VDDSHV6	Yes	4	PU/PD	LVCMOS
		uart4_txd	1	0								
		dcan1_rx	2	I								
		I2C1_SCL	3	I/OD								
		spi1_d1	4	I/O								
		spi1_cs0	5	I/O								
		pr1_edc_sync1_out	6	0								
		gpio1_9	7	I/O								
D15	UART1_TXD	uart1_txd	0	0	Z	н	7	VDDSHV6	Yes	4	PU/PD	LVCMOS
		mmc2_sdwp	1	I								
		dcan1_rx	2	I								
		I2C1_SCL	3	I/OD								
		pr1_uart0_txd	5	0								
		pr1_pru0_pru_r31_16	6	I								
		gpio0_15	7	I/O								
D16	UART1_RXD	uart1_rxd	0	I	Z	н	7	VDDSHV6	Yes	4	PU/PD	LVCMOS
		mmc1_sdwp	1	I								
		dcan1_tx	2	0								
		I2C1_SDA	3	I/OD								
		pr1_uart0_rxd	5	I								
		pr1_pru1_pru_r31_16	6	I								
		gpio0_14	7	I/O								
D17	UART1_RTSn	uart1_rtsn	0	0	Z	н	7	VDDSHV6	Yes	4	PU/PD	LVCMOS
		timer5	1	I/O								
		dcan0_rx	2	I								
		I2C2_SCL	3	I/OD								
		spi1_cs1	4	I/O								
		pr1_uart0_rts_n	5	0								
		pr1_edc_latch1_in	6	I								
		gpio0_13	7	I/O								
D18	UART1_CTSn	uart1_ctsn	0	I	Z	н	7	VDDSHV6	Yes	4	PU/PD	LVCMOS
		timer6	1	I/O								
		dcan0_tx	2	0								
		I2C2_SDA	3	I/OD								
		spi1_cs0	4	I/O								
		pr1_uart0_cts_n	5	I								
		pr1_edc_latch0_in	6	I								
		gpio0_12	7	I/O								

Table 4-1. Pin Attributes GCZ Package (continued)

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS [10]	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
M15	USB0_CE	USB0_CE	0	A	Z	Z	0	VDDA*_USB0 (26)	NA	NA	NA	Analog
P15	USB0_VBUS	USB0_VBUS	0	A	z	z	0	VDDA*_USB0	NA	NA	NA	Analog
N18	USB0_DM	USB0_DM	0	A	z	z	0 (13)	VDDA*_USB0	Yes ⁽¹⁶⁾	8 (16)	NA	Analog
F16	USB0_DRVVBUS	USB0_DRVVBUS	0	0	L	0(PD)	0	VDDSHV6	Yes	4	PU/PD	LVCMOS
		gpio0_18	7	I/O	-							
P16	USB0_ID	USB0_ID	0	A	z	z	0	VDDA*_USB0 (26)	NA	NA	NA	Analog
N17	USB0_DP	USB0_DP	0	A	z	z	0 (13)	VDDA*_USB0	Yes ⁽¹⁶⁾	8 (16)	NA	Analog
P18	USB1_CE	USB1_CE	0	A	z	z	0	VDDA*_USB1	NA	NA	NA	Analog
P17	USB1_ID	USB1_ID	0	A	z	z	0	VDDA*_USB1	NA	NA	NA	Analog
T18	USB1_VBUS	USB1_VBUS	0	A	Z	Z	0	NA / VDDA*_USB1 (27)	NA	NA	NA	Analog
R17	USB1_DP	USB1_DP	0	A	Z	z	0 (14)	VDDA*_USB1 (27)	Yes (17)	8 (17)	NA	Analog
F15	USB1_DRVVBUS	USB1_DRVVBUS	0	0	L	0(PD)	0	VDDSHV6	Yes	4	PU/PD	LVCMOS
		gpio3_13	7	I/O								
R18	USB1_DM	USB1_DM	0	A	z	z	0 (14)	VDDA*_USB1 (27)	Yes (17)	8 ⁽¹⁷⁾	NA	Analog
N16	VDDA1P8V_USB0	VDDA1P8V_USB0	NA	PWR								
R16	VDDA1P8V_USB1	VDDA1P8V_USB1	NA	PWR								
N15	VDDA3P3V_USB0	VDDA3P3V_USB0	NA	PWR								
R15	VDDA3P3V_USB1	VDDA3P3V_USB1	NA	PWR								
D8	VDDA_ADC	VDDA_ADC	NA	PWR								
E6, E14, F9, K13, N6, P9, P14	VDDS	VDDS	NA	PWR								
P7, P8	VDDSHV1	VDDSHV1	NA	PWR								
P10, P11	VDDSHV2	VDDSHV2	NA	PWR								
P12, P13	VDDSHV3	VDDSHV3	NA	PWR								
H14, J14	VDDSHV4	VDDSHV4	NA	PWR								
K14, L14	VDDSHV5	VDDSHV5	NA	PWR								
E10, E11, E12, E13, F14, G14, N5, P5, P6	VDDSHV6	VDDSHV6	NA	PWR								
E5, F5, G5, H5, J5, K5, L5	VDDS_DDR	VDDS_DDR	NA	PWR								
R11	VDDS_OSC	VDDS_OSC	NA	PWR								

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
R10	VDDS_PLL_CORE_LCD	VDDS_PLL_CORE_LCD	NA	PWR								
E7	VDDS_PLL_DDR	VDDS_PLL_DDR	NA	PWR								
H15	VDDS_PLL_MPU	VDDS_PLL_MPU	NA	PWR								
D7	VDDS_RTC	VDDS_RTC	NA	PWR								
E9	VDDS_SRAM_CORE_BG	VDDS_SRAM_CORE_BG	NA	PWR								
D10	VDDS_SRAM_MPU_BB	VDDS_SRAM_MPU_BB	NA	PWR								
F6, F7, G6, G7, G10, H11, J12, K6, K8, K12, L6, L7, L8, L9, M11, M13, N8, N9, N12, N13	VDD_CORE	VDD_CORE	NA	PWR								
F10, F11, F12, F13, G13, H13, J13	VDD_MPU	VDD_MPU	NA	PWR								
A2	VDD_MPU_MON	VDD_MPU_MON (30)	NA	A								
M5	VPP	VPP	NA	PWR								
A9	VREFN	VREFN	0	AP	Z	Z	0	VDDA_ADC	NA	NA	NA	Analog
B 9	VREFP	VREFP	0	AP	Z	Z	0	VDDA_ADC	NA	NA	NA	Analog
A1, A18, F8, G8, G9, G11, G12, H6, H7, H8, H9, H10, H12, J6, J7, J8, J9, J10, J11, K7, K9, K10, K11, L10, L11, L12, L13, M6, M7, M8, M9, M10, M12, N7, N10, N11, V1, V18	VSS	VSS	NA	GND								
E8	VSSA_ADC	VSSA_ADC	NA	GND								
M14, N14	VSSA_USB	VSSA_USB	NA	GND								
V11	VSS_OSC		NA	A								
A5	VSS_RTC	VSS_RTC ⁽²⁹⁾	NA	A (8)		(11)						
A10	WARMRSTn	nRESETIN_OUT	0	I/OD (°)	0	0(PU) (***)	0	VDDSHV6	Yes	4	PU/PD	LVCMOS
A15	XDMA_EVENT_INTR0	xdma_event_intr0	0	1	Z	(4)	(9)	VDDSHV6	Yes	4	PU/PD	LVCMOS
		timer4	2	1/0	-							
		CIKOUT1	3	0	-							
			4	1/0	-							
		pr1_pru1_pru_r31_16	5	1	-							
		EMU2	6	1/0	-							
		gpio0_19	7	1/0								

Table 4-1. Pin Attributes GCZ Package (continued)	
---	--

GCZ BALL NUMBER [1]	PIN NAME [2]	SIGNAL NAME [3]	MODE [4]	TYPE [5]	BALL RESET STATE [6] ⁽²⁵⁾	BALL RESET REL. STATE [7]	RESET REL. MODE [8]	GCZ POWER [9]	HYS <mark>[10]</mark>	BUFFER STRENGTH (mA) [11]	PULLUP /DOWN TYPE [12]	I/O CELL [13]
D14	XDMA_EVENT_INTR1	xdma_event_intr1	0	I	Z	L	7	VDDSHV6	Yes	4	PU/PD	LVCMOS
		tclkin	2	I								
		clkout2	3	0								
		timer7	4	I/O								
		pr1_pru0_pru_r31_16	5	I								
		EMU3	6	I/O								
		gpio0_20	7	I/O								
V10	XTALIN	OSC0_IN	0	I	Z	Z	0	VDDS_OSC	Yes	NA	PD ⁽²⁾	LVCMOS
U11	XTALOUT	OSC0_OUT	0	0	(24)	(24)	0	VDDS_OSC	NA	NA ⁽¹⁵⁾	NA	LVCMOS

(1) An internal 10 kohm pullup is turned on when the oscillator is disabled. The oscillator is disabled by default after power is applied.

(2) An internal 15 kohm pulldown is turned on when the oscillator is disabled. The oscillator is enabled by default after power is applied.

(3) Do not connect anything to this terminal.

- (4) If sysboot[5] is low on the rising edge of PWRONRSTn, this terminal has an internal pulldown turned on after reset is released. If sysboot[5] is high on the rising edge or PWRONRSTn, this terminal will initially be driven low after reset is released then it begins to toggle at the same frequency of the XTALIN terminal.
- (5) LCD_DATA[15:0] terminals are respectively SYSBOOT[15:0] inputs, latched on the rising edge of PWRONRSTn.
- (6) Mode1 and Mode2 signal assignments for this terminal are only available with silicon revision 2.0 or newer devices.
- (7) Mode2 signal assignment for this terminal is only available with silicon revision 2.0 or newer devices.
- (8) Refer to the External Warm Reset section of the AM335x Technical Reference Manual for more information related to the operation of this terminal.
- (9) Reset Release Mode = 7 if sysboot[5] is low. Mode = 3 if sysboot[5] is high.
- (10) Silicon revision 1.0 devices only provide the MMC2_DAT7 signal when Mode3 is selected. Silicon revision 2.0 and newer devices implement another level of pin multiplexing which provides the original MMC2_DAT7 signal or RMII2_CRS_DV signal when Mode3 is selected. This new level of of pin multiplexing is selected with bit zero of the SMA2 register. For more details refer to Section 1.2 of the AM335x Technical Reference Manual.
- (11) The 0(PU) indicates that this terminal is initially low based on the description in the AM335x Technical Reference Manual. However, it is also has a weak internal pullup applied.
- (12) The input voltage thresholds for this input are not a function of VDDSHV6. Please refer to the DC Electrical Characteristics section for details related to electrical parameters associated with this input terminal.
- (13) The internal USB PHY can be configured to multiplex the UART2_TX or UART2_RX signals to this terminal. For more details refer to USB GPIO Details section of the AM335x Technical Reference Manual.
- (14) The internal USB PHY can be configured to multiplex the UART3_TX or UART3_RX signals to this terminal. For more details refer to USB GPIO Details section of the AM335x Technical Reference Manual.
- (15) This output should only be used to source the recommended crystal circuit.
- (16) This parameter only applies when this USB PHY terminal is operating in UART2 mode.
- (17) This parameter only applies when this USB PHY terminal is operating in UART3 mode.
- (18) This terminal is a analog input used to set the switching threshold of the DDR input buffers to (VDDS_DDR / 2).
- (19) This terminal is a analog passive signal that connects to an external 49.9 ohm 1%, 20mW reference resistor which is used to calibrate the DDR input/output buffers.
- (20) This terminal is analog input that may also be configured as an open-drain output.
- (21) This terminal is analog input that may also be configured as an open-source or open-drain output.

- (22) This terminal is analog input that may also be configured as an open-source output.
- (23) This terminal is high-Z when the oscillator is disabled. This terminal is driven high if RTC_XTALIN is less than VIL, driven low if RTC_XTALIN is greater than VIH, and driven to a unknown value if RTC_XTALIN is between VIL and VIH when the oscillator is enabled. The oscillator is disabled by default after power is applied.
- (24) This terminal is high-Z when the oscillator is disabled. This terminal is driven high if XTALIN is less than VIL, driven low if XTALIN is greater than VIH, and driven to a unknown value if XTALIN is between VIL and VIH when the oscillator is enabled. The oscillator is enabled by default after power is applied.
- (25) For all pins with content in the Ball Reset State column of this table, the terminal is not defined until all the supplies are ramped.
- (26) This terminal requires two power supplies, VDDA3p3v_USB0 and VDDA1p8v_USB0. The "*" character in the power supply name is a wild card that represents "3p3v" and "1p8v".
- (27) This terminal requires two power supplies, VDDA3p3v_USB1 and VDDA1p8v_USB1. The "*" character in the power supply name is a wild card that represents "3p3v" and "1p8v".
- (28) Refer to Section 6.2.2 for additional details about VSS_OSC.
- (29) Refer to Section 6.2.2 for additional details about VSS_RTC.
- (30) This terminal provides a Kelvin connection to VDD_MPU. It can be connected to the power supply feedback input to provide remote sensing which compensates for voltage drop in the PCB power distribution network and package. When the Kelvin connection is not used it should be connected to the same power source as VDD_MPU.

4.3 Signal Descriptions

The AM3358-EP device contains many peripheral interfaces. In order to reduce package size and lower overall system cost while maintaining maximum functionality, many of the AM3358-EP terminals can multiplex up to eight signal functions. Although there are many combinations of pin multiplexing that are possible, only a certain number of sets, called I/O Sets, are valid due to timing limitations. These valid I/O Sets were carefully chosen to provide many possible application scenarios for the user.

Texas Instruments has developed a Windows-based application called Pin Mux Utility that helps a system designer select the appropriate pin-multiplexing configuration for their AM3358-EP-based product design. The Pin Mux Utility provides a way to select valid I/O Sets of specific peripheral interfaces to ensure the pin-multiplexing configuration selected for a design only uses valid I/O Sets supported by the AM3358-EP device.

Texas Instruments

- (1) SIGNAL NAME: The signal name
- (2) **DESCRIPTION:** Description of the signal
- (3) **TYPE:** Ball type for this specific function:
 - I = Input
 - O = \dot{O} utput
 - I/O = Input/Output
 - D = Open drain
 - DS = Differential
 - A = Analog
- (4) BALL: Package ball location

Table 4-2. ADC Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
AINO	Analog Input/Output	А	B6
AIN1	Analog Input/Output	А	C7
AIN2	Analog Input/Output	А	B7
AIN3	Analog Input/Output	А	A7
AIN4	Analog Input/Output	А	C8
AIN5	Analog Input	А	B8
AIN6	Analog Input	А	A8
AIN7	Analog Input	А	C9
VREFN	Analog Negative Reference Input	AP	A9
VREFP	Analog Positive Reference Input	AP	B9

Table 4-3. Debug Subsystem Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
EMU0	MISC EMULATION PIN	I/O	C14
EMU1	MISC EMULATION PIN	I/O	B14
EMU2	MISC EMULATION PIN	I/O	A15, A17, C13
EMU3	MISC EMULATION PIN	I/O	B17, D13, D14
EMU4	MISC EMULATION PIN	I/O	A14, C15, T13
nTRST	JTAG TEST RESET (ACTIVE LOW)	I	B10
тск	JTAG TEST CLOCK	I	A12
TDI	JTAG TEST DATA INPUT	I	B11
TDO	JTAG TEST DATA OUTPUT	0	A11
TMS	JTAG TEST MODE SELECT	I	C11

Table 4-4. LCD Controller Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
lcd_ac_bias_en	LCD AC bias enable chip select	0	R6
lcd_data0	LCD data bus	I/O	R1
lcd_data1	LCD data bus	I/O	R2
lcd_data10	LCD data bus	I/O	U3
lcd_data11	LCD data bus	I/O	U4
lcd_data12	LCD data bus	I/O	V2
lcd_data13	LCD data bus	I/O	V3
lcd_data14	LCD data bus	I/O	V4
lcd_data15	LCD data bus	I/O	Т5
lcd_data16	LCD data bus	0	U13
lcd_data17	LCD data bus	0	V13
lcd_data18	LCD data bus	0	R12

Copyright © 2015–2019, Texas Instruments Incorporated

TEXAS INSTRUMENTS www.ti.com

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
lcd_data19	LCD data bus	0	T12
lcd_data2	LCD data bus	I/O	R3
lcd_data20	LCD data bus	0	U12
lcd_data21	LCD data bus	0	T11
lcd_data22	LCD data bus	0	T10
lcd_data23	LCD data bus	0	U10
lcd_data3	LCD data bus	I/O	R4
lcd_data4	LCD data bus	I/O	T1
lcd_data5	LCD data bus	I/O	T2
lcd_data6	LCD data bus	I/O	ТЗ
lcd_data7	LCD data bus	I/O	Τ4
lcd_data8	LCD data bus	I/O	U1
lcd_data9	LCD data bus	I/O	U2
lcd_hsync	LCD Horizontal Sync	0	R5
lcd_memory_clk	LCD MCLK	0	J17, V12
lcd_pclk	LCD pixel clock	0	V5
Icd_vsync	LCD Vertical Sync	0	U5

Table 4-4. LCD Controller Signals Description (continued)

4.3.1 External Memory Interfaces

Table 4-3. External Memory Internaces/DBN Dignals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
ddr_a0	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	F3
ddr_a1	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	H1
ddr_a10	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	F4
ddr_a11	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	F2
ddr_a12	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	E3
ddr_a13	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	H3
ddr_a14	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	H4
ddr_a15	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	D3
ddr_a2	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	E4
ddr_a3	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	C3
ddr_a4	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	C2
ddr_a5	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	B1
ddr_a6	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	D5
ddr_a7	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	E2
ddr_a8	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	D4
ddr_a9	DDR SDRAM ROW/COLUMN ADDRESS OUTPUT	0	C1
ddr_ba0	DDR SDRAM BANK ADDRESS OUTPUT	0	C4
ddr_ba1	DDR SDRAM BANK ADDRESS OUTPUT	0	E1
ddr_ba2	DDR SDRAM BANK ADDRESS OUTPUT	0	B3
ddr_casn	DDR SDRAM COLUMN ADDRESS STROBE OUTPUT (ACTIVE LOW)	0	F1
ddr_ck	DDR SDRAM CLOCK OUTPUT (Differential+)	0	D2
ddr_cke	DDR SDRAM CLOCK ENABLE OUTPUT	0	G3
ddr_csn0	DDR SDRAM CHIP SELECT OUTPUT	0	H2
ddr_d0	DDR SDRAM DATA INPUT/OUTPUT	I/O	M3
ddr_d1	DDR SDRAM DATA INPUT/OUTPUT	I/O	M4
ddr_d10	DDR SDRAM DATA INPUT/OUTPUT	I/O	К2
ddr_d11	DDR SDRAM DATA INPUT/OUTPUT	I/O	К3
ddr_d12	DDR SDRAM DATA INPUT/OUTPUT	I/O	K4
ddr_d13	DDR SDRAM DATA INPUT/OUTPUT	I/O	L3
ddr_d14	DDR SDRAM DATA INPUT/OUTPUT	I/O	L4
ddr_d15	DDR SDRAM DATA INPUT/OUTPUT	I/O	M1
ddr_d2	DDR SDRAM DATA INPUT/OUTPUT	I/O	N1
ddr_d3	DDR SDRAM DATA INPUT/OUTPUT	I/O	N2
ddr_d4	DDR SDRAM DATA INPUT/OUTPUT	I/O	N3
ddr_d5	DDR SDRAM DATA INPUT/OUTPUT	I/O	N4
ddr_d6	DDR SDRAM DATA INPUT/OUTPUT	I/O	P3
ddr_d7	DDR SDRAM DATA INPUT/OUTPUT	I/O	P4
ddr_d8	DDR SDRAM DATA INPUT/OUTPUT	I/O	J1
ddr_d9	DDR SDRAM DATA INPUT/OUTPUT	I/O	К1
ddr_dqm0	DDR WRITE ENABLE / DATA MASK FOR DATA[7:0]	0	M2
ddr_dqm1	DDR WRITE ENABLE / DATA MASK FOR DATA[15:8]	0	J2
ddr_dqs0	DDR DATA STROBE FOR DATA[7:0] (Differential+)	I/O	P1
ddr_dqs1	DDR DATA STROBE FOR DATA[15:8] (Differential+)	I/O	L1
ddr_dqsn0	DDR DATA STROBE FOR DATA[7:0] (Differential-)	I/O	P2
ddr_dqsn1	DDR DATA STROBE FOR DATA[15:8] (Differential-)	I/O	L2

Copyright © 2015–2019, Texas Instruments Incorporated

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
ddr_nck	DDR SDRAM CLOCK OUTPUT (Differential-)	0	D1
ddr_odt	ODT OUTPUT	0	G1
ddr_rasn	DDR SDRAM ROW ADDRESS STROBE OUTPUT (ACTIVE LOW)	0	G4
ddr_resetn	DDR3/DDR3L RESET OUTPUT (ACTIVE LOW)	0	G2
ddr_vref	Voltage Reference Input	А	J4
ddr_vtp	VTP Compensation Resistor	I	J3
ddr_wen	DDR SDRAM WRITE ENABLE OUTPUT (ACTIVE LOW)	0	B2

Table 4-5. External Memory Interfaces/DDR Signals Description (continued)

Table 4-6. External Memory Interfaces/General Purpose Memory Controller Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
gpmc_a0	GPMC Address	0	R1, R13
gpmc_a1	GPMC Address	0	R2, U5, V14
gpmc_a10	GPMC Address	0	T16, V5
gpmc_a11	GPMC Address	0	R6, V17
gpmc_a12	GPMC Address	0	U1
gpmc_a13	GPMC Address	0	U2
gpmc_a14	GPMC Address	0	U3
gpmc_a15	GPMC Address	0	U4
gpmc_a16	GPMC Address	0	R13, V2
gpmc_a17	GPMC Address	0	V14, V3
gpmc_a18	GPMC Address	0	U14, V4
gpmc_a19	GPMC Address	0	T14, T5
gpmc_a2	GPMC Address	0	R3, R5, U14
gpmc_a20	GPMC Address	0	F17, R14
gpmc_a21	GPMC Address	0	F18, V15
gpmc_a22	GPMC Address	0	G15, U15
gpmc_a23	GPMC Address	0	G16, T15
gpmc_a24	GPMC Address	0	G17, V16
gpmc_a25	GPMC Address	0	G18, U16
gpmc_a26	GPMC Address	0	T16
gpmc_a27	GPMC Address	0	V17
gpmc_a3	GPMC Address	0	R4, T13, T14
gpmc_a4	GPMC Address	0	R14, T1
gpmc_a5	GPMC Address	0	T2, V15
gpmc_a6	GPMC Address	0	T3, U15
gpmc_a7	GPMC Address	0	T15, T4
gpmc_a8	GPMC Address	0	U5, V16
gpmc_a9	GPMC Address	0	R5, U16
gpmc_ad0	GPMC Address and Data	I/O	U7
gpmc_ad1	GPMC Address and Data	I/O	V7
gpmc_ad10	GPMC Address and Data	I/O	T11
gpmc_ad11	GPMC Address and Data	I/O	U12
gpmc_ad12	GPMC Address and Data	I/O	T12
gpmc_ad13	GPMC Address and Data	I/O	R12
gpmc_ad14	GPMC Address and Data	I/O	V13
gpmc_ad15	GPMC Address and Data	I/O	U13

Copyright © 2015–2019, Texas Instruments Incorporated

Table 4-6.	External Memory	Interfaces/General	Purpose	Memory	Controller	Signals
		Description (cont	tinued)			

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
gpmc_ad2	GPMC Address and Data	I/O	R8
gpmc_ad3	GPMC Address and Data	I/O	Т8
gpmc_ad4	GPMC Address and Data	I/O	U8
gpmc_ad5	GPMC Address and Data	I/O	V8
gpmc_ad6	GPMC Address and Data	I/O	R9
gpmc_ad7	GPMC Address and Data	I/O	Т9
gpmc_ad8	GPMC Address and Data	I/O	U10
gpmc_ad9	GPMC Address and Data	I/O	T10
gpmc_advn_ale	GPMC Address Valid / Address Latch Enable	0	R7
gpmc_be0n_cle	GPMC Byte Enable 0 / Command Latch Enable	0	Т6
gpmc_be1n	GPMC Byte Enable 1	0	U18, V9
gpmc_clk	GPMC Clock	I/O	U9, V12
gpmc_csn0	GPMC Chip Select	0	V6
gpmc_csn1	GPMC Chip Select	0	U9
gpmc_csn2	GPMC Chip Select	0	V9
gpmc_csn3	GPMC Chip Select	0	T13
gpmc_csn4	GPMC Chip Select	0	T17
gpmc_csn5	GPMC Chip Select	0	U17
gpmc_csn6	GPMC Chip Select	0	U18
gpmc_dir	GPMC Data Direction	0	U18
gpmc_oen_ren	GPMC Output / Read Enable	0	Т7
gpmc_wait0	GPMC Wait 0	I	T17
gpmc_wait1	GPMC Wait 1	I	V12
gpmc_wen	GPMC Write Enable	0	U6
gpmc_wpn	GPMC Write Protect	0	U17

4.3.2 General Purpose IOs

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
gpio0_0	GPIO	I/O	M17
gpio0_1	GPIO	I/O	M18
gpio0_10	GPIO	I/O	V4
gpio0_11	GPIO	I/O	T5
gpio0_12	GPIO	I/O	D18
gpio0_13	GPIO	I/O	D17
gpio0_14	GPIO	I/O	D16
gpio0_15	GPIO	I/O	D15
gpio0_16	GPIO	I/O	J18
gpio0_17	GPIO	I/O	K15
gpio0_18	GPIO	I/O	F16
gpio0_19	GPIO	I/O	A15
gpio0_2	GPIO	I/O	A17
gpio0_20	GPIO	I/O	D14
gpio0_21	GPIO	I/O	K16
gpio0_22	GPIO	I/O	U10
gpio0_23	GPIO	I/O	T10
gpio0_26	GPIO	I/O	T11
gpio0_27	GPIO	I/O	U12
gpio0_28	GPIO	I/O	K17
gpio0_29	GPIO	I/O	H18
gpio0_3	GPIO	I/O	B17
gpio0_30	GPIO	I/O	T17
gpio0_31	GPIO	I/O	U17
gpio0_4	GPIO	I/O	B16
gpio0_5	GPIO	I/O	A16
gpio0_6	GPIO	I/O	C15
gpio0_7	GPIO	I/O	C18
gpio0_8	GPIO	I/O	V2
gpio0_9	GPIO	I/O	V3

Table 4-7. General Purpose IOs/GPIO0 Signals Description

Table 4-8. General Purpose IOs/GPIO1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
gpio1_0	GPIO	I/O	U7
gpio1_1	GPIO	I/O	V7
gpio1_10	GPIO	I/O	E15
gpio1_11	GPIO	I/O	E16
gpio1_12	GPIO	I/O	T12
gpio1_13	GPIO	I/O	R12
gpio1_14	GPIO	I/O	V13
gpio1_15	GPIO	I/O	U13
gpio1_16	GPIO	I/O	R13
gpio1_17	GPIO	I/O	V14
gpio1_18	GPIO	I/O	U14
gpio1_19	GPIO	I/O	T14

ÈXAS

STRUMENTS

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
gpio1_2	GPIO	I/O	R8
gpio1_20	GPIO	I/O	R14
gpio1_21	GPIO	I/O	V15
gpio1_22	GPIO	I/O	U15
gpio1_23	GPIO	I/O	T15
gpio1_24	GPIO	I/O	V16
gpio1_25	GPIO	I/O	U16
gpio1_26	GPIO	I/O	T16
gpio1_27	GPIO	I/O	V17
gpio1_28	GPIO	I/O	U18
gpio1_29	GPIO	I/O	V6
gpio1_3	GPIO	I/O	Т8
gpio1_30	GPIO	I/O	U9
gpio1_31	GPIO	I/O	V9
gpio1_4	GPIO	I/O	U8
gpio1_5	GPIO	I/O	V8
gpio1_6	GPIO	I/O	R9
gpio1_7	GPIO	I/O	Т9
gpio1_8	GPIO	I/O	E18
gpio1_9	GPIO	I/O	E17

Table 4-8. General Purpose IOs/GPIO1 Signals Description (continued)

Table 4-9. General Purpose IOs/GPIO2 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
gpio2_0	GPIO	I/O	T13
gpio2_1	GPIO	I/O	V12
gpio2_10	GPIO	I/O	T1
gpio2_11	GPIO	I/O	T2
gpio2_12	GPIO	I/O	ТЗ
gpio2_13	GPIO	I/O	T4
gpio2_14	GPIO	I/O	U1
gpio2_15	GPIO	I/O	U2
gpio2_16	GPIO	I/O	U3
gpio2_17	GPIO	I/O	U4
gpio2_18	GPIO	I/O	L17
gpio2_19	GPIO	I/O	L16
gpio2_2	GPIO	I/O	R7
gpio2_20	GPIO	I/O	L15
gpio2_21	GPIO	I/O	M16
gpio2_22	GPIO	I/O	U5
gpio2_23	GPIO	I/O	R5
gpio2_24	GPIO	I/O	V5
gpio2_25	GPIO	I/O	R6
gpio2_26	GPIO	I/O	F17
gpio2_27	GPIO	I/O	F18
gpio2_28	GPIO	I/O	G15
gpio2_29	GPIO	I/O	G16
gpio2_3	GPIO	I/O	Τ7

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
gpio2_30	GPIO	I/O	G17
gpio2_31	GPIO	I/O	G18
gpio2_4	GPIO	I/O	U6
gpio2_5	GPIO	I/O	Т6
gpio2_6	GPIO	I/O	R1
gpio2_7	GPIO	I/O	R2
gpio2_8	GPIO	I/O	R3
gpio2_9	GPIO	I/O	R4

Table 4-10. General Purpose IOs/GPIO3 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
gpio3_0	GPIO	I/O	H16
gpio3_1	GPIO	I/O	H17
gpio3_10	GPIO	I/O	L18
gpio3_13	GPIO	I/O	F15
gpio3_14	GPIO	I/O	A13
gpio3_15	GPIO	I/O	B13
gpio3_16	GPIO	I/O	D12
gpio3_17	GPIO	I/O	C12
gpio3_18	GPIO	I/O	B12
gpio3_19	GPIO	I/O	C13
gpio3_2	GPIO	I/O	J15
gpio3_20	GPIO	I/O	D13
gpio3_21	GPIO	I/O	A14
gpio3_3	GPIO	I/O	J16
gpio3_4	GPIO	I/O	J17
gpio3_5	GPIO	I/O	C17
gpio3_6	GPIO	I/O	C16
gpio3_7	GPIO	I/O	C14
gpio3_8	GPIO	I/O	B14
gpio3_9	GPIO	I/O	K18

4.3.3 Miscellaneous

Table 4-11. Miscellaneous/Miscellaneous Signals Description	
---	--

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
clkout1	Clock out1	0	A15
clkout2	Clock out2	0	D14
ENZ_KALDO_1P8V	Active low enable input for internal CAP_VDD_RTC voltage regulator	I	B4
EXT_WAKEUP	EXT_WAKEUP input	1	C5
nNMI	External Interrupt to ARM Cortext A8 core	1	B18
nRESETIN_OUT	Active low Warm Reset	I/OD	A10
OSC0_IN	High frequency oscillator input	1	V10
OSC0_OUT	High frequency oscillator output	0	U11
OSC1_IN	Low frequency (32.768 KHz) Real Time Clock oscillator input	I	A6
OSC1_OUT	Low frequency (32.768 KHz) Real Time Clock oscillator output	0	A4
PMIC_POWER_EN	PMIC_POWER_EN output	0	C6
porz	Active low Power on Reset	1	B15
RTC_PORz	Active low RTC reset input	1	B5
tclkin	Timer Clock In	1	D14
xdma_event_intr0	External DMA Event or Interrupt 0	1	A15
xdma_event_intr1	External DMA Event or Interrupt 1	1	D14
xdma_event_intr2	External DMA Event or Interrupt 2	1	C15, C18, H18

4.3.3.1 eCAP

Table 4-12. eCAP/eCAP0 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
eCAP0_in_PWM0_out	Enhanced Capture 0 input or Auxiliary PWM0 output	I/O	C18

Table 4-13. eCAP/eCAP1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
eCAP1_in_PWM1_out	Enhanced Capture 1 input or Auxiliary PWM1 output	I/O	C15, C16, E16

Table 4-14. eCAP/eCAP2 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
eCAP2_in_PWM2_out	Enhanced Capture 2 input or Auxiliary PWM2 output	I/O	C12, C17, E15

4.3.3.2 eHRPWM

Table 4-15. eHRPWM/eHRPWM0 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
ehrpwm0A	eHRPWM0 A output.	0	A13, A17
ehrpwm0B	eHRPWM0 B output.	0	B13, B17
ehrpwm0_synci	Sync input to eHRPWM0 module from an external pin	I	A16, C12
ehrpwm0_synco	Sync Output from eHRPWM0 module to an external pin	0	R4, U12, U2, V14
ehrpwm0_tripzone_input	eHRPWM0 trip zone input	1	B16, D12

Table 4-16. eHRPWM/eHRPWM1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
ehrpwm1A	eHRPWM1 A output.	0	U14, U3
ehrpwm1B	eHRPWM1 B output.	0	T14, U4
ehrpwm1_tripzone_input	eHRPWM1 trip zone input	I	R13, U1

Table 4-17. eHRPWM/eHRPWM2 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
ehrpwm2A	eHRPWM2 A output.	0	R1, U10
ehrpwm2B	eHRPWM2 B output.	0	R2, T10
ehrpwm2_tripzone_input	eHRPWM2 trip zone input	Ι	R3, T11

4.3.3.3 eQEP

Table 4-18. eQEP/eQEP0 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
eQEP0A_in	eQEP0A quadrature input	I	B12, K16
eQEP0B_in	eQEP0B quadrature input	I	C13, K17
eQEP0_index	eQEP0 index.	I/O	D13, J16
eQEP0_strobe	eQEP0 strobe.	I/O	A14, L15

Table 4-19. eQEP/eQEP1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
eQEP1A_in	eQEP1A quadrature input	Ι	R14, V2
eQEP1B_in	eQEP1B quadrature input	Ι	V15, V3
eQEP1_index	eQEP1 index.	I/O	U15, V4
eQEP1_strobe	eQEP1 strobe.	I/O	T15, T5

Table 4-20. eQEP/eQEP2 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
eQEP2A_in	eQEP2A quadrature input	Ι	T1, T12
eQEP2B_in	eQEP2B quadrature input	Ι	R12, T2
eQEP2_index	eQEP2 index.	I/O	T3, V13
eQEP2_strobe	eQEP2 strobe.	I/O	T4, U13

4.3.3.4 Timer

Table 4-21. Timer/Timer4 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
timer4	Timer trigger event / PWM out	I/O	A15, C17, J16, R7

Table 4-22. Timer/Timer5 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
timer5	Timer trigger event / PWM out	I/O	D17, F17, M18, T6

Table 4-23. Timer/Timer6 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
timer6	Timer trigger event / PWM out	I/O	D18, F18, M17, U6

Table 4-24. Timer/Timer7 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
timer7	Timer trigger event / PWM out	I/O	C16, D14, E18, T7

4.3.4 PRU-ICSS

Table 4-25. PRU-ICSS/eCAP Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
pr1_ecap0_ecap_capin_apwm_o	Enhanced capture input or Auxiliary PWM out	I/O	C18, U13

Table 4-26. PRU-ICSS/MDIO Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
pr1_mdio_data	MDIO Data	I/O	T13
pr1_mdio_mdclk	MDIO CIk	0	V12

Table 4-27. PRU-ICSS/MII0 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
pr1_mii0_col	MII Collision Detect	Ι	T10
pr1_mii0_crs	MII Carrier Sense	Ι	T13, V5
pr1_mii0_rxd0	MII Receive Data bit 0	Ι	U4
pr1_mii0_rxd1	MII Receive Data bit 1	I	U3
pr1_mii0_rxd2	MII Receive Data bit 2	Ι	U2
pr1_mii0_rxd3	MII Receive Data bit 3	Ι	U1
pr1_mii0_rxdv	MII Receive Data Valid	Ι	T5
pr1_mii0_rxer	MII Receive Data Error	Ι	V3
pr1_mii0_rxlink	MII Receive Link	Ι	V2
pr1_mii0_txd0	MII Transmit Data bit 0	0	T2, V13
pr1_mii0_txd1	MII Transmit Data bit 1	0	R12, T1
pr1_mii0_txd2	MII Transmit Data bit 2	0	R4, T12
pr1_mii0_txd3	MII Transmit Data bit 3	0	R3, U12
pr1_mii0_txen	MII Transmit Enable	0	R2, T11
pr1_mii_mr0_clk	MII Receive Clock	Ι	V4
pr1_mii_mt0_clk	MII Transmit Clock	Ι	R1, U10

Table 4-28. PRU-ICSS/MII1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
pr1_mii1_col	MII Collision Detect	I	T17
pr1_mii1_crs	MII Carrier Sense	1	R6, V12
pr1_mii1_rxd0	MII Receive Data bit 0	I	V16
pr1_mii1_rxd1	MII Receive Data bit 1	1	T15
pr1_mii1_rxd2	MII Receive Data bit 2	1	U15
pr1_mii1_rxd3	MII Receive Data bit 3	1	V15
pr1_mii1_rxdv	MII Receive Data Valid	1	T16
pr1_mii1_rxer	MII Receive Data Error	I	V17
pr1_mii1_rxlink	MII Receive Link	I	U18
pr1_mii1_txd0	MII Transmit Data bit 0	0	R14
pr1_mii1_txd1	MII Transmit Data bit 1	0	T14
pr1_mii1_txd2	MII Transmit Data bit 2	0	U14
pr1_mii1_txd3	MII Transmit Data bit 3	0	V14
pr1_mii1_txen	MII Transmit Enable	0	U17
pr1_mii_mr1_clk	MII Receive Clock	1	U16
pr1_mii_mt1_clk	MII Transmit Clock	I	R13

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
pr1_uart0_cts_n	UART Clear to Send	I	A17, D18
pr1_uart0_rts_n	UART Request to Send	0	B17, D17
pr1_uart0_rxd	UART Receive Data	I	B16, D16
pr1_uart0_txd	UART Transmit Data	0	A16, D15

4.3.4.1 PRU0

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
pr1_pru0_pru_r31_0	PRU0 Data In	I	A13
pr1_pru0_pru_r31_1	PRU0 Data In	I	B13
pr1_pru0_pru_r31_10	PRU0 Data In	I	G15
pr1_pru0_pru_r31_11	PRU0 Data In	I	G16
pr1_pru0_pru_r31_12	PRU0 Data In	I	G17
pr1_pru0_pru_r31_13	PRU0 Data In	1	G18
pr1_pru0_pru_r31_14	PRU0 Data In	1	V13
pr1_pru0_pru_r31_15	PRU0 Data In	I	U13
pr1_pru0_pru_r31_16	PRU0 Data In Capture Enable	I	D14, D15
pr1_pru0_pru_r31_2	PRU0 Data In	I	D12
pr1_pru0_pru_r31_3	PRU0 Data In	I	C12
pr1_pru0_pru_r31_4	PRU0 Data In	I	B12
pr1_pru0_pru_r31_5	PRU0 Data In	I	C13
pr1_pru0_pru_r31_6	PRU0 Data In	I	D13
pr1_pru0_pru_r31_7	PRU0 Data In	I	A14
pr1_pru0_pru_r31_8	PRU0 Data In	I	F17
pr1_pru0_pru_r31_9	PRU0 Data In	I	F18

Table 4-31. PRU0/General Purpose Outputs Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
pr1_pru0_pru_r30_0	PRU0 Data Out	0	A13
pr1_pru0_pru_r30_1	PRU0 Data Out	0	B13
pr1_pru0_pru_r30_10	PRU0 Data Out	0	G15
pr1_pru0_pru_r30_11	PRU0 Data Out	0	G16
pr1_pru0_pru_r30_12	PRU0 Data Out	0	G17
pr1_pru0_pru_r30_13	PRU0 Data Out	0	G18
pr1_pru0_pru_r30_14	PRU0 Data Out	0	T12
pr1_pru0_pru_r30_15	PRU0 Data Out	0	R12
pr1_pru0_pru_r30_2	PRU0 Data Out	0	D12
pr1_pru0_pru_r30_3	PRU0 Data Out	0	C12
pr1_pru0_pru_r30_4	PRU0 Data Out	0	B12
pr1_pru0_pru_r30_5	PRU0 Data Out	0	C13
pr1_pru0_pru_r30_6	PRU0 Data Out	0	D13
pr1_pru0_pru_r30_7	PRU0 Data Out	0	A14
pr1_pru0_pru_r30_8	PRU0 Data Out	0	F17
pr1_pru0_pru_r30_9	PRU0 Data Out	0	F18

4.3.4.2 PRU1

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
pr1_pru1_pru_r31_0	PRU1 Data In	I	R1
pr1_pru1_pru_r31_1	PRU1 Data In	I	R2
pr1_pru1_pru_r31_10	PRU1 Data In	I	V5
pr1_pru1_pru_r31_11	PRU1 Data In	1	R6
pr1_pru1_pru_r31_12	PRU1 Data In	1	U9
pr1_pru1_pru_r31_13	PRU1 Data In	I	V9
pr1_pru1_pru_r31_14	PRU1 Data In	I	E15
pr1_pru1_pru_r31_15	PRU1 Data In	I	E16
pr1_pru1_pru_r31_16	PRU1 Data In Capture Enable	1	A15, D16
pr1_pru1_pru_r31_2	PRU1 Data In	1	R3
pr1_pru1_pru_r31_3	PRU1 Data In	1	R4
pr1_pru1_pru_r31_4	PRU1 Data In	1	T1
pr1_pru1_pru_r31_5	PRU1 Data In	I	T2
pr1_pru1_pru_r31_6	PRU1 Data In	1	ТЗ
pr1_pru1_pru_r31_7	PRU1 Data In	1	T4
pr1_pru1_pru_r31_8	PRU1 Data In	1	U5
pr1_pru1_pru_r31_9	PRU1 Data In	I	R5

Table 4-33. PRU1/General Purpose Outputs Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
pr1_pru1_pru_r30_0	PRU1 Data Out	0	R1
pr1_pru1_pru_r30_1	PRU1 Data Out	0	R2
pr1_pru1_pru_r30_10	PRU1 Data Out	0	V5
pr1_pru1_pru_r30_11	PRU1 Data Out	0	R6
pr1_pru1_pru_r30_12	PRU1 Data Out	0	U9
pr1_pru1_pru_r30_13	PRU1 Data Out	0	V9
pr1_pru1_pru_r30_14	PRU1 Data Out	0	E15
pr1_pru1_pru_r30_15	PRU1 Data Out	0	E16
pr1_pru1_pru_r30_2	PRU1 Data Out	0	R3
pr1_pru1_pru_r30_3	PRU1 Data Out	0	R4
pr1_pru1_pru_r30_4	PRU1 Data Out	0	T1
pr1_pru1_pru_r30_5	PRU1 Data Out	0	T2
pr1_pru1_pru_r30_6	PRU1 Data Out	0	ТЗ
pr1_pru1_pru_r30_7	PRU1 Data Out	0	T4
pr1_pru1_pru_r30_8	PRU1 Data Out	0	U5
pr1_pru1_pru_r30_9	PRU1 Data Out	0	R5

4.3.5 Removable Media Interfaces

Table 4-34. Removable Media Interfaces/MMC0 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
mmc0_clk	MMC/SD/SDIO Clock	I/O	G17
mmc0_cmd	MMC/SD/SDIO Command	I/O	G18
mmc0_dat0	MMC/SD/SDIO Data Bus	I/O	G16
mmc0_dat1	MMC/SD/SDIO Data Bus	I/O	G15
mmc0_dat2	MMC/SD/SDIO Data Bus	I/O	F18
mmc0_dat3	MMC/SD/SDIO Data Bus	I/O	F17
mmc0_dat4	MMC/SD/SDIO Data Bus	I/O	L16
mmc0_dat5	MMC/SD/SDIO Data Bus	I/O	L17
mmc0_dat6	MMC/SD/SDIO Data Bus	I/O	L18
mmc0_dat7	MMC/SD/SDIO Data Bus	I/O	K18
mmc0_pow	MMC/SD Power Switch Control	0	C15, H18
mmc0_sdcd	SD Card Detect	1	A13, C15, M17
mmc0_sdwp	SD Write Protect	Ι	B12, C18, M18

Table 4-35. Removable Media Interfaces/MMC1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
mmc1_clk	MMC/SD/SDIO Clock	I/O	K17, M18, U9
mmc1_cmd	MMC/SD/SDIO Command	I/O	K16, M17, V9
mmc1_dat0	MMC/SD/SDIO Data Bus	I/O	K18, U10, U7
mmc1_dat1	MMC/SD/SDIO Data Bus	I/O	L18, T10, V7
mmc1_dat2	MMC/SD/SDIO Data Bus	I/O	L17, R8, T11
mmc1_dat3	MMC/SD/SDIO Data Bus	I/O	L16, T8, U12
mmc1_dat4	MMC/SD/SDIO Data Bus	I/O	T12, U8
mmc1_dat5	MMC/SD/SDIO Data Bus	I/O	R12, V8
mmc1_dat6	MMC/SD/SDIO Data Bus	I/O	R9, V13
mmc1_dat7	MMC/SD/SDIO Data Bus	I/O	T9, U13
mmc1_sdcd	SD Card Detect	I	B13, T17
mmc1_sdwp	SD Write Protect	I	B16, D16

Table 4-36. Removable Media Interfaces/MMC2 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
mmc2_clk	MMC/SD/SDIO Clock	I/O	L15, M18, V12
mmc2_cmd	MMC/SD/SDIO Command	I/O	J16, M17, T13
mmc2_dat0	MMC/SD/SDIO Data Bus	I/O	J17, T12, V14
mmc2_dat1	MMC/SD/SDIO Data Bus	I/O	J18, R12, U14
mmc2_dat2	MMC/SD/SDIO Data Bus	I/O	K15, T14, V13
mmc2_dat3	MMC/SD/SDIO Data Bus	I/O	H16, U13, U18
mmc2_dat4	MMC/SD/SDIO Data Bus	I/O	U10, U15
mmc2_dat5	MMC/SD/SDIO Data Bus	I/O	T10, T15
mmc2_dat6	MMC/SD/SDIO Data Bus	I/O	T11, V16
mmc2_dat7	MMC/SD/SDIO Data Bus	I/O	U12
mmc2_sdcd	SD Card Detect	I	D12, U17
mmc2_sdwp	SD Write Protect	I	A16, D15

4.3.6 Serial Communication Interfaces

4.3.6.1 CAN

Table 4-37. CAN/DCAN0 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
dcan0_rx	DCAN0 Receive Data	I	D17, E16, K15
dcan0_tx	DCAN0 Transmit Data	0	D18, E15, J18

Table 4-38. CAN/DCAN1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
dcan1_rx	DCAN1 Receive Data	Ι	D15, E17, G18
dcan1_tx	DCAN1 Transmit Data	0	D16, E18, G17

4.3.6.2 GEMAC_CPSW

Table 4-39. GEMAC_CPSW/MDIO Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
mdio_clk	MDIO Clk	0	M18
mdio_data	MDIO Data	I/O	M17

Table 4-40. GEMAC_CPSW/MII1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
gmii1_col	MII Colision	I	H16
gmii1_crs	MII Carrier Sense	I	H17
gmii1_rxclk	MII Receive Clock	I	L18
gmii1_rxd0	MII Receive Data bit 0	I	M16
gmii1_rxd1	MII Receive Data bit 1	I	L15
gmii1_rxd2	MII Receive Data bit 2	I	L16
gmii1_rxd3	MII Receive Data bit 3	I	L17
gmii1_rxdv	MII Receive Data Valid	I	J17
gmii1_rxer	MII Receive Data Error	I	J15
gmii1_txclk	MII Transmit Clock	I	K18
gmii1_txd0	MII Transmit Data bit 0	0	K17
gmii1_txd1	MII Transmit Data bit 1	0	K16
gmii1_txd2	MII Transmit Data bit 2	0	K15
gmii1_txd3	MII Transmit Data bit 3	0	J18
gmii1_txen	MII Transmit Enable	0	J16

Table 4-41. GEMAC_CPSW/MII2 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
gmii2_col	MII Colision	1	U18
gmii2_crs	MII Carrier Sense	1	T17
gmii2_rxclk	MII Receive Clock	1	T15
gmii2_rxd0	MII Receive Data bit 0	I	V17
gmii2_rxd1	MII Receive Data bit 1	I	T16
gmii2_rxd2	MII Receive Data bit 2	I	U16
gmii2_rxd3	MII Receive Data bit 3	I	V16
gmii2_rxdv	MII Receive Data Valid	1	V14
gmii2_rxer	MII Receive Data Error	I	U17
gmii2_txclk	MII Transmit Clock	I	U15
gmii2_txd0	MII Transmit Data bit 0	0	V15
gmii2_txd1	MII Transmit Data bit 1	0	R14
gmii2_txd2	MII Transmit Data bit 2	0	T14
gmii2_txd3	MII Transmit Data bit 3	0	U14
gmii2_txen	MII Transmit Enable	0	R13

Table 4-42. GEMAC_CPSW/RGMII1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
rgmii1_rclk	RGMII Receive Clock	I	L18
rgmii1_rctl	RGMII Receive Control	I	J17
rgmii1_rd0	RGMII Receive Data bit 0	1	M16
rgmii1_rd1	RGMII Receive Data bit 1	1	L15

Submit Documentation Feedback Product Folder Links: AM3358-EP Copyright © 2015–2019, Texas Instruments Incorporated

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
rgmii1_rd2	RGMII Receive Data bit 2	I	L16
rgmii1_rd3	RGMII Receive Data bit 3	I	L17
rgmii1_tclk	RGMII Transmit Clock	0	K18
rgmii1_tctl	RGMII Transmit Control	0	J16
rgmii1_td0	RGMII Transmit Data bit 0	0	K17
rgmii1_td1	RGMII Transmit Data bit 1	0	K16
rgmii1_td2	RGMII Transmit Data bit 2	0	K15
rgmii1_td3	RGMII Transmit Data bit 3	0	J18

Table 4-42. GEMAC_CPSW/RGMII1 Signals Description (continued)

Table 4-43. GEMAC_CPSW/RGMII2 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
rgmii2_rclk	RGMII Receive Clock	1	T15
rgmii2_rctl	RGMII Receive Control	I	V14
rgmii2_rd0	RGMII Receive Data bit 0	I	V17
rgmii2_rd1	RGMII Receive Data bit 1	I	T16
rgmii2_rd2	RGMII Receive Data bit 2	I	U16
rgmii2_rd3	RGMII Receive Data bit 3	1	V16
rgmii2_tclk	RGMII Transmit Clock	0	U15
rgmii2_tctl	RGMII Transmit Control	0	R13
rgmii2_td0	RGMII Transmit Data bit 0	0	V15
rgmii2_td1	RGMII Transmit Data bit 1	0	R14
rgmii2_td2	RGMII Transmit Data bit 2	0	T14
rgmii2_td3	RGMII Transmit Data bit 3	0	U14

Table 4-44. GEMAC_CPSW/RMII1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
rmii1_crs_dv	RMII Carrier Sense / Data Valid	Ι	H17
rmii1_refclk	RMII Reference Clock	I/O	H18
rmii1_rxd0	RMII Receive Data bit 0	Ι	M16
rmii1_rxd1	RMII Receive Data bit 1	Ι	L15
rmii1_rxer	RMII Receive Data Error	Ι	J15
rmii1_txd0	RMII Transmit Data bit 0	0	K17
rmii1_txd1	RMII Transmit Data bit 1	0	K16
rmii1_txen	RMII Transmit Enable	0	J16

Table 4-45. GEMAC_CPSW/RMII2 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
rmii2_crs_dv	RMII Carrier Sense / Data Valid	I	T13, T17
rmii2_refclk	RMII Reference Clock	I/O	H16
rmii2_rxd0	RMII Receive Data bit 0	1	V17
rmii2_rxd1	RMII Receive Data bit 1	1	T16
rmii2_rxer	RMII Receive Data Error	1	U17
rmii2_txd0	RMII Transmit Data bit 0	0	V15
rmii2_txd1	RMII Transmit Data bit 1	0	R14
rmii2_txen	RMII Transmit Enable	0	R13

4.3.6.3 I2C

Table 4-46. I2C/I2C0 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
I2C0_SCL	I2C0 Clock	I/OD	C16
I2C0_SDA	I2C0 Data	I/OD	C17

Table 4-47. I2C/I2C1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
I2C1_SCL	I2C1 Clock	I/OD	A16, D15, E17, J15
I2C1_SDA	I2C1 Data	I/OD	B16, D16, E18, H17

Table 4-48. I2C/I2C2 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
I2C2_SCL	I2C2 Clock	I/OD	B17, D17, E16
I2C2_SDA	I2C2 Data	I/OD	A17, D18, E15

4.3.6.4 McASP

Table 4-49. McASP/MCASP0 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
mcasp0_aclkr	McASP0 Receive Bit Clock	I/O	B12, J17, U18, V2
mcasp0_aclkx	McASP0 Transmit Bit Clock	I/O	A13, K18, U1, V16
mcasp0_ahclkr	McASP0 Receive Master Clock	I/O	C12, U4
mcasp0_ahclkx	McASP0 Transmit Master Clock	I/O	A14, K15, T5
mcasp0_axr0	McASP0 Serial Data (IN/OUT)	I/O	D12, L17, T16, U3
mcasp0_axr1	McASP0 Serial Data (IN/OUT)	I/O	D13, L16, V17, V4
mcasp0_axr2	McASP0 Serial Data (IN/OUT)	I/O	B12, C12, H16, U4, V2
mcasp0_axr3	McASP0 Serial Data (IN/OUT)	I/O	A14, C13, M16, T5, V3
mcasp0_fsr	McASP0 Receive Frame Sync	I/O	C13, J18, V12, V3
mcasp0_fsx	McASP0 Transmit Frame Sync	I/O	B13, L18, U16, U2

Table 4-50. McASP/MCASP1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
mcasp1_aclkr	McASP1 Receive Bit Clock	I/O	K17, M16
mcasp1_aclkx	McASP1 Transmit Bit Clock	I/O	B12, H17, J17
mcasp1_ahclkr	McASP1 Receive Master Clock	I/O	M16
mcasp1_ahclkx	McASP1 Transmit Master Clock	I/O	H18, M16
mcasp1_axr0	McASP1 Serial Data (IN/OUT)	I/O	D13, J16, K15
mcasp1_axr1	McASP1 Serial Data (IN/OUT)	I/O	A14, K16
mcasp1_axr2	McASP1 Serial Data (IN/OUT)	I/O	H16, K17
mcasp1_axr3	McASP1 Serial Data (IN/OUT)	I/O	H18, L15
mcasp1_fsr	McASP1 Receive Frame Sync	I/O	K16, L15
mcasp1_fsx	McASP1 Transmit Frame Sync	I/O	C13, J15, J18

4.3.6.5 SPI

Table 4-51. SPI/SPI0 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
spi0_cs0	SPI Chip Select	I/O	A16
spi0_cs1	SPI Chip Select	I/O	C15
spi0_d0	SPI Data	I/O	B17
spi0_d1	SPI Data	I/O	B16
spi0_sclk	SPI Clock	I/O	A17

Table 4-52. SPI/SPI1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
spi1_cs0	SPI Chip Select	I/O	C12, D18, E15, E17, H18
spi1_cs1	SPI Chip Select	I/O	A15, C18, D17, E16
spi1_d0	SPI Data	I/O	B13, E18, H17
spi1_d1	SPI Data	I/O	D12, E17, J15
spi1_sclk	SPI Clock	I/O	A13, C18, H16

TEXAS INSTRUMENTS www.ti.com

4.3.6.6 UART

Table 4-53. UART/UART0 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
uart0_ctsn	UART Clear to Send	Ι	E18
uart0_rtsn	UART Request to Send	0	E17
uart0_rxd	UART Receive Data	Ι	E15
uart0_txd	UART Transmit Data	0	E16

Table 4-54. UART/UART1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
uart1_ctsn	UART Clear to Send	I	D18
uart1_dcdn	UART Data Carrier Detect	I	F17, K18
uart1_dsrn	UART Data Set Ready	I	F18, L18
uart1_dtrn	UART Data Terminal Ready	0	G15, L17
uart1_rin	UART Ring Indicator	I	G16, L16
uart1_rtsn	UART Request to Send	0	D17
uart1_rxd	UART Receive Data	I	D16
uart1_txd	UART Transmit Data	0	D15

Table 4-55. UART/UART2 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
uart2_ctsn	UART Clear to Send	Ι	C17, U1
uart2_rtsn	UART Request to Send	0	C16, U2
uart2_rxd	UART Receive Data	Ι	A17, G17, H17, K18
uart2_txd	UART Transmit Data	0	B17, G18, J15, L18

Table 4-56. UART/UART3 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
uart3_ctsn	UART Clear to Send	Ι	G17, M17, U3
uart3_rtsn	UART Request to Send	0	G18, M18, U4
uart3_rxd	UART Receive Data	Ι	C15, G15, L17
uart3_txd	UART Transmit Data	0	C18, G16, L16

Table 4-57. UART/UART4 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
uart4_ctsn	UART Clear to Send	I	F17, V2
uart4_rtsn	UART Request to Send	0	F18, V3
uart4_rxd	UART Receive Data	I	E18, J18, T17
uart4_txd	UART Transmit Data	0	E17, K15, U17

Table 4-58. UART/UART5 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
uart5_ctsn	UART Clear to Send	I	G15, H17, V4
uart5_rtsn	UART Request to Send	0	G16, J15, T5
uart5_rxd	UART Receive Data	I	H16, M17, U2, V4
uart5_txd	UART Transmit Data	0	H18, J17, M18, U1

4.3.6.7 USB

Table 4-59. USB/USB0 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
USB0_CE	USB0 Active high Charger Enable output	А	M15
USB0_DM	USB0 Data minus	А	N18
USB0_DP	USB0 Data plus	А	N17
USB0_DRVVBUS	USB0 Active high VBUS control output	0	F16
USB0_ID	USB0 OTG ID (Micro-A or Micro-B Plug)	А	P16
USB0_VBUS	USB0 VBUS	А	P15

Table 4-60. USB/USB1 Signals Description

SIGNAL NAME [1]	DESCRIPTION [2]	TYPE [3]	BALL [4]
USB1_CE	USB1 Active high Charger Enable output	A	P18
USB1_DM	USB1 Data minus	A	R18
USB1_DP	USB1 Data plus	A	R17
USB1_DRVVBUS	USB1 Active high VBUS control output	0	F15
USB1_ID	USB1 OTG ID (Micro-A or Micro-B Plug)	А	P17
USB1_VBUS	USB1 VBUS	А	T18

5 Specifications

5.1 Absolute Maximum Ratings

over junction temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

			MIN	MAX	UNIT
VDD_MPU	Supply voltage for the MPU	core domain	-0.5	1.5	V
VDD_CORE	Supply voltage for the core	domain	-0.5	1.5	V
CAP_VDD_RTC ⁽³⁾	Supply voltage for the RTC	Supply voltage for the RTC core domain			V
VPP ⁽⁴⁾	Supply voltage for the FUS	E ROM domain	-0.5	2.2	V
VDDS_RTC	Supply voltage for the RTC	upply voltage for the RTC domain		2.1	V
VDDS_OSC	Supply voltage for the Syste	ipply voltage for the System oscillator		2.1	V
VDDS_SRAM_CORE_BG	Supply voltage for the Core	SRAM LDOs	-0.5	2.1	V
VDDS_SRAM_MPU_BB	Supply voltage for the MPU	SRAM LDOs	-0.5	2.1	V
VDDS_PLL_DDR	upply voltage for the DPLL DDR		-0.5	2.1	V
VDDS_PLL_CORE_LCD	Supply voltage for the DPL	L Core and LCD	-0.5	2.1	V
VDDS_PLL_MPU	Supply voltage for the DPL	L MPU	-0.5	2.1	V
VDDS_DDR	Supply voltage for the DDR	I/O domain	-0.5	2.1	V
VDDS	Supply voltage for all dual-	voltage I/O domains	-0.5	2.1	V
VDDA1P8V_USB0	Supply voltage for USBPH	(-0.5	2.1	V
VDDA1P8V_USB1	Supply voltage for USBPH	(-0.5	2.1	V
VDDA_ADC	Supply voltage for ADC		-0.5	2.1	V
VDDSHV1	Supply voltage for the dual-	Supply voltage for the dual-voltage I/O domain		3.8	V
VDDSHV2	Supply voltage for the dual-voltage I/O domain		-0.5	3.8	V
VDDSHV3	Supply voltage for the dual-voltage I/O domain		-0.5	3.8	V
VDDSHV4	Supply voltage for the dual-voltage I/O domain		-0.5	3.8	V
VDDSHV5	Supply voltage for the dual-voltage I/O domain		-0.5	3.8	V
VDDSHV6	Supply voltage for the dual-voltage I/O domain		-0.5	3.8	V
VDDA3P3V_USB0	Supply voltage for USBPHY		-0.5	4	V
VDDA3P3V_USB1	Supply voltage for USBPHY		-0.5	4	V
USB0_VBUS ⁽⁵⁾	Supply voltage for USB VB	Supply voltage for USB VBUS comparator input		5.25	V
USB1_VBUS ⁽⁵⁾	Supply voltage for USB VB	Supply voltage for USB VBUS comparator input		5.25	V
DDR_VREF	Supply voltage for the DDR	Supply voltage for the DDR SSTL and HSTL reference voltage		1.1	V
Steady state max voltage at all I/O pins ⁽⁶⁾			–0.5 V to I/O supp	ly voltage + 0.3 V	
USB0_ID ⁽⁷⁾	Steady state maximum volt	age for the USB ID input	-0.5	2.1	V
USB1_ID ⁽⁷⁾	Steady state maximum volt	age for the USB ID input	-0.5	2.1	V
Transient overshoot and undershoot specification at I/O terminal			25% of corresponding I/O supply voltage for up to 30% of signal period		
	Class II (105°C)		45		mA
		1.8-V mode	-100	100	
Latch-up performance ⁽⁸⁾		3.3-V mode; applies to all I/O pins except those included in latch-up pin groups A, B, and C	-100	100	
	Class II (125°C)	3.3-V mode; applies to latch-up pin group A	-35	100	mA
		3.3-V mode; applies to latch-up pin group B	-45	75	
		3.3-V mode; applies to latch-up pin group C	-100	70	
Junction temperature, T_J			-40	125	°C
Storage temperature, $T_{stg}^{(9)}$			-55	155	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to their associated VSS or VSSA_x.

(3) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced from an external power supply.

Absolute Maximum Ratings (continued)

over junction temperature range (unless otherwise noted)(1)(2)

- (4) During functional operation, this pin is a no connect.
- (5) This terminal is connected to a fail-safe I/O and does not have a dependence on any I/O supply voltage.
- (6) This parameter applies to all I/O terminals which are not fail-safe and the requirement applies to all values of I/O supply voltage. For example, if the voltage applied to a specific I/O supply is 0 volts the valid input voltage range for any I/O powered by that supply will be -0.5 to +0.3 V. Apply special attention anytime peripheral devices are not powered from the same power sources used to power the respective I/O supply. It is important the attached peripheral never sources a voltage outside the valid input voltage range, including power supply ramp-up and ramp-down sequences.
- (7) This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the voltage to determine if the terminal is connected to VSSA_USB with a resistance less than 10 Ω or greater than 100 k Ω . The terminal should be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to any external voltage source.
- (8) Based on JEDEC JESD78D [IC Latch-Up Test].
- (9) For tape and reel the storage temperature range is [-10°C; +50°C] with a maximum relative humidity of 70%. TI recommends returning to ambient room temperature before usage.

Fail-safe I/O terminals are designed such they do not have dependencies on the respective I/O power supply voltage. This allows external voltage sources to be connected to these I/O terminals when the respective I/O power supplies are turned off. The USB0_VBUS and USB1_VBUS are the only fail-safe I/O terminals. All other I/O terminals are not fail-safe and the voltage applied to them should be limited to the value defined by the **steady state max. Voltage at all I/O pins** parameter in Section 5.1.

5.2 ESD Ratings

			VALUE	UNIT	
V	Electrostatic discharge	Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001 ⁽¹⁾	±2000	V	
V _{ESD}	(ESD) performance:	Charged Device Model (CDM), per JESD22-C101 ⁽²⁾	±500	V	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Power-On Hours (POH)

Table 5-1. Reliability Data⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾

	EXTENDED			
OPERATING CONDITION	JUNCTION TEMP (T _J)	LIFETIME (POH) ⁽⁵⁾		
Turbo	–40°C to 105°C	80K		
OPP120	–40°C to 105°C	100K		
OPP100	–40°C to 105°C	100K		
OPP50	–40°C to 105°C	100K		

(1) The power-on hours (POH) information in this table is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI semiconductor products.

(2) To avoid significant degradation, the device power-on hours (POH) must be limited as described in this table.

(3) Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions.

(4) The previous notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI's standard terms and conditions for TI semiconductor products.

(5) POH = Power-on hours when the device is fully functional.

5.4 Operating Performance Points (OPPs)

Device OPPs are defined in Table 5-2 through Table 5-4.

Table 5-2. VDD_CORE OPPs for GCZ Package Device Rev. "B"⁽¹⁾

VDD_CORE OPP	VDD_CORE		DDR3,		mDDB(2)		
Device Rev. "B"	MIN	NOM	MAX	DDR3L ⁽²⁾	DDR2	MDDR /	LS and L4
OPP100	1.056 V	1.100 V	1.144 V	400 MHz	266 MHz	200 MHz	200 and 100 MHz
OPP50	0.912 V	0.950 V	0.988 V	_	125 MHz	90 MHz	100 and 50 MHz

(1) Frequencies in this table indicate maximum performance for a given OPP condition.

(2) This parameter represents the maximum memory clock frequency. Because data is transferred on both edges of the clock, double-data rate (DDR), the maximum data rate is two times the maximum memory clock frequency defined in this table.

Table 5-3. VDD_MPU OPPs for GCZ With Device Revision Code "B"⁽¹⁾

VDD_MPU OPP				
Rev "B"	MIN	NOM	MAX	
Turbo	1.210 V	1.260 V	1.326 V	800 MHz
OPP120	1.152 V	1.200 V	1.248 V	720 MHz
OPP100	1.056 V	1.100 V	1.144 V	600 MHz
OPP50	0.912 V	0.950 V	0.988 V	300 MHz

(1) Frequencies in this table indicate maximum performance for a given OPP condition.

Table 5-4. Valid Combinations of VDD_CORE and VDD_MPU OPPs for GCZ Package With Device Revision Code "B"

VDD_MPU
OPP50
OPP100
OPP50
OPP100
OPP120

Copyright © 2015–2019, Texas Instruments Incorporated

Table 5-4. Valid Combinations of VDD_CORE and VDD_MPU OPPs for GCZ Package With Device Revision Code "B" (continued)

VDD_CORE	VDD_MPU
OPP100	Turbo

5.5 Recommended Operating Conditions

over junction temperature range (unless otherwise noted)

SUPPLY NAME	DESCRIPTION	MIN	NOM M	X UNIT
	Supply voltage range for core domain; OPP100	1.056	1.100 1.1	44
VDD_CORE	Supply voltage range for core domain; OPP50	0.912	0.950 0.9	88
	Supply voltage range for MPU domain; Turbo	1.210	1.260 1.3	26
	Supply voltage range for MPU domain; OPP120	1.152	1.200 1.2	48
	Supply voltage range for MPU domain; OPP100	1.056	1.100 1.1	44
	Supply voltage range for MPU domain; OPP50	0.912	0.950 0.9	88
CAP_VDD_RTC ⁽²⁾	Supply voltage range for RTC domain input	0.900	1.100 1.2	50 V
VDDS_RTC	Supply voltage range for RTC domain	1.710	1.800 1.8	90 V
	Supply voltage range for DDR I/O domain (DDR2)	1.710	1.800 1.8	90
VDDS_DDR	Supply voltage range for DDR I/O domain (DDR3)	1.425	1.500 1.5	75 V
	Supply voltage range for DDR I/O domain (DDR3L)	1.283	1.350 1.4	18
VDDS ⁽³⁾	Supply voltage range for all dual- voltage I/O domains	1.710	1.800 1.8	90 V
VDDS_SRAM_CORE_BG	Supply voltage range for Core SRAM LDOs, analog	1.710	1.800 1.8	90 V
VDDS_SRAM_MPU_BB	Supply voltage range for MPU SRAM LDOs, analog	1.710	1.800 1.8	90 V
VDDS_PLL_DDR ⁽⁴⁾	Supply voltage range for DPLL DDR, analog	1.710	1.800 1.8	90 V
VDDS_PLL_CORE_LCD ⁽⁴⁾	Supply voltage range for DPLL CORE and LCD, analog	1.710	1.800 1.8	90 V
VDDS_PLL_MPU ⁽⁴⁾	Supply voltage range for DPLL MPU, analog	1.710	1.800 1.8	90 V
VDDS_OSC	Supply voltage range for system oscillator I/Os, analog	1.710	1.800 1.8	90 V
VDDA1P8V_USB0 ⁽⁴⁾	Supply voltage range for USBPHY and PER DPLL, analog, 1.8 V	1.710	1.800 1.8	90 V
VDDA1P8V_USB1	Supply voltage range for USB PHY, analog, 1.8 V	1.710	1.800 1.8	90 V
VDDA3P3V_USB0	Supply voltage range for USB PHY, analog, 3.3 V	3.135	3.300 3.4	65 V
VDDA3P3V_USB1	Supply voltage range for USB PHY, analog, 3.3 V	3.135	3.300 3.4	65 V
VDDA_ADC	Supply voltage range for ADC, analog	1.710	1.800 1.8	90 V

Copyright © 2015–2019, Texas Instruments Incorporated

Recommended Operating Conditions (continued)

over junction temperature range (unless otherwise noted)

SUPPLY NAME	DESCRIPTION	MIN	NOM	MAX	UNIT
VDDSHV1	Supply voltage range for dual- voltage I/O domain (1.8-V operation)	1.710	1.800	1.890	V
VDDSHV2	Supply voltage range for dual- voltage I/O domain (1.8-V operation)	1.710	1.800	1.890	V
VDDSHV3	Supply voltage range for dual- voltage I/O domain (1.8-V operation)	1.710	1.800	1.890	V
VDDSHV4	Supply voltage range for dual- voltage I/O domain (1.8-V operation)	1.710	1.800	1.890	V
VDDSHV5	Supply voltage range for dual- voltage I/O domain (1.8-V operation)	1.710	1.800	1.890	V
VDDSHV6	Supply voltage range for dual- voltage I/O domain (1.8-V operation)	1.710	1.800	1.890	V
VDDSHV1	Supply voltage range for dual- voltage I/O domain (3.3-V operation)	3.135	3.300	3.465	V
VDDSHV2	Supply voltage range for dual- voltage I/O domain (3.3-V operation)	3.135	3.300	3.465	V
VDDSHV3	Supply voltage range for dual- voltage I/O domain (3.3-V operation)	3.135	3.300	3.465	V
VDDSHV4	Supply voltage range for dual- voltage I/O domain (3.3-V operation)	3.135	3.300	3.465	V
VDDSHV5	Supply voltage range for dual- voltage I/O domain (3.3-V operation)	3.135	3.300	3.465	V
VDDSHV6	Supply voltage range for dual- voltage I/O domain (3.3-V operation)	3.135	3.300	3.465	V
DDR_VREF	Voltage range for DDR SSTL and HSTL reference input (DDR2, DDR3, DDR3L)	0.49 × VDDS_DDR	0.50 × VDDS_DDR	0.51 × VDDS_DDR	V
USB0_VBUS	Voltage range for USB VBUS comparator input	0.000	5.000	5.250	V
USB1_VBUS	Voltage range for USB VBUS comparator input	0.000	5.000	5.250	V
USB0_ID	Voltage range for the USB ID input		(5)		V
USB1_ID	Voltage range for the USB ID input		(5)		V
Operating temperature range, T _J	Extended temperature	-40		105	°C

(1) The supply voltage defined by OPP100 should be applied to this power domain before the device is released from reset.

(2) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced from an external power supply.

(3) VDDS should be supplied irrespective of 1.8- or 3.3-V mode of operation of the dual-voltage I/Os.

(4) For more details on power supply requirements, see Section 6.1.4.

(5) This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the voltage to determine if the terminal is connected to VSSA_USB with a resistance less than 10 Ω or greater than 100 kΩ. The terminal should be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to

Copyright © 2015-2019, Texas Instruments Incorporated

Recommended Operating Conditions (continued)

over junction temperature range (unless otherwise noted)

any external voltage source.

5.6 **Power Consumption Summary**

Table 5-5 summarizes the power consumption at the AM3358-EP power terminals.

Table 5-5. Maximum Current Ratings at AM3358-EP Power Terminals⁽¹⁾

SUPPLY NAME	DESCRIPTION		MAX	UNIT
	Maximum current rating for the core domain; OPP100		400	
VDD_CORE	Maximum current rating for the core domain; OPP50		250	ΜA
	Maximum current rating for the MPU domain; Turbo	at 800 MHz	800	
	Maximum current rating for the MPU domain; OPP120	at 720 MHz	720	0
VDD_MPO	Maximum current rating for the MPU domain; OPP100	at 600 MHz	600	mA
	Maximum current rating for the MPU domain; OPP50	at 300 MHz	330	
CAP_VDD_RTC ⁽²⁾	Maximum current rating for RTC domain input and LDO output	ıt	2	mA
VDDS_RTC	Maximum current rating for the RTC domain		5	mA
VDDS_DDR	Maximum current rating for DDR I/O domain		250	mA
VDDS	Maximum current rating for all dual-voltage I/O domains		50	mA
VDDS_SRAM_CORE_BG	Maximum current rating for core SRAM LDOs	10	mA	
VDDS_SRAM_MPU_BB	Maximum current rating for MPU SRAM LDOs	10	mA	
VDDS_PLL_DDR	Maximum current rating for the DPLL DDR	10	mA	
VDDS_PLL_CORE_LCD	Maximum current rating for the DPLL Core and LCD	20	mA	
VDDS_PLL_MPU	Maximum current rating for the DPLL MPU	10	mA	
VDDS_OSC	Maximum current rating for the system oscillator I/Os	5	mA	
VDDA1P8V_USB0	Maximum current rating for USBPHY 1.8 V	25	mA	
VDDA1P8V_USB1	Maximum current rating for USBPHY 1.8 V	Maximum current rating for USBPHY 1.8 V		
VDDA3P3V_USB0	Maximum current rating for USBPHY 3.3 V		40	mA
VDDA3P3V_USB1	Maximum current rating for USBPHY 3.3 V		40	mA
VDDA_ADC	Maximum current rating for ADC		10	mA
VDDSHV1	Maximum current rating for dual-voltage I/O domain		50	mA
VDDSHV2	Maximum current rating for dual-voltage I/O domain	50	mA	
VDDSHV3	Maximum current rating for dual-voltage I/O domain		50	mA
VDDSHV4	Maximum current rating for dual-voltage I/O domain		50	mA
VDDSHV5	Maximum current rating for dual-voltage I/O domain		50	mA
VDDSHV6	Maximum current rating for dual-voltage I/O domain		100	mA

(1) Current ratings specified in this table are worst-case estimates. Actual application power supply estimates could be lower. For more information, see *AM335x Power Consumption Summary*.

(2) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced from an external power supply.

Table 5-6 summarizes the power consumption of the AM3358-EP low-power modes.

POWER MODES	APPLICATION STATE	POWER DOMAINS, CLOCKS, AND VOLTAGE SUPPLY STATES	NOM	МАХ	UNIT
Standby	DDR memory is in self-refresh and contents are preserved. Wake up from any GPIO. Cortex-A8 context/register contents are lost and must be saved before entering standby. On exit, context must be restored from DDR. For wakeup, boot ROM executes and branches to system resume.	Power supplies: All power supplies are ON. VDD_MPU = 0.95 V (nom) VDD_CORE = 0.95 V (nom) Clocks: Main Oscillator (OSC0) = ON All DPLLs are in bypass. Power domains: PD_PER = ON PD_MPU = OFF PD_GFX = OFF PD_GFX = OFF PD_WKUP = ON DDR is in self-refresh.	16.5	22.0	mW
Deepsleep1	On-chip peripheral registers are preserved. Cortex-A8 context/registers are lost, so the application must save them to the L3 OCMC RAM or DDR before entering DeepSleep. DDR is in self- refresh. For wakeup, boot ROM executes and branches to system resume.	 Power supplies: All power supplies are ON. VDD_MPU = 0.95 V (nom) VDD_CORE = 0.95 V (nom) Clocks: Main Oscillator (OSC0) = OFF All DPLLs are in bypass. Power domains: PD_PER = ON PD_MPU = OFF PD_GFX = OFF PD_GFX = OFF PD_WKUP = ON DDR is in self-refresh. 	6.0	10.0	mW
Deepsleep0	PD_PER peripheral and Cortex- A8/MPU register information will be lost. On-chip peripheral register (context) information of PD-PER domain must be saved by application to SDRAM before entering this mode. DDR is in self- refresh. For wakeup, boot ROM executes and branches to peripheral context restore followed by system resume.	 Power supplies: All power supplies are ON. VDD_MPU = 0.95 V (nom) VDD_CORE = 0.95 V (nom) Clocks: Main Oscillator (OSC0) = OFF All DPLLs are in bypass. Power domains: PD_PER = OFF PD_MPU = OFF PD_GFX = OFF PD_GFX = OFF PD_WKUP = ON DDR is in self-refresh. 	3.0	4.3	mW

Table 5-6. AM3358-EP Low-Power Modes Power Consumption Summary

5.7 DC Electrical Characteristics

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)⁽¹⁾

PARAMETER UNIT MIN NOM MAX DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CASn,DDR_RASn,DDR_WEn,DDR_BA0,DDR_BA1,DDR_BA2,DDR_A0,DDR_A1,DDR_A 2,DDR_A3,DDR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DDR_A10,DDR_A11,DDR_A12,DDR_A13,DDR_A14,DDR_A15,DDR_ODT,DDR_D0,DD R_D1,DDR_D2,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D8,DDR_D9,DDR_D10,DDR_D11,DDR_D12,DDR_D13,DDR_D14,DDR_D15,DDR_DQM 0,DDR_DQM1,DDR_DQS0,DDR_DQSn0,DDR_DQS1,DDR_DQSn1 Pins 0.65 × V V_{IH} High-level input voltage VDDS_DDR 0.35 × V_{IL} V Low-level input voltage VDDS_DDR V V_{HYS} Hysteresis voltage at an input 0.07 0.25 VDDS_DDR -High level output voltage, driver enabled, pullup or V_{OH} V $I_{OH} = 8 \text{ mA}$ pulldown disabled 0.4

DC Electrical Characteristics (continued)

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)⁽¹⁾

	PARAMETER		MIN	NOM MAX	UNIT
V _{OL}	Low level output voltage, driver enabled, pullup or pulldown disabled	I _{OL} = 8 mA		0.4	V
	Input leakage current, Receiver disabled, pullup or pulldo	wn inhibited		10	
II.	Input leakage current, Receiver disabled, pullup enabled		-240	-80	μA
	Input leakage current, Receiver disabled, pulldown enable	ed	80	240	
I _{OZ}	Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown. The driver output is disabled and the pullup or pulldown is inhibited.			10	μΑ
DDR_RESET 2,DDR_A3,D R_D1,DDR_E 0,DDR_DQM	n,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CAS DR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DD 02,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D 1,DDR_DQS0,DDR_DQSn0,DDR_DQS1,DDR_DQSn1 Pi	n,DDR_RASn,DDR DR_A10,DDR_A11, 8,DDR_D9,DDR_D ns (DDR2 - SSTL M	_WEn,DDR_BA0,DDI DDR_A12,DDR_A13,I 10,DDR_D11,DDR_D1 Node)	R_BA1,DDR_BA2,DDR_A0,DDR_A1 DDR_A14,DDR_A15,DDR_ODT,DDR 12,DDR_D13,DDR_D14,DDR_D15,DI	,DDR_A _D0,DD DR_DQM
V _{IH}	High-level input voltage		DDR_VREF + 0.125		V
V _{IL}	Low-level input voltage			DDR_VREF - 0.125	V
V _{HYS}	Hysteresis voltage at an input			N/A	V
V _{OH}	High-level output voltage, driver enabled, pullup or pulldown disabled	I _{OH} = 8 mA	VDDS_DDR - 0.4		V
V _{OL}	Low-level output voltage, driver enabled, pullup or pulldown disabled	I _{OL} = 8 mA		0.4	V
	Input leakage current, Receiver disabled, pullup or pulldo	wn inhibited		10	
I _I	Input leakage current, Receiver disabled, pullup enabled		-240	-80	μA
	Input leakage current, Receiver disabled, pulldown enable	ed	80	240	
I _{oz}	Total leakage current through the terminal connection of a combination that may include a pullup or pulldown. The or disabled and the pullup or pulldown is inhibited.		10	μΑ	
DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CASn,DDR_RASn,DDR_WEn,DDR_BA0,DDR_BA1,DDR_BA2,DDR_A0,DDR_A1,DDR 2,DDR_A3,DDR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DDR_A10,DDR_A11,DDR_A12,DDR_A13,DDR_A14,DDR_A15,DDR_ODT,DDR_D R_D1,DDR_D2,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D8,DDR_D9,DDR_D10,DDR_D11,DDR_D12,DDR_D13,DDR_D14,DDR_D15,DDR_ 0,DDR_DQM1,DDR_DQS0,DDR_DQSn0,DDR_DQS1,DDR_DQS1,DDR_D18,DDR3, DDR3L - HSTL Mode)				,DDR_A _D0,DD DR_DQM	
V		VDDS_DDR = 1.5 V	DDR_VREF + 0.1		V
VIH	nigir-level liiput voitage	VDDS_DDR = 1.35 V	DDR_VREF + 0.09		v
N		VDDS_DDR = 1.5 V		DDR_VREF – 0.1	N
VIL	Low-level input voltage	VDDS_DDR = 1.35 V		DDR_VREF - 0.09	v
V _{HYS}	Hysteresis voltage at an input			N/A	V
V _{OH}	High-level output voltage, driver enabled, pullup or pulldown disabled	I _{OH} = 8 mA	VDDS_DDR - 0.4		V
V _{OL}	Low-level output voltage, driver enabled, pullup or pulldown disabled	I _{OL} = 8 mA		0.4	V
	Input leakage current, Receiver disabled, pullup or pulldo	wn inhibited		10	
I _I	Input leakage current, Receiver disabled, pullup enabled		-240	-80	μA
	Input leakage current, Receiver disabled, pulldown enable	ed	80	240	
I _{OZ}	Total leakage current through the terminal connection of a combination that may include a pullup or pulldown. The or disabled and the pullup or pulldown is inhibited.	a driver-receiver driver output is		10	μΑ
ECAP0_IN_P SCL,XDMA_I	wM0_OUT,UART0_CTSn,UART0_RTSn,UART0_RXD,U EVENT_INTR0,XDMA_EVENT_INTR1,WARMRSTn,EXTII	ART0_TXD,UART1 NTn,TMS,TDO,USE	_CTSn,UART1_RTSr 80_DRVVBUS,USB1_	n,UART1_RXD,UART1_TXD,I2C0_SE DRVVBUS (VDDSHV6 = 1.8 V)	DA,I2C0_
V _{IH}	High-level input voltage		0.65 × VDDSHV6		V
V _{IL}	Low-level input voltage			0.35 × VDDSHV6	V
V _{HYS}	Hysteresis voltage at an input		0.18	0.305	V
V _{OH}	High-level output voltage, driver enabled, pullup or pulldown disabled	I _{OH} = 4 mA	VDDSHV6 - 0.45		V
V _{OL}	Low-level output voltage, driver enabled, pullup or pulldown disabled	I _{OL} = 4 mA		0.45	V
-		-			-

Copyright © 2015–2019, Texas Instruments Incorporated

DC Electrical Characteristics (continued)

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)⁽¹⁾

	PARAMETER		MIN	NOM	MAX	UNIT
	Input leakage current, Receiver disabled, pullup or pulldo	wn inhibited			8	
li -	Input leakage current, Receiver disabled, pullup enabled		-161	-100	-52	μA
	Input leakage current, Receiver disabled, pulldown enable	ed	52	100	170	
I _{oz}	Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown. The driver output is disabled and the pullup or pulldown is inhibited.				8	μA
ECAP0_IN_P SCL,XDMA_I	WM0_OUT,UART0_CTSn,UART0_RTSn,UART0_RXD,U. EVENT_INTR0,XDMA_EVENT_INTR1,WARMRSTn,EXTIN	ART0_TXD,UART1 NTn,TMS,TDO,USB	_CTSn,UART1_RTSn 0_DRVVBUS,USB1_I	,UART1_RXD,UART1 DRVVBUS (VDDSHV6	_TXD,I2C0_SD = 3.3 V)	A,I2C0_
V _{IH}	High-level input voltage		2			V
VIL	Low-level input voltage				0.8	V
V _{HYS}	Hysteresis voltage at an input		0.265		0.44	V
V _{OH}	High-level output voltage, driver enabled, pullup or pulldown disabled	I _{OH} = 4 mA	VDDSHV6 - 0.45			V
V _{OL}	Low-level output voltage, driver enabled, pullup or pulldown disabled	$I_{OL} = 4 \text{ mA}$			0.45	V
	Input leakage current, Receiver disabled, pullup or pulldo	wn inhibited			18	
I _I	Input leakage current, Receiver disabled, pullup enabled		-243	-100	-19	μΑ
	Input leakage current, Receiver disabled, pulldown enable	ed	51	110	210	
I _{OZ}	Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown. The driver output is disabled and the pullup or pulldown is inhibited.				18	μΑ
TCK (VDDSH	HV6 = 1.8 V)					
V _{IH}	High-level input voltage		1.45			V
V _{IL}	Low-level input voltage				0.46	V
V _{HYS}	Hysteresis voltage at an input		0.4			V
	Input leakage current, Receiver disabled, pullup or pulldo	wn inhibited			8	
I _I	Input leakage current, Receiver disabled, pullup enabled		-161	-100	-52	μΑ
	Input leakage current, Receiver disabled, pulldown enable	ed	52	100	170	
TCK (VDDSH	V6 = 3.3 V)					
V _{IH}	High-level input voltage		2.15			V
V _{IL}	Low-level input voltage				0.46	V
V _{HYS}	Hysteresis voltage at an input		0.4			V
	Input leakage current, Receiver disabled, pullup or pulldo	wn inhibited			18	
li I	Input leakage current, Receiver disabled, pullup enabled		-243	-100	-19	μA
	Input leakage current, Receiver disabled, pulldown enable	ed	51	110	210	
PWRONRST	1 (VDDSHV6 = 1.8 or 3.3 V) ⁽⁻⁾		4.05			
V _{IH}			1.35		0.5	V
VIL			0.07		0.5	V
VHYS		V - 1 9 V	0.07		0.1	v
I _I	Input leakage current	V ₁ = 1.8 V V ₁ = 3.3 V			2	μA
RTC_PWRO	NRSTn					
V _{IH}	High-level input voltage		0.65 × VDDS_RTC			V
V _{IL}	Low-level input voltage				0.35 × VDDS_RTC	V
V _{HYS}	Hysteresis voltage at an input		0.065			V
l _l	Input leakage current		-1		1	μΑ
PMIC_POWE	R_EN		1		,	
V _{OH}	High-level output voltage, driver enabled, pullup or pulldown disabled	I _{OH} = 6 mA	VDDS_RTC - 0.45			V
V _{OL}	Low-level output voltage, driver enabled, pullup or pulldown disabled	I _{OL} = 6 mA			0.45	V

DC Electrical Characteristics (continued)

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)⁽¹⁾

	PARAMETER		MIN	NOM MAX	UNIT
	Input leakage current, Receiver disabled, pullup or pulldo	wn inhibited	-1	1	
li -	Input leakage current, Receiver disabled, pullup enabled		-200	-40	μA
	Input leakage current, Receiver disabled, pulldown enable	ed	40	200	
I _{oz}	Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown. The driver output is disabled and the pullup or pulldown is inhibited.		-1	1	μΑ
EXT_WAKEU	JP		+		
V _{IH}	High-level input voltage		0.65 × VDDS_RTC		V
V _{IL}	Low-level input voltage			0.35 × VDDS_RTC	V
V _{HYS}	Hysteresis voltage at an input		0.15		V
	Input leakage current, Receiver disabled, pullup or pulldo	wn inhibited	-1	1	
l _l	Input leakage current, Receiver disabled, pullup enabled		-200	-40	μA
	Input leakage current, Receiver disabled, pulldown enable	ed	40	200	
XTALIN (OSC	C0)		-		
V _{IH}	High-level input voltage		0.65 × VDDS_OSC		V
VIL	Low-level input voltage			0.35 × VDDS_OSC	V
RTC_XTALIN	N (OSC1)		-		
V _{IH}	High-level input voltage		0.65 × VDDS_RTC		V
V _{IL}	Low-level input voltage			0.35 × VDDS_RTC	V
All other LVC	CMOS pins (VDDSHVx = 1.8 V; x = 1 to 6)		-		
V _{IH}	High-level input voltage		0.65 × VDDSHVx		V
V _{IL}	Low-level input voltage			0.35 × VDDSHVx	V
V _{HYS}	Hysteresis voltage at an input	1	0.18	0.305	V
V _{OH}	High-level output voltage, driver enabled, pullup or pulldown disabled	I _{OH} = 6 mA	VDDSHVx - 0.45		V
V _{OL}	Low-level output voltage, driver enabled, pullup or pulldown disabled	I _{OL} = 6 mA		0.45	V
	Input leakage current, Receiver disabled, pullup or pulldo	wn inhibited		8	
l _l	Input leakage current, Receiver disabled, pullup enabled		-161	-100 -52	μA
	Input leakage current, Receiver disabled, pulldown enable	ed	52	100 170	
I _{OZ}	Total leakage current through the terminal connection of a combination that may include a pullup or pulldown. The c disabled and the pullup or pulldown is inhibited.	a driver-receiver Iriver output is		8	μΑ
All other LVC	CMOS pins (VDDSHVx = 3.3 V; x = 1 to 6)				
V _{IH}	High-level input voltage		2		V
V _{IL}	Low-level input voltage			0.8	V
V _{HYS}	Hysteresis voltage at an input		0.265	0.44	V
V _{OH}	High-level output voltage, driver enabled, pullup or pulldown disabled	I _{OH} = 6 mA	VDDSHVx - 0.45		V
V _{OL}	Low-level output voltage, driver enabled, pullup or pulldown disabled	I _{OL} = 6 mA		0.45	V
	Input leakage current, Receiver disabled, pullup or pulldo	wn inhibited		18	
I _I	Input leakage current, Receiver disabled, pullup enabled		-243	-100 -19	μA
	Input leakage current, Receiver disabled, pulldown enable	ed	51	110 210	
I _{OZ}	Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown. The driver output is disabled and the pullup or pulldown is inhibited.			18	μΑ

(1) The interfaces or signals described in this table correspond to the interfaces or signals available in multiplexing mode 0. All interfaces or signals multiplexed on the terminals described in this table have the same DC electrical characteristics.

(2) The input voltage thresholds for this input are not a function of VDDSHV6.

Copyright © 2015–2019, Texas Instruments Incorporated

5.8 Thermal Resistance Characteristics for GCZ Package

Failure to maintain a junction temperature within the range specified in Section 5.5 reduces operating lifetime, reliability, and performance—and may cause irreversible damage to the system. Therefore, the product design cycle should include thermal analysis to verify the maximum operating junction temperature of the device. It is important this thermal analysis is performed using specific system use cases and conditions. TI provides an application report to aid users in overcoming some of the existing challenges of producing a good thermal design. For more information, see *AM335x Thermal Considerations*.

Table 5-7 provides thermal characteristics for the package used on this device.

NOTE

 Table 5-7 provides simulation data and may not represent actual use-case values.

Table 5-7. Thermal Resistance Characteristics (PBGA Package) [GCZ]

Table 5-8. Thermal Resistance Characteristics (PBGA Package) [GCZ]

		GCZ (°C/W) ⁽¹⁾ (2)	AIR FLOW (m/s) ⁽³⁾
$R_{\Theta JC}$	Junction-to-case	10.2	N/A
$R_{\Theta JB}$	Junction-to-board	12.1	N/A
		24.2	0
$R_{\Theta J A}$	hundler to food air	20.1	1.0
	Junction-to-free air	19.3	2.0
		18.8	3.0
		0.3	0.0
		0.6	1.0
φ _{JT}	Junction-to-package top	0.7	2.0
		0.8	3.0
фјв		12.7	0.0
	hundlen te heevel	12.3	1.0
	JUNCION-IO-DOALO	12.3	2.0
		12.2	3.0

(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the theta JC [R_{ΘJC}] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:

JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)

JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages

JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages

JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements

Power dissipation of 2 W and an ambient temperature of 70°C is assumed.

(2) $^{\circ}C/W = degrees Celsius per watt.$

(3) m/s = meters per second.

5.9 External Capacitors

To improve module performance, decoupling capacitors are required to suppress the switching noise generated by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective when it is close to the device, because this minimizes the inductance of the circuit board wiring and interconnects.

5.9.1 Voltage Decoupling Capacitors

Table 5-9 summarizes the Core voltage decoupling characteristics.

5.9.1.1 Core Voltage Decoupling Capacitors

To improve module performance, decoupling capacitors are required to suppress high-frequency switching noise and to stabilize the supply voltage. A decoupling capacitor is most effective when located close to the AM3358-EP, because this minimizes the inductance of the circuit board wiring and interconnects.

Table 5-9. Core Voltage Decoupling Characteristics

PARAMETER	TYP	UNIT
C _{VDD_CORE} ⁽¹⁾	10.08	μF
C _{VDD_MPU} ⁽²⁾	10.05	μF

(1) The typical value corresponds to one capacitor of 10 μF and eight capacitors of 10 nF.

(2) The typical value corresponds to one capacitor of 10 μ F and five capacitors of 10 nF.

5.9.1.2 I/O and Analog Voltage Decoupling Capacitors

Table 5-10 summarizes the power-supply decoupling capacitor recommendations.

Table 5-10. Power-Supply Decoupling Capacitor Characteristics

PARAMETER	TYP	UNIT
C _{VDDA_ADC}	10	nF
C _{VDDA1P8V_USB0}	10	nF
C _{CVDDA3P3V_USB0}	10	nF
C _{VDDA1P8V_USB1}	10	nF
C _{VDDA3P3V_USB1}	10	nF
C _{VDDS} ⁽¹⁾	10.04	μF
	(2)	
C _{VDDS_OSC}	10	nF
	10	nF
C _{VDDS_PLL_CORE_LCD}	10	nF
C _{VDDS_SRAM_CORE_BG} ⁽³⁾	10.01	μF
C _{VDDS_SRAM_MPU_BB} ⁽⁴⁾	10.01	μF
C _{VDDS_PLL_MPU}	10	nF
	10	nF
C _{VDDSHV1} ⁽⁵⁾	10.02	μF
C _{VDDSHV2} ⁽⁵⁾	10.02	μF
C _{VDDSHV3} ⁽⁵⁾	10.02	μF
C _{VDDSHV4} ⁽⁵⁾	10.02	μF
C _{VDDSHV5} ⁽⁵⁾	10.02	μF
C _{VDDSHV6} ⁽⁶⁾	10.06	μF

- (1) Typical values consist of one capacitor of 10 μ F and four capacitors of 10 nF.
- (2) For more details on decoupling capacitor requirements for the mDDR(LPDDR), DDR2, DDR3, DDR3L memory interface, see Section 7.7.2.1.2.6 and Section 7.7.2.1.2.7 when using mDDR(LPDDR) memory devices, Section 7.7.2.2.2.6 and Section 7.7.2.2.2.7 when using DDR2 memory devices, or Section 7.7.2.3.3.6 and Section 7.7.2.3.3.7 when using DDR3 or DDR3L memory devices.
- (3) VDDS_SRAM_CORE_BG supply powers an internal LDO for SRAM supplies. Inrush currents could cause voltage drop on the VDDS_SRAM_CORE_BG supplies when the SRAM LDO is enabled after powering up VDDS_SRAM_CORE_BG terminals. A 10 µF is recommended to be placed close to the terminal and routed with widest traces possible to minimize the voltage drop on VDDS_SRAM_CORE_BG terminals.
- (4) VDDS_SRAM_MPU_BB supply powers an internal LDO for SRAM supplies. Inrush currents could cause voltage drop on the VDDS_SRAM_MPU_BB supplies when the SRAM LDO is enabled after powering up VDDS_SRAM_MPU_BB terminals. A 10 μF is recommended to be placed close to the terminal and routed with widest traces possible to minimize the voltage drop on VDDS_SRAM_MPU_BB terminals.
- (5) Typical values consist of one capacitor of 10 μ F and two capacitors of 10 nF.
- (6) Typical values consist of one capacitor of 10 μF and six capacitors of 10 nF.

5.9.2 Output Capacitors

Internal low dropout output (LDO) regulators require external capacitors to stabilize their outputs. These capacitors should be placed as close as possible to the respective terminals of the AM3358-EP device . Table 5-11 summarizes the LDO output capacitor recommendations.

Table 5-11. Output Capacitor Characteristics

PARAMETER	ТҮР	UNIT
C _{CAP_VDD_SRAM_CORE} ⁽¹⁾	1	μF
C _{CAP_VDD_RTC} ⁽¹⁾⁽²⁾	1	μF
C _{CAP_VDD_SRAM_MPU} ⁽¹⁾	1	μF
C _{CAP_VBB_MPU} ⁽¹⁾	1	μF

(1) LDO regulator outputs should not be used as a power source for any external components.

(2) The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the RTC_KALDO_ENn terminal is high.

Figure 5-1 shows an example of the external capacitors.

- A. Decoupling capacitors must be placed as closed as possible to the power terminal. Choose the ground closest to the power pin for each decoupling capacitor. In case of interconnecting powers, first insert the decoupling capacitor and then interconnect the powers.
- B. The decoupling capacitor value depends on the characteristics of the board.

Figure 5-1. External Capacitors

5.10 Touch Screen Controller and Analog-to-Digital Subsystem Electrical Parameters

The touch screen controller (TSC) and analog-to-digital converter (ADC) subsystem (TSC_ADC) is an 8channel general-purpose ADC with optional support for interleaving TSC conversions for 4-wire, 5-wire, or 8-wire resistive panels. The TSC_ADC subsystem can be configured for use in one of the following applications:

- 8 general-purpose ADC channels
- 4-wire TSC with 4 general-purpose ADC channels
- 5-wire TSC with 3 general-purpose ADC channels
- 8-wire TSC.

Table 5-12 summarizes the TSC_ADC subsystem electrical parameters.

Table 5-12. TSC_ADC Electrical Parameters

PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT	
Analog Input						
VREFP ⁽¹⁾		(0.5 × VDDA_ADC) + 0.25		VDDA_ADC	V	
VREFN ⁽¹⁾		0		(0.5 × VDDA_ADC) - 0.25	V	
VREFP + VREFN ⁽¹⁾			VDDA_ADC		V	
Full coole input renge	Internal voltage reference	0		VDDA_ADC	V	
Full-scale input range	External voltage reference	VREFN		VREFP	v	
Differential nonlinearity (DNL)	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V	-1	0.5	1	LSB	
Integral peoplingerity (INU.)	Source impedance = 50 Ω Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V	-2	±1	2		
Integral nonlinearity (INL)	Source impedance = $1 \text{ k}\Omega$ Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V		±1		LSB	
Gain error	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V		±2		LSB	
Offset error	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V		±2		LSB	
Input sampling capacitance			5.5		pF	
Signal-to-noise ratio (SNR)	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V Input signal: 30-kHz sine wave at –0.5-dB full scale	70 at			dB	
Total harmonic distortion (THD)	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V Input signal: 30-kHz sine wave at –0.5-dB full scale		75		dB	

PARAMETER	TEST CONDITIONS	MIN NOM MAX	UNIT
Spurious free dynamic range	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V Input signal: 30-kHz sine wave at –0.5-dB full scale	80	dB
Signal-to-noise plus distortion	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V Input signal: 30-kHz sine wave at –0.5-dB full scale	69	dB
VREFP and VREFN input im	pedance	20	kΩ
Input impedance of AIN[7:0] ⁽²⁾	f = Input frequency	$[1 / ((65.97 \times 10^{-12}) \times f)]$	Ω
Sampling Dynamics			
ADC clock frequency		3	MHz
Conversion time		13	ADC clock cycles
Acquisition time		2 257	ADC clock cycles
Sampling rate	ADC clock = 3 MHz	200	kSPS
Channel-to-channel isolation		100	dB
Touch Screen Switch Drive	ers		
Pullup and pulldown switch ON resistance (Ron)		2	Ω
Pullup and pulldown switch current leakage lleak	Source impedance = 500 Ω	0.5	uA
Drive current		25	mA
Touch screen resistance		6	kΩ
Pen touch detect		2	kΩ

Table 5-12. TSC_ADC Electrical Parameters (continued)

(1) VREFP and VREFN must be tied to ground if the internal voltage reference is used.

(2) This parameter is valid when the respective AIN terminal is configured to operate as a general-purpose ADC input.

6 Power and Clocking

6.1 Power Supplies

6.1.1 Power Supply Slew Rate Requirement

To maintain the safe operating range of the internal ESD protection devices, TI recommends limiting the maximum slew rate for powering on the supplies to be less than 1.0E +5 V/s. For instance, as shown in Figure 6-1, TI recommends a value greater than 18 µs for the supply ramp slew for a 1.8-V supply.

Figure 6-1. Power Supply Slew and Slew Rate

TEXAS INSTRUMENTS

- A. RTC_PWRONRSTn should be asserted for at least 1 ms to provide enough time for the internal RTC LDO output to reach a valid level before RTC reset is released.
- B. When using the GCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same source if the application only uses operating performance points (OPPs) that define a common power supply voltage for VDD_MPU and VDD_CORE.
- C. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a 3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.
- D. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V I/O power supplies.
- E. VDDS_RTC can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If VDDS_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence shown provides the lowest leakage option.
- F. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the recommended sequence.
- G. If all the 1.8-V supplies are not sourced from the same power supply, it is required to power up VDDS before other 1.8-V supplies. Further, it is also recommended to source VDDS and VDDSHvx [x = 1-6] when configured as 1.8V from the same power supply.

Figure 6-2. Preferred Power-Supply Sequencing With Dual-Voltage I/Os Configured as 3.3 V

www.ti.com

- A. RTC_PWRONRSTn should be asserted for at least 1 ms to provide enough time for the internal RTC LDO output to reach a valid level before RTC reset is released.
- B. The 3.3-V I/O power supplies may be ramped simultaneously with the 1.8-V I/O power supplies if the voltage sourced by any 3.3-V power supplies does not exceed the voltage sourced by any 1.8-V power supply by more than 2 V. Serious reliability issues may occur if the system power supply design allows any 3.3-V I/O power supplies to exceed any 1.8-V I/O power supplies by more than 2 V.
- C. When using the GCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same source if the application only uses operating performance points (OPPs) that define a common power supply voltage for VDD_MPU and VDD_CORE.
- D. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a 3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.
- E. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V I/O power supplies.
- F. VDDS_RTC can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If VDDS_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence shown provides the lowest leakage option.
- G. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the recommended sequence.
- H. If all the 1.8-V supplies are not sourced from the same power supply, it is required to power up VDDS before other 1.8-V supplies. Further, it is also recommended to source VDDS and VDDSHvx [x = 1-6] when configured as 1.8V from the same power supply.

Figure 6-3. Alternate Power-Supply Sequencing With Dual-Voltage I/Os Configured as 3.3 V

- A. RTC_PWRONRSTn should be asserted for at least 1 ms to provide enough time for the internal RTC LDO output to reach a valid level before RTC reset is released.
- B. When using the GCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same source if the application only uses operating performance points (OPPs) that define a common power supply voltage for VDD_MPU and VDD_CORE.
- C. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a 3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.
- D. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V I/O power supplies.
- E. VDDS_RTC can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If VDDS_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence shown provides the lowest leakage option.
- F. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the recommended sequence.
- G. If all the 1.8-V supplies are not sourced from the same power supply, it is required to power up VDDS before other 1.8-V supplies. Further, it is also recommended to source VDDS and VDDSHvx [x = 1-6] when configured as 1.8V from the same power supply.

Figure 6-4. Power-Supply Sequencing With Dual-Voltage I/Os Configured as 1.8 V

- A. RTC_PWRONRSTn should be asserted for at least 1 ms to provide enough time for the internal RTC LDO output to reach a valid level before RTC reset is released.
- B. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC. If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply.
- C. When using the GCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same source if the application only uses operating performance points (OPPs) that define a common power supply voltage for VDD_MPU and VDD_CORE.
- D. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a 3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.
- E. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V I/O power supplies.
- F. VDDS_RTC should be ramped at the same time or before CAP_VDD_RTC, but these power inputs can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence shown provides the lowest leakage option.
- G. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the recommended sequence.
- H. If all the 1.8-V supplies are not sourced from the same power supply, it is required to power up VDDS before other 1.8-V supplies. Further, it is also recommended to source VDDS and VDDSHvx [x = 1-6] when configured as 1.8V from the same power supply.

Figure 6-5. Power-Supply Sequencing With Internal RTC LDO Disabled

RUMENTS

- A. CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC. If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply. The PMIC_POWER_EN output cannot be used when the RTC is disabled.
- B. When using the GCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same source if the application only uses operating performance points (OPPs) that define a common power supply voltage for VDD_MPU and VDD_CORE.
- C. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a 3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.
- D. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V I/O power supplies.
- E. VDDS_RTC should be ramped at the same time or before CAP_VDD_RTC, but these power inputs can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence shown provides the lowest leakage option.
- F. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the recommended sequence.
- G. If all the 1.8-V supplies are not sourced from the same power supply, it is required to power up VDDS before other 1.8-V supplies. Further, it is also recommended to source VDDS and VDDSHvx [x = 1-6] when configured as 1.8V from the same power supply.

Figure 6-6. Power-Supply Sequencing With RTC Feature Disabled

6.1.2 Power-Down Sequencing

PWRONRSTn input terminal should be taken low, which stops all internal clocks before power supplies are turned off. All other external clocks to the device should be shut off.

The preferred way to sequence power down is to have all the power supplies ramped down sequentially in the exact reverse order of the power-up sequencing. In other words, the power supply that has been ramped up first should be the last one that should be ramped down. This ensures there would be no spurious current paths during the power-down sequence. The VDDS power supply must ramp down after all 3.3-V VDDSHVx [1-6] power supplies.

If it is desired to ramp down VDDS and VDDSHVx [1-6] simultaneously, it should always be ensured that the difference between VDDS and VDDSHVx [1-6] during the entire power-down sequence is <2 V. Any violation of this could cause reliability risks for the device. TI recommends maintaining VDDS ≥1.5V as all the other supplies fully ramp down to minimize in-rush currents.

If none of the VDDSHVx [1-6] power supplies are configured as 3.3 V, the VDDS power supply may ramp down along with the VDDSHVx [1-6] supplies or after all the VDDSHVx [1-6] supplies have ramped down. TI recommends maintaining VDDS \geq 1.5V as all the other supplies fully ramp down to minimize in-rush currents.

6.1.3 VDD_MPU_MON Connections

Figure 6-7 shows the VDD_MPU_MON connectivity. VDD_MPU_MON connectivity is available only on the GCZ package.

Connection for VDD_MPU_MON if voltage monitoring is used

Preferred connection for VDD_MPU_MON if voltage monitoring is NOT used

Optional connection for VDD_MPU_MON if voltage monitoring is NOT used

Figure 6-7. VDD_MPU_MON Connectivity

6.1.4 Digital Phase-Locked Loop Power Supply Requirements

The digital phase-locked loop (DPLL) provides all interface clocks and functional clocks to the processor of the AM3358-EP device. The five different DPLLs—Core DPLL, Per DPLL, LCD DPLL, DDR DPLL, MPU DPLL.

Figure 6-8 shows the power supply connectivity implemented in the AM3358-EP device. Table 6-1 provides the power supply requirements for the DPLL.

Figure 6-8. DPLL Power Supply Connectivity

SUPPLY NAME	DESCRIPTION	MIN	NOM	MAX	UNIT
	Supply voltage range for USBPHY and PER DPLL, Analog, 1.8 V	1.71	1.8	1.89	V
VDDATP8V_0560	Max peak-to-peak supply noise			50	mV (p-p)
	Supply voltage range for DPLL MPU, analog	1.71	1.8	1.89	V
VDD5_PLL_IVIPU	Max peak-to-peak supply noise			50	mV (p-p)
	Supply voltage range for DPLL CORE and LCD, analog	1.71	1.8	1.89	V
VDD5_PLL_CORE_LCD	Max peak-to-peak supply noise			50	mV (p-p)
	Supply voltage range for DPLL DDR, analog	1.71	1.8	1.89	V
VDDS_PLL_DDR	Max peak-to-peak supply noise			50	mV (p-p)

Table 6-1. DPLL Power Supply Requirements

6.2 Clock Specifications

6.2.1 Input Clock Specifications

The AM3358-EP device has two clock inputs. Each clock input passes through an internal oscillator which can be connected to an external crystal circuit (oscillator mode) or external LVCMOS square-wave digital clock source (bypass mode). The oscillators automatically operate in bypass mode when their input is connected to an external LVCMOS square-wave digital clock source. The oscillator associated with a specific clock input must be enabled when the clock input is being used in either oscillator mode or bypass mode.

The OSC1 oscillator provides a 32.768-kHz reference clock to the real-time clock (RTC) and is connected to the RTC_XTALIN and RTC_XTALOUT terminals. This clock source is referred to as the 32K oscillator (CLK_32K_RTC) in the *AM335x and AMIC110 Sitara Processors Technical Reference Manual*. OSC1 is disabled by default after power is applied. This clock input is optional and may not be required if the RTC is configured to receive a clock from the internal 32k RC oscillator (CLK_32KHZ) which receives a reference clock from the OSC0 input.

The OSC0 oscillator provides a 19.2-MHz, 24-MHz, 25-MHz, or 26-MHz reference clock which is used to clock all non-RTC functions and is connected to the XTALIN and XTALOUT terminals. This clock source is referred to as the master oscillator (CLK_M_OSC) in the *AM335x and AMIC110 Sitara Processors Technical Reference Manual*. OSC0 is enabled by default after power is applied.

For more information related to recommended circuit topologies and crystal oscillator circuit requirements for these clock inputs, see Section 6.2.2.

6.2.2 Input Clock Requirements

6.2.2.1 OSC0 Internal Oscillator Clock Source

Figure 6-9 shows the recommended crystal circuit. TI recommends that preproduction printed-circuit board (PCB) designs include the two optional resistors R_{bias} and R_d in case they are required for proper oscillator operation when combined with production crystal circuit components. In most cases, R_{bias} is not required and R_d is a 0- Ω resistor. These resistors may be removed from production PCB designs after evaluating oscillator performance with production crystal circuit components installed on preproduction PCBs.

The XTALIN terminal has a 15- to 40-k Ω internal pulldown resistor which is enabled when OSC0 is disabled. This internal resistor prevents the XTALIN terminal from floating to an invalid logic level which may increase leakage current through the oscillator input buffer.

Copyright © 2016, Texas Instruments Incorporated

- A. Oscillator components (Crystal, C₁, C₂, optional R_{bias} and R_d) must be located close to the AM3358-EP package. Parasitic capacitance to the VSS_OSC and respective crystal circuit component grounds should be connected directly to the nearest PCB digital ground (VSS).
- B. C₁ and C₂ represent the total capacitance of the respective PCB trace, load capacitor, and other components (excluding the crystal) connected to each crystal terminal. The value of capacitors C₁ and C₂ should be selected to provide the total load capacitance, C_L, specified by the crystal manufacturer. The total load capacitance is $C_L = [(C_1 \times C_2) / (C_1 + C_2)] + C_{shunt}$, where C_{shunt} is the crystal shunt capacitance (C₀) specified by the crystal manufacturer plus any mutual capacitance (C_{pkg} + C_{PCB}) seen across the AM3358-EP XTALIN and XTALOUT signals. For recommended values of crystal circuit components, see Table 6-2.

Figure 6-9. OSC0 Crystal Circuit Schematic

PARAMETE	PARAMETER		MIN	ТҮР	MAX	UNIT
f	Crystal parallel resonance frequency	Fundamental mode oscillation only		19.2, 24, 25, or 26		MHz
J xtal	Crystal frequency stability and tolerance ⁽¹⁾		-50		50	ppm
<u>_</u>	C. conceitones	C _{shunt} ≤ 5 pF	12		24	ъĘ
U _{C1}	C ₁ capacitance	C _{shunt} > 5 pF	18		24	рг
C	Connacitance	C _{shunt} ≤ 5 pF	12		24	ъĘ
U _{C2}		C _{shunt} > 5 pF	18		24	рг
C _{shunt}	Shunt capacitance				7	pF
		$f_{\rm xtal}$ = 19.2 MHz, oscillator has nominal negative resistance of 272 Ω and worst-case negative resistance of 163 Ω			54.4	
500	Crystal effective series	$f_{\rm xtal}$ = 24 MHz, oscillator has nominal negative resistance of 240 Ω and worst-case negative resistance of 144 Ω			48.0	0
ESK	resistance	$f_{\rm xtal}$ = 25 MHz, oscillator has nominal negative resistance of 233 Ω and worst-case negative resistance of 140 Ω			46.6	12
		$f_{\rm xtal}$ = 26 MHz, oscillator has nominal negative resistance of 227 Ω and worst-case negative resistance of 137 Ω			45.3	

Table 6-2. OSC0 Crystal Circuit Requirements

(1) Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.

TEXAS INSTRUMENTS

www.ti.com

NAME	DESCRIPTION	DESCRIPTION		MIN TYP MAX		
0	Shunt capacitance of	ZCE package		0.01		~ F
C _{pkg}	package	GCZ package		0.01		рг
P _{xtal}	The actual values of the ESR, f_{xtal} , and C_L should be used to yield a typical crystal power dissipation value. Using the maximum values specified for ESR, f_{xtal} , and C_L parameters yields a maximum power dissipation value.		Ρ	_{xtal} = 0.5 ESR (2 C _L VDDS_OS	$(2 \pi f_{\text{xtal}})^2$	
t _{sX}	Start-up time			1.5		ms

Figure 6-10. OSC0 Start-Up Time

6.2.2.2 OSC0 LVCMOS Digital Clock Source

Figure 6-11 shows the recommended oscillator connections when OSC0 is connected to an LVCMOS square-wave digital clock source. The LVCMOS clock source is connected to the XTALIN terminal. The ground for the LVCMOS clock source and VSS_OSC should be connected directly to the nearest PCB digital ground (VSS). In this mode of operation, the XTALOUT terminal should not be used to source any external components. The PCB design should provide a mechanism to disconnect the XTALOUT terminal from any external components or signal traces that may couple noise into OSC0 via the XTALOUT terminal.

The XTALIN terminal has a 15- to 40-k Ω internal pulldown resistor which is enabled when OSC0 is disabled. This internal resistor prevents the XTALIN terminal from floating to an invalid logic level which may increase leakage current through the oscillator input buffer.

Copyright © 2016, Texas Instruments Incorporated

Figure 6-11.	OSC0 LVCMOS	Circuit Schematic
--------------	-------------	--------------------------

Table 0-4. USCU LVCINUS Reference Clock Requirements	Table 6-	4. OSC0	LVCMOS	Reference	Clock	Requirements
--	----------	---------	--------	-----------	-------	--------------

NAME	DESCRIPTION	MIN	TYP M	AX	UNIT
f(XTALIN)	Frequency, LVCMOS reference clock		19.2, 24, 25, or 26		MHz
	Frequency, LVCMOS reference clock stability and tolerance ⁽¹⁾	-50		50	ppm
t _{dc(XTALIN)}	Duty cycle, LVCMOS reference clock period	45%	5	5%	
t _{jpp(XTALIN)}	Jitter peak-to-peak, LVCMOS reference clock period	-1%		1%	
t _{R(XTALIN)}	Time, LVCMOS reference clock rise			5	ns
t _{F(XTALIN)}	Time, LVCMOS reference clock fall			5	ns

(1) Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.

6.2.2.3 OSC1 Internal Oscillator Clock Source

Figure 6-12 shows the recommended crystal circuit for OSC1 of the GCZ package. TI recommends that preproduction PCB designs include the two optional resistors R_{bias} and R_d in case they are required for proper oscillator operation when combined with production crystal circuit components. In most cases, R_{bias} is not required and R_d is a 0- Ω resistor. These resistors may be removed from production PCB designs after evaluating oscillator performance with production crystal circuit components installed on preproduction PCBs.

The RTC_XTALIN terminal has a 10- to 40-k Ω internal pullup resistor which is enabled when OSC1 is disabled. This internal resistor prevents the RTC_XTALIN terminal from floating to an invalid logic level which may increase leakage current through the oscillator input buffer.

- A. Oscillator components (Crystal, C₁, C₂, optional R_{bias} and R_d) must be located close to the AM3358-EP package. Parasitic capacitance to the PCB ground and other signals should be minimized to reduce noise coupled into the oscillator. VSS_RTC and respective crystal circuit component grounds should be connected directly to the nearest PCB digital ground (VSS).
- B. C_1 and C_2 represent the total capacitance of the respective PCB trace, load capacitor, and other components (excluding the crystal) connected to each crystal terminal. The value of capacitors C_1 and C_2 should be selected to provide the total load capacitance, C_L , specified by the crystal manufacturer. The total load capacitance is $C_L = [(C_1 \times C_2) / (C_1 + C_2)] + C_{shunt}$, where C_{shunt} is the crystal shunt capacitance (C_0) specified by the crystal manufacturer plus any mutual capacitance ($C_{pkg} + C_{PCB}$) seen across the AM3358-EP RTC_XTALIN and RTC_XTALOUT signals. For recommended values of crystal circuit components, see Table 6-5.

Figure 6-12. OSC1 Crystal Circuit Schematic

NAME	DESCRIPTION		MIN	TYP	MAX	UNIT
$f_{\rm xtal}$	Crystal parallel resonance frequency	Fundamental mode oscillation only	32.768			kHz
	Crystal frequency stability	Maximum RTC error = 10.512 minutes per year	-20.0		20.0	ppm
	and tolerance ⁽¹⁾	Maximum RTC error = 26.28 minutes per year	-50.0		50.0	ppm
C _{C1}	C ₁ capacitance		12.0		24.0	pF
C _{C2}	C ₂ capacitance		12.0		24.0	pF
C _{shunt}	Shunt capacitance				1.5	pF
ESR	Crystal effective series resistance	$f_{\rm xtal}$ = 32.768 kHz, oscillator has nominal negative resistance of 725 k Ω and worst- case negative resistance of 250 k Ω			80	kΩ

Table 6-5. OSC1 Crystal Circuit Requirements

(1) Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.

Table 6-6. OSC1 Crystal Circuit Characteristics

NAME	DESCRIPTION	MIN	ТҮР	MAX	UNIT
C _{pkg}	Shunt capacitance of GCZ package		0.01		pF
P _{xtal}	The actual values of the ESR, f_{xtal} , and C_L should be used to yield a typical crystal power dissipation value. Using the maximum values specified for ESR, f_{xtal} , and C_L parameters yields a maximum power dissipation value.	P _{xtal} = 0.5 VDI	ESR (2 π ƒ _{xtal} C _L DS_RTC) ²	-	
t _{sX}	Start-up time		2		s

Figure 6-13. OSC1 Start-up Time

6.2.2.4 OSC1 LVCMOS Digital Clock Source

Figure 6-14 shows the recommended oscillator connections when OSC1 of the GCZ package is connected to an LVCMOS square-wave digital clock source. The LVCMOS clock source is connected to the RTC_XTALIN terminal. The ground for the LVCMOS clock source and VSS_RTC of the GCZ package should be connected directly to the nearest PCB digital ground (VSS). In this mode of operation, the RTC_XTALOUT terminal should not be used to source any external components. The PCB design should provide a mechanism to disconnect the RTC_XTALOUT terminal from any external components or signal traces that may couple noise into OSC1 through the RTC_XTALOUT terminal.

The RTC_XTALIN terminal has a 10- to 40-k Ω internal pullup resistor which is enabled when OSC1 is disabled. This internal resistor prevents the RTC_XTALIN terminal from floating to an invalid logic level which may increase leakage current through the oscillator input buffer.

Figure 6-14. OSC1 LVCMOS Circuit Schematic

Table 0-7. USCT LYCNUS Reference Clock Requirements	Table 6-7.	OSC1 LV	CMOS R	eference	Clock	Requirements
---	------------	---------	--------	----------	-------	--------------

NAME	DESCRIPTION	DESCRIPTION			UNIT
	Frequency, LVCMOS reference clock			32.768	kHz
$f_{(m RTC_XTALIN)}$	Frequency, LVCMOS reference clock stability and tolerance ⁽¹⁾	Maximum RTC error = 10.512 minutes/year	-20	20	ppm
		Maximum RTC error = 26.28 minutes/year	-50	50	ppm
t _{dc(RTC_XTALIN)}	Duty cycle, LVCMOS reference clock period		45%	55%	
t _{jpp(RTC_XTALIN)}	Jitter peak-to-peak, LVCMOS reference clock period		-1%	1%	
t _{R(RTC_XTALIN)}	Time, LVCMOS reference clock rise			5	ns
t _{F(RTC_XTALIN)}	Time, LVCMOS reference clock fall			5	ns

(1) Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.

6.2.2.5 OSC1 Not Used

Figure 6-15 shows the recommended oscillator connections when OSC1 of the GCZ package is not used. An internal 10-k Ω pullup on the RTC_XTALIN terminal is turned on when OSC1 is disabled to prevent this input from floating to an invalid logic level which may increase leakage current through the oscillator input buffer. OSC1 is disabled by default after power is applied. Therefore, both RTC_XTALIN and RTC_XTALOUT terminals should be a no connect (NC) when OSC1 is not used.

Figure 6-15. OSC1 Not Used Schematic

6.2.3 Output Clock Specifications

The AM3358-EP device has two clock output signals. The CLKOUT1 signal is always a replica of the OSC0 input clock which is referred to as the master oscillator (CLK_M_OSC) in the AM335x and AMIC110 Sitara Processors Technical Reference Manual. The CLKOUT2 signal can be configured to output the OSC1 input clock, which is referred to as the 32K oscillator (CLK_32K_RTC) in the AM335x and AMIC110 Sitara Processors Technical Reference Manual, or four other internal clocks. For more information related to configuring these clock output signals, see the CLKOUT Signals section of the AM335x and AMIC110 Sitara Processors Technical Reference Manual.

6.2.4 Output Clock Characteristics

NOTE

The AM3358-EP CLKOUT1 and CLKOUT2 clock outputs should not be used as a synchronous clock for any of the peripheral interfaces because they were not timing closed to any other signals. These clock outputs also were not designed to source any time critical external circuits that require a low jitter reference clock. The jitter performance of these outputs is unpredictable due to complex combinations of many system variables. For example, CLKOUT2 may be sourced from several PLLs with each PLL supporting many configurations that yield different jitter performance. There are also other unpredictable contributors to jitter performance such as application specific noise or crosstalk into the clock circuits. Therefore, there are no plans to specify jitter performance for these outputs.

6.2.4.1 CLKOUT1

The CLKOUT1 signal can be output on the XDMA_EVENT_INTR0 terminal. This terminal connects to one of seven internal signals via configurable multiplexers. The XDMA_EVENT_INTR0 multiplexer must be configured for Mode 3 to connect the CLKOUT1 signal to the XDMA_EVENT_INTR0 terminal.

The default reset configuration of the XDMA_EVENT_INTR0 multiplexer is selected by the logic level applied to the LCD_DATA5 terminal on the rising edge of PWRONRSTn. The XDMA_EVENT_INTR0 multiplexer is configured to Mode 7 if the LCD_DATA5 terminal is low on the rising edge of PWRONRSTn or Mode 3 if the LCD_DATA5 terminal is high on the rising edge of PWRONRSTn. This allows the CLKOUT1 signal to be output on the XDMA_EVENT_INTR0 terminal without software intervention. In this mode, the output is held low while PWRONRSTn is active and begins to toggle after PWRONRSTn is released.

6.2.4.2 CLKOUT2

The CLKOUT2 signal can be output on the XDMA_EVENT_INTR1 terminal. This terminal connects to one of seven internal signals via configurable multiplexers. The XDMA_EVENT_INTR1 multiplexer must be configured for Mode 3 to connect the CLKOUT2 signal to the XDMA_EVENT_INTR1 terminal.

The default reset configuration of the XDMA_EVENT_INTR1 multiplexer is always Mode 7. Software must configure the XDMA_EVENT_INTR1 multiplexer to Mode 3 for the CLKOUT2 signal to be output on the XDMA_EVENT_INTR1 terminal.

7 Peripheral Information and Timings

The AM3358-EP device contains many peripheral interfaces. In order to reduce package size and lower overall system cost while maintaining maximum functionality, many of the AM3358-EP terminals can multiplex up to eight signal functions. Although there are many combinations of pin multiplexing that are possible, only a certain number of sets, called I/O Sets, are valid due to timing limitations. These valid I/O Sets were carefully chosen to provide many possible application scenarios for the user.

Texas Instruments has developed a Windows-based application called Pin Mux Utility that helps a system designer select the appropriate pin-multiplexing configuration for their AM3358-EP design. The Pin Mux Utility provides a way to select valid I/O Sets of specific peripheral interfaces to ensure the pin-multiplexing configuration selected for a design only uses valid I/O Sets supported by the AM3358-EP device.

7.1 Parameter Information

The data provided in the following Timing Requirements and Switching Characteristics tables assumes the device is operating within the Recommended Operating Conditions defined in Section 5, unless otherwise noted.

7.1.1 Timing Parameters and Board Routing Analysis

The timing parameter values specified in this data manual do *not* include delays by board routings. As a good board design practice, such delays must *always* be taken into account. Timing values may be adjusted by increasing or decreasing such delays. TI recommends using the available I/O buffer information specification (IBIS) models to analyze the timing characteristics correctly. If needed, external logic hardware such as buffers may be used to compensate any timing differences.

The timing parameter values specified in this data manual assume the SLEWCTRL bit in each pad control register is configured for fast mode (0b).

For the mDDR(LPDDR), DDR2, DDR3, DDR3L memory interface, it is *not* necessary to use the IBIS models to analyze timing characteristics. TI provides a PCB routing rules solution that describes the routing rules to ensure the mDDR(LPDDR), DDR2, DDR3, DDR3L memory interface timings are met.

7.2 Recommended Clock and Control Signal Transition Behavior

All clocks and control signals *must* transition between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.

7.3 OPP50 Support

Some peripherals and features have limited support when the device is operating in OPP50. A complete list of these limitations follows.

Not supported when operating in OPP50:

- CPSW
- DDR3
- DEBUGSS-Trace
- GPMC Asynchronous Mode
- LCDC LIDD Mode
- MDIO
- PRU-ICSS MII

Reduced performance when operating in OPP50:

- DDR2
- DEBUGSS-JTAG
- GPMC Synchronous Mode
- LCDC Raster Mode
- LPDDR
- McASP
- McSPI
- MMCSD

7.4 Controller Area Network (CAN)

For more information, see the Controller Area Network (CAN) section of the AM335x and AMIC110 Sitara Processors Technical Reference Manual.

7.4.1 DCAN Electrical Data and Timing

Table 7-1. DCAN Timing Conditions

(see Figure 7-1)								
	PARAMETER	MIN	TYP	MAX	UNIT			
Input Conditions								
t _R	Input signal rise time			10	ns			
t _F	Input signal fall time			10	ns			
Output Conditions								
C _{LOAD}	Output load capacitance	2		10	pF			

Table 7-2. Timing Requirements for DCANx Receive

(see Figure 7-1)

NO.			MIN	MAX	UNIT		
	$f_{baud(baud)}$	Maximum programmable baud rate		1	Mbps		
1	t _{w(RX)}	Pulse duration, receive data bit	H – 2 ⁽¹⁾	H + 2 ⁽¹⁾	ns		
(4) 11							

(1) H = Period of baud rate, 1 / programmed baud rate

Table 7-3. Switching Characteristics for DCANx Transmit

(see Figure 7-1)

NO.		PARAMETER	MIN	MAX	UNIT
	$f_{baud(baud)}$	Maximum programmable baud rate		1	Mbps
2	t _{w(TX)}	Pulse duration, transmit data bit	H – 2 ⁽¹⁾	H + 2 ⁽¹⁾	ns

(1) H = Period of baud rate, 1 / programmed baud rate

Figure 7-1. DCANx Timings

7.5 DMTimer

7.5.1 DMTimer Electrical Data and Timing

Table 7-4. DMTimer Timing Conditions

(see Figure 7-1)

	PARAMETER	MIN	TYP MAX	UNIT
Input Condit	ions			
t _R	Input signal rise time		10	ns
t _F	Input signal fall time		10	ns
Output Cond	litions			
C _{LOAD}	Output load capacitance	2	10	pF

Table 7-5. Timing Requirements for DMTimer [1-7]

(see Figure 7-2)

			UNIT
1 t _{c(TC}	LKIN) Cycle time, TCLKIN	4P + 1 ⁽¹⁾	ns

(1) P = Period of PICLKOCP (interface clock).

Table 7-6. Switching Characteristics for DMTimer [4-7]

(see Figure 7-2)

NO.		PARAMETER	MIN MAX	UNIT
2	t _{w(TIMERxH)}	Pulse duration, high	$4P - 3^{(1)}$	ns
3	t _{w(TIMERxL)}	Pulse duration, low	$4P - 3^{(1)}$	ns

(1) P = Period of PICLKTIMER (functional clock).

Figure 7-2. Timer Timing

7.6 Ethernet Media Access Controller (EMAC) and Switch

7.6.1 EMAC and Switch Electrical Data and Timing

The EMAC and Switch implemented in the AM3358-EP device supports GMII mode, but the AM3358-EP design does not pin out 9 of the 24 GMII signals. This was done to reduce the total number of package terminals. Therefore, the AM3358-EP device does not support GMII mode. MII mode is supported with the remaining GMII signals.

The AM335x and AMIC110 Sitara Processors Technical Reference Manual and this document may reference internal signal names when discussing peripheral input and output signals because many of the AM3358-EP package terminals can be multiplexed to one of several peripheral signals. For example, the AM3358-EP terminal names for port 1 of the EMAC and switch have been changed from GMII to MII to indicate their Mode 0 function, but the internal signal is named GMII. However, documents that describe the Ethernet switch reference these signals by their internal signal name. For a cross-reference of internal signal names to terminal names, see Table 4-1.

Operation of the EMAC and switch is not supported for OPP50.

Table 7-7. EMAC and Switch Timing Conditions

	PARAMETER	MIN	TYP MAX	UNIT
Input Condition	ons			
t _R	Input signal rise time	1 ⁽¹⁾	5 ⁽¹⁾	ns
t _F	Input signal fall time	1 ⁽¹⁾	5 ⁽¹⁾	ns
Output Condi	tion			
C _{LOAD}	Output load capacitance	3	30	pF

(1) Except when specified otherwise.

7.6.1.1 EMAC/Switch MDIO Electrical Data and Timing

(see Figure 7-	-3)					
NO.			MIN	TYP	MAX	UNIT
1	t _{su(MDIO-MDC)}	Setup time, MDIO valid before MDC high	90			ns
2	t _{h(MDIO-MDC)}	Hold time, MDIO valid from MDC high	0			ns
MDIO_C	CLK (Output)			∖		_
MDIO	DATA (Input)	¥	¥			

Table 7-8. Timing Requirements for MDIO_DATA

Table 7-9. Switching Characteristics for MDIO_CLK

(see	Fi	au	Ire	7-4)
000		90		• • • •

NO.	PARAMETER		MIN	TYP	MAX	UNIT
1	t _{c(MDC)}	Cycle time, MDC	400			ns
2	t _{w(MDCH)}	Pulse duration, MDC high	160			ns
3	t _{w(MDCL)}	Pulse duration, MDC low	160			ns

Figure 7-4. MDIO_CLK Timing

Table 7-10. Switching Characteristics for MDIO_DATA

(see Figure 7-	- 5)				
NO.		PARAMETER	MIN	TYP MA	
1	t _{d(MDC-MDIO)}	Delay time, MDC high to MDIO valid	10	(P*0.5 -10 ⁽	ns
(1) P = MDIO	_CLK Period				
		1_	N		
MDIO_CLK	K (Output)				
MDIO_DATA	A (Output)	X	X		

Figure 7-5. MDIO_DATA Timing - Output Mode

7.6.1.2 EMAC and Switch MII Electrical Data and Timing

Table 7-11. Timing Requirements for GMII[x]_RXCLK - MII Mode

(see Figure 7-6)

NO				10 Mbps		•	100 Mbps		
NO.			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
1	t _{c(RX_CLK)}	Cycle time, RX_CLK	399.96		400.04	39.996		40.004	ns
2	t _{w(RX_CLKH)}	Pulse duration, RX_CLK high	140		260	14		26	ns
3	t _{w(RX_CLKL)}	Pulse duration, RX_CLK low	140		260	14		26	ns
4	t _{t(RX_CLK)}	Transition time, RX_CLK			5			5	ns

Figure 7-6. GMII[x]_RXCLK Timing - MII Mode

Table 7-12. Timing Requirements for GMII[x]_TXCLK - MII Mode

(see Figure 7-7)

NO				10 Mbps		1	00 Mbps		
NO.			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
1	t _{c(TX_CLK)}	Cycle time, TX_CLK	399.96		400.04	39.996		40.004	ns
2	t _{w(TX_CLKH)}	Pulse duration, TX_CLK high	140		260	14		26	ns
3	t _{w(TX_CLKL)}	Pulse duration, TX_CLK low	140		260	14		26	ns
4	t _{t(TX_CLK)}	Transition time, TX_CLK			5			5	ns
	•								

Figure 7-7. GMII[x]_TXCLK Timing - MII Mode

Table 7-13. Timing Requirements for GMII[x]_RXD[3:0], GMII[x]_RXDV, and GMII[x]_RXER - MII Mode (see Figure 7-8)

NO			1	0 Mbps		10	0 Mbps		
•			MIN	TYP	MAX	MIN	ТҮР	МАХ	UNIT
	t _{su(RXD-RX_CLK)}	Setup time, RXD[3:0] valid before RX_CLK							
1	t _{su(RX_DV-RX_CLK)}	Setup time, RX_DV valid before RX_CLK	8			8			ns
	t _{su(RX_ER-RX_CLK)}	Setup time, RX_ER valid before RX_CLK							
	t _{h(RX_CLK-RXD)}	Hold time RXD[3:0] valid after RX_CLK							
2	t _{h(RX_CLK-RX_DV)}	Hold time RX_DV valid after RX_CLK	8			8			ns
	t _{h(RX_CLK-RX_ER)} Hold time RX_ER valid after RX_CLK								

Figure 7-8. GMII[x]_RXD[3:0], GMII[x]_RXDV, GMII[x]_RXER Timing - MII Mode

Table 7-14. Switching Characteristics for GMII[x]_TXD[3:0], and GMII[x]_TXEN - MII Mode

(see	Figure	7-9)
(366	iguie	1-3)

NO		PARAMETER				100 Mbps				
NO.		PARAMETER	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
1	t _{d(TX_CLK-TXD)}	Delay time, TX_CLK high to TXD[3:0] valid	F		25	F		25	-	
1	t _{d(TX_CLK-TX_EN)}	Delay time, TX_CLK to TX_EN valid	5		25	5		25	115	
GM	II[x]_TXCLK (input)		1	<u> </u>						
GMII	[x]_TXEN (outputs)	X			X					

Figure 7-9. GMII[x]_TXD[3:0], GMII[x]_TXEN Timing - MII Mode

7.6.1.3 EMAC and Switch RMII Electrical Data and Timing

Table 7-15. Timing Requirements for RMII[x]_REFCLK - RMII Mode

(see Figure 7-10)										
NO.			MIN	TYP	MAX	UNIT				
1	t _{c(REF_CLK)}	Cycle time, REF_CLK	19.999		20.001	ns				
2	t _{w(REF_CLKH)}	Pulse duration, REF_CLK high	7		13	ns				
3	tw(REF_CLKL)	Pulse duration, REF_CLK low	7		13	ns				

Figure 7-10. RMII[x]_REFCLK Timing - RMII Mode

Table 7-16. Timing Requirements for RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RXER - RMII Mode (see Figure 7-11)

NO.			MIN	TYP	MAX	UNIT
	t _{su(RXD-REF_CLK)}	Setup time, RXD[1:0] valid before REF_CLK				
1	t _{su(CRS_DV-REF_CLK)}	Setup time, CRS_DV valid before REF_CLK	4			ns
	t _{su(RX_ER-REF_CLK)}	Setup time, RX_ER valid before REF_CLK				
	t _{h(REF_CLK-RXD)}	Hold time RXD[1:0] valid after REF_CLK				
2	t _{h(REF_CLK-CRS_DV)}	Hold time, CRS_DV valid after REF_CLK	2			ns
	t _{h(REF_CLK-RX_ER)}	Hold time, RX_ER valid after REF_CLK				

Figure 7-11. RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RXER Timing - RMII Mode

Table 7-17. Switching Characteristics for RMII[x]_TXD[1:0], and RMII[x]_TXEN - RMII Mode

(see Figure 7-12)

NO.		PARAMETER	MIN	TYP	MAX	UNIT
1	t _{d(REF_CLK-TXD)} t _{d(REF_CLK-TXEN)}	Delay time, REF_CLK high to TXD[1:0] valid Delay time, REF_CLK to TXEN valid	2		13	ns
RMII[x]_REFCLK (Input)					
RMII[x	RMII[x]_TXD[1:0],	Χ				

Figure 7-12. RMII[x]_TXD[1:0], RMII[x]_TXEN Timing - RMII Mode

7.6.1.4 EMAC and Switch RGMII Electrical Data and Timing

Table 7-18. Timing Requirements for RGMII[x]_RCLK - RGMII Mode

(see F	Figure 7-13)											
NO		10 Mbps 100 Mbps		1000 Mbps								
NO.			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
1	t _{c(RXC)}	Cycle time, RXC	360		440	36		44	7.2		8.8	ns
2	t _{w(RXCH)}	Pulse duration, RXC high	160		240	16		24	3.6		4.4	ns
3	t _{w(RXCL)}	Pulse duration, RXC low	160		240	16		24	3.6		4.4	ns
4	t _{t(RXC)}	Transition time, RXC			0.75			0.75			0.75	ns

Figure 7-13. RGMII[x]_RCLK Timing - RGMII Mode

Table 7-19. Timing Requirements for RGMII[x]_RD[3:0], and RGMII[x]_RCTL - RGMII Mode

(see Fi	gure 7-14)											
NO			1	0 Mbps		10	00 Mbps	5	10	00 Mbp	s	
NO.			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
1	t _{su(RD-RXC)}	Setup time, RD[3:0] valid before RXC high or low	1			1			1			20
	t _{su(RX_CTL-RXC)}	Setup time, RX_CTL valid before RXC high or low	1			1			1			ns
2	t _{h(RXC-RD)}	Hold time, RD[3:0] valid after RXC high or low	1			1			1			20
	t _{h(RXC-RX_CTL)}	Hold time, RX_CTL valid after RXC high or low	1			1			1			ns

- A. RGMII[x]_RCLK must be externally delayed relative to the RGMII[x]_RD[3:0] and RGMII[x]_RCTL signals to meet the respective timing requirements.
- B. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the rising edge of RGMII[x]_RCLK and data bits 7-4 on the falling edge of RGMII[x]_RCLK. Similarly, RGMII[x]_RCLL carries RXDV on rising edge of RGMII[x]_RCLK and RXERR on falling edge of RGMII[x]_RCLK.

Figure 7-14. RGMII[x]_RD[3:0], RGMII[x]_RCTL Timing - RGMII Mode

Table 7-20. Switching Characteristics for RGMII[x]_TCLK - RGMII Mode

(see Figure 7-15)												
NO.	PARAMETER		10 Mbps		100 Mbps			1000 Mbps				
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
1	t _{c(TXC)}	Cycle time, TXC	360		440	36		44	7.2		8.8	ns

Table 7-20. Switching Characteristics for RGMII[x]_TCLK - RGMII Mode (continued)

(see Figure 7-15)

www.ti.com

STRUMENTS

NO.	PARAMETER		PARAMETER 10 Mbps			10	00 Mbps		10	00 Mbps		
			MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
2	t _{w(TXCH)}	Pulse duration, TXC high	160		240	16		24	3.6		4.4	ns
3	t _{w(TXCL)}	Pulse duration, TXC low	160		240	16		24	3.6		4.4	ns

Figure 7-15. RGMII[x]_TCLK Timing - RGMII Mode

Table 7-21. Switching Characteristics for RGMII[x]_TD[3:0], and RGMII[x]_TCTL - RGMII Mode

(see Fi	gure 7-16)											
NO.	PARAMETER		10 Mbps		100 Mbps			1000 Mbps				
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
1	t _{sk(TD-TXC)}	TD to TXC output skew	-0.5		0.5	-0.5		0.5	-0.5		0.5	20
	t _{sk(TX CTL-TXC)}	TX_CTL to TXC output skew	-0.5		0.5	-0.5		0.5	-0.5		0.5	115

- A. The EMAC and switch implemented in the AM3358-EP device supports internal delay mode, but timing closure was not performed for this mode of operation. Therefore, the AM3358-EP device does not support internal delay mode.
- B. Data and control information is transmitted using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on the rising edge of RGMII[x]_TCLK and data bits 7-4 on the falling edge of RGMII[x]_TCLK. Similarly, RGMII[x]_TCLL carries TXEN on rising edge of RGMII[x]_TCLK and TXERR of falling edge of RGMII[x]_TCLK.

Figure 7-16. RGMII[x]_TD[3:0], RGMII[x]_TCTL Timing - RGMII Mode

7.7 External Memory Interfaces

The device includes the following external memory interfaces:

- General-purpose memory controller (GPMC)
- DDR2, DDR3, DDR3L Memory Interface (EMIF)

7.7.1 General-Purpose Memory Controller (GPMC)

NOTE

For more information, see the Memory Subsystem and General-Purpose Memory Controller section of the *AM335x and AMIC110 Sitara Processors Technical Reference Manual*.

The GPMC is the unified memory controller used to interface external memory devices such as:

- · Asynchronous SRAM-like memories and ASIC devices
- Asynchronous page mode and synchronous burst NOR flash
- NAND flash

7.7.1.1 GPMC and NOR Flash—Synchronous Mode

and Table 7-24 assume testing over the recommended operating conditions and electrical characteristic conditions shown in Table 7-22 (see Figure 7-17 through Figure 7-21).

Table 7-22.	GPMC and NC	R Flash Timing	a Conditions—S	vnchronous Mode

	PARAMETER	MIN	ΤΥΡ ΜΑΧ	UNIT
Input Condition	ons			
t _R	Input signal rise time	1		5 ns
t _F	Input signal fall time	1	:	5 ns
Output Condi	tion			
C _{LOAD}	Output load capacitance	3	30) pF

Table 7-23. GPMC and NOR Flash Timing Requirements—Synchronous Mode

NO			OPP1	00	OPP	50	LINUT
NO.			MIN	MAX	MIN	MAX	UNIT
F12	t _{su(dV-clkH)}	Setup time, input data gpmc_ad[15:0] valid before output clock gpmc_clk high	3.2		11.1		ns
F13	t _{h(clkH-dV)}	Hold time, input data gpmc_ad[15:0] valid after output clock gpmc_clk high	4.74		4.74		ns
F21	t _{su(waitV-clkH)}	Setup time, input wait gpmc_wait[x] ⁽¹⁾ valid before output clock gpmc_clk high	3.2		11.1		ns
F22	t _{h(clkH-wait} ∨)	Hold time, input wait gpmc_wait[x] ⁽¹⁾ valid after output clock gpmc_clk high	4.74		4.74		ns

(1) In gpmc_wait[x], x is equal to 0 or 1.

www.ti.com

Texas

NSTRUMENTS

NO			OPF	OPP100 OPP50		P50	
NO.		PARAMETER	MIN	MAX	MIN	MAX	UNIT
F0	1 / t _{c(clk)}	Frequency ⁽¹⁵⁾ , output clock gpmc_clk		100		50	MHz
F1	t _{w(clkH)}	Typical pulse duration, output clock gpmc_clk high	0.5P ⁽¹²⁾	0.5P ⁽¹²⁾	0.5P ⁽¹²⁾	0.5P ⁽¹²⁾	ns
F1	t _{w(clkL)}	Typical pulse duration, output clock gpmc_clk low	0.5P ⁽¹²⁾	0.5P ⁽¹²⁾	0.5P ⁽¹²⁾	0.5P ⁽¹²⁾	ns
	t _{dc(clk)}	Duty cycle error, output clock gpmc_clk	-500	500	-500	500	ps
	t _{J(clk)}	Jitter standard deviation ⁽¹⁶⁾ , output clock gpmc_clk		33.33		33.33	ps
	t _{R(clk)}	Rise time, output clock gpmc_clk		2		2	ns
	t _{F(clk)}	Fall time, output clock gpmc_clk		2		2	ns
	t _{R(do)}	Rise time, output data gpmc_ad[15:0]		2		2	ns
	t _{F(do)}	Fall time, output data gpmc_ad[15:0]		2		2	ns
F2	t _{d(clkH-csnV)}	Delay time, output clock gpmc_clk rising edge to output chip select gpmc_csn[x] ⁽¹¹⁾ transition	F ⁽⁶⁾ - 2.2	F ⁽⁶⁾ + 4.5	F ⁽⁶⁾ - 3.2	F ⁽⁶⁾ + 9.5	ns
F3	t _{d(clkH-csnIV)}	Delay time, output clock gpmc_clk rising edge to output chip select gpmc_csn[x] ⁽¹¹⁾ invalid	E ⁽⁵⁾ – 2.2	E ⁽⁵⁾ + 4.5	E ⁽⁵⁾ – 3.2	E ⁽⁵⁾ + 9.5	ns
F4	t _{d(aV-clk)}	Delay time, output address gpmc_a[27:1] valid to output clock gpmc_clk first edge	B ⁽²⁾ – 4.5	B ⁽²⁾ + 2.3	B ⁽²⁾ – 5.5	B ⁽²⁾ + 12.3	ns
F5	t _{d(clkH-alV)}	Delay time, output clock gpmc_clk rising edge to output address gpmc_a[27:1] invalid	-2.3	4.5	-3.3	14.5	ns
F6	t _{d(be[x]nV-clk)}	Delay time, output lower byte enable and command latch enable gpmc_be0n_cle, output upper byte enable gpmc_be1n valid to output clock gpmc_clk first edge	B ⁽²⁾ – 1.9	B ⁽²⁾ + 2.3	B ⁽²⁾ – 2.9	B ⁽²⁾ + 12.3	ns
F7	td(clkH-be[x]nIV)	Delay time, output clock gpmc_clk rising edge to output lower byte enable and command latch enable gpmc_be0n_cle, output upper byte enable gpmc_be1n invalid	D ⁽⁴⁾ – 2.3	D ⁽⁴⁾ + 1.9	D ⁽⁴⁾ – 3.3	D ⁽⁴⁾ + 6.9	ns
F7	t _{d(clkL-be[x]nIV)}	Delay time, gpmc_clk falling edge to gpmc_nbe0_cle, gpmc_nbe1 invalid	D ⁽⁴⁾ – 2.3	D ⁽⁴⁾ + 1.9	D ⁽⁴⁾ – 3.3	D ⁽⁴⁾ + 6.9	ns
F7	t _{d(clkL-be[x]nIV)}	Delay time, gpmc_clk falling edge to gpmc_nbe0_cle, gpmc_nbe1 invalid	D ⁽⁴⁾ – 2.3	D ⁽⁴⁾ + 1.9	D ⁽⁴⁾ – 3.3	D ⁽⁴⁾ + 11.9	ns
F8	t _{d(clkH-advn)}	Delay time, output clock gpmc_clk rising edge to output address valid and address latch enable gpmc_advn_ale transition	G ⁽⁷⁾ – 2.3	G ⁽⁷⁾ + 4.5	G ⁽⁷⁾ – 3.3	G ⁽⁷⁾ + 9.5	ns
F9	t _{d(clkH} -advnIV)	Delay time, output clock gpmc_clk rising edge to output address valid and address latch enable gpmc_advn_ale invalid	D ⁽⁴⁾ – 2.3	D ⁽⁴⁾ + 3.5	D ⁽⁴⁾ – 3.3	D ⁽⁴⁾ + 9.5	ns
F10	t _{d(clkH-oen)}	Delay time, output clock gpmc_clk rising edge to output enable gpmc_oen transition	H ⁽⁸⁾ – 2.3	H ⁽⁸⁾ + 3.5	H ⁽⁸⁾ – 3.3	H ⁽⁸⁾ + 8.5	ns
F11	t _{d(clkH-oenIV)}	Delay time, output clock gpmc_clk rising edge to output enable gpmc_oen invalid	H ⁽⁸⁾ – 2.3	H ⁽⁸⁾ + 3.5	H ⁽⁸⁾ – 3.3	H ⁽⁸⁾ + 8.5	ns
F14	t _{d(clkH-wen)}	Delay time, output clock gpmc_clk rising edge to output write enable gpmc_wen transition	l ⁽⁹⁾ – 2.3	l ⁽⁹⁾ + 4.5	l ⁽⁹⁾ – 3.3	l ⁽⁹⁾ + 9.5	ns
F15	t _{d(clkH-do)}	Delay time, output clock gpmc_clk rising edge to output data gpmc_ad[15:0] transition	J ⁽¹⁰⁾ – 2.3	J ⁽¹⁰⁾ + 1.9	J ⁽¹⁰⁾ – 3.3	J ⁽¹⁰⁾ + 6.9	ns
F15	t _{d(clkL-do)}	Delay time, gpmc_clk falling edge to gpmc_ad[15:0] data bus transition	J ⁽¹⁰⁾ – 2.3	J ⁽¹⁰⁾ + 1.9	J ⁽¹⁰⁾ – 3.3	J ⁽¹⁰⁾ + 6.9	ns
F15	t _{d(clkL-do)}	Delay time, gpmc_clk falling edge to gpmc_ad[15:0] data bus transition	J ⁽¹⁰⁾ – 2.3	J ⁽¹⁰⁾ + 1.9	J ⁽¹⁰⁾ – 3.3	J ⁽¹⁰⁾ + 11.9	ns
F17	t _{d(clkH-be[x]n)}	Delay time, output clock gpmc_clk rising edge to output lower byte enable and command latch enable gpmc_be0n_cle transition	J ⁽¹⁰⁾ – 2.3	J ⁽¹⁰⁾ + 1.9	J ⁽¹⁰⁾ – 3.3	J ⁽¹⁰⁾ + 6.9	ns
F17	t _{d(clkL-be[x]n)}	Delay time, gpmc_clk falling edge to gpmc_nbe0_cle, gpmc_nbe1 transition	J ⁽¹⁰⁾ – 2.3	J ⁽¹⁰⁾ + 1.9	J ⁽¹⁰⁾ – 3.3	J ⁽¹⁰⁾ + 6.9	ns
F17	t _{d(clkL-be[x]n)}	Delay time, gpmc_clk falling edge to gpmc_nbe0_cle, gpmc_nbe1 transition	J ⁽¹⁰⁾ – 2.3	J ⁽¹⁰⁾ + 1.9	J ⁽¹⁰⁾ – 3.3	J ⁽¹⁰⁾ + 11.9	ns

Table 7-24. GPMC and NOR Flash Switching Characteristics—Synchronous Mode⁽²⁾

Copyright © 2015–2019, Texas Instruments Incorporated

Table 7-24. GPMC and NOR Flash	Switching Characteristics-	-Synchronous Mode ⁽²⁾	(continued)
--------------------------------	----------------------------	----------------------------------	-------------

NO		DADAMETED		OPP100)	OPP50		
NO.	PARAMETER			MIN	MAX	MIN	MAX	UNIT
F 10		Pulse duration, output chip select	Read	A ⁽¹⁾		A ⁽¹⁾		ns
FIO	F18 t _{w(csnV)} g	gpmc_csn[x] ⁽¹¹⁾ low	Write	A ⁽¹⁾		A ⁽¹⁾		ns
	Pulse duration, output lower byte enable	Read	C ⁽³⁾		C ⁽³⁾		ns	
F19	t _{w(be[x]nV)}	and command latch enable gpmc_be0n_cle, output upper byte enable gpmc_be1n low	Write	C ⁽³⁾		C ⁽³⁾		ns
F20 t _{w(advn)}		Pulse duration, output address valid and	Read	K ⁽¹³⁾		K ⁽¹³⁾		ns
	w(advnV)	v(advnV) address latch enable gpmc_advn_ale low		K ⁽¹³⁾		K ⁽¹³⁾		ns

(1) For single read: A = (CSRdOffTime – CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾ For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾ For burst write: A = (CSWrOffTime - CSOnTime + $(n - 1) \times PageBurstAccessTime) \times (TimeParaGranularity + 1) \times GPMC_FCLK⁽¹⁴⁾$ With n being the page burst access number.

- (2) B = ClkActivationTime × GPMC FCLK⁽¹⁴⁾
- (3) For single read: C = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK (14) For burst read: $C = (RdCycleTime + (n - 1) \times PageBurstAccessTime) \times (TimeParaGranularity + 1) \times GPMC_FCLK⁽¹⁴⁾)$ For burst write: $C = (WrCycleTime + (n - 1) \times PageBurstAccessTime) \times (TimeParaGranularity + 1) \times GPMC_FCLK⁽¹⁴⁾)$ With n being the page burst access number.
- (4) For single read: D = (RdCycleTime AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾ For burst read: D = (RdCycleTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾ For burst write: D = (WrCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾
- (5) For single read: E = (CSRdOffTime AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾ For burst read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾ For burst write: E = (CSWrOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾
- (6) For csn falling edge (CS activated):
 - Case GpmcFCLKDivider = 0:
 - F = 0.5 × CSExtraDelay × GPMC_FCLK⁽¹⁴⁾
 - Case GpmcFCLKDivider = 1:
 - F = 0.5 x CSExtraDelay x GPMC FCLK⁽¹⁴⁾ if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime are even)
 - $F = (1 + 0.5 \times CSExtraDelay) \times GPMC_FCLK^{(14)}$ otherwise
 - Case GpmcFCLKDivider = 2:

 - $\begin{array}{l} \mathsf{F} = 0.5 \times \mathsf{CSExtraDelay} \times \mathsf{GPMC_FCLK}^{(14)} \text{ if ((CSOnTime ClkActivationTime) is a multiple of 3)} \\ \mathsf{F} = (1 + 0.5 \times \mathsf{CSExtraDelay}) \times \mathsf{GPMC_FCLK}^{(14)} \text{ if ((CSOnTime ClkActivationTime 1) is a multiple of 3)} \\ \mathsf{F} = (2 + 0.5 \times \mathsf{CSExtraDelay}) \times \mathsf{GPMC_FCLK}^{(14)} \text{ if ((CSOnTime ClkActivationTime 2) is a multiple of 3)} \end{array}$
- (7) For ADV falling edge (ADV activated):
- Case GpmcFCLKDivider = 0:
 - $G = 0.5 \times ADVExtraDelay \times GPMC_FCLK^{(14)}$
 - Case GpmcFCLKDivider = 1:
 - G = 0.5 × ADVExtraDelay × GPMC_FCLK⁽¹⁴⁾ if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and ADVOnTime are even)
 - $G = (1 + 0.5 \times ADVExtraDelay) \times GPMC_FCLK^{(14)}$ otherwise
 - Case GpmcFCLKDivider = 2:

 - $G = 0.5 \times ADVExtraDelay \times GPMC_FCLK^{(14)}$ if ((ADVOnTime ClkActivationTime) is a multiple of 3) $G = (1 + 0.5 \times ADVExtraDelay) \times GPMC_FCLK^{(14)}$ if ((ADVOnTime ClkActivationTime 1) is a multiple of 3) $G = (2 + 0.5 \times ADVExtraDelay) \times GPMC_FCLK^{(14)}$ if ((ADVOnTime ClkActivationTime 2) is a multiple of 3)

For ADV rising edge (ADV deactivated) in Reading mode:

- Case GpmcFCLKDivider = 0:
- $G = 0.5 \times ADVExtraDelay \times GPMC_FCLK^{(14)}$
- Case GpmcFCLKDivider = 1:
 - G = 0.5 × ADVExtraDelay × GPMC_FCLK⁽¹⁴⁾ if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and ADVRdOffTime are even)
 - $G = (1 + 0.5 \times ADVExtraDelay) \times GPMC_FCLK^{(14)}$ otherwise
 - Case GpmcFCLKDivider = 2:
 - $G = 0.5 \times ADVExtraDelay \times GPMC_FCLK^{(14)}$ if ((ADVRdOffTime ClkActivationTime) is a multiple of 3) $G = (1 + 0.5 \times ADVExtraDelay) \times GPMC_FCLK^{(14)}$ if ((ADVRdOffTime ClkActivationTime 1) is a multiple of 3)

 - $G = (2 + 0.5 \times ADVExtraDelay) \times GPMC_FCLK^{(14)}$ if ((ADVRdOffTime ClkActivationTime 2) is a multiple of 3)

For ADV rising edge (ADV deactivated) in Writing mode:

- Case GpmcFCLKDivider = 0:
- $G = 0.5 \times ADVExtraDelay \times GPMC_FCLK^{(14)}$
- Case GpmcFCLKDivider = 1:

www.ti.com

- G = 0.5 × ADVExtraDelay × GPMC_FCLK⁽¹⁴⁾ if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and ADVWrOffTime are even)
- $G = (1 + 0.5 \times ADVExtraDelav) \times GPMC FCLK^{(14)}$ otherwise
- Case GpmcFCLKDivider = 2:

STRUMENTS

- $G = 0.5 \times ADVExtraDelay \times GPMC_FCLK^{(14)}$ if ((ADVWrOffTime ClkActivationTime) is a multiple of 3) $G = (1 + 0.5 \times ADVExtraDelay) \times GPMC_FCLK^{(14)}$ if ((ADVWrOffTime ClkActivationTime 1) is a multiple of 3) $G = (2 + 0.5 \times ADVExtraDelay) \times GPMC_FCLK^{(14)}$ if ((ADVWrOffTime ClkActivationTime 2) is a multiple of 3)
- (8) For OE falling edge (OE activated) and I/O DIR rising edge (Data Bus input direction):
 - Case GpmcFCLKDivider = 0:
 - $H = 0.5 \times OEExtraDelay \times GPMC_FCLK^{(14)}$
 - Case GpmcFCLKDivider = 1:
 - H = 0.5 × OEExtraDelay × GPMC FCLK⁽¹⁴⁾ if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime are even)
 - $H = (1 + 0.5 \times OEExtraDelay) \times GPMC_FCLK^{(14)}$ otherwise
 - Case GpmcFCLKDivider = 2:

 - H = 0.5 × OEExtraDelay × GPMC_FCLK⁽¹⁴⁾ if ((OEOnTime ClkActivationTime) is a multiple of 3) H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK⁽¹⁴⁾ if ((OEOnTime ClkActivationTime 1) is a multiple of 3) H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK⁽¹⁴⁾ if ((OEOnTime ClkActivationTime 2) is a multiple of 3)

For OE rising edge (OE deactivated):

- Case GpmcFCLKDivider = 0:
- $H = 0.5 \times OEExtraDelay \times GPMC_FCLK^{(14)}$
- Case GpmcFCLKDivider = 1:
 - H = 0.5 × OEExtraDelay × GPMC_FCLK⁽¹⁴⁾ if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime are even)
 - $H = (1 + 0.5 \times OEExtraDelay) \times GPMC FCLK^{(14)}$ otherwise
 - Case GpmcFCLKDivider = 2:

 - H = 0.5 × OEExtraDelay × GPMC_FCLK⁽¹⁴⁾ if ((OEOffTime ClkActivationTime) is a multiple of 3) H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK⁽¹⁴⁾ if ((OEOffTime ClkActivationTime 1) is a multiple of 3) H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK⁽¹⁴⁾ if ((OEOffTime ClkActivationTime 2) is a multiple of 3)
- (9) For WE falling edge (WE activated):
 - Case GpmcFCLKDivider = 0:
 - $I = 0.5 \times WEExtraDelay \times GPMC_FCLK^{(14)}$
 - Case GpmcFCLKDivider = 1:
 - I = 0.5 × WEExtraDelay × GPMC FCLK⁽¹⁴⁾ if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime are even)
 - I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK⁽¹⁴⁾ otherwise
 - Case GpmcFCLKDivider = 2:

 - I = 0.5 × WEExtraDelay × GPMC_FCLK⁽¹⁴⁾ if ((WEOnTime ClkActivationTime) is a multiple of 3) I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK⁽¹⁴⁾ if ((WEOnTime ClkActivationTime 1) is a multiple of 3) I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK⁽¹⁴⁾ if ((WEOnTime ClkActivationTime 2) is a multiple of 3)
 - For WE rising edge (WE deactivated):
 - Case GpmcFCLKDivider = 0:
 - $I = 0.5 \times WEExtraDelay \times GPMC_FCLK$ (14)
 - Case GpmcFCLKDivider = 1:
 - I = 0.5 × WEExtraDelay × GPMC_FCLK⁽¹⁴⁾ if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime are even)
 - $I = (1 + 0.5 \times WEExtraDelay) \times GPMC_FCLK^{(14)}$ otherwise
 - Case GpmcFCLKDivider = 2:
 - I = 0.5 × WEExtraDelay × GPMC_FCLK⁽¹⁴⁾ if ((WEOffTime ClkActivationTime) is a multiple of 3)

 - $I = (1 + 0.5 \times WEExtraDelay) \times GPMC_FCLK^{(14)}$ if ((WEOffTime ClkActivationTime 1) is a multiple of 3) $I = (2 + 0.5 \times WEExtraDelay) \times GPMC_FCLK^{(14)}$ if ((WEOffTime ClkActivationTime 2) is a multiple of 3)
- (10) $J = GPMC_FCLK^{(14)}$
- (11) In gpmc csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc wait[x], x is equal to 0 or 1.
- (12) P = gpmc_clk period in ns
- (13) For read: K = (ADVRdOffTime ADVOnTime) × (TimeParaGranularity + 1) × GPMC FCLK⁽¹⁴⁾ For write: K = (ADVWrOffTime – ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾
- (14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
- (15) Related to the gpmc clk output clock maximum and minimum frequencies programmable in the GPMC module by setting the GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.
- (16) The jitter probability density can be approximated by a Gaussian function.

gpmc_clk	F0 ->	F1 F1 F1 F18		F3
gpmc_csn[x]				/
	F4			
gpmc_a[10:1]	X	Valid Address		
	F6	F19		F7
gpmc_be0n_cle				/
anme hein		F19		►
apmc advn ale	F6 F8 F20	F8		F9
apmc oen			► F10	F11
gpmc_ad[15:0]				F12 F13
gpmc_wait[x]				
A. Ing B. Ing	omc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. pmc_wait[x], x is equal to 0 or 1.			

Figure 7-17. GPMC and NOR Flash—Synchronous Single Read—(GpmcFCLKDivider = 0)

www.ti.com

A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.

B. In gpmc_wait[x], x is equal to 0 or 1.

Figure 7-18. GPMC and NOR Flash—Synchronous Burst Read—4x16-Bit (GpmcFCLKDivider = 0)

B. In gpmc_wait[x], x is equal to 0 or 1.

Figure 7-19. GPMC and NOR Flash—Synchronous Burst Write—(GpmcFCLKDivider > 0)

A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.

B. In gpmc_wait[x], x is equal to 0 or 1.

Figure 7-20. GPMC and Multiplexed NOR Flash—Synchronous Burst Read

gpmc_clk		
		F18
gpmc_csn[x]		
gpmc a[27:17]	F4	Address (MSB)
<u>367.</u> []		
gpmc be1n	F6	
0		F17
gpmc_be0n_cle	F0	
	F8	F8 F20
gpmc_advn_ale		
		► F14
gpmc_wen		
gpmc_ad[15:0]	Address (LSB)	<u>X D0 X D1 X D2 X D3</u>
gpmc wait[x]		- $F22$ $F21$
	$\sum_{n=1}^{\infty} \frac{1}{n} \sum_{i=1}^{\infty} \frac{1}{n} \sum_{i$	

A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.B. In gpmc_wait[x], x is equal to 0 or 1.

Figure 7-21. GPMC and Multiplexed NOR Flash—Synchronous Burst Write

7.7.1.2 GPMC and NOR Flash—Asynchronous Mode

Table 7-26 and Table 7-27 assume testing over the recommended operating conditions and electrical characteristic conditions shown in Table 7-25 (see Figure 7-22 through Figure 7-27).

Table 7-25. GPMC and NOR Flash Timing Conditions—Asynchronous Mode

		MIN	TYP MAX	UNIT
Input Condit	ions			
t _R	Input signal rise time	1	5	ns
t _F	Input signal fall time	1	5	ns
Output Cond	ition			
C _{LOAD}	Output load capacitance	3	30	pF

Table 7-26. GPMC and NOR Flash Internal Timing Requirements—Asynchronous Mode⁽¹⁾⁽²⁾

NO		OPP100	OPP50	
NO.		MIN MAX	MIN MAX	UNIT
FI1	Delay time, output data gpmc_ad[15:0] generation from internal functional clock ${\rm GPMC_FCLK^{(3)}}$	6.5	6.5	ns
FI2	Delay time, input data gpmc_ad[15:0] capture from internal functional clock ${\rm GPMC_FCLK}^{(3)}$	4	4	ns
FI3	Delay time, output chip select gpmc_csn[x] generation from internal functional clock GPMC_FCLK $^{\!\!(3)}$	6.5	6.5	ns
FI4	Delay time, output address gpmc_a[27:1] generation from internal functional clock ${\rm GPMC_FCLK}^{(3)}$	6.5	6.5	ns
FI5	Delay time, output address gpmc_a[27:1] valid from internal functional clock ${\rm GPMC_FCLK}^{(3)}$	6.5	6.5	ns
FI6	Delay time, output lower-byte enable and command latch enable gpmc_be0n_cle, output upper-byte enable gpmc_be1n generation from internal functional clock GPMC_FCLK ⁽³⁾	6.5	6.5	ns
FI7	Delay time, output enable gpmc_oen generation from internal functional clock ${\rm GPMC_FCLK^{(3)}}$	6.5	6.5	ns
FI8	Delay time, output write enable gpmc_wen generation from internal functional clock ${\rm GPMC_FCLK}^{(3)}$	6.5	6.5	ns
FI9	Skew, internal functional clock GPMC_FCLK ⁽³⁾	100	100	ps

(1) The internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.

(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.

(3) GPMC_FCLK is general-purpose memory controller internal functional clock.

Table 7-27. GPMC and NOR Flash Timing Requirements—Asynchronous Mode

NO.			OPP10	00	OPP5	0	UNIT
			MIN	MAX	MIN	MAX	
FA5 ⁽¹⁾	t _{acc(d)}	Data access time		H ⁽⁵⁾		H ⁽⁵⁾	ns
FA20 ⁽²⁾	t _{acc1} -pgmode(d)	Page mode successive data access time		P ⁽⁴⁾		P ⁽⁴⁾	ns
FA21 ⁽³⁾	t _{acc2} -pgmode(d)	Page mode first data access time		H ⁽⁵⁾		H ⁽⁵⁾	ns

(1) The FA5 parameter shows the amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge. FA5 value must be stored inside the AccessTime register bit field.

- (3) The FA21 parameter shows amount of time required to internally sample first input page data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.
- (4) P = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK⁽⁶⁾
- (5) H = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK⁽⁶⁾
- (6) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.

Table 7-28. GPMC and NOR Flash Switching Characteristics—Asynchronous Mode

NO	DADAMETED		OPP100		OPP50			
NO.		PARAMETER		MIN	MAX	MIN	MAX	UNIT
	t _{R(d)}	Rise time, output data gpmc_ad[15:0]			2		2	ns
	t _{F(d)}	Fall time, output data gpmc_ad[15:0]			2		2	ns
FA0	t _{w(be[x]nV)}	Pulse duration, output lower-byte enable and command latch enable gpmc_be0n_cle, output upper-byte enable gpmc_be1n valid time	Read Write		N ⁽¹²⁾ N ⁽¹²⁾		N ⁽¹²⁾ N ⁽¹²⁾	ns
E 4 4		Pulse duration, output chip select	Read		A ⁽¹⁾		A ⁽¹⁾	
FA1	t _{w(csnV)}	gpmc_csn[x] ⁽¹³⁾ low	Write		A ⁽¹⁾		A ⁽¹⁾	ns
		Delay time, output chip select	Read	B ⁽²⁾ – 0.2	B ⁽²⁾ + 2.0	B ⁽²⁾ – 5	B ⁽²⁾ + 5	
FA3	t _{d(csnV-advnIV)}	gpmc_csn[x] ⁽¹³⁾ valid to output address valid and address latch enable gpmc_advn_ale invalid	Write	B ⁽²⁾ – 0.2	B ⁽²⁾ + 2.0	B ⁽²⁾ – 5	B ⁽²⁾ + 5	ns
FA4	t _{d(csnV-oenIV)}	Delay time, output chip select gpmc_csn[x] ⁽¹³⁾ valid to output enable gpmc_oen invalid (Single read)		$C^{(3)} - 0.2$	C ⁽³⁾ + 2.0	C ⁽³⁾ – 5	C ⁽³⁾ + 5	ns
FA9	t _{d(aV-csnV)}	Delay time, output address gpmc_a[27:1] valid to output chip select gpmc_csn[x] ⁽¹³⁾ valid		J ⁽⁹⁾ – 0.2	J ⁽⁹⁾ + 2.0	J ⁽⁹⁾ – 5	J ⁽⁹⁾ + 5	ns
FA10	t _{d(be[x]nV-csnV)}	Delay time, output lower-byte enable and command latch enable gpmc_be0n_cle, output upper-byte enable gpmc_be1n valid to output chip select gpmc_csn[x] ⁽¹³⁾ valid		J ⁽⁹⁾ – 0.2	J ⁽⁹⁾ + 2.0	J ⁽⁹⁾ – 5	J ⁽⁹⁾ + 5	ns
FA12	t _{d(csnV-advnV)}	Delay time, output chip select gpmc_c: valid to output address valid and addre enable gpmc_advn_ale valid	sn[x] ⁽¹³⁾ ess latch	K ⁽¹⁰⁾ – 0.2	K ⁽¹⁰⁾ + 2.0	K ⁽¹⁰⁾ – 5	K ⁽¹⁰⁾ + 5	ns
FA13	t _{d(csnV-oenV)}	Delay time, output chip select gpmc_ca valid to output enable gpmc_oen valid	sn[x] ⁽¹³⁾	L ⁽¹¹⁾ – 0.2	L ⁽¹¹⁾ + 2.0	L ⁽¹¹⁾ – 5	L ⁽¹¹⁾ + 5	ns
FA16	t _{w(alV)}	Pulse durationm output address gpmc_a[26:1] invalid between 2 successive read and write accesses		G ⁽⁷⁾		G ⁽⁷⁾		ns
FA18	t _{d(csnV-oenIV)}	Delay time, output chip select gpmc_c: valid to output enable gpmc_oen invali read)	sn[x] ⁽¹³⁾ d (Burst	l ⁽⁸⁾ – 0.2	l ⁽⁸⁾ + 2.0	l ⁽⁸⁾ – 5	l ⁽⁸⁾ + 5	ns
FA20	t _{w(aV)}	Pulse duration, output address gpmc_a valid - 2nd, 3rd, and 4th accesses	a[27:1]	D ⁽⁴⁾		D ⁽⁴⁾		ns
FA25	t _{d(csnV-wenV)}	Delay time, output chip select gpmc_cs valid to output write enable gpmc_wen	sn[x] ⁽¹³⁾ valid	E ⁽⁵⁾ – 0.2	E ⁽⁵⁾ + 2.0	$E^{(5)} - 5$	E ⁽⁵⁾ + 5	ns

⁽²⁾ The FA20 parameter shows amount of time required to internally sample successive input page data. It is expressed in number of GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.

www.ti.com

Table 7-28. GPMC and NOR Flash Switching Characteristics—Asynchronous Mode (continued)

NO		DADAMETED	OPP [,]	100	OPP5	60	
NO.	PARAMETER		MIN	MAX	MIN	MAX	UNIT
FA27	t _{d(csnV-wenIV)}	Delay time, output chip select gpmc_csn[x] ⁽¹³⁾ valid to output write enable gpmc_wen invalid	F ⁽⁶⁾ – 0.2	F ⁽⁶⁾ + 2.0	F ⁽⁶⁾ – 5	F ⁽⁶⁾ + 5	ns
FA28	t _{d(wenV-dV)}	Delay time, output write enable gpmc_ wen valid to output data gpmc_ad[15:0] valid		2.0		5	ns
FA29	t _{d(dV-csnV)}	Delay time, output data gpmc_ad[15:0] valid to output chip select gpmc_csn[x] ⁽¹³⁾ valid	J ⁽⁹⁾ – 0.2	J ⁽⁹⁾ + 2.0	J ⁽⁹⁾ – 5	J ⁽⁹⁾ + 5	ns
FA37	t _{d(oenV-alV)}	Delay time, output enable gpmc_oen valid to output address gpmc_ad[15:0] phase end		2.0		5	ns

(1) For single read: A = (CSRdOffTime – CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾ For single write: A = (CSWrOffTime – CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾ For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾ For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾ with n being the page burst access number

(3) C = ((OEOffTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay – CSExtraDelay)) × GPMC_FCLK⁽¹⁴⁾

- (4) D = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾
- (5) E = ((WEOnTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay CSExtraDelay)) × GPMC_FCLK⁽¹⁴⁾
- (6) F = ((WEOffTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay CSExtraDelay)) × GPMC_FCLK⁽¹⁴⁾
- (7) G = Cycle2CycleDelay × GPMC_FCLK⁽¹⁴⁾
- (8) I = ((OEOffTime + (n 1) × PageBurstAccessTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay CSExtraDelay)) × GPMC_FCLK⁽¹⁴⁾
- (9) J = (CSOnTime × (TimeParaGranularity + 1) + 0.5 × CSExtraDelay) × GPMC_FCLK⁽¹⁴⁾
- (10) K = ((ADVOnTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay CSExtraDelay)) × GPMC_FCLK⁽¹⁴⁾
- (11) L = ((OEOnTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay CSExtraDelay)) × GPMC_FCLK⁽¹⁴⁾

(12) For single read: N = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾
 For single write: N = WrCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾
 For burst read: N = (RdCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾
 For burst write: N = (WrCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾

- (13) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.
- (14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.

⁽²⁾ For reading: B = ((ADVRdOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) × GPMC_FCLK⁽¹⁴⁾ For writing: B = ((ADVWrOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) ×

For writing: $B = ((ADVWrOffTime - CSOnTime) \times (TimeParaGranularity + 1) + 0.5 \times (ADVExtraDelay - CSExtraDelay)) \times GPMC_FCLK^{(14)}$

GPMC_FCLK gpmc_clk FA5 FA1 gpmc_csn[x] FA9 Valid Address gpmc_a[10:1] FA0 FA10 Valid gpmc_be0n_cle FA0 Valid gpmc_be1n FA10 FA3 FA12 gpmc_advn_ale FA4 FA13 gpmc_oen Data IN 0 Data IN 0 gpmc_ad[15:0] gpmc_wait[x] Α. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.

FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC Β. functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field. C.

GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.

Figure 7-22. GPMC and NOR Flash—Asynchronous Read—Single Word

www.ti.com

GPMC_FCLK	<u></u>		$\overline{\mathcal{N}}$	~~~~~	$\overline{\mathcal{M}}$	$\overline{\mathcal{N}}$
gpmc_clk						
	FA5			———— FA5 —		
gpmc_csn[x]				\ '		
	540		FA'	16		
gpmc_a[10:1]		ldress 0		Adc	ress 1	
		— FA0 —		F	A0	
anma he0n ale	FA10	Valid		- FA10 Val	id	
gpinio_beeni_olo		— FA0 —	<u> </u>	F	A0	<u></u>
gpmc_be1n		Valid		Va	id	
	FAIO			-FA10		
	—— FA3 ——			FA3		
gpmc advn ale	FA12			FA12		
		- FA4		FA	4	
apme oon	FA13	→ ¬\ (FA13		
gpmc_ad[15:0]			>	\	Data Up	
gpmc_wait[x]						
A. In gp	mc_csn[x], x is equal to 0, 1	, 2, 3, 4, or 5. In gpmc_wa	it[x], x is equa	al to 0 or 1.		

B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.

C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.

Figure 7-23. GPMC and NOR Flash—Asynchronous Read—32-Bit

GPMC_FCLK		
gpmc_clk		
	FA21	→ FA20 → FA20 → FA20 →
gpmc csn[x]		FA1
0	FA9	
gpmc_a[10:1]	Add0	Add1 Add2 Add3 Add4
	F/	A0
	FA10	
gpmc_be0n_cle		
	► FA10	AU
gpmc_be1n		
	→ FA12	
gpmc_advn_ale		
	F.	A18
	FA13►	
gpmc_oen		
gpmc_ad[15:0]		- 00 - 01 - 02 - 03 - 03
gpmc_wait[x]		
A. Ing B. FA2	<pre>ppmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is 21 parameter illustrates amount of time required to internally</pre>	s equal to 0 or 1. sample first input page data. It is expressed in

- B. FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data will be internally sampled by active functional clock edge. FA21 calculation must be stored inside
- AccessTime register bits field.
 C. FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC functional clock cycles. After each access to input page data, next input page data will be internally sampled by active functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first input page data). FA20 value must be stored in PageBurstAccessTime register bits field.
- D. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.

Figure 7-24. GPMC and NOR Flash—Asynchronous Read—Page Mode 4x16-Bit

ÈXAS

NSTRUMENTS

TEXAS INSTRUMENTS

gpmc_fclk	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>
gpmc_clk	
gpmc_csn[x]	FA1
gpmc_a[10:1]	FA9 Valid Address
	FA10
gpmc_be0n_cle	FA0
anma bein	FA10
31	FA3 FA12
gpmc_advn_ale	
	FA27
gpmc_wen	FA29
gpmc_ad[15:0]	Data OUT
gpmc_wait[x]	
A. In g	omc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.

GPMC_FCLK		
gpmc_clk		
	FA1	
	FA5	→
gpmc_csn[x]		/
	FA9	
gpmc_a[27:17]	Address (MSB)	
	FA0	
gpmc_be0n_cle	Valid	
	FA0	
gpmc_be1n	Valid	
anno odun olo	FA3	
gpinc_auvii_ale		
	FA13 FA4	
anma		
gpmc_oen		
	FA29 ► FA37	
gpmc_ad[15:0]	Address (LSB)	Data IN Data IN
gpmc_wait[x]		

A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.

B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.

C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.

Figure 7-26. GPMC and Multiplexed NOR Flash—Asynchronous Read—Single Word

Texas

NSTRUMENTS

gpmc_fclk	
gpmc_clk	
gpmc_csn[x]	FA1
gpmc_a[27:17]	FA9 Address (MSB)
	FA10
gpmc_be0n_cle	FA0
gpmc_be1n	► FA10
gpmc_advn_ale	FA12 FA27
gpmc_wen	FA25
gpmc_ad[15:0]	Valid Address (LSB) X Data OUT
gpmc_wait[x]	
A. In gpr	nc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.

Figure 7-27. GPMC and Multiplexed NOR Flash—Asynchronous Write—Single Word

7.7.1.3 GPMC and NAND Flash—Asynchronous Mode

Table 7-30 and Table 7-31 assume testing over the recommended operating conditions and electrical characteristic conditions shown in Table 7-29 (see Figure 7-28 through Figure 7-31).

Table 7-29. GPMC and NAND Flash Timing Conditions—Asynchronous Mode

	PARAMETER	MIN	TYP MAX	UNIT	
Input Condition	ons				
t _R	Input signal rise time	1	5	ns	
t _F	Input signal fall time	1	5	ns	
Output Condi	Dutput Condition				
C _{LOAD}	Output load capacitance	3	30	pF	

Table 7-30. GPMC and NAND Flash Internal Timing Requirements—Asynchronous Mode⁽¹⁾⁽²⁾

NO		OPP100	OPP50	
NO.		MIN MAX	MIN MAX	UNIT
GNFI1	Delay time, output data gpmc_ad[15:0] generation from internal functional clock GPMC_FCLK ⁽³⁾	6.5	6.5	ns
GNFI2	Delay time, input data gpmc_ad[15:0] capture from internal functional clock GPMC_FCLK $^{\!(3)}$	4.0	4.0	ns
GNFI3	Delay time, output chip select gpmc_csn[x] generation from internal functional clock GPMC_FCLK $^{(3)}$	6.5	6.5	ns
GNFI4	Delay time, output address valid and address latch enable gpmc_advn_ale generation from internal functional clock GPMC_FCLK ⁽³⁾	6.5	6.5	ns
GNFI5	Delay time, output lower-byte enable and command latch enable gpmc_be0n_cle generation from internal functional clock GPMC_FCLK ⁽³⁾	6.5	6.5	ns
GNFI6	Delay time, output enable gpmc_oen generation from internal functional clock GPMC_FCLK $^{\!(3)}$	6.5	6.5	ns
GNFI7	Delay time, output write enable gpmc_wen generation from internal functional clock ${\rm GPMC_FCLK^{(3)}}$	6.5	6.5	ns
GNFI8	Skew, functional clock GPMC_FCLK ⁽³⁾	100	100	ps

(1) Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.

(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.

(3) GPMC_FCLK is general-purpose memory controller internal functional clock.

Table 7-31. GPMC and NAND Flash Timing Requirements—Asynchronous Mode

NO			OPP1	00	OPP	50	
NO.			MIN	MAX	MIN	MAX	UNIT
GNF12 ⁽¹⁾	t _{acc(d)}	Access time, input data gpmc_ad[15:0]		J ⁽²⁾		յ ⁽²⁾	ns

(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.

(2) $J = AccessTime \times (TimeParaGranularity + 1) \times GPMC_FCLK^{(3)}$

(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.

RUMENTS

NO			OPF	P100	OPP	50	
NO.		PARAMETER	MIN	MAX	MIN	MAX	UNIT
	t _{R(d)}	Rise time, output data gpmc_ad[15:0]		2		2	ns
	t _{F(d)}	Fall time, output data gpmc_ad[15:0]		2		2	ns
GNF0	t _{w(wenV)}	Pulse duration, output write enable gpmc_wen valid	A ⁽¹⁾		A ⁽¹⁾		ns
GNF1	t _{d(csnV-wenV)}	Delay time, output chip select gpmc_csn[x] ⁽¹³⁾ valid to output write enable gpmc_wen valid	B ⁽²⁾ – 0.2	B ⁽²⁾ + 2.0	B ⁽²⁾ – 5	B ⁽²⁾ + 5	ns
GNF2	t _{w(cleH-wen∨)}	Delay time, output lower-byte enable and command latch enable gpmc_be0n_cle high to output write enable gpmc_wen valid	$C^{(3)} - 0.2$	C ⁽³⁾ + 2.0	C ⁽³⁾ – 5	C ⁽³⁾ + 5	ns
GNF3	t _{w(wenV-dV)}	Delay time, output data gpmc_ad[15:0] valid to output write enable gpmc_wen valid	D ⁽⁴⁾ – 0.2	D ⁽⁴⁾ + 2.0	D ⁽⁴⁾ – 5	D ⁽⁴⁾ + 5	ns
GNF4	t _{w(wenIV-dIV)}	Delay time, output write enable gpmc_wen invalid to output data gpmc_ad[15:0] invalid	E ⁽⁵⁾ – 0.2	E ⁽⁵⁾ + 5	E ⁽⁵⁾ – 5	E ⁽⁵⁾ + 5	ns
GNF5	t _{w(wenIV-cleIV)}	Delay time, output write enable gpmc_wen invalid to output lower-byte enable and command latch enable gpmc_be0n_cle invalid	F ⁽⁶⁾ – 0.2	F ⁽⁶⁾ + 2.0	F ⁽⁶⁾ – 5	F ⁽⁶⁾ + 5	ns
GNF6	t _{w(wenIV-csnIV)}	Delay time, output write enable gpmc_wen invalid to output chip select gpmc_csn[x] ⁽¹³⁾ invalid	G ⁽⁷⁾ – 0.2	G ⁽⁷⁾ + 2.0	G ⁽⁷⁾ – 5	G ⁽⁷⁾ + 5	ns
GNF7	t _{w(aleH-wenV)}	Delay time, output address valid and address latch enable gpmc_advn_ale high to output write enable gpmc_wen valid	$C^{(3)} - 0.2$	C ⁽³⁾ + 2.0	C ⁽³⁾ – 5	C ⁽³⁾ + 5	ns
GNF8	t _{w(wenIV-aleIV)}	Delay time, output write enable gpmc_wen invalid to output address valid and address latch enable gpmc_advn_ale invalid	F ⁽⁶⁾ – 0.2	F ⁽⁶⁾ + 2.0	F ⁽⁶⁾ – 5	F ⁽⁶⁾ + 5	ns
GNF9	t _{c(wen)}	Cycle time, write		H ⁽⁸⁾		H ⁽⁸⁾	ns
GNF10	t _{d(csnV-oenV)}	Delay time, output chip select gpmc_csn[x] ⁽¹³⁾ valid to output enable gpmc_oen valid	l ⁽⁹⁾ – 0.2	l ⁽⁹⁾ + 2.0	l ⁽⁹⁾ – 5	l ⁽⁹⁾ + 5	ns
GNF13	t _{w(oenV)}	Pulse duration, output enable gpmc_oen valid		K ⁽¹⁰⁾		K ⁽¹⁰⁾	ns
GNF14	t _{c(oen)}	Cycle time, read	L ⁽¹¹⁾		L ⁽¹¹⁾		ns
GNF15	t _{w(oenIV} -csnIV)	Delay time, output enable gpmc_oen invalid to output chip select gpmc_csn[x] ⁽¹³⁾ invalid	$M^{(12)} - 0.2$	M ⁽¹²⁾ + 2.0	M ⁽¹²⁾ – 5	M ⁽¹²⁾ + 5	ns

Table 7-32. GPMC and NAND Flash Switching Characteristics—Asynchronous Mode

(1) A = (WEOffTime – WEOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK⁽¹⁴⁾

(2) B = ((WEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK⁽¹⁴⁾

(3) C = ((WEOnTime - ADVOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - ADVExtraDelay)) × GPMC_FCLK⁽¹⁴⁾

(4) D = (WEOnTime × (TimeParaGranularity + 1) + 0.5 × WEExtraDelay) × GPMC_FCLK⁽¹⁴⁾

(5) E = ((WrCycleTime – WEOffTime) × (TimeParaGranularity + 1) – 0.5 × WEExtraDelay) × GPMC_FCLK⁽¹⁴⁾

- (6) F = ((ADVWrOffTime WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay WEExtraDelay)) × GPMC_FCLK⁽¹⁴⁾
- (7) G = ((CSWrOffTime WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay WEExtraDelay)) × GPMC_FCLK⁽¹⁴⁾
- (8) H = WrCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK⁽¹⁴⁾

(9) I = ((OEOnTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay – CSExtraDelay)) × GPMC_FCLK⁽¹⁴⁾

(10) K = (OEOffTime – OEOnTime) × (1 + TimeParaGranularity) × GPMC_FCLK⁽¹⁴⁾

(11) L = RdCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK⁽¹⁴⁾

(12) $M = ((CSRdOffTime - OEOffTime) \times (TimeParaGranularity + 1) + 0.5 \times (CSExtraDelay - OEExtraDelay)) \times GPMC_FCLK^{(14)}$

(13) In $gpmc_csn[x]$, x is equal to 0, 1, 2, 3, 4, or 5.

(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.

AM3358-EP

SLUSC35B-APRIL 2015-REVISED APRIL 2019

TEXAS INSTRUMENTS

www.ti.com

Figure 7-29. GPMC and NAND Flash—Address Latch Cycle

AM3358-EP

WWW.ti.com GPMC_FCLK GNF12 GNF10 GNF15 GNF15 GNF14 gpmc_advn_ale gpmc_oen gpmc_dl[15:0] GNF13 GNF14 GN

(1) GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active functional clock edge. GNF12 value must be stored inside AccessTime register bits field.

- (2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
- (3) In $gpmc_csn[x]$, x is equal to 0, 1, 2, 3, 4, or 5. In $gpmc_wait[x]$, x is equal to 0 or 1.

(1) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.

TRUMENTS

Figure 7-31. GPMC and NAND Flash—Data Write Cycle

7.7.2 mDDR(LPDDR), DDR2, DDR3, DDR3L Memory Interface

The device has a dedicated interface to mDDR(LPDDR), DDR2, DDR3, and DDR3L SDRAM. It supports JEDEC standard compliant mDDR(LPDDR), DDR2, DDR3, and DDR3L SDRAM devices with a 16-bit data path to external SDRAM memory.

For more details on the mDDR(LPDDR), DDR2, DDR3, and DDR3L memory interface, see the EMIF section of the *AM335x and AMIC110 Sitara Processors Technical Reference Manual*.

7.7.2.1 mDDR (LPDDR) Routing Guidelines

It is common to find industry references to mobile double data rate (mDDR) when discussing JEDEC defined low-power double-data rate (LPDDR) memory devices. The following guidelines use LPDDR when referencing JEDEC defined low-power double-data rate memory devices.

7.7.2.1.1 Board Designs

TI only supports board designs that follow the guidelines outlined in this document. The switching characteristics and the timing diagram for the LPDDR memory interface are shown in Table 7-33 and Figure 7-32.

Table 7-33. Switching Characteristics for LPDDR Memory Interface

NO.	PARAMETER		MIN	MAX	UNIT
1	$t_{c(DDR_CK)} \ t_{c(DDR_CKn)}$	Cycle time, DDR_CK and DDR_CKn	5	(1)	ns

(1) The JEDEC JESD209B specification only defines the maximum clock period for LPDDR333 and faster speed bin LPDDR memory devices. To determine the maximum clock period, see the respective LPDDR memory data sheet.

Figure 7-32. LPDDR Memory Interface Clock Timing

7.7.2.1.2 LPDDR Interface

This section provides the timing specification for the LPDDR interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable LPDDR memory system without the need for a complex timing closure process. For more information regarding the guidelines for using this LPDDR specification, see *Understanding TI's PCB Routing Rule-Based DDR Timing Specification*. This application report provides generic guidelines and approach. All the specifications provided in the data manual take precedence over the generic guidelines and must be adhered to for a reliable LPDDR interface operation.

7.7.2.1.2.1 LPDDR Interface Schematic

Figure 7-33 shows the schematic connections for 16-bit interface on the AM3358-EP device using one x16 LPDDR device. The AM3358-EP LPDDR memory interface only supports 16-bit-wide mode of operation. The AM3358-EP device can only source one load connected to the DQS[x] and DQ[x] net class signals and one load connected to the CK and ADDR_CTRL net class signals. For more information related to net classes, see Section 7.7.2.1.2.8.

-U	Texas Instruments	
www.t	i.com	

AM335x		16-Bit LPDDR Device
AM335x DDR_D0 DDR_D7 DDR_DQM0 DDR_DQS0 DDR_DQSn0 DDR_D8 DDR_D15 DDR_DQM1	• NC ^(A)	Device DQ0 DQ7 LDM LDQS DQ8 DQ15 UDM
DDR_DQS1 DDR_DQSn1 DDR_ODT	— NC ^(A) — NC	UDQS
DDR_BA0 DDR_BA1 DDR_BA2	 ─_ NC	BA0 BA1
DDR_A0 DDR_A15 DDR_CSn0		A0 A15 CS
DDR_CASn DDR_RASn DDR_WEn DDR_CKE DDR_CK DDR_CKn	- T - T - T - T - T - T - T	CAS RAS WE CKE CK CK
DDR_VREF	— NC	
DDR_RESETn DDR_VTP	NC 49.9 Ω (+1% - 20 mW)	

- A. Enable internal weak pulldown on these pins. For details, see the EMIF section of the AM335x and AMIC110 Sitara Processors Technical Reference Manual.
- B. For all the termination requirements, see Section 7.7.2.1.2.9.

Figure 7-33. 16-Bit LPDDR Interface Using One 16-Bit LPDDR Device

7.7.2.1.2.2 Compatible JEDEC LPDDR Devices

Table 7-34 shows the parameters of the JEDEC LPDDR devices that are compatible with this interface. Generally, the LPDDR interface is compatible with x16 LPDDR400 speed grade LPDDR devices.

Table 7-34. Compatible JEDEC LPDDR Devices (Per Interface)⁽¹⁾

NO.	NO. PARAMETER		MAX	UNIT
1	JEDEC LPDDR device speed grade	LPDDR400		
2	JEDEC LPDDR device bit width	x16	x16	Bits
3	JEDEC LPDDR device count		1	Devices
4	JEDEC LPDDR device terminal count		60	Terminals

(1) If the LPDDR interface is operated with a clock frequency less than 200 MHz, lower-speed grade LPDDR devices may be used if the minimum clock period specified for the LPDDR device is less than or equal to the minimum clock period selected for the AM3358-EP LPDDR interface.

7.7.2.1.2.3 PCB Stackup

The minimum stackup required for routing the AM3358-EP device is a 4-layer stackup as shown in Table 7-35. Additional layers may be added to the PCB stackup to accommodate other circuitry, enhance signal integrity and electromagnetic interference performance, or to reduce the size of the PCB footprint.

LAYER	TYPE	DESCRIPTION
1	Signal	Top signal routing
2	Plane	Ground
3	Plane	Split Power Plane
4	Signal	Bottom signal routing

Table 7-35. Minimum PCB Stackup(1)

(1) All signals that have critical signal integrity requirements should be routed first on layer 1. It may not be possible to route all of these signals on layer 1, therefore requiring routing of some signals on layer 4. When this is done, the signal routes on layer 4 must not cross splits in the power plane.

Complete stackup specifications are provided in Table 7-36.

NO.	PARAMETER	MIN	ТҮР	MAX	UNIT
1	PCB routing and plane layers	4			
2	Signal routing layers	2			
3	Full ground layers under LPDDR routing region	1			
4	Number of ground plane cuts allowed within LPDDR routing region			0	
5	Full VDDS_DDR power reference layers under LPDDR routing region	1			
6	Number of layers between LPDDR routing layer and reference ground plane			0	
7	PCB routing feature size		4		mils
8	PCB trace width, w		4		mils
9	PCB BGA escape via pad size ⁽²⁾		18	20	mils
10	PCB BGA escape via hole size ⁽²⁾		10		mils
11	Single-ended impedance, Zo ⁽³⁾		50	75	Ω
12	Impedance control ⁽⁴⁾⁽⁵⁾	Zo-5	Zo	Zo+5	Ω

(1) For the LPDDR device BGA pad size, see the LPDDR device manufacturer documentation.

(2) A 20-10 via may be used if enough power routing resources are available. An 18-10 via allows for more flexible power routing to the AM3358-EP device.

(3) Zo is the nominal singled-ended impedance selected for the PCB.

(4) This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo defined by the single-ended impedance parameter.

(5) Tighter impedance control is required to ensure flight time skew is minimal.

7.7.2.1.2.4 Placement

Figure 7-34 shows the required placement for the LPDDR devices. The dimensions for this figure are defined in Table 7-37. The placement does not restrict the side of the PCB on which the devices are mounted. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing space. For single-memory LPDDR systems, the second LPDDR device is omitted from the placement.

Figure 7-34. AM3358-EP Device and LPDDR Device Placement

Table 7-37. Placement Specifications⁽¹⁾

NO.	PARAMETER	MIN MAX	UNIT
1	X ⁽²⁾⁽³⁾	1750	mils
2	Y ⁽²⁾⁽³⁾	1280	mils
3	Y Offset ⁽²⁾⁽³⁾⁽⁴⁾	650	mils
4	Clearance from non-LPDDR signal to LPDDR keepout region ⁽⁵⁾⁽⁶⁾	4	w

(1) LPDDR keepout region to encompass entire LPDDR routing area.

(2) For dimension definitions, see Figure 7-34.

(3) Measurements from center of the AM3358-EP device to center of LPDDR device.

(4) For single-memory systems, TI recommends that Y offset be as small as possible.

(5) w is defined as the signal trace width.

(6) Non-LPDDR signals allowed within LPDDR keepout region provided they are separated from LPDDR routing layers by a ground plane.

7.7.2.1.2.5 LPDDR Keepout Region

The region of the PCB used for the LPDDR circuitry must be isolated from other signals. The LPDDR keepout region is defined for this purpose and is shown in Figure 7-35. This region should encompass all LPDDR circuitry and the region size varies with component placement and LPDDR routing. Additional clearances required for the keepout region are shown in Table 7-37. Non-LPDDR signals must not be routed on the same signal layer as LPDDR signals within the LPDDR keepout region. Non-LPDDR signals may be routed in the region provided they are routed on layers separated from LPDDR signal layers by a ground layer. No breaks should be allowed in the reference ground or VDDS_DDR power plane in this region. In addition, the VDDS_DDR power plane should cover the entire keepout region.

Figure 7-35. LPDDR Keepout Region

7.7.2.1.2.6 Bulk Bypass Capacitors

Bulk bypass capacitors are required for moderate speed bypassing of the LPDDR and other circuitry. Table 7-38 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this table only covers the bypass needs of the AM3358-EP LPDDR interface and LPDDR devices. Additional bulk bypass capacitance may be needed for other circuitry.

Table 7-38. Bulk Bypass Capacitors⁽¹⁾

NO.	PARAMETER	MIN	MAX	UNIT
1	AM3358-EP VDDS_DDR bulk bypass capacitor count	1		Devices
2	AM3358-EP VDDS_DDR bulk bypass total capacitance	10		μF
3	LPDDR#1 bulk bypass capacitor count	1		Devices
4	LPDDR#1 bulk bypass total capacitance	10		μF
5	LPDDR#2 bulk bypass capacitor count ⁽²⁾	1		Devices
6	LPDDR#2 bulk bypass total capacitance ⁽²⁾	10		μF

(1) These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed (HS) bypass capacitors.

(2) Only used when two LPDDR devices are used.

7.7.2.1.2.7 High-Speed Bypass Capacitors

High-speed (HS) bypass capacitors are critical for proper LPDDR interface operation. It is particularly important to minimize the parasitic series inductance of the HS bypass capacitors, the AM3358-EP device LPDDR power, and the AM3358-EP device LPDDR ground connections. Table 7-39 contains the specification for the HS bypass capacitors as well as for the power connections on the PCB.

Table 7-39. High-Speed Bypass Capacitors

NO.	PARAMETER	MIN	AX	UNIT
1	HS bypass capacitor package size ⁽¹⁾	C	0402	10 mils
2	Distance from HS bypass capacitor to device being bypassed		250	mils
3	Number of connection vias for each HS bypass capacitor ⁽²⁾	2		Vias
4	Trace length from bypass capacitor contact to connection via		30	mils
5	Number of connection vias for each AM3358-EP VDDS_DDR and VSS terminal	1		Vias
6	Trace length from AM3358-EP VDDS_DDR and VSS terminal to connection via		35	mils
7	Number of connection vias for each LPDDR device power and ground terminal	1		Vias
8	Trace length from LPDDR device power and ground terminal to connection via		35	mils
9	AM3358-EP VDDS_DDR HS bypass capacitor count ⁽³⁾	10		Devices
10	AM3358-EP VDDS_DDR HS bypass capacitor total capacitance	0.6		μF
11	LPDDR device HS bypass capacitor count ⁽³⁾⁽⁴⁾	8		Devices
12	LPDDR device HS bypass capacitor total capacitance ⁽⁴⁾	0.4		μF

(1) LxW, 10-mil units; for example, a 0402 is a 40x20-mil surface-mount capacitor.

(2) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.

(3) These devices should be placed as close as possible to the device being bypassed.

(4) Per LPDDR device.

7.7.2.1.2.8 Net Classes

Table 7-40 lists the clock net classes for the LPDDR interface. Table 7-41 lists the signal net classes, and associated clock net classes, for the signals in the LPDDR interface. These net classes are used for the termination and routing rules that follow.

CLOCK NET CLASS	AM3358-EP PIN NAMES
СК	DDR_CK and DDR_CKn
DQS0	DDR_DQS0
DQS1	DDR_DQS1

Table 7-40. Clock Net Class Definitions

Table 7-41. Signal Net Class Definitions

SIGNAL NET CLASS	ASSOCIATED CLOCK NET CLASS	AM3358-EP PIN NAMES
ADDR_CTRL	СК	DDR_BA[1:0], DDR_A[15:0], DDR_CSn0, DDR_CASn, DDR_RASn, DDR_WEn, DDR_CKE
DQ0	DQS0	DDR_D[7:0], DDR_DQM0
DQ1	DQS1	DDR_D[15:8], DDR_DQM1

7.7.2.1.2.9 LPDDR Signal Termination

There is no specific need for adding terminations on the LPDDR interface. However, system designers may evaluate the need for serial terminators for EMI and overshoot reduction. Placement of serial terminations for DQS[x] and DQ[x] net class signals should be determined based on PCB analysis. Placement of serial terminations for ADDR_CTRL net class signals should be close to the AM3358-EP device. Table 7-42 shows the specifications for the serial terminators in such cases.

Table 7-42	. LPDDR	Signal	Terminations
------------	---------	--------	--------------

NO.	PARAMETER	MIN	TYP	MAX	UNIT
1	CK net class ⁽¹⁾	0	22	Zo ⁽²⁾	Ω
2	ADDR_CTRL net class ⁽¹⁾⁽³⁾⁽⁴⁾	0	22	Zo ⁽²⁾	Ω
3	DQS0, DQS1, DQ0, and DQ1 net classes	0	22	Zo ⁽²⁾	Ω

(1) Only series termination is permitted.

(2) Zo is the LPDDR PCB trace characteristic impedance.

(3) Series termination values larger than typical only recommended to address EMI issues.

(4) Series termination values should be uniform across net class.

7.7.2.1.3 LPDDR CK and ADDR_CTRL Routing

Figure 7-36 shows the topology of the routing for the CK and ADDR_CTRL net classes. The length of signal path AB and AC should be minimized with emphasis to minimize lengths C and D such that length A is the majority of the total length of signal path AB and AC.

Figure 7-36. CK and ADDR_CTRL Routing and Topology

Table 7-43.	CK and ADDR	_CTRL Routing	Specification ⁽¹⁾⁽²⁾
-------------	-------------	---------------	---------------------------------

NO.	PARAMETER	MIN	TYP	MAX	UNIT
1	Center-to-center CK spacing			2w	
2	CK differential pair skew length mismatch ⁽²⁾⁽³⁾			25	mils
3	CK B-to-CK C skew length mismatch			25	mils
4	Center-to-center CK to other LPDDR trace spacing ⁽⁴⁾	4w			
5	CK and ADDR_CTRL nominal trace length ⁽⁵⁾	CACLM-50	CACLM	CACLM+50	mils
6	ADDR_CTRL-to-CK skew length mismatch			100	mils
7	ADDR_CTRL-to-ADDR_CTRL skew length mismatch			100	mils
8	Center-to-center ADDR_CTRL to other LPDDR trace spacing ⁽⁴⁾	4w			
9	Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing ⁽⁴⁾	3w			
10	ADDR_CTRL A-to-B and ADDR_CTRL A-to-C skew length mismatch ⁽²⁾			100	mils
11	ADDR_CTRL B-to-C skew length mismatch			100	mils

(1) CK represents the clock net class, and ADDR_CTRL represents the address and control signal net class.

(2) Series terminator, if used, should be located closest to the AM3358-EP device.

(3) Differential impedance should be Zo x 2, where Zo is the single-ended impedance defined in Table 7-36.

(4) Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion.

(5) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.

Figure 7-37 shows the topology and routing for the DQS[x] and DQ[x] net classes; the routes are point to point. Skew matching across bytes is not needed nor recommended.

Figure 7-37. DQS[x] and DQ[x] Routing and Topology

Table 7-44.	DQS[x]	and DQ	x1 Routina	Specification ⁽¹⁾
				opcomoution

NO.	PARAMETER	MIN	TYP	MAX	UNIT
1	Center-to-center DQS[x] spacing			2w	
2	Center-to-center DDR_DQS[x] to other LPDDR trace spacing ⁽²⁾	4w			
3	DQS[x] and DQ[x] nominal trace length ⁽³⁾	DQLM-50	DQLM	DQLM+50	mils
4	DQ[x]-to-DQS[x] skew length mismatch ⁽³⁾			100	mils
5	DQ[x]-to-DQ[x] skew length mismatch ⁽³⁾			100	mils
6	Center-to-center DQ[x] to other LPDDR trace spacing ⁽²⁾⁽⁴⁾	4w			
7	Center-to-center DQ[x] to other DQ[x] trace spacing ⁽²⁾⁽⁵⁾	Зw			

(1) DQS[x] represents the DQS0 and DQS1 clock net classes, and DQ[x] represents the DQ0 and DQ1 signal net classes.

(2) Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion.

(3) There is no requirement for skew matching between data bytes; that is, from net classes DQS0 and DQ0 to net classes DQS1 and DQ1.

(4) Signals from one DQ net class should be considered other LPDDR traces to another DQ net class.

(5) DQLM is the longest Manhattan distance of each of the DQS[x] and DQ[x] net classes.

7.7.2.2 DDR2 Routing Guidelines

7.7.2.2.1 Board Designs

TI only supports board designs that follow the guidelines outlined in this document. Table 7-45 and Figure 7-38 show the switching characteristics and timing diagram for the DDR2 memory interface.

Table 7-45. Switching Characteristics for DDR2 Memory Interface

NO.				UNIT
1	$t_{c(DDR_CK)}$ $t_{c(DDR_CKn)}$	Cycle time, DDR_CK and DDR_CKn	8 ⁽¹⁾	ns

(1) The JEDEC JESD79-2F specification defines the maximum clock period of 8 ns for all standard-speed bin DDR2 memory devices. Therefore, all standard-speed bin DDR2 memory devices are required to operate at 125 MHz.

Figure 7-38. DDR2 Memory Interface Clock Timing

7.7.2.2.2 DDR2 Interface

This section provides the timing specification for the DDR2 interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR2 memory system without the need for a complex timing closure process. For more information regarding the guidelines for using this DDR2 specification, see *Understanding TI's PCB Routing Rule-Based DDR Timing Specification*. This application report provides generic guidelines and approach. All the specifications provided in the data manual take precedence over the generic guidelines and must be adhered to for a reliable DDR2 interface operation.

7.7.2.2.2.1 DDR2 Interface Schematic

Figure 7-39 shows the schematic connections for 16-bit interface on the AM3358-EP device using one x16 DDR2 device and Figure 7-40 shows the schematic connections for 16-bit interface on the AM3358-EP device using two x8 DDR2 devices. The AM3358-EP DDR2 memory interface only supports 16-bit-wide mode of operation. The AM3358-EP device can only source one load connected to the DQS[x] and DQ[x] net class signals and two loads connected to the CK and ADDR_CTRL net class signals. For more information related to net classes, see Section 7.7.2.2.2.8.

RUMENTS

- A. VDDS_DDR is the power supply for the DDR2 memories and the AM3358-EP DDR2 interface.
- B. One of these capacitors can be eliminated if the divider and its capacitors are placed near a DDR_VREF pin.
- C. For all the termination requirements, see Section 7.7.2.2.2.9.

Figure 7-39. 16-Bit DDR2 Interface Using One 16-Bit DDR2 Device

www.ti.com

- A. VDDS_DDR is the power supply for the DDR2 memories and the AM3358-EP DDR2 interface.
- B. One of these capacitors can be eliminated if the divider and its capacitors are placed near a DDR_VREF pin.
- C. For all the termination requirements, see Section 7.7.2.2.2.9.

Figure 7-40. 16-Bit DDR2 Interface Using Two 8-Bit DDR2 Devices

7.7.2.2.2.2 Compatible JEDEC DDR2 Devices

Table 7-46 shows the parameters of the JEDEC DDR2 devices that are compatible with this interface. Generally, the DDR2 interface is compatible with x16 or x8 DDR2-533 speed grade DDR2 devices.

Table 7-46.	Compatible	JEDEC DDR	2 Devices	(Per	Interface)(1)
-------------	------------	-----------	-----------	------	-------------	----

NO.	PARAMETER	MIN	МАХ	UNIT
1	JEDEC DDR2 device speed grade ⁽²⁾	DDR2-533		
2	JEDEC DDR2 device bit width	x8	x16	bits
3	JEDEC DDR2 device count	1	2	devices
4	JEDEC DDR2 device terminal count ⁽³⁾	60	84	terminals

(1) If the DDR2 interface is operated with a clock frequency less than 266 MHz, lower-speed grade DDR2 devices may be used if the minimum clock period specified for the DDR2 device is less than or equal to the minimum clock period selected for the AM3358-EP DDR2 interface.

(2) Higher DDR2 speed grades are supported due to inherent JEDEC DDR2 backward compatibility.

(3) 92-terminal devices are also supported for legacy reasons. New designs will migrate to 84-terminal DDR2 devices. Electrically, the 92and 84-terminal DDR2 devices are the same.

7.7.2.2.2.3 PCB Stackup

The minimum stackup required for routing the AM3358-EP device is a 4-layer stackup as shown in Table 7-47. Additional layers may be added to the PCB stackup to accommodate other circuitry, enhance signal integrity and electromagnetic interference performance, or to reduce the size of the PCB footprint.

LAYER	TYPE	DESCRIPTION
1	Signal	Top signal routing
2	Plane	Ground
3	Plane	Split power plane
4	Signal	Bottom signal routing

Table 7-47. Minimum PCB Stackup(1)

(1) All signals that have critical signal integrity requirements should be routed first on layer 1. It may not be possible to route all of these signals on layer 1, therefore requiring routing of some signals on layer 4. When this is done, the signal routes on layer 4 must not cross splits in the power plane.

Complete stackup specifications are provided in Table 7-48.

	Table 7-48.	PCB	Stackup	Specifications ⁽¹⁾
--	-------------	-----	---------	-------------------------------

NO.	PARAMETER	MIN	ТҮР	MAX	UNIT
1	PCB routing and plane layers	4			
2	Signal routing layers	2			
3	Full ground layers under DDR2 routing region	1			
4	Number of ground plane cuts allowed within DDR2 routing region			0	
5	Full VDDS_DDR power reference layers under DDR2 routing region	1			
6	Number of layers between DDR2 routing layer and reference ground plane			0	
7	PCB routing feature size		4		mils
8	PCB trace width, w		4		mils
9	PCB BGA escape via pad size ⁽²⁾		18	20	mils
10	PCB BGA escape via hole size ⁽²⁾		10		mils
11	Single-ended impedance, Zo ⁽³⁾		50	75	Ω
12	Impedance control ⁽⁴⁾⁽⁵⁾	Zo-5	Zo	Zo+5	Ω

(1) For the DDR2 device BGA pad size, see the DDR2 device manufacturer documentation.

(2) A 20-10 via may be used if enough power routing resources are available. An 18-10 via allows for more flexible power routing to the AM3358-EP device.

(3) Zo is the nominal singled-ended impedance selected for the PCB.

(4) This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo defined by the single-ended impedance parameter.

(5) Tighter impedance control is required to ensure flight time skew is minimal.

7.7.2.2.2.4 Placement

Figure 7-41 shows the required placement for the DDR2 devices. The dimensions for this figure are defined in Table 7-49. The placement does not restrict the side of the PCB on which the devices are mounted. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing space. For single-memory DDR2 systems, the second DDR2 device is omitted from the placement.

Figure 7-41. AM3358-EP Device and DDR2 Device Placement

Table 7-49. Placement Specifications⁽¹⁾

NO.	PARAMETER	MIN MAX	UNIT
1	X ⁽²⁾⁽³⁾	1750	mils
2	Y(2)(3)	1280	mils
3	Y Offset ⁽²⁾⁽³⁾⁽⁴⁾	650	mils
4	Clearance from non-DDR2 signal to DDR2 keepout region ⁽⁵⁾⁽⁶⁾	4	w

(1) DDR2 keepout region to encompass entire DDR2 routing area.

(2) For dimension definitions, see Figure 7-41.

(3) Measurements from center of the AM3358-EP device to center of the DDR2 device.

(4) For single-memory systems, it is recommended that Y offset be as small as possible.

(5) w is defined as the signal trace width.

(6) Non-DDR2 signals allowed within DDR2 keepout region provided they are separated from DDR2 routing layers by a ground plane.

7.7.2.2.2.5 DDR2 Keepout Region

The region of the PCB used for the DDR2 circuitry must be isolated from other signals. The DDR2 keepout region is defined for this purpose and is shown in Figure 7-42. This region should encompass all DDR2 circuitry and the region size varies with component placement and DDR2 routing. Additional clearances required for the keepout region are shown in Table 7-49. Non-DDR2 signals must not be routed on the same signal layer as DDR2 signals within the DDR2 keepout region. Non-DDR2 signals may be routed in the region provided they are routed on layers separated from DDR2 signal layers by a ground layer. No breaks should be allowed in the reference ground or VDDS_DDR power plane in this region. In addition, the VDDS_DDR power plane should cover the entire keepout region.

Figure 7-42. DDR2 Keepout Region

7.7.2.2.2.6 Bulk Bypass Capacitors

Bulk bypass capacitors are required for moderate speed bypassing of the DDR2 and other circuitry. Table 7-50 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this table only covers the bypass needs of the AM3358-EP DDR2 interface and DDR2 devices. Additional bulk bypass capacitance may be needed for other circuitry.

Table 7-50. Bulk Bypass Capacitors⁽¹⁾

NO.	PARAMETER	MIN MAX	UNIT
1	AM3358-EP VDDS_DDR bulk bypass capacitor count	1	devices
2	AM3358-EP VDDS_DDR bulk bypass total capacitance	10	μF
3	DDR2 number 1 bulk bypass capacitor count	1	devices
4	DDR2 number 1 bulk bypass total capacitance	10	μF
5	DDR2 number 2 bulk bypass capacitor count ⁽²⁾	1	devices
6	DDR2 number 2 bulk bypass total capacitance ⁽²⁾	10	μF

(1) These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed (HS) bypass capacitors.

(2) Only used when two DDR2 devices are used.

7.7.2.2.2.7 High-Speed (HS) Bypass Capacitors

HS bypass capacitors are critical for proper DDR2 interface operation. It is particularly important to minimize the parasitic series inductance of the HS bypass capacitors, the AM3358-EP device DDR2 power, and the AM3358-EP device DDR2 ground connections. Table 7-51 contains the specification for the HS bypass capacitors as well as for the power connections on the PCB.

Table 7-51. HS	Bypass	Capacitors
----------------	--------	------------

NO.	PARAMETER	MIN	MAX	UNIT
1	HS bypass capacitor package size ⁽¹⁾		0402	10 mils
2	Distance from HS bypass capacitor to device being bypassed		250	mils
3	Number of connection vias for each HS bypass capacitor ⁽²⁾	2		vias
4	Trace length from bypass capacitor contact to connection via		30	mils
5	Number of connection vias for each AM3358-EP VDDS_DDR and VSS terminal	1		vias
6	Trace length from AM3358-EP VDDS_DDR and VSS terminal to connection via		35	mils
7	Number of connection vias for each DDR2 device power and ground terminal	1		vias
8	Trace length from DDR2 device power and ground terminal to connection via		35	mils
9	AM3358-EP VDDS_DDR HS bypass capacitor count ⁽³⁾	10		devices
10	AM3358-EP VDDS_DDR HS bypass capacitor total capacitance	0.6		μF
11	DDR2 device HS bypass capacitor count ⁽³⁾⁽⁴⁾	8		devices
12	DDR2 device HS bypass capacitor total capacitance ⁽⁴⁾	0.4		μF

(1) LxW, 10-mil units; for example, a 0402 is a 40x20-mil surface-mount capacitor.

(2) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.

(3) These devices should be placed as close as possible to the device being bypassed.

(4) Per DDR2 device.

7.7.2.2.2.8 Net Classes

Table 7-52 lists the clock net classes for the DDR2 interface. Table 7-53 lists the signal net classes, and associated clock net classes, for the signals in the DDR2 interface. These net classes are used for the termination and routing rules that follow.

CLOCK NET CLASS	AM3358-EP PIN NAMES
СК	DDR_CK and DDR_CKn
DQS0	DDR_DQS0 and DDR_DQSn0
DQS1	DDR_DQS1 and DDR_DQSn1

Table 7-52. Clock Net Class Definitions

Table 7-53. Signal Net Class Definitions

SIGNAL NET CLASS	ASSOCIATED CLOCK NET CLASS	AM3358-EP PIN NAMES
ADDR_CTRL	СК	DDR_BA[2:0], DDR_A[15:0], DDR_CSn0, DDR_CASn, DDR_RASn, DDR_WEn, DDR_CKE, DDR_ODT
DQ0	DQS0	DDR_D[7:0], DDR_DQM0
DQ1	DQS1	DDR_D[15:8], DDR_DQM1

7.7.2.2.2.9 DDR2 Signal Termination

Signal terminations are required on the CK and ADDR_CTRL net class signals. Serial terminations should be used on the CK and ADDR_CTRL lines and is the preferred termination scheme. On-device terminations (ODTs) are required on the DQS[x] and DQ[x] net class signals. They should be enabled to ensure signal integrity. Table 7-54 shows the specifications for the series terminators. Placement of serial terminations for ADDR_CTRL net class signals should be close to the AM3358-EP device.

Table 7-54. DDR2 Signal Terminations

NO.	PARAMETER	MIN	TYP	MAX	UNIT
1	CK net class ⁽¹⁾	0		10	Ω
2	ADDR_CTRL net class ⁽¹⁾⁽²⁾⁽³⁾	0	22	Zo ⁽⁴⁾	Ω
3	DQS0, DQS1, DQ0, and DQ1 net classes ⁽⁵⁾	N/A		N/A	Ω

(1) Only series termination is permitted.

(2) Series termination values larger than typical only recommended to address EMI issues.

(3) Series termination values should be uniform across net class.

(4) Zo is the DDR2 PCB trace characteristic impedance.

(5) No external termination resistors are allowed and ODT must be used for these net classes.

If the DDR2 interface is operated at a lower frequency (<200-MHz clock rate), on-device terminations are not specifically required for the DQS[x] and DQ[x] net class signals and serial terminations for the CK and ADDR_CTRL net class signals are not mandatory. System designers may evaluate the need for serial terminators for EMI and overshoot reduction. Placement of serial terminations for DQS[x] and DQ[x] net class signals should be determined based on PCB analysis. Placement of serial terminations for ADDR_CTRL net class signals should be close to the AM3358-EP device. Table 7-55 shows the specifications for the serial terminators in such cases.

Table 7-55. Lower-Frequency DDR2 Signal Terminations

NO.	PARAMETER	MIN	ТҮР	MAX	UNIT
1	CK net class ⁽¹⁾	0	22	Zo ⁽²⁾	Ω
2	ADDR_CTRL net class ⁽¹⁾⁽³⁾⁽⁴⁾	0	22	Zo ⁽²⁾	Ω
3	DQS0, DQS1, DQ0, and DQ1 net classes	0	22	Zo ⁽²⁾	Ω

(1) Only series termination is permitted.

(2) Zo is the DDR2 PCB trace characteristic impedance.

(3) Series termination values larger than typical only recommended to address EMI issues.

(4) Series termination values should be uniform across net class.

7.7.2.2.2.10 DDR_VREF Routing

DDR_VREF is used as a reference by the input buffers of the DDR2 memories as well as the AM3358-EP device. DDR_VREF is intended to be half the DDR2 power supply voltage and should be created using a resistive divider as shown in Figure 7-39 and Figure 7-40. TI does not recommend other methods of creating DDR_VREF. Figure 7-43 shows the layout guidelines for DDR_VREF.

Figure 7-43. DDR_VREF Routing and Topology

7.7.2.2.3 DDR2 CK and ADDR_CTRL Routing

Figure 7-44 shows the topology of the routing for the CK and ADDR_CTRL net classes. The length of signal path AB and AC should be minimized with emphasis to minimize lengths C and D such that length A is the majority of the total length of signal path AB and AC.

Figure 7-44. CK and ADDR_CTRL Routing and Topology

Table I bei elt alla Abbit_eltte Reading opeenioation	Table 7-56.	CK and ADDR	CTRL Routing	Specification ⁽¹⁾⁽²⁾
---	-------------	-------------	--------------	---------------------------------

NO.	PARAMETER	MIN	TYP	MAX	UNIT
1	Center-to-center CK spacing			2w	
2	CK differential pair skew length mismatch ⁽²⁾⁽³⁾			25	mils
3	CK B-to-CK C skew length mismatch			25	mils
4	Center-to-center CK to other DDR2 trace spacing ⁽⁴⁾	4w			
5	CK and ADDR_CTRL nominal trace length ⁽⁵⁾	CACLM-50	CACLM	CACLM+50	mils
6	ADDR_CTRL-to-CK skew length mismatch			100	mils
7	ADDR_CTRL-to-ADDR_CTRL skew length mismatch			100	mils
8	Center-to-center ADDR_CTRL to other DDR2 trace spacing ⁽⁴⁾	4w			
9	Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing ⁽⁴⁾	3w			
10	ADDR_CTRL A-to-B and ADDR_CTRL A-to-C skew length mismatch ⁽²⁾			100	mils
11	ADDR_CTRL B-to-C skew length mismatch			100	mils

(1) CK represents the clock net class, and ADDR_CTRL represents the address and control signal net class.

(2) Series terminator, if used, should be located closest to the AM3358-EP device.

- (3) Differential impedance should be Zo x 2, where Zo is the single-ended impedance defined in Table 7-48.
- (4) Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion.
- (5) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.

Figure 7-45 shows the topology and routing for the DQS[x] and DQ[x] net classes; the routes are point to point. Skew matching across bytes is not needed nor recommended.

Figure 7-45. DQS[x] and DQ[x] Routing and Topology

www.ti.com

RUMENTS

Table 7-57. DQS[x] and DQ[x] Routing Specification⁽¹⁾

NO.	PARAMETER	MIN	TYP	MAX	UNIT
1	Center-to-center DQS[x] spacing			2w	
2	DQS[x] differential pair skew length mismatch ⁽²⁾			25	mils
3	Center-to-center DDR_DQS[x] to other DDR2 trace spacing ⁽³⁾	4w			
4	DQS[x] and DQ[x] nominal trace length ⁽⁴⁾	DQLM-50	DQLM	DQLM+50	mils
5	DQ[x]-to-DQS[x] skew length mismatch ⁽⁴⁾			100	mils
6	DQ[x]-to-DQ[x] skew length mismatch ⁽⁴⁾			100	mils
7	Center-to-center DQ[x] to other DDR2 trace spacing ⁽³⁾⁽⁵⁾	4w			
8	Center-to-center DQ[x] to other DQ[x] trace spacing ⁽³⁾⁽⁶⁾	Зw			

(1) DQS[x] represents the DQS0 and DQS1 clock net classes, and DQ[x] represents the DQ0 and DQ1 signal net classes.

(2) Differential impedance should be Zo x 2, where Zo is the single-ended impedance defined in Table 7-48.

(3) Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion.

(4) There is no requirement for skew matching between data bytes; that is, from net classes DQS0 and DQ0 to net classes DQS1 and DQ1.

(5) Signals from one DQ net class should be considered other DDR2 traces to another DQ net class.

(6) DQLM is the longest Manhattan distance of each of the DQS[x] and DQ[x] net classes.

7.7.2.3 DDR3 and DDR3L Routing Guidelines

NOTE

All references to DDR3 in this section apply to DDR3 and DDR3L devices, unless otherwise noted.

7.7.2.3.1 Board Designs

TI only supports board designs using DDR3 memory that follow the guidelines in this document. The switching characteristics and timing diagram for the DDR3 memory interface are shown in Table 7-58 and Figure 7-46.

Table 7-58. Switching Characteristics for DDR3 Memory Interface

NO.	PARAMETER		MIN	MAX	UNIT
1	$t_{c(DDR_CK)}$ $t_{c(DDR_CKn)}$	Cycle time, DDR_CK and DDR_CKn	2.5	3.3 ⁽¹⁾	ns

(1) The JEDEC JESD79-3F Standard defines the maximum clock period of 3.3 ns for all standard-speed bin DDR3 and DDR3L memory devices. Therefore, all standard-speed bin DDR3 and DDR3L memory devices are required to operate at 303 MHz.

Figure 7-46. DDR3 Memory Interface Clock Timing

7.7.2.3.1.1 DDR3 versus DDR2

This specification only covers AM3358-EP PCB designs that use DDR3 memory. Designs using DDR2 memory should use the DDR2 routing guidleines described in Section 7.7.2.2. While similar, the two memory systems have different requirements. It is currently not possible to design one PCB that meets the requirements of both DDR2 and DDR3.

7.7.2.3.2 DDR3 Device Combinations

Because there are several possible combinations of device counts and single-side or dual-side mounting, Table 7-59 summarizes the supported device configurations.

NUMBER OF DDR3 DEVICES	DDR3 DEVICE WIDTH (BITS)	MIRRORED?	DDR3 EMIF WIDTH (BITS)
1	16	N	16
2	8	Y ⁽¹⁾	16

Table 7-59. Supported DDR3 Device Combinations

(1) Two DDR3 devices are mirrored when one device is placed on the top of the board and the second device is placed on the bottom of the board.

7.7.2.3.3 DDR3 Interface

This section provides the timing specification for the DDR3 interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR3 memory system without the need for a complex timing closure process. For more information regarding the guidelines for using this DDR3 specification, see *Understanding TI's PCB Routing Rule-Based DDR Timing Specification*. This application report provides generic guidelines and approach. All the specifications provided in the data manual take precedence over the generic guidelines and must be adhered to for a reliable DDR3 interface operation.

7.7.2.3.3.1 DDR3 Interface Schematic

The DDR3 interface schematic varies, depending upon the width of the DDR3 devices used. Figure 7-47 shows the schematic connections for 16-bit interface on the AM3358-EP device using one x16 DDR3 device and Figure 7-49 shows the schematic connections for 16-bit interface on the AM3358-EP device using two x8 DDR3 devices. The AM3358-EP DDR3 memory interface only supports 16-bit wide mode of operation. The AM3358-EP device can only source one load connected to the DQS[x] and DQ[x] net class signals and two loads connected to the CK and ADDR_CTRL net class signals. For more information related to net classes, see Section 7.7.2.3.3.8.

Figure 7-47. 16-Bit DDR3 Interface Using One 16-Bit DDR3 Device with V_{TT} Termination

Copyright © 2016, Texas Instruments Incorporated

A. VDDS_DDR is the power supply for the DDR3 memories and the AM3358-EP DDR3 interface.

Figure 7-48. 16-Bit DDR3 Interface Using One 16-Bit DDR3 Device without V_{TT} Termination

7.7.2.3.3.2 Compatible JEDEC DDR3 Devices

Table 7-60 shows the parameters of the JEDEC DDR3 devices that are compatible with this interface.

NO.	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
4		$t_{C(DDR_CK)}$ and $t_{C(DDR_CKn)}$ = 3.3 ns	DDR3-800		
I	JEDEC DDK3 device speed grade	$t_{C(DDR_CK)}$ and $t_{C(DDR_CKn)}$ = 2.5 ns	DDR3-1600		
2	JEDEC DDR3 device bit width		x8	x16	bits
3	JEDEC DDR3 device count ⁽¹⁾		1	2	devices

Table 7-60. Compatible JEDEC DDR3 Devices (Per Interface)

(1) For valid DDR3 device configurations and device counts, see Section 7.7.2.3.3.1, Figure 7-47, and Figure 7-49.

7.7.2.3.3.3 PCB Stackup

The minimum stackup for routing the DDR3 interface is a four-layer stack up as shown in Table 7-61. Additional layers may be added to the PCB stackup to accommodate other circuitry, enhance signal integrity and electromagnetic interference performance, or to reduce the size of the PCB footprint.

LAYER	TYPE	DESCRIPTION
1	Signal	Top signal routing
2	Plane	Ground
3	Plane	Split Power Plane
4	Signal	Bottom signal routing

Table 7-61. Minimum PCB Stackup⁽¹⁾

(1) All signals that have critical signal integrity requirements should be routed first on layer 1. It may not be possible to route all of these signals on layer 1, therefore requiring routing of some signals on layer 4. When this is done, the signal routes on layer 4 must not cross splits in the power plane.

NO.	PARAMETER	MIN	TYP	MAX	UNIT
1	PCB routing and plane layers	4			
2	Signal routing layers	2			
3	Full ground reference layers under DDR3 routing region ⁽²⁾	1			
4	Full VDDS_DDR power reference layers under the DDR3 routing region ⁽²⁾	1			
5	Number of reference plane cuts allowed within DDR3 routing region ⁽³⁾			0	
6	Number of layers between DDR3 routing layer and reference plane ⁽⁴⁾			0	
7	PCB routing feature size		4		mils
8	PCB trace width, w		4		mils
9	PCB BGA escape via pad size ⁽⁵⁾		18	20	mils
10	PCB BGA escape via hole size		10		mils
11	Single-ended impedance, Zo ⁽⁶⁾		50	75	Ω
12	Impedance control ⁽⁷⁾⁽⁸⁾	Zo-5	Zo	Zo+5	Ω

(1) For the DDR3 device BGA pad size, see the DDR3 device manufacturer documentation.

(2) Ground reference layers are preferred over power reference layers. Be sure to include bypass capacitors to accommodate reference layer return current as the trace routes switch routing layers.

(3) No traces should cross reference plane cuts within the DDR3 routing region. High-speed signal traces crossing reference plane cuts create large return current paths which can lead to excessive crosstalk and EMI radiation.

(4) Reference planes are to be directly adjacent to the signal plane to minimize the size of the return current loop.

(5) An 18-mil pad assumes Via Channel is the most economical BGA escape. A 20-mil pad may be used if additional layers are available for power routing. An 18-mil pad is required for minimum layer count escape.

(6) Zo is the nominal singled-ended impedance selected for the PCB.

(7) This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo defined by the single-ended impedance parameter.

(8) Tighter impedance control is required to ensure flight time skew is minimal.

7.7.2.3.3.4 Placement

Figure 7-50 shows the required placement for the AM3358-EP device as well as the DDR3 devices. The dimensions for this figure are defined in Table 7-63. The placement does not restrict the side of the PCB on which the devices are mounted. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing space.

Figure 7-50. Placement Specifications

Table 7-63. Placement Specifications⁽¹⁾

NO.	PARAMETER	MIN MAX	UNIT
1	X1 ⁽²⁾⁽³⁾⁽⁴⁾	1000	mils
2	X2 ⁽²⁾⁽³⁾	600	mils
3	Y Offset ⁽²⁾⁽³⁾⁽⁴⁾	1500	mils
4	Clearance from non-DDR3 signal to DDR3 keepout region ⁽⁵⁾⁽⁶⁾	4	w

(1) DDR3 keepout region to encompass entire DDR3 routing area.

(2) For dimension definitions, see Figure 7-50.

(3) Measurements from center of the AM3358-EP device to center of the DDR3 device.

(4) Minimizing X1 and Y improves timing margins.

(5) w is defined as the signal trace width.

(6) Non-DDR3 signals allowed within DDR3 keepout region provided they are separated from DDR3 routing layers by a ground plane.

7.7.2.3.3.5 DDR3 Keepout Region

The region of the PCB used for DDR3 circuitry must be isolated from other signals. The DDR3 keepout region is defined for this purpose and is shown in Figure 7-51. This region should encompass all DDR3 circuitry and the region size varies with component placement and DDR3 routing. Additional clearances required for the keepout region are shown in Table 7-63. Non-DDR3 signals must not be routed on the same signal layer as DDR3 signals within the DDR3 keepout region. Non-DDR3 signals may be routed in the region provided they are routed on layers separated from DDR3 signal layers by a ground layer. No breaks should be allowed in the reference ground or VDDS_DDR power plane in this region. In addition, the VDDS_DDR power plane should cover the entire keepout region.

Figure 7-51. DDR3 Keepout Region

7.7.2.3.3.6 Bulk Bypass Capacitors

Bulk bypass capacitors are required for moderate speed bypassing of the DDR3 and other circuitry. Table 7-64 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this table only covers the bypass needs of the AM3358-EP DDR3 interface and DDR3 devices. Additional bulk bypass capacitance may be needed for other circuitry.

NO.	PARAMETER	MIN MAX	UNIT
1	AM3358-EP VDDS_DDR bulk bypass capacitor count	2	devices
2	AM3358-EP VDDS_DDR bulk bypass total capacitance	20	μF
3	DDR3 number 1 bulk bypass capacitor count	2	devices
4	DDR3 number 1 bulk bypass total capacitance	20	μF
5	DDR3 number 2 bulk bypass capacitor count ⁽²⁾	2	devices
6	DDR3 number 2 bulk bypass total capacitance ⁽²⁾	20	μF

Table 7-64. Bulk Bypass Capacitors⁽¹⁾

(1) These devices should be placed near the devices they are bypassing, but preference should be given to the placement of the high-speed (HS) bypass capacitors and DDR3 signal routing.

(2) Only used when two DDR3 devices are used.

7.7.2.3.3.7 High-Speed Bypass Capacitors

High-speed (HS) bypass capacitors are critical for proper DDR3 interface operation. It is particularly important to minimize the parasitic series inductance of the HS bypass capacitors, the AM3358-EP device DDR3 power, and the AM3358-EP device DDR3 ground connections. Table 7-65 contains the specification for the HS bypass capacitors as well as for the power connections on the PCB. Generally speaking, it is good to:

- Fit as many HS bypass capacitors as possible.
- Minimize the distance from the bypass capacitor to the power terminals being bypassed.
- Use the smallest physical sized capacitors possible with the highest capacitance readily available.
- Connect the bypass capacitor pads to their vias using the widest traces possible and using the largest hole size via possible.
- Minimize via sharing. Note the limits on via sharing shown in Table 7-65.

NO.	PARAMETER	MIN	ТҮР	MAX	UNIT
1	HS bypass capacitor package size ⁽¹⁾		0201	0402	10 mils
2	Distance, HS bypass capacitor to AM3358-EP VDDS_DDR and VSS terminal being bypassed $^{(2)(3)(4)}$			400	mils
3	AM3358-EP VDDS_DDR HS bypass capacitor count	20			devices
4	AM3358-EP VDDS_DDR HS bypass capacitor total capacitance	1			μF
5	Trace length from AM3358-EP VDDS_DDR and VSS terminal to connection $via^{(2)}$		35	70	mils
6	Distance, HS bypass capacitor to DDR3 device being bypassed ⁽⁵⁾			150	mils
7	DDR3 device HS bypass capacitor count ⁽⁶⁾	12			devices
8	DDR3 device HS bypass capacitor total capacitance ⁽⁶⁾	0.85			μF
9	Number of connection vias for each HS bypass capacitor ⁽⁷⁾⁽⁸⁾	2			vias
10	Trace length from bypass capacitor connect to connection via ⁽²⁾⁽⁸⁾		35	100	mils
11	Number of connection vias for each DDR3 device power and ground terminal $^{\left(9\right)}$	1			vias
12	Trace length from DDR3 device power and ground terminal to connection $via^{(2)(7)}$		35	60	mils

Table 7-65. High-Speed Bypass Capacitors

(1) LxW, 10-mil units; for example, a 0402 is a 40x20-mil surface-mount capacitor.

(2) Closer and shorter is better.

- (3) Measured from the nearest AM3358-EP VDDS_DDR and ground terminal to the center of the capacitor package.
- (4) Three of these capacitors should be located underneath the AM3358-EP device, between the cluster of VDDS_DDR and ground terminals, between the DDR3 interfaces on the package.
- (5) Measured from the DDR3 device power and ground terminal to the center of the capacitor package.
- (6) Per DDR3 device.
- (7) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board. No sharing of vias is permitted on the same side of the board.
- (8) An HS bypass capacitor may share a via with a DDR3 device mounted on the same side of the PCB. A wide trace should be used for the connection and the length from the capacitor pad to the DDR3 device pad should be less than 150 mils.
- (9) Up to two pairs of DDR3 power and ground terminals may share a via.

7.7.2.3.3.7.1 Return Current Bypass Capacitors

Use additional bypass capacitors if the return current reference plane changes due to DDR3 signals hopping from one signal layer to another. The bypass capacitor here provides a path for the return current to hop planes along with the signal. As many of these return current bypass capacitors should be used as possible. Because these are returns for signal current, the signal via size may be used for these capacitors.

7.7.2.3.3.8 Net Classes

Table 7-66 lists the clock net classes for the DDR3 interface. Table 7-67 lists the signal net classes, and associated clock net classes, for signals in the DDR3 interface. These net classes are used for the termination and routing rules that follow.

CLOCK NET CLASS		AM3358-EP PIN NAMES
	СК	DDR_CK and DDR_CKn
	DQS0	DDR_DQS0 and DDR_DQSn0
	DQS1	DDR_DQS1 and DDR_DQSn1

Table 7-66. Clock Net Class Definitions

Table 7-67	. Signal	Net Class	Definitions
------------	----------	-----------	-------------

SIGNAL NET CLASS	ASSOCIATED CLOCK NET CLASS	AM3358-EP PIN NAMES
ADDR_CTRL	СК	DDR_BA[2:0], DDR_A[15:0], DDR_CSn0, DDR_CASn, DDR_RASn, DDR_WEn, DDR_CKE, DDR_ODT
DQ0	DQS0	DDR_D[7:0], DDR_DQM0
DQ1	DQS1	DDR_D[15:8], DDR_DQM1

7.7.2.3.3.9 DDR3 Signal Termination

Signal terminations are required for the CK and ADDR_CTRL net class signals. On-device terminations (ODTs) are required on the DQS[x] and DQ[x] net class signals. Detailed termination specifications are covered in the routing rules in the following sections.

Figure 7-48 provides an example DDR3 schematic with a single 16-bit DDR3 memory device that does not have V_{TT} termination on the address and control signals. A typical DDR3 point-to-point topology may provide acceptable signal integrity without V_{TT} termination. System performance should be verified by performing signal integrity analysis using specific PCB design details before implementing this topology.

7.7.2.3.3.10 DDR_VREF Routing

DDR_VREF is used as a reference by the input buffers of the DDR3 memories as well as the AM3358-EP device. DDR_VREF is intended to be half the DDR3 power supply voltage and is typically generated with a voltage divider connected to the VDDS_DDR power supply. It should be routed as a nominal 20-mil wide trace with 0.1 µF bypass capacitors near each device connection. Narrowing of DDR_VREF is allowed to accommodate routing congestion.

7.7.2.3.3.11 VTT

Like DDR_VREF, the nominal value of the VTT supply is half the DDR3 supply voltage. Unlike DDR_VREF, VTT is expected to source and sink current, specifically the termination current for the ADDR_CTRL net class Thevinen terminators. VTT is needed at the end of the address bus and it should be routed as a power sub-plane. VTT should be bypassed near the terminator resistors.

7.7.2.3.4 DDR3 CK and ADDR_CTRL Topologies and Routing Definition

The CK and ADDR_CTRL net classes are routed similarly and are length matched to minimize skew between them. CK is a bit more complicated because it runs at a higher transition rate and is differential. The following subsections show the topology and routing for various DDR3 configurations for CK and ADDR_CTRL. The figures in the following subsections define the terms for the routing specification detailed in Table 7-68.

7.7.2.3.4.1 Two DDR3 Devices

Two DDR3 devices are supported on the DDR3 interface consisting of two x8 DDR3 devices arranged as one 16-bit bank. These two devices may be mounted on a single side of the PCB, or may be mirrored in a pair to save board space at a cost of increased routing complexity and parts on the backside of the PCB.

7.7.2.3.4.1.1 CK and ADDR_CTRL Topologies, Two DDR3 Devices

Figure 7-52 shows the topology of the CK net classes and Figure 7-53 shows the topology for the corresponding ADDR_CTRL net classes.

Figure 7-52. CK Topology for Two DDR3 Devices

DDR3 Address and Control Input Buffers

7.7.2.3.4.1.2 CK and ADDR_CTRL Routing, Two DDR3 Devices

Figure 7-54 shows the CK routing for two DDR3 devices placed on the same side of the PCB. Figure 7-55 shows the corresponding ADDR_CTRL routing.

Figure 7-54. CK Routing for Two Single-Sided DDR3 Devices

Figure 7-55. ADDR_CTRL Routing for Two Single-Sided DDR3 Devices

To save PCB space, the two DDR3 memories may be mounted as a mirrored pair at a cost of increased routing and assembly complexity. Figure 7-56 and Figure 7-57 show the routing for CK and ADDR_CTRL, respectively, for two DDR3 devices mirrored in a single-pair configuration.

Figure 7-56. CK Routing for Two Mirrored DDR3 Devices

Figure 7-57. ADDR_CTRL Routing for Two Mirrored DDR3 Devices

7.7.2.3.4.2 One DDR3 Device

One DDR3 device is supported on the DDR3 interface consisting of one x16 DDR3 device arranged as one 16-bit bank.

7.7.2.3.4.2.1 CK and ADDR_CTRL Topologies, One DDR3 Device

Figure 7-58 shows the topology of the CK net classes and Figure 7-59 shows the topology for the corresponding ADDR_CTRL net classes.

Figure 7-58. CK Topology for One DDR3 Device

DDR3 Address and Control Input Buffers

Figure 7-59. ADDR_CTRL Topology for One DDR3 Device

7.7.2.3.4.2.2 CK and ADDR_CTRL Routing, One DDR3 Device

Figure 7-60 shows the CK routing for one DDR3 device. Figure 7-61 shows the corresponding ADDR_CTRL routing.

Figure 7-60. CK Routing for One DDR3 Device

Figure 7-61. ADDR_CTRL Routing for One DDR3 Device

7.7.2.3.5 Data Topologies and Routing Definition

No matter the number of DDR3 devices used, the data line topology is always point to point, so its definition is simple.

7.7.2.3.5.1 DQS[x] and DQ[x] Topologies, Any Number of Allowed DDR3 Devices

DQS[x] lines are point-to-point differential, and DQ[x] lines are point-to-point single-ended. Figure 7-62 and Figure 7-63 show these topologies.

7.7.2.3.5.2 DQS[x] and DQ[x] Routing, Any Number of Allowed DDR3 Devices

Figure 7-64 and Figure 7-65 show the DQS[x] and DQ[x] routing.

7.7.2.3.6 Routing Specification

7.7.2.3.6.1 CK and ADDR_CTRL Routing Specification

Skew within the CK and ADDR_CTRL net classes directly reduces setup and hold margin and, thus, this skew must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter traces up to the length of the longest net in the net class and its associated clock. A metric to establish this maximum length is Manhattan distance. The Manhattan distance between two points on a PCB is the length between the points when connecting them only with horizontal or vertical segments. A reasonable trace route length is to within a percentage of its Manhattan distance. CACLM is defined as Clock Address Control Longest Manhattan distance.

Given the clock and address pin locations on the AM3358-EP device and the DDR3 memories, the maximum possible Manhattan distance can be determined given the placement. Figure 7-66 shows this distance for two loads. The specifications on the lengths of the transmission lines for the address bus are determined from this distance. CACLM is determined similarly for other address bus configurations; that is, it is based on the longest net of the CK and ADDR_CTRL net class. For CK and ADDR_CTRL routing, these specifications are contained in Table 7-68.

A. It is very likely that the longest CK and ADDR_CTRL Manhattan distance will be for Address Input 8 (A8) on the DDR3 memories. CACLM is based on the longest Manhattan distance due to the device placement. Verify the net class that satisfies this criteria and use as the baseline for CK and ADDR_CTRL skew matching and length control.

The length of shorter CK and ADDR_CTRL stubs as well as the length of the terminator stub are not included in this length calculation. Nonincluded lengths are grayed out in the figure.

Assuming A8 is the longest, CALM = CACLMY + CACLMX + 300 mils. The extra 300 mils allows for routing down lower than the DDR3 memories and returning up to reach A8.

Figure 7-66. CACLM for Two Address Loads on One Side of PCB

Table 7-68. CK and ADDR_CTRL Routing Specification⁽¹⁾⁽²⁾⁽³⁾

NO.	PARAMETER	MIN	TYP	MAX	UNIT
1	A1 + A2 length			2500	mils
2	A1 + A2 skew			25	mils
3	A3 length			660	mils
4	A3 skew ⁽⁴⁾			25	mils
5	A3 skew ⁽⁵⁾			125	mils
6	AS length			100	mils

www.ti.com

UMENTS

Table 7-68. CK and ADDR_CTRL Routing Specification ⁽¹⁾⁽²⁾⁽³⁾ (continued)	
---	--

NO.	PARAMETER	MIN	ТҮР	MAX	UNIT
7	AS skew			25	mils
8	AS+ and AS- length			70	mils
9	AS+ and AS- skew			5	mils
10	AT length ⁽⁶⁾		500		mils
11	AT skew ⁽⁷⁾		100		mils
12	AT skew ⁽⁸⁾			5	mils
13	CK and ADDR_CTRL nominal trace length ⁽⁹⁾	CACLM-50	CACLM	CACLM+50	mils
14	Center-to-center CK to other DDR3 trace spacing ⁽¹⁰⁾	4w			
15	Center-to-center ADDR_CTRL to other DDR3 trace spacing ⁽¹⁰⁾⁽¹¹⁾	4w			
16	Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing ⁽¹⁰⁾	Зw			
17	CK center-to-center spacing ⁽¹²⁾				
18	CK spacing to other net ⁽¹⁰⁾	4w			
19	Rcp ⁽¹³⁾	Zo-1	Zo	Zo+1	Ω
20	Rtt ⁽¹³⁾⁽¹⁴⁾	Zo-5	Zo	Zo+5	Ω

(1) CK represents the clock net class, and ADDR_CTRL represents the address and control signal net class.

(2) The use of vias should be minimized.

- (3) Additional bypass capacitors are required when using the VDDS_DDR plane as the reference plane to allow the return current to jump between the VDDS_DDR plane and the ground plane when the net class switches layers at a via.
- (4) Mirrored configuration (one DDR3 device on top of the board and one DDR3 device on the bottom).
- (5) Nonmirrored configuration (all DDR3 memories on same side of PCB).
- (6) While this length can be increased for convenience, its length should be minimized.
- (7) ADDR_CTRL net class only (not CK net class). Minimizing this skew is recommended, but not required.
- (8) CK net class only.
- (9) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes + 300 mils. For definition, see Section 7.7.2.3.6.1 and Figure 7-66.
- (10) Center-to-center spacing is allowed to fall to minimum (w) for up to 1250 mils of routed length.
- (11) Signals from one DQ net class should be considered other DDR3 traces to another DQ net class.
- (12) CK spacing set to ensure proper differential impedance. Differential impedance should be Z_o x 2, where Z_o is the single-ended impedance defined in Table 7-62.
- (13) Source termination (series resistor at driver) is specifically not allowed.
- (14) Termination values should be uniform across the net class.

7.7.2.3.6.2 DQS[x] and DQ[x] Routing Specification

Skew within the DQS[x] and DQ[x] net classes directly reduces setup and hold margin and, thus, this skew must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter traces up to the length of the longest net in the net class and its associated clock. DQLMn is defined as DQ Longest Manhattan distance n, where n is the byte number. For a 16-bit interface, there are two DQLMs, DQLM0-DQLM1.

NOTE

Matching the lengths across all bytes is not required, nor is it recommended. Length matching is only required within each byte.

Given the DQS[x] and DQ[x] pin locations on the AM3358-EP device and the DDR3 memories, the maximum possible Manhattan distance can be determined given the placement. Figure 7-67 shows this distance for a two-load case. It is from this distance that the specifications on the lengths of the transmission lines for the data bus are determined. For DQS[x] and DQ[x] routing, these specifications are contained in Table 7-69.

There are two DQLMs, one for each byte (16-bit interface). Each DQLM is the longest Manhattan distance of the byte; therefore:

DQLM0 = DQLMX0 + DQLMY0DQLM1 = DQLMX1 + DQLMY1

Figure 7-67. DQLM for Any Number of Allowed DDR3 Devices

Table 7-69. DQS[x] and DQ[x] Routing Specification⁽¹⁾⁽²⁾

NO.	PARAMETER	MIN	TYP	MAX	UNIT
1	DQ0 nominal length ⁽³⁾⁽⁴⁾			DQLM0	mils
2	DQ1 nominal length ⁽³⁾⁽⁵⁾			DQLM1	mils
3	DQ[x] skew ⁽⁶⁾			25	mils
4	DQS[x] skew			5	mils
5	DQS[x]-to-DQ[x] skew ⁽⁶⁾⁽⁷⁾			25	mils
6	Center-to-center DQ[x] to other DDR3 trace spacing ⁽⁸⁾⁽⁹⁾	4w			
7	Center-to-center DQ[x] to other DQ[x] trace spacing ⁽⁸⁾⁽¹⁰⁾	Зw			
8	DQS[x] center-to-center spacing ⁽¹¹⁾				
9	DQS[x] center-to-center spacing to other net ⁽⁸⁾	4w			

(1) DQS[x] represents the DQS0 and DQS1 clock net classes, and DQ[x] represents the DQ0 and DQ1 signal net classes.

(2) External termination disallowed. Data termination should use built-in ODT functionality.

(3) DQLMn is the longest Manhattan distance of a byte. For definition, see Section 7.7.2.3.6.2 and Figure 7-67.

(4) DQLM0 is the longest Manhattan length for the DQ0 net class.

(5) DQLM1 is the longest Manhattan length for the DQ1 net class.

(6) Length matching is only done within a byte. Length matching across bytes is not required.

(7) Each DQS clock net class is length matched to its associated DQ signal net class.

(8) Center-to-center spacing is allowed to fall to minimum for up to 1250 mils of routed length.

(9) Other DDR3 trace spacing means signals that are not part of the same DQ[x] signal net class.

(10) This applies to spacing within same DQ[x] signal net class.

(11) DQS[x] pair spacing is set to ensure proper differential impedance. Differential impedance should be Z_o x 2, where Z_o is the singleended impedance defined in Table 7-62.

7.8 l²C

For more information, see the Inter-Integrated Circuit (I²C) section of the AM335x and AMIC110 Sitara Processors Technical Reference Manual.

7.8.1 PC Electrical Data and Timing

Table 7-70	. I ² C Timing	Conditions –	Slave	Mode
------------	---------------------------	--------------	-------	------

PARAMETER		STANDARD MODE		FAST MODE		
		MIN	MAX	MIN MA		
Output Conditi	Output Condition					
Cb	Capacitive load for each bus line		400	40) pF	

Table 7-71. Timing Requirements for I²C Input Timings

(see Figure 7-68)

NO			STANDAR	D MODE	FAST MO	DE	
NO.			MIN	MAX	MIN	MAX	UNIT
1	t _{c(SCL)}	Cycle time, SCL	10		2.5		μs
2	t _{su(SCLH-SDAL)}	Setup time, SCL high before SDA low (for a repeated START condition)	4.7		0.6		μs
3	t _{h(SDAL-SCLL)}	Hold time, SCL low after SDA low (for a START and a repeated START condition)	4		0.6		μs
4	t _{w(SCLL)}	Pulse duration, SCL low	4.7		1.3		μs
5	t _{w(SCLH)}	Pulse duration, SCL high	4		0.6		μs
6	t _{su(SDAV-SCLH)}	Setup time, SDA valid before SCL high	250		100 ⁽¹⁾		ns
7	t _{h(SCLL-SDAV)}	Hold time, SDA valid after SCL low	0 ⁽²⁾	3.45 ⁽³⁾	0 ⁽²⁾	0.9 <mark>(3)</mark>	μs
8	t _{w(SDAH)}	Pulse duration, SDA high between STOP and START conditions	4.7		1.3		μs
9	t _{r(SDA)}	Rise time, SDA		1000		300	ns
10	t _{r(SCL)}	Rise time, SCL		1000		300	ns
11	t _{f(SDA)}	Fall time, SDA		300		300	ns
12	t _{f(SCL)}	Fall time, SCL		300		300	ns
13	t _{su(SCLH-SDAH)}	Setup time, high before SDA high (for STOP condition)	4		0.6		μs
14	t _{w(SP)}	Pulse duration, spike (must be suppressed)	0	50	0	50	ns

(1) A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement t_{su(SDA-SCLH)}≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device stretches the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{r max} + t_{su(SDA-SCLH)} = 1000 + 250 = 1250 ns (according to the standard-mode l²C-Bus Specification) before the SCL line is released.

(2) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL.

(3) The maximum $t_{h(SDA-SCLL)}$ has only to be met if the device does not stretch the low period $[t_{w(SCLL)}]$ of the SCL signal.

Figure 7-68. I²C Receive Timing

Table 7-72. Switching Characteristics for I²C Output Timings

(see Figure 7-69)

NO	DADAMETED		STANDARD	MODE	FAST MODE	
NO.		PARAMETER	MIN	MAX	MIN MAX	
15	t _{c(SCL)}	Cycle time, SCL	10		2.5	μs
16	t _{su(SCLH} -SDAL)	Setup time, SCL high before SDA low (for a repeated START condition)	4.7		0.6	μs
17	t _{h(SDAL-SCLL)}	Hold time, SCL low after SDA low (for a START and a repeated START condition)	4		0.6	μs
18	t _{w(SCLL)}	Pulse duration, SCL low	4.7		1.3	μs
19	t _{w(SCLH)}	Pulse duration, SCL high	4		0.6	μs
20	t _{su(SDAV-SCLH)}	Setup time, SDA valid before SCL high	250		100	ns
21	t _{h(SCLL-SDAV)}	Hold time, SDA valid after SCL low	0	3.45	0 0.9	μs
22	t _{w(SDAH)}	Pulse duration, SDA high between STOP and START conditions	4.7		1.3	μs
27	t _{su(SCLH-SDAH)}	Setup time, high before SDA high (for STOP condition)	4		0.6	μs

Figure 7-69. I²C Transmit Timing

7.9 JTAG Electrical Data and Timing

———————————————————————————————————————				
PARAMETER	MIN	TYP	MAX	UNIT
Input Conditions				

www.ti.com

	PARAMETER	MIN TY	P MAX	UNIT
t _R	Input signal rise time	1	5	ns
t _F	Input signal fall time	1	5	ns
Output Cond	ditions			
C _{LOAD}	Output load capacitance	5	15	pF

Table 7-73. JTAG Timing Conditions (continued)

Table 7-74. Timing Requirements for JTAG

(see F	Figure 7-70)						
NO	_		OPP100)	OPP50		
NO.			MIN	MAX	MIN	MAX	UNIT
1	t _{c(TCK)}	Cycle time, TCK	81.5		104.5		ns
1a	t _{w(TCKH)}	Pulse duration, TCK high (40% of t_c)	32.6		41.8		ns
1b	t _{w(TCKL)}	Pulse duration, TCK low (40% of t_c)	32.6		41.8		ns
2	t _{su(TDI-TCKH)}	Input setup time, TDI valid to TCK high	3		3		ns
3	t _{su(TMS-TCKH)}	Input setup time, TMS valid to TCK high	3		3		ns
4	t _{h(TCKH-TDI)}	Input hold time, TDI valid from TCK high	8.05		8.05		ns
	t _{h(TCKH-TMS)}	Input hold time, TMS valid from TCK high	8.05		8.05		ns

Table 7-75. Switching Characteristics for JTAG

(see Figure 7-70)

NO	O. PARAMETER		OPP10	0	OPP50)	
NO.			MIN	MAX	MIN	MAX	UNIT
2	t _{d(TCKL-TDO)}	Delay time, TCK low to TDO valid	3	27.6	4	36.8	ns

Figure 7-70. JTAG Timing

7.10 LCD Controller (LCDC)

The LCDC consists of two independent controllers, the raster controller and the LCD interface display driver (LIDD) controller. Each controller operates independently from the other and only one of them is active at any given time.

- The raster controller handles the synchronous LCD interface. It provides timing and data for constant graphics refresh to a passive display. It supports a wide variety of monochrome and full-color display types and sizes by use of programmable timing controls, a built-in palette, and a gray-scale and serializer. Graphics data is processed and stored in frame buffers. A frame buffer is a contiguous memory block in the system. A built-in DMA engine supplies the graphics data to the raster engine which, in turn, outputs to the external LCD device.
- The LIDD controller supports the asynchronous LCD interface. It provides full-timing programmability of control signals (CS, WE, OE, ALE) and output data.

The maximum resolution for the LCD controller is 2048×2048 pixels. The maximum frame rate is determined by the image size in combination with the pixel clock rate.

	PARAMETER		MIN	TYP MAX	UNIT
Input Conditio	ons				
T _R	Input signal fall time		1	5	ns
T _F	F _F Input signal fall time		1	5	ns
Output Condit	tion				
0		LIDD mode	5	60	<u>د</u> ۲
CLOAD	R	Raster mode	3	30	рг

Table 7-76. LCD Controller Timing Conditions

7.10.1 LCD Interface Display Driver (LIDD Mode)

Table 7-77. Timing Requirements for LCD LIDD Mode

(see Figure 7-72 through Figure 7-80)

NO			OPP100		
NO.			MIN N	IAX	UNIT
16	t _{su(LCD_DATA-LCD_MEMORY_CLK)}	Setup time, LCD_DATA[15:0] valid before LCD_MEMORY_CLK high	18		ns
17	t _h (LCD_MEMORY_CLK-LCD_DATA)	Hold time, LCD_DATA[15:0] valid after LCD_MEMORY_CLK high	0		ns
18	t _{t(LCD_DATA)}	Transition time, LCD_DATA[15:0]	1	3	ns

Table 7-78. Switching Characteristics for LCD LIDD Mode

(see Figure 7-72 through Figure 7-80)

NO		DADAMETED			
NO.	PAKAWETEK		MIN	MAX	UNIT
1	t _{c(LCD_MEMORY_CLK)}	Cycle time, LCD_MEMORY_CLK	23.7		ns
2	t _{w(LCD_MEMORY_CLKH)}	Pulse duration, LCD_MEMORY_CLK high	0.45t _c	0.55t _c	ns
3	t _{w(LCD_MEMORY_CLKL)}	Pulse duration, LCD_MEMORY_CLK low	0.45t _c	0.55t _c	ns
4	t _d (LCD_MEMORY_CLK-LCD_DATAV)	Delay time, LCD_MEMORY_CLK high to LCD_DATA[15:0] valid (write)		7	ns
5	t _d (LCD_MEMORY_CLK-LCD_DATAI)	Delay time, LCD_MEMORY_CLK high to LCD_DATA[15:0] invalid (write)	0		ns
6	t _d (LCD_MEMORY_CLK-LCD_AC_BIAS_EN)	Delay time, LCD_MEMORY_CLK high to LCD_AC_BIAS_EN	0	6.8	ns
8	t _d (LCD_MEMORY_CLK-LCD_VSYNC)	Delay time, LCD_MEMORY_CLK high to LCD_VSYNC	0	7	ns

Table 7-78. Switching Characteristics for LCD LIDD Mode	e (continued)
---	---------------

(see Figure 7-72 through Figure 7-80)

NO		DADAMETED	OPP100			
NO.		PARAMETER	MIN	MAX	UNIT	
10	t _{d(LCD_MEMORY_CLK-LCD_HYSNC)}	Delay time, LCD_MEMORY_CLK high to LCD_HSYNC	0	7	ns	
12	td(LCD_MEMORY_CLK-LCD_PCLK)	Delay time, LCD_MEMORY_CLK high to LCD_PCLK	0	7	ns	
14	t _d (LCD_MEMORY_CLK-LCD_DATAZ)	Delay time, LCD_MEMORY_CLK high to LCD_DATA[15:0] high-Z	0	7	ns	
15	t _{d(LCD_MEMORY_CLK-LCD_DATA)}	Delay time, LCD_MEMORY_CLK high to LCD_DATA[15:0] driven	0	7	ns	

A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals. The second LCD_MEMORY_CLK waveform is shown as E1 because the LCD_MEMORY_CLK signal is used to implement the E1 function in Hitachi mode.

A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals. The second LCD_MEMORY_CLK waveform is shown as E1 because the LCD_MEMORY_CLK signal is used to implement the E1 function in Hitachi mode.

A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals. The second LCD_MEMORY_CLK waveform is shown as E1 because the LCD_MEMORY_CLK signal is used to implement the E1 function in Hitachi mode.

A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals. The second LCD_MEMORY_CLK waveform is shown as E1 because the LCD_MEMORY_CLK signal is used to implement the E1 function in Hitachi mode.

A. Motorola mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a reference of the internal clock that sequences the other signals.

A. Motorola mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a reference of the internal clock that sequences the other signals.

A. Motorola mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a reference of the internal clock that sequences the other signals.

A. Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a reference of the internal clock that sequences the other signals.

Figure 7-78. Micro-Interface Graphic Display Intel Write

A. Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a reference of the internal clock that sequences the other signals.

Figure 7-79. Micro-Interface Graphic Display Intel Read

A. Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a reference of the internal clock that sequences the other signals.

7.10.2 LCD Raster Mode

Table 7-79. Switching Characteristics for LCD Raster Mode

1	see Figure	7-82	through	Figure	7-85
	See i iyule	1-02	unougn	i iyure	1-00

NO		DADAMETED	OPP	50	OPP1	00	
NO.		PARAMETER	MIN	MAX	MIN	MAX	UNIT
1	t _{c(LCD_PCLK)}	Cycle time, pixel clock	15.8		7.9		ns
2	t _{w(LCD_PCLKH)}	Pulse duration, pixel clock high	0.45t _c	0.55t _c	0.45t _c	0.55t _c	ns
3	t _{w(LCD_PCLKL)}	Pulse duration, pixel clock low	0.45t _c	0.55t _c	0.45t _c	0.55t _c	ns
4	t _d (LCD_PCLK-LCD_DATAV)	Delay time, LCD_PCLK to LCD_DATA[23:0] valid (write)		3.0		1.9	ns
5	t _{d(LCD_PCLK-LCD_DATAI)}	Delay time, LCD_PCLK to LCD_DATA[23:0] invalid (write)	-3.0		-1.7		ns
6	t _{d(LCD_PCLK-LCD_AC_BIAS_EN)}	Delay time, LCD_PCLK to LCD_AC_BIAS_EN	-3.0	3.0	-1.7	1.9	ns
8	t _{d(LCD_PCLK-LCD_VSYNC)}	(LCD_PCLK-LCD_VSYNC) Delay time, LCD_PCLK to LCD_VSYNC		3.0	-1.7	1.9	ns
10	$t_{d(LCD_PCLK-LCD_HSYNC)}$	Delay time, LCD_PCLK to LCD_HSYNC	-3.0	3.0	-1.7	1.9	ns

Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1) register:

- Vertical front porch (VFP)
- Vertical sync pulse width (VSW)
- Vertical back porch (VBP)
- Lines per panel (LPP_B10 + LPP)

Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register:

- Horizontal front porch (HFP)
- Horizontal sync pulse width (HSW)
- Horizontal back porch (HBP)
- Pixels per panel (PPLMSB + PPLLSB)

LCD_AC_BIAS_EN timing is derived through the following parameter in the LCD (RASTER_TIMING_2) register:

• AC bias frequency (ACB)

The display format produced in raster mode is shown in Figure 7-81. An entire frame is delivered one line at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the activation of I/O signal LCD_VSYNC.

P−1,

P−2,

Figure 7-81. LCD Raster-Mode Display Format

www.ti.com

Figure 7-82. LCD Raster-Mode Active

Figure 7-83. LCD Raster-Mode Passive

AM3358-EP SLUSC35B – APRIL 2015 – REVISED APRIL 2019 Texas Instruments

www.ti.com

A. The dashed portion of LCD_PCLK is only shown as a reference of the internal clock that sequences the other signals.

Figure 7-84. LCD Raster-Mode Control Signal Activation

TEXAS INSTRUMENTS

www.ti.com

A. The dashed portion of LCD_PCLK is only shown as a reference of the internal clock that sequences the other signals. **Figure 7-85. LCD Raster-Mode Control Signal Deactivation**

7.11 Multichannel Audio Serial Port (McASP)

The multichannel audio serial port (McASP) functions as a general-purpose audio serial port optimized for the needs of multichannel audio applications. The McASP is useful for time-division multiplexed (TDM) stream, Inter-Integrated Sound (I²S) protocols, and inter-component digital audio interface transmission (DIT).

7.11.1 McASP Device-Specific Information

The device includes two multichannel audio serial port (McASP) interface peripherals (McASP0 and McASP1). The McASP module consists of a transmit and receive section. These sections can operate completely independently with different data formats, separate master clocks, bit clocks, and frame syncs or, alternatively, the transmit and receive sections may be synchronized. The McASP module also includes shift registers that may be configured to operate as either transmit data or receive data.

The transmit section of the McASP can transmit data in either a time-division-multiplexed (TDM) synchronous serial format or in a digital audio interface (DIT) format where the bit stream is encoded for SPDIF, AES-3, IEC-60958, CP-430 transmission. The receive section of the McASP peripheral supports the TDM synchronous serial format.

The McASP module can support one transmit data format (either a TDM format or DIT format) and one receive format at a time. All transmit shift registers use the same format and all receive shift registers use the same format; however, the transmit and receive formats need not be the same. Both the transmit and receive sections of the McASP also support burst mode, which is useful for nonaudio data (for example, passing control information between two devices).

The McASP peripheral has additional capability for flexible clock generation and error detection/handling, as well as error management.

The device McASP0 and McASP1 modules have up to four serial data pins each. The McASP FIFO size is 256 bytes and two DMA and two interrupt requests are supported. Buffers are used transparently to better manage DMA, which can be leveraged to manage data flow more efficiently.

For more detailed information on and the functionality of the McASP peripheral, see the Multichannel Audio Serial Port (McASP) section of the *AM335x and AMIC110 Sitara Processors Technical Reference Manual*.

7.11.2 McASP Electrical Data and Timing

Table 7-80. McASP Timing Conditions

	PARAMETER	MIN	TYP MAX	UNIT		
Input Conditions						
t _R	Input signal rise time	1 ⁽¹⁾	4 ⁽¹⁾	ns		
t _F	Input signal fall time	1 ⁽¹⁾	4 ⁽¹⁾	ns		
Output Condition						
C _{LOAD}	Output load capacitance	15	30	pF		

(1) Except when specified otherwise.

Table 7-81. Timing Requirements for McASP⁽¹⁾

(see Figure 7-86)

(300 1	igure / 00)							
				OPP100		OPP50		
NO.				MIN	MAX	MIN	MAX	UNIT
1	t _{c(AHCLKRX)}	Cycle time, McASP[x]_AHCLKR and McASP[x]_AHCLKX		20		40		ns
2	t _{w(AHCLKRX)}	Pulse duration, McASP[x]_AHCLKR a McASP[x]_AHCLKX high or low	and	0.5P - 2.5 ⁽²⁾		0.5P - 2.5 ⁽²⁾		ns
3	t _{c(ACLKRX)}	Cycle time, McASP[x]_ACLKR and McASP[x]_ACLKX		20		40		ns
4	t _{w(ACLKRX)}	Pulse duration, McASP[x]_ACLKR and McASP[x]_ACLKX high or low		0.5R - 2.5 ⁽³⁾		0.5R - 2.5 ⁽³⁾		ns
	t _{su(AFSRX-} ACLKRX)	Setup time, McASP[x] AFSR and	ACLKR and ACLKX int	11.5		15.5		
5		McASP[x]_AFSX input valid before McASP[x]_ACLKR and	ACLKR and ACLKX ext in	4		6		ns
		McASP[x]_ACLKX	ACLKR and ACLKX ext out	4		6		
		Hold time, McASP[x] AFSR and	ACLKR and ACLKX int	-1		-1		
6	t _{h(ACLKRX} - AFSRX)	McASP[x]_AFSX input valid after McASP[x]_ACLKR and	ACLKR and ACLKX ext in	0.4		0.4		ns
		McASP[x]_ACLKX	ACLKR and ACLKX ext out	0.4		0.4		
			ACLKR and ACLKX int	11.5		15.5		
7	t _{su(AXR-ACLKRX)}	Setup time, McASP[x]_AXR input valid before McASP[x]_ACLKR and McASP[x]_ACLKX	ACLKR and ACLKX ext in	4		6		ns
			ACLKR and ACLKX ext out	4		6		
			ACLKR and ACLKX int	-1		-1		
8	t _{h(ACLKRX-AXR)}	Hold time, McASP[x]_AXR input valid after McASP[x]_ACLKR and McASP[x]_ACLKX	ACLKR and ACLKX ext in	0.4		0.4		ns
			ACLKR and ACLKX ext out	0.4		0.4		

(1) ACLKR internal: ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR external output: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 ACLKX internal: ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0

ACLKX external output: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1

(2) P = McASP[x]_AHCLKR and McASP[x]_AHCLKX period in nanoseconds (ns).

(3) R = McASP[x]_ACLKR and McASP[x]_ACLKX period in ns.

- A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in).
- B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in).

Figure 7-86. McASP Input Timing

		PARAMETER				OPP50		
NO.		PARAMETER		MIN	MAX	MIN	MAX	UNIT
9	t _{c(AHCLKRX)}	Cycle time, McASP[x]_AHCLKR and McASP[x]_AHCLKX		20 ⁽²⁾		40		ns
10	t _{w(AHCLKRX)}	Pulse duration, McASP[x]_AHCLKR a McASP[x]_AHCLKR a	and	0.5P – 2.5 ⁽³⁾		0.5P – 2.5 ⁽³⁾		ns
11	t _{c(ACLKRX)}	Cycle time, McASP[x]_ACLKR and McASP[x]_ACLKX	20		40		ns	
12	t _{w(ACLKRX)}	Pulse duration, McASP[x]_ACLKR ar McASP[x]_ACLKX high or low	0.5P – 2.5 ⁽³⁾		0.5P – 2.5 ⁽³⁾		ns	
		Delay time, McASP[x]_ACLKR and McASP[x]_ACLKX transmit edge to	ACLKR and ACLKX int	0	6	0	6	
13	•	McASP[x]_AFSR and McASP[x]_AFSX output valid	ACLKR and ACLKX ext in	2	13.5	2	18	
	t _{d(ACLKRX-AFSRX)}	ACLKRX-AFSRX) Delay time, McASP[x]_ACLKR and McASP[x]_ACLKX transmit edge to McASP[x]_AFSR and McASP[x]_AFSX output valid with Pad Loopback		2	13.5	2	18	ns
		Delay time, McASP[x]_ACLKX	ACLKX int	0	6	0	6	
1.1	f	transmit edge to McASP[x]_AXR output valid	ACLKX ext in	2	13.5	2	18	200
14	^t d(ACLKX-AXR)	Delay time, McASP[x]_ACLKX transmit edge to McASP[x]_AXR output valid with Pad Loopback	ACLKX ext out	2	13.5	2	18	115
		Disable time, McASP[x]_ACLKX	ACLKX int	0	6	0	6	
		transmit edge to McASP[x]_AXR output high impedance	ACLKX ext in	2	13.5	2	18	
15	t _{dis(ACLKX-AXR)}	Disable time, McASP[x]_ACLKX transmit edge to McASP[x]_AXR output high impedance with pad loopback	ACLKX ext out	2	13.5	2	18	ns

(see Figure 7-87)

Table 7-82. Switching Characteristics for McASP⁽¹⁾

(1) ACLKR internal: ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR external output: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 ACLKX internal: ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX external output: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1

(2) 50 MHz

(3) P = AHCLKR and AHCLKX period.

- A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in).
- B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in).

Figure 7-87. McASP Output Timing

7.12 Multichannel Serial Port Interface (McSPI)

For more information, see the Multichannel Serial Port Interface (McSPI) section of the AM335x and AMIC110 Sitara Processors Technical Reference Manual.

7.12.1 McSPI Electrical Data and Timing

The following timings are applicable to the different configurations of McSPI in master or slave mode for any McSPI and any channel (n).

7.12.1.1 McSPI—Slave Mode

Table 7-83.	McSPI	Timing	Conditions	- Slave Mode
-------------	-------	--------	------------	--------------

	PARAMETER	MIN MAX	UNIT		
Input Conditions	5				
t _r	Input signal rise time	5	ns		
t _f	Input signal fall time	5	ns		
Output Condition					
C _{load}	Output load capacitance	20	pF		

Table 7-84. Timing Requirements for McSPI Input Timings—Slave Mode

(see Figure 7-88)

NO			OPP10	00	OPP5	0	
NO.			MIN	MAX	MIN	MAX	UNIT
1	t _{c(SPICLK)}	Cycle time, SPI_CLK	62.5		124.8		ns
2	t _{w(SPICLKL)}	Typical pulse duration, SPI_CLK low	0.5P – 3.12 ⁽¹⁾	0.5P + 3.12 ⁽¹⁾	0.5P – 3.12 ⁽¹⁾	0.5P + 3.12 ⁽¹⁾	ns
3	t _{w(SPICLKH)}	Typical pulse duration, SPI_CLK high	0.5P – 3.12 ⁽¹⁾	0.5P + 3.12 ⁽¹⁾	0.5P – 3.12 ⁽¹⁾	0.5P + 3.12 ⁽¹⁾	ns
4	t _{su(SIMO-SPICLK)}	Setup time, SPI_D[x] (SIMO) valid before SPI_CLK active edge $^{(2)(3)}$	12.92		12.92		ns
5	t _{h(SPICLK-SIMO)}	Hold time, SPI_D[x] (SIMO) valid after SPI_CLK active $edge^{(2)(3)}$	12.92		12.92		ns
8	t _{su(CS-SPICLK)}	Setup time, SPI_CS valid before SPI_CLK first edge ⁽²⁾	12.92		12.92		ns
9	t _{h(SPICLK-CS)}	Hold time, SPI_CS valid after SPI_CLK last edge ⁽²⁾	12.92		12.92		ns

(1) P = SPI_CLK period.

(2) This timing applies to all configurations regardless of MCSPIX_CLK polarity and which clock edges are used to drive output data and capture input data.

(3) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.

Table 7-85. Switching Characteristics for McSPI Output Timings—Slave Mode

(see Figure 7-89)

NO	DADAMETED		OPP10	0	OPPS		
NO.	r	MIN	MAX	MIN	MAX	UNIT	
6	t _{d(SPICLK-SOMI)}	Delay time, SPI_CLK active edge to SPI_D[x] (SOMI) transition ⁽¹⁾⁽²⁾	-4.00	17.12	-4.00	17.12	ns
7	t _{d(CS-SOMI)}	Delay time, SPI_CS active edge to SPI_D[x] (SOMI) transition ⁽¹⁾⁽²⁾		17.12		17.12	ns

(1) This timing applies to all configurations regardless of MCSPIX_CLK polarity and which clock edges are used to drive output data and capture input data.

(2) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.

Figure 7-88. SPI Slave Mode Receive Timing

Figure 7-89. SPI Slave Mode Transmit Timing

7.12.1.2 McSPI—Master Mode

Table 7-86. McSPI Timing Conditions – Master Mode

	PARAMETER		D	HIGH LOAD			
	PARAMETER	MIN	MAX	MIN	MAX	UNIT	
Input Condition							
t _r	Input signal rise time	8		8		ns	
t _f	Input signal fall time		8		8	ns	
Output Condition							
Cload	Output load capacitance	5			25	pF	

Table 7-87. Timing Requirements for McSPI Input Timings – Master Mode

			OPP100			OPP50					
NO.			LOW L	OAD	HIGH L	OAD	LOW L	OAD	HIGH LO	DAD	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
4	t _{su(SOMI} -SPICLKH)	Setup time, SPI_D[x] (SOMI) valid before SPI_CLK active edge ⁽¹⁾	2.29		3.02		2.29		3.02		ns
5	t _{h(SPICLKH-SOMI)}	Hold time, SPI_D[x] (SOMI) valid after SPI_CLK active edge ⁽¹⁾	7.25		7.25		7.7		7.7		ns

(1) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.

Table 7-88. Switching Characteristics for McSPI Output Timings – Master Mode

(see F	igure 7-91)											
					OP	P100			OP	P50		
NO.		PARAMETER		LOW LO	DAD	HIGH LO	AD	LOW LO	DAD	HIGH LO	AD	UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
1	t _{c(SPICLK)}	Cycle time, SPI_	CLK	20.8		20.8		41.6		41.6		ns
2	t _{w(SPICLKL)}	Typical pulse du SPI_CLK low	ration,	0.5P – 1.04 ⁽¹⁾	0.5P + 1.04 ⁽¹⁾	0.5P – 2.08 ⁽¹⁾	0.5P + 2.08 ⁽¹⁾	0.5P – 1.04 ⁽¹⁾	0.5P + 1.04 ⁽¹⁾	0.5P – 2.08 ⁽¹⁾	0.5P + 2.08 ⁽¹⁾	ns
3	t _{w(SPICLKH)}	Typical pulse du SPI_CLK high	ration,	0.5P – 1.04 ⁽¹⁾	0.5P + 1.04 ⁽¹⁾	0.5P – 2.08 ⁽¹⁾	0.5P + 2.08 ⁽¹⁾	0.5P – 1.04 ⁽¹⁾	0.5P + 1.04 ⁽¹⁾	0.5P – 2.08 ⁽¹⁾	0.5P + 2.08 ⁽¹⁾	ns
6	t _{d(SPICLK-SIMO)}	Delay time, SPI_ active edge to S (SIMO) transition	_CLK PI_D[x] 1 ⁽²⁾	-3.57	3.57	-4.62	4.62	-3.57	3.57	-4.62	4.62	ns
7	t _{d(CS-SIMO)}	Delay time, SPI_ edge to SPI_D[x transition ⁽²⁾	CS active [] (SIMO)		3.57		4.62		3.57		4.62	ns
0		Delay time, SPI_CS active	Mode 1 and 3 ⁽³⁾	A – 4.2 ⁽⁴⁾		A – 2.54 ⁽⁴⁾		A – 4.2 ⁽⁴⁾		A – 2.54 ⁽⁴⁾		ns
0	^L d(CS-SPICLK)	to SPI_CLK first edge	Mode 0 and 2 ⁽³⁾	B – 4.2 ⁽⁵⁾		B – 2.54 ⁽⁵⁾		B – 4.2 ⁽⁵⁾		B – 2.54 ⁽⁵⁾		ns
_		Delay time, SPI_CLK last	Mode 1 and 3 ⁽³⁾	B – 4.2 ⁽⁵⁾		B – 2.54 ⁽⁵⁾		B – 4.2 ⁽⁵⁾		B – 2.54 ⁽⁵⁾		ns
9	t _{d(SPICLK-CS)}	edge to SPI_CS inactive	Mode 0 and 2 ⁽³⁾	A – 4.2 ⁽⁴⁾		A – 2.54 ⁽⁴⁾		A - 4.2 ⁽⁴⁾		A – 2.54 ⁽⁴⁾		ns

(1) $P = SPI_CLK$ period.

(2) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.

(3) The polarity of SPIx_CLK and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all software configurable:

SPIx_CLK(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 1 (Modes 1 and 3).

- SPIx_CLK(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2).

(4) Case P = 20.8 ns, A = (TCS + 1) × TSPICLKREF (TCS is a bit field of MCSPI_CH(i)CONF register). Case P > 20.8 ns, A = (TCS + 0.5) × Fratio × TSPICLKREF (TCS is a bit field of MCSPI_CH(i)CONF register). Note: P = SPI_CLK clock period.

(5) B = (TCS + 0.5) × TSPICLKREF × Fratio (TCS is a bit field of MCSPI_CH(i)CONF register, Fratio: Even ≥ 2).

www.ti.com

Figure 7-90. SPI Master Mode Receive Timing

Figure 7-91. SPI Master Mode Transmit Timing

7.13 Multimedia Card (MMC) Interface

For more information, see the Multimedia Card (MMC) section of the AM335x and AMIC110 Sitara Processors Technical Reference Manual.

7.13.1 MMC Electrical Data and Timing

Table 7-89. MMC Timing Conditions

	PARAMETER	MIN	TYP	MAX	UNIT
Input Condition	ons				
t _r	Input signal rise time	1		5	ns
t _f	Input signal fall time	1		5	ns
Output Condition					
Cload	Output load capacitance	3		30	pF

Table 7-90. Timing Requirements for MMC[x]_CMD and MMC[x]_DAT[7:0]

(see Figure 7-92)

NO					Ε	3.3-V MODE			UNIT
NO.				TYP	MAX	MIN	TYP	MAX	ONIT
1	t _{su(CMDV-CLKH)}	Setup time, MMC_CMD valid before MMC_CLK rising clock edge	4.1			4.1			ns
2	t _{h(CLKH-CMDV)}	Hold time, MMC_CMD valid after MMC_CLK rising clock edge	3.76			3.76			ns
3	t _{su(DATV-CLKH)}	Setup time, MMC_DATx valid before MMC_CLK rising clock edge	4.1			4.1			ns
4	t _{h(CLKH-DATV)}	Hold time, MMC_DATx valid after MMC_CLK rising clock edge	3.76			3.76			ns

Figure 7-92. MMC[x]_CMD and MMC[x]_DAT[7:0] Input Timing

(see Figure 7-93)

Table 7-91. Switching Characteristics for MMC[x]_CLK

NO			STANDARD MODE			HIGH-SPEED MODE			
NO.		FARAMETER	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	$f_{\rm op(CLK)}$	Operating frequency, MMC_CLK			24			48	MHz
-	t _{cop(CLK)}	Operating period: MMC_CLK	41.7			20.8			ns
5	f _{id(CLK)}	Identification mode frequency, MMC_CLK			400			400	kHz
	t _{cid(CLK)}	Identification mode period: MMC_CLK	2500			2500			ns
6	t _{w(CLKL)}	Pulse duration, MMC_CLK low	$(0.5 \times P) - t_{f(CLK)}^{(1)}$			$(0.5 \times P) - t_{f(CLK)}^{(1)}$			ns
7	t _{w(CLKH)}	Pulse duration, MMC_CLK high	$(0.5 \times P) - t_{r(CLK)}^{(1)}$			$(0.5 \times P) - t_{r(CLK)}^{(1)}$			ns

(1) P = MMC_CLK period

Figure 7-93. MMC[x]_CLK Timing

Table 7-92. Switching Characteristics for MMC[x]_CMD and MMC[x]_DAT[7:0]—Standard Mode (see Figure 7-94)

NO	PARAMETER		OPP100			OPP50			
NO.			MIN	TYP	MAX	MIN	ТҮР	MAX	
10	t _{d(CLKL-CMD)}	Delay time, MMC_CLK falling clock edge to MMC_CMD transition	-4		14	-4		17.5	ns
11	t _{d(CLKL-DAT)}	Delay time, MMC_CLK falling clock edge to MMC_DATx transition	-4		14	-4		17.5	ns

Figure 7-94. MMC[x]_CMD and MMC[x]_DAT[7:0] Output Timing—Standard Mode

Table 7-93. Switching Characteristics for MMC[x]_CMD and MMC[x]_DAT[7:0]—High-Speed Mode

NO	DADAMETED		OPP100					
NO.				TYP	MAX	MIN	TYP MA	
12	t _{d(CLKL} - CMD)	Delay time, MMC_CLK rising clock edge to MMC_CMD transition	3		14	3	17.	ō ns
13	t _{d(CLKL-DAT)}	Delay time, MMC_CLK rising clock edge to MMC_DATx transition	3		14	3	17.	5 ns

Figure 7-95. MMC[x]_CMD and MMC[x]_DAT[7:0] Output Timing—High-Speed Mode

7.14 Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem (PRU-ICSS)

For more information, see the Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem Interface (PRU-ICSS) section of the *AM335x and AMIC110 Sitara Processors Technical Reference Manual*.

7.14.1 Programmable Real-Time Unit (PRU-ICSS PRU)

Table 7-94. PRU-ICSS PRU Timing Conditions

	PARAMETER	MIN MAX	UNIT		
Output Condition					
Cload	Capacitive load for each bus line	30	pF		

7.14.1.1 PRU-ICSS PRU Direct Input/Output Mode Electrical Data and Timing

Table 7-95. PRU-ICSS PRU Timing Requirements - Direct Input Mode

(see Figure 7-96)

NO.				MIN	MAX	UNIT
1	t _{w(GPI)}	Pulse width, GPI		2 × P ⁽¹⁾		ns
2	t _{r(GPI)}	Rise time, GPI		1.00	3.00	ns
2	t _{f(GPI)}	Fall time, GPI		1.00	3.00	ns
2		lateral elementation of Optimal size als (2)	PRU0		1.00	
3	^I sk(GPI)	Internal skew between GPI[n:0] signals	ne, GPI 1.00 3.00 e, GPI 1.00 3.00 skew between GPI[n:0] signals ⁽²⁾ PRU0 1.00 PRU1 3.00	ns		

(1) $P = L3_CLK$ (PRU-ICSS ocp clock) period.

(2) n = 16

Figure 7-96. PRU-ICSS PRU Direct Input Timing

Table 7-96. PRU-ICSS PRU Switching Requirements - Direct Output Mode

(see Fig	see Figure 7-69)									
NO.		PARAMETER		MIN	MAX	UNIT				
1	t _{w(GPO)}	Pulse width, GPO		2 × P ⁽¹⁾		ns				
2		Internal allow between CDO[n:0] signals ⁽²⁾	PRU0		1.00	~~~				
3	^l sk(GPO)		PRU1		5.00	ns				

(1) P = L3_CLK (PRU-ICSS ocp clock) period

(2) n = 15

Figure 7-97. PRU-ICSS PRU Direct Output Timing

7.14.1.2 PRU-ICSS PRU Parallel Capture Mode Electrical Data and Timing

Table 7-97. PRU-ICSS PRU Timing Requirements - Parallel Capture Mode

(see Fig	gure 7-98 and Figure	7-99)			
NO.			MIN	MAX	UNIT
1	t _{c(CLOCKIN)}	Cycle time, CLOCKIN	20.00		ns
2	t _{w(CLOCKIN_L)}	Pulse duration, CLOCKIN low	10.00		ns
3	t _{w(CLOCKIN_H)}	Pulse duration, CLOCKIN high	10.00		ns
4	t _{r(CLOCKIN)}	Rising time, CLOCKIN	1.00	3.00	ns
5	t _{f(CLOCKIN)}	Falling time, CLOCKIN	1.00	3.00	ns
6	t _{su(DATAIN-CLOCKIN)}	Setup time, DATAIN valid before CLOCKIN	5.00		ns
7	t _{h(CLOCKIN} -DATAIN)	Hold time, DATAIN valid after CLOCKIN	0.00		ns
0	t _{r(DATAIN)}	Rising time, DATAIN	1.00	3.00	ns
0		Falling time, DATAIN	1.00	3.00	ns

Figure 7-98. PRU-ICSS PRU Parallel Capture Timing - Rising Edge Mode

Figure 7-99. PRU-ICSS PRU Parallel Capture Timing - Falling Edge Mode

7.14.1.3 PRU-ICSS PRU Shift Mode Electrical Data and Timing

Table 7-98. PRU-ICSS PRU Timing Requirements – Shift In Mode

(see	Figure	7-100)
0000	i iguio	1 100)

NO.			MIN	MAX	UNIT
1	t _{c(DATAIN)}	Cycle time, DATAIN	10.00		ns
2	t _{w(DATAIN)}	Pulse width, DATAIN	0.45 × P ⁽¹⁾	0.55 × P ⁽¹⁾	ns
3	t _{r(DATAIN)}	Rising time, DATAIN	1.00	3.00	ns
4	t _{f(DATAIN)}	Falling time, DATAIN	1.00	3.00	ns

(1) P = L3_CLK (PRU-ICSS ocp clock) period.

Figure 7-100. PRU-ICSS PRU Shift In Timing

Table 7-99. PRU-ICSS PRU Switching Requirements - Shift Out Mode

(see Figure 7-101)

NO.			MIN	MAX	UNIT
1	t _{c(CLOCKOUT)}	Cycle time, CLOCKOUT	10.00		ns
2	tw(CLOCKOUT)	Pulse width, CLOCKOUT	0.45 × P ⁽¹⁾	$0.55 \times P^{(1)}$	ns
5	t _{d(CLOCKOUT-DATAOUT)}	Delay time, CLOCKOUT to DATAOUT valid	0.00	3.00	ns

(1) P = L3_CLK (PRU-ICSS ocp clock) period.

Figure 7-101. PRU-ICSS PRU Shift Out Timing

7.14.2 PRU-ICSS MII_RT and Switch

Table 7-100. PRU-ICSS MII_RT Switch Timing Conditions

	PARAMETER	MIN	TYP MAX	UNIT				
Input Conditions								
t _R	Input signal rise time	1 ⁽¹⁾	3 ⁽¹⁾	ns				
t _F	Input signal fall time	1 ⁽¹⁾	3 ⁽¹⁾	ns				
Output Condition								
C _{LOAD}	Output load capacitance	3	20	pF				
(4) Europe								

(1) Except when specified otherwise.

7.14.2.1 PRU-ICSS MDIO Electrical Data and Timing

Table 7-101. PRU-ICSS MDIO Timing Requirements – MDIO_DATA

(see Figure 7-102)

NO.			MIN	TYP	MAX	UNIT
1	t _{su(MDIO-MDC)}	Setup time, MDIO valid before MDC high	90			ns
2	t _{h(MDIO-MDC)}	Hold time, MDIO valid from MDC high	0			ns

Figure 7-102. PRU-ICSS MDIO_DATA Timing - Input Mode

(see Figure 7-103)								
NO.		PARAMETER	MIN	TYP	MAX	UNIT		
1	t _{c(MDC)}	Cycle time, MDC	400			ns		
2	t _{w(MDCH)}	Pulse duration, MDC high	160			ns		
3	t _{w(MDCL)}	Pulse duration, MDC low	160			ns		
					·			

Figure 7-103. PRU-ICSS MDIO_CLK Timing

Table 7-103. PRU-ICSS MDIO Switching Characteristics – MDIO_DATA

(see Figure 7-104)

RUMENTS

www.ti.com

· ·	• /				
NO.			MIN	TYP MAX	UNIT
1	t _{d(MDC-MDIO)}	Delay time, MDC high to MDIO valid	10	(P*0.5) -10 ⁽¹⁾	ns
(1) P =	= MDIO_CLK Perio	od			
		◄ 1			
MD	IO_CLK (Output)				
MDIC	D_DATA (Output)	X	X		

Figure 7-104. PRU-ICSS MDIO_DATA Timing – Output Mode

7.14.2.2 PRU-ICSS MII_RT Electrical Data and Timing

NOTE

In order to guarantee the MII_RT I/O timing values published in the device data manual, the PRU ocp_clk clock must be configured for 200 MHz (default value) and the TX_CLK_DELAY bit field in the PRUSS_MII_RT_TXCFG0/1 register must be configured as follows:

- 100 Mbps mode: 6h (non-default value)
- 10 Mbps mode: 0h (value)

Table 7-104. PRU-ICSS MII_RT Timing Requirements – MII_RXCLK

(see Figure 7-105)

NO			1	0 Mbps		1	00 Mbps		
NO.			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
1	t _{c(RX_CLK)}	Cycle time, RX_CLK	399.96		400.04	39.996		40.004	ns
2	t _{w(RX_CLKH)}	Pulse duration, RX_CLK high	140		260	14		26	ns
3	t _{w(RX_CLKL)}	Pulse duration, RX_CLK low	140		260	14		26	ns
4	t _{t(RX_CLK)}	Transition time, RX_CLK			3			3	ns

Figure 7-105. PRU-ICSS MII_RXCLK Timing

www.ti.com

Table 7-105. PRU-ICSS MII_RT Timing Requirements - MII[x]_TXCLK

(see Figure 7-106)

XAS

STRUMENTS

NO				10 Mbps			100 Mbps		
NO.			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
1	t _{c(TX_CLK)}	Cycle time, TX_CLK	399.96		400.04	39.996		40.004	ns
2	t _{w(TX_CLKH)}	Pulse duration, TX_CLK high	140		260	14		26	ns
3	t _{w(TX_CLKL)}	Pulse duration, TX_CLK low	140		260	14		26	ns
4	t _{t(TX_CLK)}	Transition time, TX_CLK			3			3	ns

Figure 7-106. PRU-ICSS MII_TXCLK Timing

Table 7-106. PRU-ICSS MII_RT Timing Requirements - MII_RXD[3:0], MII_RXDV, and MII_RXER

(see Figure 7-107)

NO			1	0 Mbps		1	00 Mbps		
NO.			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
1	t _{su(RXD-RX_CLK)}	Setup time, RXD[3:0] valid before RX_CLK							
	t _{su(RX_DV-RX_CLK)}	Setup time, RX_DV valid before RX_CLK	8			8			ns
	t _{su(RX_ER-RX_CLK)}	Setup time, RX_ER valid before RX_CLK							
	t _{h(RX_CLK-RXD)}	Hold time RXD[3:0] valid after RX_CLK							
2	t _{h(RX_CLK-RX_DV)}	Hold time RX_DV valid after RX_CLK	8			8			ns
	t _{h(RX_CLK-RX_ER)}	Hold time RX_ER valid after RX_CLK							

Figure 7-107. PRU-ICSS MII_RXD[3:0], MII_RXDV, and MII_RXER Timing

Table 7-107. PRU-ICSS MII_RT Switching Characteristics - MII_TXD[3:0] and MII_TXEN

Figure 7-108. PRU-ICSS MII_TXD[3:0], MII_TXEN Timing

7.14.3 PRU-ICSS Universal Asynchronous Receiver Transmitter (PRU-ICSS UART)

Table 7-108. UART Timing Conditions

	PARAMETER	MIN	TYP	MAX	UNIT
Input Condit	ions				
t _R	Input signal rise time			10	ns
t _F	Input signal fall time			10	ns
Output Conditions					
C _{LOAD}	Output load capacitance			25	pF

Table 7-109. Timing Requirements for PRU-ICSS UART Receive

(see Figure 7-109)

NO.			MIN	MAX	UNIT
3	t _{w(RX)}	Pulse duration, receive start, stop, data bit	0.96U ⁽¹⁾	1.05U ⁽¹⁾	ns

(1) U = UART baud time = 1/programmed baud rate.

Table 7-110. Switching Characteristics Over Recommended Operating Conditions for PRU-ICSS UART Transmit

(see Figure 7-109)

NO.		PARAMETER	MIN	MAX	UNIT
1	$f_{baud(baud)}$	Maximum programmable baud rate	0	12	MHz
2	t _{w(TX)}	Pulse duration, transmit start, stop, data bit	$U - 2^{(1)}$	$U + 2^{(1)}$	ns

(1) U = UART baud time = 1/programmed baud rate.

Figure 7-109. PRU-ICSS UART Timing

7.15 Universal Asynchronous Receiver Transmitter (UART)

For more information, see the Universal Asynchronous Receiver Transmitter (UART) section of the AM335x and AMIC110 Sitara Processors Technical Reference Manual.

7.15.1 UART Electrical Data and Timing

Table 7-111. Timing Requirements for UARTx Receive

(see Fig	see Figure 7-110)									
NO.			MIN	MAX	UNIT					
3	t _{w(RX)}	Pulse duration, receive start, stop, data bit	0.96U ⁽¹⁾	1.05U ⁽¹⁾	ns					
(1) 11 -	1) II – IIAPT haud time – 1/programmed haud rete									

U = UART baud time = 1/programmed baud rate. (1)

Table 7-112. Switching Characteristics for UARTx Transmit

(see Figure 7-110)

NO.		PARAMETER	MIN	MAX	UNIT
1	$f_{baud(baud)}$	Maximum programmable baud rate		3.6864	MHz
2	t _{w(TX)}	Pulse duration, transmit start, stop, data bit	U – 2 ⁽¹⁾	U + 2 ⁽¹⁾	ns

(1) U = UART baud time = 1 / programmed baud rate

Figure 7-110. UART Timings

7.15.2 UART IrDA Interface

The IrDA module operates in three different modes:

- Slow infrared (SIR) (≤115.2 kbps)
- Medium infrared (MIR) (0.576 Mbps and 1.152 Mbps)
- Fast infrared (FIR) (4 Mbps).

Figure 7-111 shows the UART IrDA pulse parameters. Table 7-113 and Table 7-114 list the signaling rates and pulse durations for UART IrDA receive and transmit modes.

Figure 7-111. UART IrDA Pulse Parameters

	ELECTRICAL PULSE DU	JRATION	
SIGNALING RATE	MIN	MAX	UNIT
SIR			
2.4 kbps	1.41	88.55	μs
9.6 kbps	1.41	22.13	μs
19.2 kbps	1.41	11.07	μs
38.4 kbps	1.41	5.96	μs
57.6 kbps	1.41	4.34	μs
115.2 kbps	1.41	2.23	μs
MIR			
0.576 Mbps	297.2	518.8	ns
1.152 Mbps	149.6	258.4	ns
FIR			
4 Mbps (single pulse)	67	164	ns
4 Mbps (double pulse)	190	289	ns

Table 7-113. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode

	ELECTRICAL PULSE DU	RATION	LINUT
SIGNALING KATE	MIN	МАХ	UNIT
SIR			
2.4 kbps	78.1	78.1	μs
9.6 kbps	19.5	19.5	μs
19.2 kbps	9.75	9.75	μs
38.4 kbps	4.87	4.87	μs
57.6 kbps	3.25	3.25	μs
115.2 kbps	1.62	1.62	μs
MIR			
0.576 Mbps	414	419	ns
1.152 Mbps	206	211	ns
FIR			
4 Mbps (single pulse)	123	128	ns
4 Mbps (double pulse)	248	253	ns

Table 7-114. UART IrDA—Signaling Rate and Pulse Duration—Transmit Mode

8 Device and Documentation Support

8.1 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example, XAM3358AGCZ). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).

Device development evolutionary flow:

- **X** Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow.
- **P** Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications.
- **null** Production version of the silicon die that is fully qualified.

Support tool development evolutionary flow:

- **TMDX** Development-support product that has not yet completed Texas Instruments internal qualification testing.
- **TMDS** Fully-qualified development-support product.

X and P devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, GCZ), the temperature range (for example, blank is the default commercial temperature range), and the device speed range, in megahertz (for example, 27 is 275 MHz). Figure 8-1 provides a legend for reading the complete device name for any AM3358-EP device.

For orderable part numbers of AM335x device types, see the Package Option Addendum of this document, ti.com, or contact your TI sales representative.

For additional description of the device nomenclature markings on the die, see the AM335x Sitara Processors Silicon Errata.

Figure 8-1. AM3358-EP Device Nomenclature

8.2 Tools and Software

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

Design Kits and Evaluation Modules

AM335x Evaluation Module Enables developers to immediately start evaluating the AM335x processor family (AM3351, AM3352, AM3354, AM3356, AM3358) and begin building applications such as portable navigation, portable gaming, home/building automation and others.

- AM335x Starter Kit Provides a stable and affordable platform to quickly start evaluation of Sitara ARM Cortex-A8 AM335x Processors (AM3351, AM3352, AM3354, AM3356, AM3358) and accelerate development for smart appliance, industrial and networking applications. It is a low-cost development platform based on the ARM Cortex-A8 processor that is integrated with options such as Dual Gigabit Ethernet, DDR3 and LCD touch screen.
- BeagleBone Black Development Board Low-cost, open source, community-supported development platform for ARM Cortex-A8 processor developers and hobbyists. Boot Linux in under 10-seconds and get started on Sitara AM335x ARM Cortex-A8 processor development in less than 5 minutes with just a single USB cable.
- BeagleBone Development Board Low-cost, community-supported development platform for ARM Cortex-A8 processor developers. Boot Linux in under 10-seconds and get started on Sitara AM335x ARM Cortex-A8 processor development in less than 5 minutes with just a single USB cable. For TI-supported hardware platforms, consider the Sitara ARM AM335x Starter Kit or AM335x Evaluation Module.
- Data Concentrator Evaluation Module Based on AM3359 as the main processor and has Power Line Communication (PLC) Module to support various OFDM PLC communication standards. TMDSDC3359 also has capability to support multiple interfaces, sub-1GHz and 2.4GHz RF, Ethernet, RS-232, and RS-485. This evaluation module is ideal development platform for smart grid infrastructure applications including data concentrator, convergent node of grid sensor network, and control equipment of power automation.
- WiLink[™] 8 Dual Band 2.4 & 5 GHz Wi-Fi[®] + Bluetooth[®] COM8 Evaluation Module Enables customers to add both Wi-Fi and Bluetooth to home and building automation, smart energy, gateways, wireless audio, enterprise, wearables and many more industrial and Internet of Things (IoT) applications. TI's WiLink 8 modules are certified and offer high throughput and extended range along with Wi-Fi and Bluetooth coexistence in a power-optimized design. Drivers for the Linux and Android high-level operating systems (HLOSs) are available free of charge from TI for the Sitara AM335x microprocessor (Linux and Android version restrictions apply).
- WiLink 8 Module 2.4 GHz WiFi + Bluetooth COM8 Evaluation Module Enables customers to add Wi-Fi and Bluetooth (WL183x module only) to embedded applications based on TI's Sitara microprocessors. TI's WiLink 8 Wi-Fi + Bluetooth modules are pre-certified and offer high throughput and extended range along with Wi-Fi and Bluetooth coexistence (WL183x modules only) in a power-optimized design. Drivers for the Linux and Android high-level operating systems (HLOSs) are available free of charge from TI for the Sitara AM335x microprocessor (Linux and Android version restrictions apply).

TI Designs

- EtherCAT Communications Development Platform Allows designers to implement real-time EtherCAT communications standards in a broad range of industrial automation equipment. It enables low foot print designs in applications such as industrial automation, factory automation or industrial communication with minimal external components and with best in class low power performance.
- **PROFIBUS** Communications Development Platform Allows designers to implement PROFIBUS communications standards in a broad range of industrial automation equipment. It enables low foot print designs in applications such as industrial automation, factory automation or industrial communication with minimal external components and with best in class low power performance.
- Ethernet/IP Communications Development Platform Allows designers to mplement Ethernet/IP communications standards in a broad range of industrial automation equipment. It enables low foot print designs in applications such as industrial automation, factory automation or industrial communication with minimal external components and with best in class low power performance.
- Acontis EtherCAT Master Stack Reference Design Highly portable software stack that can be used on various embedded platforms. The EC-Master supports the high performane TI Sitara MPUs, it provides a sophisticated EtherCAT Master solution which customers can use to implement EtherCAT communication interface boards, EtherCAT based PLC or motion control applications. The EC-Master architectural design does not require additional tasks to be scheduled, thus the full stack functionality is available even on an OS less platform such as TI Starterware suported on AM335x. Due to this architecture combined with the high speed Ethernet driver it is possible to implement EtherCAT master based applications on the Sitara platform with short cycle times of 100 microseconds or even below.
- Solar Inverter Gateway Development Platform Reference Design Adds communication functions to solar energy generation systems to enable system monitoring, real-time feedback, system updates, and more. The TIDEP0044 reference design describes the implementation of a solar inverter gateway using display, Ethernet, USB, and CAN on the TMDXEVM3358 featuring TI's AM335x processor.
- **G3 Power Line Communications Data Concentrator on BeagleBone Black Platform** Offers a simplified approach for evaluating G3-PLC utilizing Beagle Bone Black powered by the Sitara AM335x processor. Users can establish a G3-PLC network with one service node. Single phase coupling is supported.
- IEC 61850 Demonstration of Substation Bay Controller on Beaglebone Cape and Starter Kit Lowcost, simplified implementation of an IEC 61850 Substation Bay Controller is demonstrated by running the Triangle MicroWorks IEC 61850 stack efficiently on the TI AM335X platform with a Linux target layer definition. Many different substation automation applications can be built on top of the AM335X platform and 61850 stack demonstration.

- PRU Real-Time I/O Evaluation Reference Design BeagleBone Black add-on board that allows users get to know TI's powerful Programmable Real-Time Unit (PRU) core and basic functionality. The PRU is a low-latency microcontroller subsystem integrated in the Sitara AM335x and AM437x family of devices. The PRU core is optimized for deterministic, real-time processing, direct access to I/Os and ultra-low-latency requirements. With LEDs and push buttons for GPIO, audio, a temp sensor, optional character display and more, this add-on board includes schematics, bill of materials (BOM), design files, and design guide to teach the basics of the PRU.
- Smart Home and Energy Gateway Reference Design Provides example implementation for measurement, management and communication of energy systems for smart homes and buildings. This example design is a bridge between different communication interfaces, such as WiFi, Ethernet, ZigBee or Bluetooth, that are commonly found in residential and commercial buildings. Since objects in the house and buildings are becoming more and more connected, the gateway design needs to be flexible to accommodate different RF standard, since no single RF standard is dominating the market. This example gateway addresses this problem by supporting existing legacy RF standards (WiFi, Bluetooth) and newer RF standards (ZigBee, BLE).
- Streaming Audio Reference Design Minimizes design time for customers by offering small form factor hardware and major software components, including streaming protocols and internet radio services. With this reference design, TI offers a quick and easy transition path to the AM335x and WiLink8 platform solution. This proven combo solution provides key advantages in this market category that helps bring your products to the next level.

Software

- Processor SDK for AM335X Sitara Processors Linux and TI-RTOS Support Unified software platform for TI embedded processors providing easy setup and fast out-of-the-box access to benchmarks and demos. All releases of Processor SDK are consistent across TI's broad portfolio, allowing developers to seamlessly reuse and migrate software across devices. Developing scalable platform solutions has never been easier than with the Processor SDK and TI's embedded processor solutions.
- G3 Data Concentrator Power-Line Communication Modem G3-PLC standard for narrowband OFDM Power Line Communications. The data concentrator solution is designed for the head-end systems which communicate with the end meters ("service node") in the neighborhood area network.
- PRIME Data Concentrator Power-Line Communication Modem PRIME standard for narrowband OFDM Power Line Communications. The data concentrator solution is designed for the head-end systems which communicate with the end meters ("service node") in the neighborhood area network.
- TI Dual-Mode Bluetooth Stack Comprised of Single-Mode and Dual-Mode offerings implementing the Bluetooth 4.0 specification. The Bluetooth stack is fully Bluetooth Special Interest Group (SIG) qualified, certified and royalty-free, provides simple command line sample applications to speed development, and upon request has MFI capability.
- Cryptography for TI Devices Enables encryption, crypto for TI devices. These files contain only cryptographic modules that were part of a TI software release. For the complete software release please search ti.com for your device part number, and download the Software Development Kit (SDK).

Development Tools

- Clock Tree Tool for Sitara ARM Processors Interactive clock tree configuration software that provides information about the clocks and modules in Sitara devices.
- Code Composer Studio (CCS) Integrated Development Environment (IDE) for Sitara ARM Processors

Integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through each step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers.

- Pin Mux Tool Provides a Graphical User Interface for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs. Results are output as C header/code files that can be imported into software development kits (SDK) or used to configure customer's custom software. Version 3 of the Pin Mux utility adds the capability of automatically selecting a mux configuration that satisfies the entered requirements.
- **Power Estimation Tool (PET)** Provides users the ability to gain insight in to the power consumption of select TI processors. The tool includes the ability for the user to choose multiple application scenarios and understand the power consumption as well as how advanced power saving techniques can be applied to further reduce overall power consumption.
- Uniflash Standalone Flash Tool for TI Microcontrollers (MCU), Sitara Processors and SimpleLink devices

Programs on-chip flash memory on TI MCUs and onboard flash memory for Sitara processors. Uniflash has a GUI, command line, and scripting interface. CCS Uniflash is available free of charge.

- XDS200 USB Debug Probe Connects to the target board via a TI 20-pin connector (with multiple adapters for TI 14-pin, ARM 10-pin and ARM 20-pin) and to the host PC via USB2.0 High Speed (480Mbps). It also requires a license of Code Composer Studio IDE running on the host PC.
- XDS560v2 System Trace USB and Ethernet Debug Probe Adds system pin trace in its large external memory buffer. Available for selected TI devices, this external memory buffer captures device-level information that allows obtaining accurate bus performance activity and throughput, as well as power management of core and peripherals. Also, all XDS debug probes support Core and System Trace in all ARM and DSP processors that feature an Embedded Trace Buffer (ETB).
- XDS560v2 System Trace USB Debug Probe Adds system pin trace in its large external memory buffer. Available for selected TI devices, this external memory buffer captures device-level information that allows obtaining accurate bus performance activity and throughput, as well as power management of core and peripherals. Also, all XDS debug probes support Core and System Trace in all ARM and DSP processors that feature an Embedded Trace Buffer (ETB).

Models

AM335x ZCZ IBIS Model ZCZ/GCZ package IBIS model

AM335x ZCZ Rev. 2.1 BSDL Model ZCZ/GCZ package BSDL model for the revision 2.1 TI F781962A Fixed- and Floating-Point DSP with Boundary Scan

8.3 Documentation Support

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

The current documentation that describes the processor, related peripherals, and other technical collateral is listed below.

Errata

AM335x Sitara Processors Silicon Errata

Describes the known exceptions to the functional specifications for the AM335x Sitara Processors.

Application Reports

Processor SDK RTOS Customization: Modifying Board Library to Change UART Instance on AM335x

Describes the procedure to modify the default UART0 example in the AM335x Processor SDK RTOS package to enable UART1. On the BeagleBone Black (BBB) P9 header, pins 24(TX) and 26(RX) are connected to UART1. This procedure shows a test to verify that UART1 is enabled on the BBB.

- High-Speed Layout Guidelines As modern bus interface frequencies scale higher, care must be taken in the printed circuit board (PCB) layout phase of a design to ensure a robust solution.
- AM335x Reliability Considerations in PLC Applications Programmable Logic Controllers (PLC) are used as the main control in an automation system with high- reliability expectations and long life in harsh environments. Processors used in these applications require an assessment of performance verses expected power on hours to achieve the optimal performance for the application.
- AM335x Thermal Considerations Discusses the thermal considerations of the AM335x devices. It offers guidance on analysis of the processor's thermal performance, suggests improvements for an end system to aid in overcoming some of the existing challenges of producing a good thermal design, and provides real power/thermal data measured with AM335x EVMs for user evaluation.

User's Guides

- **TPS65910Ax User's Guide for AM335x Processors User's Guide** A reference for connectivity between the TPS65910Ax power-management integrated circuit (PMIC) and the AM335x processor.
- AM335x and AMIC110 Sitara Processors Technical Reference Manual Details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the device.
- **G3 Power Line Communications Data Concentrator on BeagleBone Black Platform Design Guide** Provide the foundation that you need including methodology, testing, and design files to quickly evaluate and customize the system. TI Designs help you accelerate your time to market.
- Powering the AM335x with the TPS65217x A reference for connectivity between the TPS65217 power management IC and the AM335x processor.
- Powering the AM335x With the TPS650250 Details a power solution for the AM335x application processor with a TPS650250 Power Management Unit (PMU) or Power Management IC (PMIC).

Selection and Solution Guides

Connected Sensors Building Automation Systems Guide The use of connected sensors has a wide range of uses in building automation applications, from monitoring human safety and

security, controlling the environment and ambience specified by the comfort preferences of the end user, or either periodic or continuous data logging of environmental and system data to detect irregular system conditions.

White Papers

- Building Automation for Enhanced Energy And Operational Efficiency Discusses building automation solutions, focusing on aspects of the Building Control System. TI's Sitara processors facilitate intelligent automation of the control systems. The scalable Sitara processor portfolio offers an opportunity to build a platform solution that also spans beyond Building Control Systems.
- **POWERLINK on TI Sitara Processors** Supports Ethernet standard features such as cross-traffic, hotplugging and different types of network configurations such as star, ring and mixed topologies.
- EtherNet/IP on TI's Sitara AM335x Processors EtherNet/IP™ (EtherNet/Industrial Protocol) is an industrial automation networking protocol based on the IEEE 802.3 Ethernet standard that has dominated the world of IT networking for the past three decades.
- PROFINET on TI's Sitara AM335x Processors To integrate PROFINET into the Sitara AM335x processor, TI has built upon its programmable realtime unit (PRU) technology to create an industrial communication sub-system (ICSS).
- Profibus on AM335x and AM1810 Sitara ARM Microprocessor PROFIBUS, one of the most used communication technologies, is installed in more than 35 million industrial nodes worldwide and is growing at a rate of approximately 10 percent each year.
- EtherCAT on Sitara AM335x ARM Cortex-A8 Microprocessors Emerging real-time industrial Ethernet standard for industrial automation applications, such as input/output (I/O) devices, sensors and programmable logic controllers (PLCs).
- Mainline Linux Ensures Stability and Innovation Enabling and empowering the rapid development of new functionality starts at the foundational level of the system's software environment – that is, at the level of the Linux kernel – and builds upward from there.
- Complete Solutions for Next-Generation Wireless Connected Audio Robust, feature-rich and highperformance connectivity technology for Wi-Fi and Bluetooth.
- Data Concentrators: The Core of Energy and Data Management With a large install base, it is essential to establish an automated metering infrastructure (AMI). With automated meter reading (AMR) measurement, the communication of meter data to the central billing station will be seamless.
- Linaro Speeds Development in TI Linux SDKs Linaro's software is not a Linux distribution; in fact, it is distribution neutral. The focus of the organization's 120 engineers is on optimizing base-level open-source software in areas that interact directly with the silicon such as multimedia, graphics, power management, the Linux kernel and booting processes.
- Getting Started on TI ARM Embedded Processor Development Beginning with an overview of ARM technology and available processor platforms, this paper will then explore the fundamentals of embedded design that influence a system's architecture and, consequently, impact processor selection.
- Power Optimization Techniques for Energy-Efficient Systems The TI Sitara processor solutions offer the flexibility to design application-specific systems. The latest Sitara AM335x processors provide a scalable architecture with speed ranging from 300 MHz to 1 GHz.
- The Yocto Project: Changing the Way Embedded Linux Software Solutions are Developed Enabling complex silicon devices such as SoC with operating firmware and application software can be a challenge for equipment manufacturers who often are more comfortable with hardware than software issues.
- Smart Thermostats are a Cool Addition to the Connected Home Because of the pervasiveness of residential broadband connectivity and the explosion in options, the key to the connected home is connectivity.
- BeagleBone Low-Cost Development Board Provides a Clear Path to Open-source Resources Ready-to-use open-source hardware platform for rapid prototyping and firmware and software development.

Enable Security and Amp Up Chip Performance With Hardware-Accelerated Cryptography

TEXAS INSTRUMENTS

Cryptography is one of several techniques or methodologies that are typically implemented in contemporary electronic systems to construct a secure perimeter around a device where information or digital content is being protected.

- Gesture Recognition: Enabling Natural Interactions With Electronics Enabling humans and machines to interface more easily in the home, the automobile, and at work.
- Developing Android Applications for ARM Cortex-A8 Cores The flexibility, power, versatility and ubiquity of the Android operating system (OS) and associated ecosystem have been a boon to developers of applications for ARM processor cores.

Other Documents

- Industrial Communication with Sitara AM335x ARM Cortex-A8 Microprocessors The industry's first low- power ARM Cortex-A8 devices to incorporate multiple industrial communication protocols on a single chip. The six pin-to-pin and software-compatible devices in this generation of processors, along with industrial hardware development tools, software and analog complements, provide a total industrial system solution.
- Sitara Processors Using the ARM Cortex-A series of cores, are optimized system solutions that go beyond the core, delivering products that support rich graphics capabilities, LCD displays and multiple industrial protocols.
- Industrial Communication with Sitara AM335x ARM Cortex-A8 Microprocessors Describes the key features and benefits of multiple, on-chip, production-ready industrial Ethernet and field bus communication protocols with master and slave functionality.

8.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

- TI E2E[™] Online Community The TI engineer-to-engineer (E2E) community was created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
- TI Embedded Processors Wiki Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

8.5 Trademarks

Sitara, SmartReflex, WiLink, E2E are trademarks of Texas Instruments. NEON is a trademark of ARM Ltd or its subsidiaries. ARM, Cortex are registered trademarks of ARM Ltd or its subsidiaries. ARM, Cortex are registered trademarks of ARM Ltd. Bluetooth is a registered trademark of Bluetooth SIG. Android is a trademark of Google Inc. PowerVR SGX is a trademark of Imagination Technologies Limited. Linux is a registered trademark of Linus Torvalds. Wi-Fi is a registered trademark of Wi-Fi Alliance. All other trademarks are the property of their respective owners.

8.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.7 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

9.1 Via Channel

The GCZ package has been specially engineered with Via Channel technology. This allows larger than normal PCB via and trace sizes and reduced PCB signal layers to be used in a PCB design with the 0.65-mm pitch package, and substantially reduces PCB costs. It allows PCB routing in only two signal layers (four layers total) due to the increased layer efficiency of the Via Channel BGA technology.

9.2 Packaging Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
AM3358BGCZA80EP	Active	Production	NFBGA (GCZ) 324	126 TUBE	No	SNPB	Level-3-220C-168 HR	-40 to 105	M3358BGCZA80EP
V62/15602-01XF	Active	Production	NFBGA (GCZ) 324	126 TUBE	No	SNPB	Level-3-220C-168 HR	-40 to 105	M3358BGCZA80EP

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF AM3358-EP :

Catalog : AM3358

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

TEXAS INSTRUMENTS

www.ti.com

TRAY

21-May-2025

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	K0 (µm)	P1 (mm)	CL (mm)	CW (mm)
AM3358BGCZA80EP	GCZ	NFBGA	324	126	7 X 18	150	315	135.9	7620	17.2	11.3	16.35
V62/15602-01XF	GCZ	NFBGA	324	126	7 X 18	150	315	135.9	7620	17.2	11.3	16.35

*All dimensions are nominal

GCZ0324A

PACKAGE OUTLINE

NFBGA - 1.4 mm max height

PLASTIC BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

GCZ0324A

EXAMPLE BOARD LAYOUT

NFBGA - 1.4 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

GCZ0324A

EXAMPLE STENCIL DESIGN

NFBGA - 1.4 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated