

Order

Now

ADS54J54

SLASE67A - JANUARY 2015-REVISED AUGUST 2019

ADS54J54 Quad Channel 14-Bit 500 MSPS ADC

1 Features

- 4 Channel, 14-Bit 500 MSPS ADC
- Analog input buffer with high impedance input
- Flexible input clock buffer with divide by 1/2/4
- 1.25 V_{PP} Differential full-scale input
- JESD204B Serial interface
 - Subclass 1 compliant up to 5 Gbps
 - 1 Lane Per ADC up to 250 Msps
 - 2 Lanes Per ADC up to 500 Msps
 - 64-Pin QFN Package (9 mm x 9 mm)
- Key specifications:
 - Power dissipation: 875 mW/ch
 - Input bandwidth (3 dB): 900 MHz
 - Aperture jitter: 98 fs rms
 - Channel isolation: 85 dB
 - Performance at f_{in} = 170 MHz at 1.25 V_{PP}, 1lane 2x Decimation –1 dBFS
 - SNR: 67.2 dBFS
 - SFDR: 85 dBc HD2,3; 95 dBFS non-HD2,3
 - Performance at f_{in} = 370 MHz at 1.25 V_{PP}, 2lane no Decimation –1 dBFS
 - SNR: 64.7 dBFS
 - SFDR: 75 dBc HD2,3; 83 dBFS non-HD2,3

2 Applications

- Multi-Carrier, Multi-Mode, Multi-Band Cellular Receivers
 - TDD-LTE, FDD-LTE, CDMA, WCMDA, CMDA2k, GSM
- Microwave backhaul
- Wireless repeaters
- Distributed antenna systems (DAS)
- Broadband wireless
- Ultra-wide band software defined radio
- Data acquisition
- Test and measurement instrumentation
- Signal intelligence and jamming
- Radar and satellite systems
- Cable infrastructure

3 Description

The ADS54J54 is a low power, wide bandwidth 14-bit 500 MSPS guad channel analog-to-digital converter (ADC). It supports the JESD204B serial interface with data rates up to 5 Gbps supporting 1 or 2 lanes per ADC. The buffered analog input provides uniform input impedance across a wide frequency range while sample-and-hold minimizing glitch energy. Α sampling clock divider allows more flexibility for system clock architecture design. The ADS54J54 provides excellent spurious-free dynamic range (SFDR) over a large input frequency range with very low power consumption. Optional 2x Decimation Filter provides high-pass or low-pass filter modes.

Support &

Community

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
ADS54J54	VQFN (64)	9.00mm x 9.00mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1	Feat	ures 1								
2	Арр	lications1								
3	Description1									
4	Revi	sion History 2								
5	Pin	Configuration and Functions 3								
6	Spee	cifications5								
	6.1	Absolute Maximum Ratings 5								
	6.2	ESD Ratings5								
	6.3	Recommended Operating Conditions5								
	6.4	Thermal Information 5								
	6.5	Electrical Characteristics7								
	6.6	Electrical Characteristics: 250 MSPS Output, 2x Decimation Filter								
	6.7	Electrical Characteristics: 500 MSPS Output9								
	6.8	Electrical Characteristics: Sample Clock Timing Characteristics								
	6.9	Electrical Characteristics: Digital Outputs 10								
	6.10	Timing Requirements 10								
	6.11	Reset Timing 10								
	6.12	Typical Characteristics 13								
7	Deta	iled Description								
	7.1	Overview 23								

	7.2	Functional Block Diagram	. 23
	7.3	Feature Description	. 24
	7.4	Device Functional Modes	. 33
	7.5	Programming	. 35
	7.6	Register Maps	. 36
8	Арр	lication and Implementation	. 53
	8.1	Application Information	. 53
	8.2	Typical Application	. 53
	8.3	Design Requirements	. 54
	8.4	Detailed Design Procedure	. 54
	8.5	Application Curves	. 55
9	Pow	er Supply Recommendations	. 56
10	Lay	out	56
	10.1	Layout Guidelines	. 56
	10.2	Layout Example	. 56
11	Dev	ice and Documentation Support	. 58
	11.1	Trademarks	. 58
	11.2	Electrostatic Discharge Caution	. 58
	11.3	Glossary	. 58
12	Mec	hanical, Packaging, and Orderable	
	Info	rmation	. 58

4 Revision History

C	nanges from Original (January 2015) to Revision A Page				
•	Added list item in <i>Device and Register Initialization</i> : "Write the data in Table 5 to"	33			
•	Added Table 5	33			

2

ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
INPUT OR REFE	RENCE			
INAP, INAM	63, 62	Ι	Differential analog input for channel A	
INBP, INBM	58, 59	Ι	Differential analog input for channel B	
INCP, INCM	18, 19	Ι	Differential analog input for channel C	
INDP, INDM	23, 22	Ι	ifferential analog input for channel D	
VCM	16	0	Common mode output voltage to bias analog inputs, Vcm = 2.0 V	
VREF	15	0	Voltage reference output. A 0.1-µF bypass capacitor to ground close to the pin is recommended	
CLOCK/SYNC				
CLKINP, CLKINM	9, 8	Ι	Differential clock input for channel	
SYSREFABP, SYSREFABM	6, 5	Ι	LVDS input with internal 100- Ω termination. External SYSREF input for channels A, B, C, and D	
SYSREFCDP, SYSREFCDM	11, 12	I	LVDS input with internal 100- Ω termination. External SYSREF input for channels C and D if output rate of channel A/B is different from channel C/D.	

ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019

www.ti.com

Texas Instruments

Pin Functions (continued)

PI	N	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
CONTROL OR S	ERIAL		
ENABLE	14	Ι	Chip enable. Active high. Power down functionality can be configured through SPI register setting and exercised using the ENABLE pin. Internal 51-k Ω pulldown resistor.
SCLK	3	Ι	Serial interface clock input
SDATA	2	I/O	Bidirectional serial data in 3-pin mode. In 4-pin interface, the SDATA pin is an input only.
SDENb	4	I	Serial interface enable
SDOUT	1	0	Serial interface data output
SRESETb	13	Ι	Hardware reset. Active low. Initializes internal registers during high to low transition. This pin has an internal $51-k\Omega$ pullup resistor.
DATA OUTPUT I	NTERFACE		
DA[0,1]P, DA[0,1]M	55, 54, 52, 51	0	JESD204B output interface for channel A
DB[0,1]P, DB[0,1]M	46, 45, 43, 42	0	JESD204B output interface for channel B
DC[0,1]P, DC[0,1]M	26, 27, 29, 30	0	JESD204B output interface for channel C
DD[0,1]P, DD[0,1]M	35, 36, 38, 39	0	JESD204B output interface for channel D
OVRA	50	I/O	Fast over-range indicator channel A.
OVRB	49	0	Fast over-range indicator channel B.
OVRC	31	I/O	Fast over-range indicator channel C.
OVRD	32	0	Fast over-range indicator channel D.
SYNCbABP, SYNCbABM	47, 48	I	SYNCb input for JESD204B interface for channel A/B, internal 100- Ω termination
SYNCbCDP, SYNCbCDM	34, 33	I	SYNCb input for JESD204B interface for channel C/D, internal 100- Ω termination
POWER SUPPLY	(
AVDDC	7, 10	Ι	Clock 1.8-V power supply
AVDD18	21, 24, 57, 60	I	Analog 1.9-V power supply
AVDD33	17, 20, 61, 64	Ι	Analog 3.3-V power supply
DVDD	25, 56	I	Digital 1.8-V power supply
GND	PowerPAD™	Ι	Ground
IOVDD	28, 37, 44, 53	Ι	JESD204B output interface 1.8-V power supply
PLLVDD	40, 41	Ι	PLL 1.8-V power supply

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT	
	AVDD33	-0.3	3.6		
	AVDD18	-0.3	2.1		
Supply voltage	AVDDC	-0.3	2.1	V	
Supply vollage	DVDD	-0.3	2.1	v	
	IOVDD	-0.3	2.1		
	PLLVDD	-0.3	2.1		
Voltage between AGND and I	DGND	-0.3 0.3		V	
	INAP, INBP, INCP, INDP, INAM, INBM, INCM, INDM	-0.3	3		
	CLKINP, CLKINM	-0.3	AVDD18 + 0.3 V		
Voltage applied to input pins	SYNCbABP, SYNCbABM, SYNCbCDP, SYNCbCDM	-0.3	AVDD18 + 0.3 V	V	
	SYSREFABP, SYSREFABM, SYSREFCDP, SYSREFCDM	-0.3	AVDD18 + 0.3 V		
	SCLK, SDENb, SDATA, SRESETb, ENABLE	-0.3	DVDD + 0.5 V		
Operating free-air temperature, T _A		-40	85	°C	
Operating junction temperature, T _J ⁽²⁾			125	°C	
Storage temperature, T _{sta}		-65	150	°C	

(1) Stresses beyond those listed as *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated as *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Prolonged use at this junction temperature may increase the device failure-in-time (FIT) rate.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electro	Flastrastatia disabarga	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	V
	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
	ADC clock frequency	250		500	MSPS
	Resolution	14		14	bits
	AVDD33	3.15	3.3	3.45	
Supply	AVDD18	1.8	1.9	2	
	AVDDC	1.7	1.8	1.9	N/
	DVDD	1.7	1.8	1.9	v
	IOVDD	1.7	1.8	1.9	
	PLLVDD	1.7	1.8	1.9	
T _A	Operating free-air temperature	-40		85	°C
TJ	Operating junction temperature			125	°C

6.4 Thermal Information

	Thermal Metric ⁽¹⁾	RGC (64 PINS)	UNIT
$R_{\Theta J A}$	Junction-to-ambient thermal resistance	23.5	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

SLASE67A - JANUARY 2015-REVISED AUGUST 2019

NSTRUMENTS

www.ti.com

Texas

Thermal Information (continued)

	Thermal Metric ⁽¹⁾	RGC (64 PINS)	UNIT
R _{@JC(top)}	Junction-to-case, top	7.0	°C/W
$R_{\Theta JB}$	Junction-to-board thermal resistance	2.6	°C/W
ΨJT	Junction-to-top of package	0.1	°C/W
φјв	Junction-to-board characterization parameter	2.6	°C/W
R _{@JC(bot)}	Junction-to-case, bottom	0.3	°C/W

6.5 Electrical Characteristics

Typical values at $T_A = 25^{\circ}$ C, full temperature range is $T_{MIN} = -40^{\circ}$ C to $T_{MAX} = 85^{\circ}$ C, ADC sampling rate = 500 MSPS, 50% clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, -1-dBFS differential input, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
POWER SU	IPPLY								
I _{AVDD33}	3.3-V analog supply current			500		mA			
I _{AVDD18}	1.9-V analog supply current			320		mA			
IAVDDC	1.8-V clock supply current			18		mA			
		4-channel decimation filter		323					
la van	1.8-V digital supply current	4-channel bypass digital mode		324		mΔ			
טטעטי		2-channel decimation filter, 2-channel bypass digital mode		324					
		2 lanes per ADC		373					
IOVDD	I/O voltage supply current	1 lane per ADC		185		mA			
I _{PLLVDD}	PLL voltage supply current			42		mA			
		4-channel bypass digital mode		3.46	3.7				
		4-channel decimation filter		3.34					
Pdis	Total power dissipation	4-channel decimation filter, 1 lane per ADC		3.27		W			
		2-channel decimation filter, 2-channel bypass digital mode		3.51					
Deep sleep	mode power			791		mW			
Wake-up tin	ne from deep sleep mode	SNR > 60 dB		1.4		ms			
Light sleep i	mode power			1.68		W			
Wake-up tin	ne from light sleep mode	SNR > 60 dB		8		μs			
ANALOG IN	IPUTS								
Differential i	nput full-scale		1	1.25	1.5	Vpp			
Input comm	on mode voltage			V _{CM} ± 50 mV		V			
Input resistance	Differential at DC			1		kΩ			
Input capacitance	Each input to GND			2.75		pF			
VCM	Common mode voltage output			2.18		V			
Analog inpu	t bandwidth (-3 dB)			900		MHz			
INL		Integral nonlinearity		±3		LSB			
DNL		Dynamic nonlinearity	-1	±0.9		LSB			
Gain error				±2.24%					
Offset error				±1.91		mV			
CHANNEL-	TO-CHANNEL ISOLATION								
Crosstell ⁽¹⁾		Near channel $f_{IN} = 170 \text{ MHz}$		85		dD			
CIOSSIAIK		Far channel $f_{IN} = 170 \text{ MHz}$		95		uБ			
CLOCK INF	CLOCK INPUT								
Input clock f	frequency		250		2000 ⁽²⁾	MHz			
Input clock a	amplitude		0.4	1.5		Vpp			
Input clock of	duty cycle		45%	50%	55%				
Internal cloc	k biasing			0.9		V			

(1) Crosstalk is measured with a -1-dBFS input signal on aggressor channel and no input on victim channel.

(2) CLK / 4 mode

ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019

TEXAS INSTRUMENTS

www.ti.com

6.6 Electrical Characteristics: 250 MSPS Output, 2x Decimation Filter

Typical values at $T_A = 25^{\circ}$ C, full temperature range is $T_{MIN} = -40^{\circ}$ C to $T_{MAX} = 85^{\circ}$ C, ADC sampling rate = 500 MSPS, 50% clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, -1-dBFS differential input, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		$f_{\rm IN}$ = 10 MHz	68.3		
		$f_{\rm IN}$ = 100 MHz	68.2		
SNR	Signal-to-noise ratio	<i>f</i> _{IN} = 170 MHz	67.2		dBFS
		<i>f</i> _{IN} = 310 MHz	67.6		
		$f_{\rm IN}$ = 450 MHz	66.8		
		$f_{\rm IN}$ = 10 MHz	85		
		$f_{\rm IN}$ = 100 MHz	85		
HD2	Second harmonic distortion	f _{IN} = 170 MHz	85		dBc
		<i>f</i> _{IN} = 310 MHz	85		
		<i>f</i> _{IN} = 450 MHz	75		
	Third harmonic distortion	$f_{\rm IN}$ = 10 MHz	85		dBc
		$f_{\rm IN}$ = 100 MHz	85		
HD3		<i>f</i> _{IN} = 170 MHz	85		
		<i>f</i> _{IN} = 310 MHz	85		
		<i>f</i> _{IN} = 450 MHz	85		
		$f_{\rm IN}$ = 10 MHz	95		
SFDR (Non-HD2, Non-HD3)		$f_{\rm IN}$ = 100 MHz	95		
	Spur free dynamic range (excluding HD2 and HD3)	<i>f</i> _{IN} = 170 MHz	95		dBc
		$f_{\rm IN} = 310 \text{ MHz}$	90		
		f _{IN} = 450 MHz	85		
IMD3	2F1-F2, 2F2-F1, Ain = -7 dBFS	F _{IN} = 169 and 171 MHz	93		dBFS

6.7 Electrical Characteristics: 500 MSPS Output

Typical values at $T_A = 25^{\circ}$ C, full temperature range is $T_{MIN} = -40^{\circ}$ C to $T_{MAX} = 85^{\circ}$ C, ADC sampling rate = 500 MSPS, 50% clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, -1-dBFS differential input, unless otherwise noted.

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
			f_{IN} = 10 MHz		65.3		
			<i>f</i> _{IN} = 100 MHz		65.2		
SNR	Signal-to-Noise Ratio	Bypass Digital Mode (14 bit)	<i>f</i> _{IN} = 170 MHz	61	64.9		dBFS
			f _{IN} = 370 MHz		64.7		
			$f_{\rm IN}$ = 450 MHz		64.6		
			f_{IN} = 10 MHz		85		
			$f_{\rm IN}$ = 100 MHz		85		
HD2	Second Harmonic Disto	ortion	<i>f</i> _{IN} = 170 MHz	70	85		dBc
			f _{IN} = 370 MHz		75		
			$f_{\rm IN}$ = 450 MHz		75		
			f_{IN} = 10 MHz		85		
			<i>f</i> _{IN} = 100 MHz		85		
HD3	Third Harmonic Distorti	on	<i>f</i> _{IN} = 170 MHz	70	85		dBc
			f _{IN} = 370 MHz		85		
			$f_{\rm IN}$ = 450 MHz		85		
			f_{IN} = 10 MHz		85		
SFDR			<i>f</i> _{IN} = 100 MHz		85		
(Non-HD2, Non-HD3)	Spur Free Dynamic Ra	nge	f _{IN} = 170 MHz	70	85		dBFS
			f _{IN} = 370 MHz		83		
			f _{IN} = 450 MHz		83		
IMD3	2F1-F2, 2F2-F1, Ain =	–7 dBFS	f_{IN} = 169 and 171 MHz		87		dBFS

6.8 Electrical Characteristics: Sample Clock Timing Characteristics

Typical values at $T_A = 25^{\circ}$ C, full temperature range is $T_{MIN} = -40^{\circ}$ C to $T_{MAX} = 85^{\circ}$ C, ADC sampling rate = 500 MSPS, 50% clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, -1 dBFS differential input, unless otherwise noted.

	PARAMETER	MIN	TYP	MAX	UNIT		
	Aperture jitter, RMS		98		fs rms		
	Data latency		38				
	Fast over-range (OVR) latency		6		Sample clock cycles		
t _{PDI}	Clock aperture delay		1.1		ns		

ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019

www.ti.com

ISTRUMENTS

ÈXAS

6.9 Electrical Characteristics: Digital Outputs

The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level 0 or 1. AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V.

	MIN	TYP	MAX	UNIT	
DIGITAL OUTPUTS: JESD204B IN	NTERFACE (DA[0,1], DB[0,1], DC[0,1], DD[0,1])				
Output differential voltage, VOD		450	577	750	mV
Transmitter short circuit current	Transmitter terminals shorted to any voltage between -0.25 and 1.45 V		45		mA
Single ended output impedance			50		Ω
Output capacitance	Output capacitance inside the device, from either output to ground		2		pF
Unit interval, UI	5.0 Gbps		200		ps
Rise and fall times			110		ps
Output jitter			57		ps
Serial output data rate			5.0		Gbps

6.10 Timing Requirements

		MIN	TYP	MAX	UNIT		
DIGITAL INPUTS: SRESETb, SCLK,	SDENb, SDATA, ENABLE, OVRA, OVRC, SYSI	REFCDP, SYSRE	FCDM				
High-level input voltage	All digital inputs support 1.8-V and 3.3-V logic	1.2			V		
Low-level input voltage	levels			0.4	V		
High-level input current			50		μA		
Low-level input current			-50		μA		
Input capacitance			4		pF		
DIGITAL OUTPUTS: SDOUT, OVRA, OVRB, OVRC, OVRD							
High-level output voltage	$I_{Load} = -100 \ \mu A$	DVDD - 0.2	DVDD		V		
Low-level output voltage				0.2	V		
DIGITAL INPUTS: SYNCbABP/M, SYNCbCDP/M, SYSREFABP/M, SYSREFCDP/M							
Input voltage VID		250	350	450	mV		
Input common mode voltage VCM		0.4	0.9	1.4	V		
t _{S_SYSREFxx}	Referenced to rising edge of input clock		100		ps		
t _{H_SYSREFxx}	Referenced to rising edge of input clock		100		ps		

6.11 Reset Timing

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t ₁	Power-on delay	Delay from power up to active-low RESET pulse	3			ms
t ₂	Reset pulse duration	Active-low RESET pulse duration	20			ns
t ₃	Register write delay	Delay from RESET disable to SDENb active	100			ns

ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019

www.ti.com

6.12 Typical Characteristics

Typical values at $T_A = 25^{\circ}$ C, full temperature range is $T_{MIN} = -40^{\circ}$ C to $T_{MAX} = 85^{\circ}$ C, Device clock frequency = 500 MHz, Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD = 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, -1 dBFS differential input, unless otherwise noted, FFT sample size = 32768.

Copyright © 2015–2019, Texas Instruments Incorporated

Typical Characteristics (continued)

Typical Characteristics (continued)

Typical Characteristics (continued)

Typical Characteristics (continued)

ISTRUMENTS

EXAS

Typical Characteristics (continued)

Figure 52. SNR Contour Plot

7 Detailed Description

7.1 Overview

The ADS54J54 is a low power, wide bandwidth 14-bit 500 MSPS quad channel ADC. It supports the JESD204B serial interface with data rates up to 5.0 Gbps supporting 1 or 2 lanes per channel. The buffered analog input provides uniform input impedance across a wide frequency range while minimizing sample-and-hold glitch energy. A sampling clock divider allows more flexibility for system clock architecture design. The ADS54J54 provides excellent SFDR over a large input frequency range with low power consumption.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Decimation by 2 (250 MSPS Output)

Each channel has a digital filter in the data path as shown in Figure 54. The filter can be programmed as a low-pass or high-pass filter and the normalized frequency response of both filters is shown in Figure 55.

Figure 54. 2x Decimation Filter

The decimation filter response has a 0.1-dB pass band ripple with approximately 41% pass-band bandwidth. The stop-band attenuation is approximately 40 dB.

7.3.2 Over-Range Indication

The ADS54J54 provides a fast over-range indication on the OVRA, OVRB, OVRC, and OVRD pins. The fast OVR is triggered if the input voltage exceeds the programmable over-range threshold and is output after just 6 clock cycles, enabling a quicker reaction to an over-range event. The OVR threshold can be configured using SPI register writes.

The input voltage level at which the overload is detected is referred to as the threshold and is programmable using the over-range threshold bits.

The threshold at which fast OVR is triggered is (full-scale × [the decimal value of the FAST OVR THRESH bits] / 8). After reset, the default value of the over-range threshold is set to 7 (decimal), which corresponds to a threshold of 1.12 dB below full scale $(20 \times \log(7/8))$.

OVR Setting (decimal)	OVR Threshold (dBFS)
1	-18.1
2	-12.0
3	-8.5
4	-6.0
5	-4.1
6	-2.5
7 (default)	-1.1

Table 1. Fast Over Range Threshold Settings

Because the fast over-range indicator is single-ended LVCMOS logic, the ADS54J54 device can be configured through the SPI register write to keep the over-range indicator asserted high for an extra one, two, or four clock cycles. This longer assertion of the signal ensures the processor can capture the over-range event.

Figure 57. Fast Over Range Output Timing

The ADS54J54 device also provides the fast over-range indication bit in the JESD204B output data stream.

Figure 58. Sample Data and Status Bit Format

7.3.3 JESD204B Interface

The ADS54J54 supports device subclass 1 with a maximum output data rate of 5 Gbps for each serial transmitter. It allows independent JESD204B format configuration for channel A and B and channel C and D.

An external SYSREF signal is used to align all internal clock phases and the local multi-frame clock to a specific sampling clock edge. This allows synchronization of multiple devices in a system and minimizes timing and alignment uncertainty. SYNCbAB input is used to control all the JESD204B SerDes blocks for channel A and B while SYNCbCD is used to control channel C and D. If the same LMFS configuration is used for all four channels, the SYNCbAB and SYNCbCD signals can be tied together externally and driven from the same source.

Copyright © 2015–2019, Texas Instruments Incorporated

NSTRUMENTS

XAS

www.ti.com

Depending on the channel output data rate, the JESD204B output interface can be operated with either 1 or 2 lanes per single channel. The JESD204B setup and configuration of the frame assembly parameters are controlled via SPI interface.

The JESD204B transmitter block consists of the transport layer, the data scrambler and the link layer. The transport layer maps the channel output data into the selected JESD204B frame data format and manages if the channel output data or test patterns are being transmitted. The link layer performs the 8b/10b data encoding as well as the synchronization and initial lane alignment using the SYNCb input signal. Optionally, data from the transport layer can be scrambled.

Figure 59. JESD204B Lane Assignment

7.3.3.1 JESD204B Initial Lane Alignment (ILA)

The ILA process is started by the receiving device by deasserting the SYNCb signal. Upon detecting a logic low on the SYNCbAB input pins, the ADS54J54 device starts transmitting comma (K28.5) characters on channels A and B to establish code group synchronization. Upon detecting a logic high on the SYNCbCD input pins, the ADS54J54 device starts transmitting comma (K28.5) characters on channels C and D to establish code group synchronization.

After synchronization is completed, the receiving device asserts the SYNCb signal and the ADS54J54 starts the ILA sequence with the next local multi-frame clock boundary. The ADS54J54 device transmits 4 multi-frames each containing K frames (K is SPI programmable). Each of the multi-frames contains the frame start and end symbols and the second multi-frame also contains the JESD204 link configuration data.

Figure 61. Initial Lane Assignment Format

7.3.3.2 JESD204B Test Patterns

There are three different test patterns available in the transport layer of the JESD204B interface. The ADS54J54 supports a RAMP, 1555/2AAA and different PRBS patterns. They can be enabled through SPI register write and are located in address 0x1D and 0x32/33.

7.3.3.3 JESD204B Frame Assembly

The JESD204B standard defines the following parameters:

- L = number of lanes per link
- M = number of converters for device
- F = number of octets per frame clock period
- S = number of samples per frame
- HD = high density mode

The ADS54J54 supports independent configuration of the JESD204B format for channel A and B and channel C and D. Table 2 lists the available JESD204B formats and valid ranges for the ADS54J54. The ranges are limited by the SerDes line rate and the maximum channel sample frequency.

L	Μ	F	S	HD	Max Channel Output Rate (MSPS)	Max f _{SerDes} (Gsps)
8	4	1	1	1	500	5.0
4	4	2	1	0	250	5.0

Table 2. Permissible LMFS Settings

NSTRUMENTS

EXAS

The detailed frame assembly is shown in Table 3.

	LMFS = 8411			LMFS = 4421						
Lane DA0	A0[13:6]	A1[13:6]	A2[13:6]	A3[13:6]	A0[13:6]	A0[5:0], 00	A1[13:6]	A1[5:0], 00	A2[13:6]	A2[5:0], 00
Lane DA1	A0[5:0], 00	A1[5:0], 00	A2[5:0], 00	A3[5:0], 00						
Lane DB0	B0[13:6]	B1[13:6]	B2[13:6]	B3[13:6]	B0[13:6]	B0[5:0], 00	B1[13:6]	B1[5:0], 00	B2[13:6]	B2[5:0], 00
Lane DB1	B0[5:0], 00	B1[5:0], 00	B2[5:0], 00	B3[5:0], 00						
Lane DC0	C0[13:6]	C1[13:6]	C2[13:6]	C3[13:6]	C0[13:6]	C0[5:0], 00	C1[13:6]	C1[5:0], 00	C2[13:6]	C2[5:0], 00
Lane DC1	C0[5:0], 00	C1[5:0], 00	C2[5:0], 00	C3[5:0], 00						
Lane DD0	D0[13:6]	D1[13:6]	D2[13:6]	D3[13:6]	D0[13:6]	D0[5:0], 00	D1[13:6]	D1[5:0], 00	D2[13:6]	D2[5:0], 00
Lane DD1	D0[5:0], 00	D1[5:0], 00	D2[5:0], 00	D3[5:0], 00						

7.3.4 SYSREF Clocking Schemes

Periodic: The SYSREF signal is always on. This mode is supported, but not recommended as the continuous SYSREF signal appears like an additional clock input, which can cause clock mixing spurs in the channel output spectrum.

Gapped-Periodic (recommended): A periodic SYSREF signal is presented to the ADS54J54 SYSREF inputs for a very short period of time. This configuration requires a DC-coupled SYSREF connection for proper operation. Most of the time the SYSREF signal is in a logic-low state, and thus cannot cause any glitches and spurs in the channel output spectrum.

Pulse/One Shot (recommended): A single SYSREF reset pulse is used to synchronize the ADS54J54. The ADS54J54 device requires a minimum of 3 SYSREF pulses to complete the synchronization phase. The SYSREF signal is in a logic-low state most of the time, and thus cannot cause any glitches and spurs in the channel output spectrum. Special attention should be given to ensure the single pulse meets required the SYSREF input setup and hold time.

7.3.5 Split-Mode Operation

The ADS54J54 provides several different options to interface it to the digital processor or processors. If the ADS54J54 device is operated in split sampling rate (2 channels at 500-MSPS output rate and 2 channels at 250-MSPS output rate), then it requires dual SYSREF (SYSREFAB and SYSREFCD) and dual SYNC (SYNCbAB and SYNCbCD).

Subclass 1 – Deterministic Latency: The device clock and synchronous SYSREF signal are provided by the timing unit to the ADS54J54 and the processor. The processor controls the SYNCb input signals for the JESD204B state machine for all four channels. In case the ADS54J54 is connected to two different processors, the differential SYNCb inputs of the ADS54J54 can be configured to two single-ended inputs where each pin controls the JESD204B state machine of the two corresponding channels.

Figure 62. Four Channel and Dual Two Channel Usage

Split Mode Operation: If the ADS54J54 device is operated with 2-channel output at 500 MSPS and 2-channel output at 250 MSPS, then dual SYSREF (SYSREFAB for channel A and B, SYSREFCD for channel C and D) as well as dual SYNC (SYNCbAB for channel A and B, SYNCbCD for channel C and D) is required to ensure normal operation because the JESD204B link configuration is different for the two channel pairs.

Figure 63. Dual SYSREF Usage

ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019

www.ti.com

7.3.6 Eye Diagram Information

Figure 64 and Figure 65 is the measured eye diagram at 2.5 and 5 Gbps output data rate, respectively. These are overlaid with the JESD204B LV-OIF-6G-SR specification.

7.3.7 Analog Inputs

The ADS54J54 analog signal inputs are designed to be driven differentially. The analog input pins have internal analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a high-impedance input across a wide frequency range to the external driving source, which enables great flexibility in the external analog filter design as well as excellent 50- Ω matching for RF applications. The buffer also helps isolate the external driving circuit from the internal switching currents of the sampling circuit, which results in a more constant SFDR performance across input frequencies.

The common-mode voltage of the signal inputs is internally biased to 2 V using $500-\Omega$ resistors, which allows for AC coupling of the input drive network. Each input pin (INP, INM) must swing symmetrically between (VCM + 0.3125 V) and (VCM - 0.3125 V), resulting in a 1.25-Vpp (default) differential input swing. The input sampling circuit has a 3-dB bandwidth that extends up to 900 MHz.

7.3.8 Clock Inputs

The ADS54J54 clock input can be driven differentially with a sine wave or LVPECL source with little or no difference in performance. The common mode voltage of the clock input is set to 0.9 V using internal 2-k Ω resistors. This allows for AC coupling of the clock inputs. The termination resistors should be placed as close as possible to the clock inputs in order to minimize signal reflections and jitter degradation.

Figure 68. Equivalent Clock Input Circuit

7.3.9 Input Clock Divider

The ADS54J54 is equipped with two internal dividers on the clock input – one on channel AB and one on channel CD. The clock divider allows operation with a faster input clock simplifying the system clock distribution design. The clock dividers can be bypassed (/1) for operation with a 500-MHz clock while /2 option supports a maximum input clock of 1 GHz and the /4 option a maximum input clock frequency of 2 GHz. Different divider options can be selected for channel AB and channel CD clock output. By default the divider output of channel AB block is routed to all 4 channels but the configuration can be customized with different SPI register settings to use either the channel AB or CD divider blocks for any two channels.

Figure 69. Input Clock Divider

7.3.10 Power-Down Control

The power down functions of the ADS54J54 can be controlled either through the parallel control pin (ENABLE) or through a SPI register setting. Power-down modes for the different channels as well as for the JESD204B interface are supported.

The ADS54J54 supports the following power-down modes. The analog sleep mode configurations are in register 0x05/06 and the JESD204b sleep mode configurations are in register 0x1E and 0x1F.

Copyright © 2015–2019, Texas Instruments Incorporated

TEXAS INSTRUMENTS

www.ti.com

Table 4. Low-Power Mode Power Consumption and Wake-Up Times

Configuration	Power Consumption	Wake-Up Time
Global power down	24 mW	Needs JESD resynch
Standby	31 mW	Needs JESD resynch
Deep sleep	791 mW	1.4 ms
Light sleep	1.68 W	8 µs

Control power-down function through ENABLE pin:

- 1. Configure power-down mode in register 0x05 and 0x1E
- 2. Normal operation: ENABLE pin high
- 3. Power-down mode: ENABLE pin low

Control power-down function through SPI (ENABLE pin always high):

- 1. Assign power-down mode in register 0x06 and 0x1F
- 2. Normal operation: 0x06 and 0x1F are 0xFFFF
- 3. Power-down mode: configure power down mode in register 0x06 and 0x1F

7.3.11 Device Configuration

The serial interface (SIF) included in the ADS54J54 is a simple 3- or 4-pin interface. In normal mode, 3 pins are used to communicate with the device. There is an enable (SDENb), a clock (SCLK), and a bidirectional IO port (SDATA). If the user would like to use the 4-pin interface, one write must be implemented in the 3-pin mode to enable 4-pin communications. In this mode, the SDOUT pin becomes the dedicated output. The serial interface has an 8-bit address word and a 16-bit data word. The first rising edge of SCLK after SDENb goes low will latch the read or write bit. If a high is registered, then a read is requested, if it is low, then a write is requested. SDENb must be brought high again before another transfer can be requested.

7.3.12 JESD204B Interface Initialization Sequence

After power-up, the internal JESD204B digital block must be initialized with the following sequence of steps:

1. Set JESD RESET AB/CD and JESD INIT AB/CD to 0 (address 0x0D, value 0x0000)

- 2. Set JESD INIT AB/CD to 1 (0x0D, 0x0202)
- 3. Set JESD RESET AB/CD to 1 (0x0D, 0x0303)
- 4. Configure all other JESD register and clock settings. If those settings change later on, this initialization sequence must be repeated.
- 5. Set JESD RESET AB/CD to 0 (0x0D, 0x0202)
- 6. Set JESD RESET AB/CD to 1 (0x0D, 0x0303)
- 7. Wait for two SYSREF pulses
- 8. Set JESD INIT AB/CD to 0 (0x0D, 0x0101)

7.3.13 Device and Register Initialization

After power-up, the internal registers must be initialized to their default values through a hardware reset by applying a low pulse on the SRESETb pin (of width greater than 10 ns), as shown in Figure 1. If required later during operation, the serial interface registers can be cleared by applying:

- Another hardware reset using the SRESETb pin
- A software reset (bit D0 in register 0x00). This setting resets the internal registers to the default values and then self-resets the RESET bit (D0) back to 0. In this case, the RESET pin is kept high.
- Write the data in Table 5 to the following registers after every device power-up or reset for optimum AC performance:

ADDRESS	DATA	REASON
0x06	0xFFDF	turn off fuse logic for power savings - not required
0x44	0x0074	trim value - required
0x47	0x0074	trim value - required
0x4C	0x4000	trim value - required
0x50	0x0800	trim value - required
0x51	0x0074	trim value - required
0x54	0x0074	trim value - required
0x59	0x4000	trim value - required
0x5D	0x0800	trim value - required

Table 5. AC Performance

7.4 Device Functional Modes

7.4.1 Operating Modes

Table 6 details the five different operating modes. A pair of channels (channel A and B and channel C and D) can be configured in the same operating mode.

Channel Sampling Rate (MSPS)	Digital Feature	Output Data Rate (MSPS)	Output Resolution	Output SerDes Rate (GSPS)	Number of Lanes per Channel
500	Decimation by 2	250	14 bit	5.0	1
500	Bypass digital logic mode	500	14 bit	5.0	2

Table 6. Operating Modes Information

7.4.2 Output Format

Table 7 provides detailed information on how the MSB or LSB get aligned for the different output data rates and resolution in the different operating modes.

Output Rate	Mode	Resolution	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
250 MSPS	Decimate by 2	14 bit	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	OVR	0
500 MSPS	Bypass digital logic mode	14 bit	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	OVR	0

Table 7. Output Data Formats

7.5 Programming

7.5.1 Serial Register Write

The internal register of the ADS54J54 can be programmed following these steps:

- 1. Drive SDENb pin low.
- 2. Set the R/W bit to '0' (bit A7 of the 8 bit address).
- 3. Initiate a serial interface cycle specifying the address of the register (A6 to A0) whose content has to be written.
- 4. Write 16-bit data which is latched on the rising edge of SCLK.

Table 8. Serial Register Read or Write Timing⁽¹⁾

	PARAMETER	MIN	TYP MAX	UNIT
f _{SCLK}	SCLK frequency (equal to 1 / t _{SCLK})	>DC	10	MHz
t _{SLOADS}	SDENb to SCLK setup time	50		ns
t _{SLOADH}	SCLK to SDENb hold time	50		ns
t _{DSU}	SDATA setup time	50		ns
t _{DH}	SDATA hold time	50		ns

⁽¹⁾ Typical values at 25°C; minimum and maximum values across the full temperature range: $T_{MIN} = -40^{\circ}$ C to $T_{MAX} = 85^{\circ}$ C, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, unless otherwise noted.

SCLK			
SDENb		/	/
SDATA	Хкмв Х А6 Х А5 Х А4 Х А3 Х А2 Х А1 Х А0	\D15\D14\D13\D12\D11\D10\D9\D8\D7\D6\D5\D4\D3\D2\D1\D0_/	/
	Read = 1 7-bit address space Write = 0	16-bit data: D15 is MSB, D0 is LSB	

Figure 70. Serial Register Write Timing Diagram

7.5.2 Serial Register Readout

The device includes a mode where the contents of the internal registers can be read back using the SDOUT and SDATA pins. This read-back mode may be useful as a diagnostic check to verify the serial interface communication between the external controller and the channel.

- 1. Drive SDENb pin low.
- 2. Set the RW bit (A7) to 1. This setting disables any further writes to the registers.
- 3. Initiate a serial interface cycle specifying the address of the register (A6 to A0) whose content has to be read.
- 4. The device outputs the contents (D15 to D0) of the selected register on the SDOUT/SDATA pin.
- 5. The external controller can latch the contents at the SCLK rising edge.
- 6. To enable register writes, reset the RW register bit to 0.

SCLK _			
SDENb			
SDATA	(RWB) A6 (A5 (A4) A3 (A2) A1 (A0	<u>\D15\D14\D13\D12\D11\D10\D9\D8\D7\D6\D5\D4\D3\D2\D1\D0\</u>	—
	Read = 1 Write = 0 7-bit address space	16-bit data: D15 is MSB, D0 is LSB	
	Figure 71	. Serial Register Read Timing Diagram	

7.6 Register Maps

Register Address								Regist	er Data							
A7 to A0 in hex	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	3/4 WIRE	FORMAT	DEC EN AB	HP/LP AB	0	DEC EN CD	HP/LP CD	0	0	0	0	0	0	0	0	RESET
1	MODE 1	0	1	0	F	OVR THRESH	AB	FOVR LE	NGTH AB	FC	VR THRESH	CD	FOVR LE	NGTH CD	1	0
2	0	1	(0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	CLK SEL CD	CLK D	DIV CD	0	CLK	PHASE SELEC	CT CD	SYSREF SEL CD	CLK SEL AB	CLK I	DIV AB	0	CLK	PHASE SELEC	CT AB
4	OVRA OUT EN	OVRB OUT EN	OVRC OUT EN	OVRD OUT EN	SYSREF	AB DELAY	SYSREF	CD DELAY	0	0	0	0	SYNCb AB EN	SYNCb CD EN	1	1
5							ANAL	OG SLEEP MC	DES – ENAB	LE PIN						
6							ANALO	G SLEEP MODI	ES – SPI							SYSREFCD EN
7	0	0	0	0	0	0	CLK SW AB	1	0	1	0	0	0	1	0	0
8	0	0	0	0	0	0	CLK SW CD	1	0	1	0	0	0	1	0	0
С	0	0	1	1	0	0	0	1	1	1	SYSE	REF JESD MOD	DE CD	SYSF	REF JESD MOI	DE AB
D	0	0	0	0	0	0	JESD INIT CD	JESD RESET CD	0	0	0	0	0	0	JESD INIT AB	JESD RESET AB
E	0	0	0	0	0	0	0	0		TX LAN	E EN CD			TX LAN	E EN AB	
F	0	0	0	0	0	0	CTRI	F AB	0	0	0	0	0	0	CTRL	M AB
10	0	0	0	0	0	0	CTRI	K AB				0	0	0	CTRL	L AB
13	0	0	0	0	0	0	0	0	0	INV SYNCb AB	HD AB	SCR EN AB	0	0	0	0
16	0	0	0	0	0	0	CTRL	F CD	0	0	0	0	0	0	CTRL	MCD
17	0	0	0	0	0	0		1	CTRL K CD			0	0	0	CTRL	LCD
1A	0	0	0	0	0	0	0	0	0	INV SYNCb CD	HD CD	SCR EN CD	0	0	0	0
1D	0	0	0	0	0	0	0	0	0	TEST PATTERN EN CD	TEST PATTERN EN AB	0	TEST PATTERN	0	0	0
1E	0	0	0	0	0	0				JES	D SLEEP MOI	DES – ENABLE	PIN			
1F	1	1	1	1	1	1					JESD SLEEP	MODES - SPI				
20			J	ESD LANE POI	LARITY INVE	RT						PRB	S EN			
21	0	PRB	S SEL	0	0	0	0	0	0	0	0	0	0		VREF SEL	
63	0		0	0	0	0	0	0				TEMP S	SENSOR			
64		PRE EM	P SEL AB			PRE EM	P EN AB			DCC I	EN AB		0	0	0	0
67							OL	JTPUT CURRE	NT CONTROL	AB						
68		PRE EM	P SEL CD			PRE EM	P EN CD			DCC E	EN CD		0	0	0	0
6B						-	OL	JTPUT CURRE	NT CONTROL	CD		-				
6C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	JESD PLL CD	JESD PLL AB

7.6.1 Register Descriptions

7.6.1.1 Register Address 0

Figure 72. Register Address 0, Reset 0x0000, Hex = 0

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
3/4 WIRE	FORM AT	DEC EN AB	HP/LP AB	0	DEC EN CD	HP/LP CD	0	0	0	0	0	0	0	0	RESET

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Bit Field Туре Reset Description Enables 4-bit serial interface when set D15 3/4 WIRE R/W 0 0 = 3-wire SPI (SDATA is bidirectional) 1 = 4-wire SPI (SDOUT is data output) Selects digital output format FORMAT R/W 0 = Output is 2s complement D14 0 1 = Offset binary Enables decimation filter for channel AB D13 DEC EN AB R/W 0 0 = Normal operation 1 = Decimation filter enabled Determines high-pass or low-pass configuration of decimation filter for channel AB D12 HP/LP AB R/W 0 0 = Low pass1 = High pass Enables decimation filter for channel CD R/W D10 DEC EN CD 0 0 = Normal operation 1 = Decimation filter enabled Determines high-pass or low-pass configuration of decimation filter for channel CD D9 HP/LP CD R/W 0 0 = Low pass1 = High pass Software reset, self clears to 0 R/W D0 RESET 0 0 = Normal operation 1 = Execute software reset

Table 9. Register Address 0 Field Descriptions

7.6.1.2 Register Address 1

Figure 73. Register Address 1, Reset 0xAF7A, Hex = 1

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
MODE 1	0	1	0	FOV	R THRES	H AB	FOVR L A	.ENGTH B	FOVI	R THRES	H CD	FOVR L C	ENGTH D	1	0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. Register Address 1 Field Descriptions

Bit	Field	Туре	Reset	Description
D15	MODE 1	R/W	1	Set bit D15 to 0 for optimum performance
D13		R	1	Reads back 1
D11:D9	FOVR THRESH AB	R/W	111	Sets fast OVR thresholds for channel A and B The fast over-range detection is triggered 6 output clock cycles after the overload condition occurs. The threshold at which the OVR is triggered is: Input full scale × [decimal value of <over-range threshold="">] / 8. After power-up or reset, the default value is 7 (decimal), which corresponds to an OVR threshold of 1.16-dB below full scale (20 × log(7/8)).</over-range>
D8:D7	FOVR LENGTH AB	R/W	10	Determines minimum pulse length for FOVR output 00 = 1 clock cycle 01 = 2 clock cycles 10 = 4 clock cycles 11 = 8 clock cycles
D6:D4	FOVR THRESH CD	R/W	111	Sets fast OVR thresholds for channel C and D See description for channel A and B
D3:D2	FOVR LENGTH CD	R/W	10	Determines minimum pulse length for FOVR output 00 = 1 clock cycle 01 = 2 clock cycles 10 = 4 clock cycles 11 = 8 clock cycles
D1		R	1	Reads back 1

7.6.1.3 Register Address 3

Figure 75. Register Address 3, Reset: 0x4040, Hex = 3

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	CLK SEL CD	CLK D	IV CD	0	CL SE	K PHAS	SE CD	SYSREF SEL CD	CLK SEL AB	CLK E	DIV AB	0	CL SE	K PHA	SE AB

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11. Register Address 3 Field Descriptions

Bit	Field	Туре	Reset	Description
D14	CLK SEL CD	R/W	1	Clock source selection for channel C and D 0 = Channel CD clock output divider 1 = Channel AB clock output divider (default)
D13:D12	CLK DIV CD	R/W	00	Channel CD clock divider setting 00 = Clock input is up to 500 MHz. Input clock is not divided (default) 01 = /2 10 = /4 11 = Not used
D10:D8	CLK PHASE SELECT CD	R/W	000	Selects phase of channel divided clock, but depends on clock divider setting. When clock CD divider is set to: /1 = 2 phases are available (0° or 180°) /2 = 4 phases are available (0°, 90°, 180° or 270°) /4 = 8 phases are available (0°, 45°, 90°, 135°, 180°, 225°, 270° or 315°) When switching clock phases, register 0x08, D9 must be enabled first and then disabled after the switch to ensure glitch- free operation.
D7	SYSREF SEL CD	R/W	0	SYSREF Input selection for channel C and D 0 = Use SYSREFAB inputs (default) 1 = Use SYSREFCD inputs
D6	CLK SEL AB	R/W	1	Clock source selection for channel A and B 0 = Channel CD clock output divider 1 = Channel AB clock output divider (default)
D5:D4	CLK DIV AB	R/W	00	Channel AB clock divider setting 00 = Clock input is up to 500 MHz. Input clock is not divided (default) 01 = /2 10 = /4 11 = Not used
D2:D0	CLK PHASE SELECT AB	R/W	000	Selects phase of channel AB divided clock, but depends on clock divider setting. When clock divider is set to: /1 = 2 phases are available $(0^{\circ} \text{ or } 180^{\circ})$ /2 = 4 phases are available $(0^{\circ}, 90^{\circ}, 180^{\circ} \text{ or } 270^{\circ})$ /4 = 8 phases are available $(0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 270^{\circ})$ or 315 ^o) When switching clock phases, register 0x07, D9 must be enabled first and then disabled after the switch to ensure glitch- free operation.

NSTRUMENTS

www.ti.com

EXAS

7.6.1.4 Register Address 4

Figure 76. Register Address 4, Reset: 0x000F, Hex = 4

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
OVRA OUT EN	OVRB OUT EN	OVRC OUT EN	OVRD OUT EN	SYSR DEI	EF AB _AY	SYSRI DEL	EF CD AY	0	0	0	0	SYNCb AB EN	SYNCb CD EN	1	1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 12. Register Address 4 Field Descriptions

Bit	Field	Туре	Reset	Description
D15	OVRA OUT EN	R/W	0	OVRA pin output enable 0 = Not used (default) 1 = OVRA is an output
D14	OVRB OUT EN	R/W	0	OVRB pin output enable 0 = Not used (default) 1 = OVRB is an output
D13	OVRC OUT EN	R/W	0	OVRC pin output enable 0 = Not used (default) 1 = OVRC is an output
D12	OVRD OUT EN	R/W	0	OVRD pin output enable 0 = Not used (default) 1 = OVRD is an output
D11:D10	SYSREF AB DELAY	R/W	00	Programmable input delay on SYSREFAB input 00 = 0-ps delay (default) 01 = 200-ps delay 10 = 100-ps delay 11 = 300-ps delay
D9:D8	SYSREF CD DELAY	R/W	00	Programmable input delay on SYSREFCD input 00 = 0-ps delay (default) 01 = 200-ps delay 10 = 100-ps delay 11 = 300-ps delay
D3	SYNCb AB EN	R/W	1	SYNCbAB input buffer enable 0 = Input buffer disabled 1 = Input buffer enabled (default)
D2	SYNCb CD EN	R/W	1	SYNCbCD input buffer enable 0 = Input buffer disabled 1 = Input buffer enabled (default)
D1		R	1	Reads back 1
D0		R	1	Reads back 1

7.6.1.5 Register Address 5

Figure 77. Register Address 5, Reset: 0x0000, Hex = 5

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		ANALOG SLEEP MODES – ENABLE pin													

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. Register Address 5 Field Descriptions

Bit	Field	Туре	Reset	Description
D15:D0	ANALOG SLEEP MODES – ENABLE pin	R/W		Power-down function assigned to ENABLE pin. When any bit is set, the corresponding function is always enabled regardless of status of the ENABLE pin. This assumes address 0x06 is in default configuration.
D13		R/W	0	Light sleep channel A
D11		R/W	0	Light sleep channel B
D9		R/W	0	Light sleep channel C
D7		R/W	0	Light sleep channel D
D6		R/W	0	Temperature sensor
D4		R/W	0	Clock buffer
D3		R/W	0	Clock divider channel AB
D2		R/W	0	Clock divider channel CD
D1		R/W	0	Buffer SYSREFAB
D0		R/W	0	Buffer SYSREFCD

Table 14. Configurations When ENABLE Pin is Low

	Description
0000 0000 0000 0000	Global power down
1000 0000 0000 0000	Standby
1000 0000 0001 1111	Deep sleep
1010 1010 1001 1111	Light sleep (if unused, clock divider CD and SYSREFCD can be set to 0 also)

ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019

www.ti.com

ISTRUMENTS

EXAS

7.6.1.6 Register Address 6

Figure 78. Register Address 6, Reset: 0xFFFF, Hex = 6

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
ANALOG SLEEP MODES – SPI											1				

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 15. Register Address 6 Field Descriptions

Bit	Field	Туре	Reset	Description
D15:D1	ANALOG SLEEP MODES – SPI			Power-down function controlled via SPI. When a bit is set to 0, the function is powered down when ENABLE pin is high. However, register 0x05 has higher priority. For example, if D13 (deep sleep channel A) in 0x05 is enabled, it cannot be powered down with the SPI.
D13		R/W	1	Light sleep channel A
D11		R/W	1	Light sleep channel B
D9		R/W	1	Light sleep channel C
D7		R/W	1	Light sleep channel D
D6		R/W	1	Temperature sensor
D4		R/W	1	Clock buffer
D3		R/W	1	Clock divider channel AB
D2		R/W	1	Clock divider channel CD
D1		R/W	1	Buffer SYSREFAB
D0		R/W	1	Should be left set to 1

Table 16. Configurations When ENABLE Pin is High

	Description
0000 0000 0000 000	Global power down
1000 0000 0000 000	Standby
1000 0000 0001 111	Deep sleep
1010 1010 1001 111	Light sleep
1111 1111 1111 111	Normal operation

Control power down function through ENABLE pin:

- 1. Configure power-down mode in register 0x05
- 2. Normal operation: ENABLE pin high
- 3. Power-down mode: ENABLE pin low

Control power down function through SPI (ENABLE pin always high):

- 1. Assign power-down mode in register 0x06
- 2. Normal operation 0x06 is 0xFFFF
- 3. Power-down mode: configure power down mode in register 0x06

7.6.1.7 Register Address 7

Figure 79. Register Address 7, Reset: 0x0144, Hex = 7

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	CLK SW AB	1	0	1	0	0	0	1	0	0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 17. Register Address 7 Field Descriptions

Bit	Field	Туре	Reset	Description
D9	CLK SW AB	R/W	0	User should set this bit to 1 when changing the clock phase of the clock divider AB. After the change is complete user needs to write this bit back to 0.
D8		R	1	Reads back 1
D6		R	1	Reads back 1
D2		R	1	Reads back 1

7.6.1.8 Register Address 8

Figure 80. Register Address 8, Reset: 0x0144, Hex = 8

D15 D'	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0 (0	0	0	0	0	CLK SW CD	1	0	1	0	0	0	1	0	0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 18. Register Address 8 Field Descriptions

Bit	Field	Туре	Reset	Description
D9	CLK SW CD	R/W	0	User should set this bit to 1 when changing the clock phase of the clock divider CD. After the change is complete user needs to write this bit back to 0.
D8		R	1	Reads back 1
D6		R	1	Reads back 1
D2		R	1	Reads back 1

7.6.1.9 Register Address 12

Figure 81. Register Address 12, Reset: 0x31E4, Hex = C

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	0	0	0	1	1	1	SYSREF JESD MODE CD		SYSREF	- JESD M	ODE AB	
		Deed	Alrito, D	Deed	anlı n		ttor roop								

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 19. Register Address 12 Field Descriptions

Bit	Field	Туре	Reset	Description
D13		R	1	Reads back 1
D12		R	1	Reads back 1
D8		R	1	Reads back 1
D7		R	1	Reads back 1
D6		R	1	Reads back 1

ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019

Table 19. Register Address 12 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
D5:D3	SYSREF JESD MODE CD	R/W	100	Determines how SYSREF is used in the JESD block for channel CD 000 = Ignore SYSREF input 001 = Use all SYSREF pulses 010 = Use only the next SYSREF pulse 011 = Skip one SYSREF pulse then use only the next one 100 = Skip one SYSREF pulse then use all pulses (default) 101 = Skip two SYSREF pulses and then use one 111 = Skip two SYSREF pulses and then use all
D2:D0	SYSREF JESD MODE AB	R/W	100	Determines how SYSREF is used in the JESD block for channel AB. Same functionality as SYSREF JESD MODE CD

7.6.1.10 Register Address 13

Figure 82. Register Address 13, Reset: 0x0202, Hex = D

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	JESD INIT CD	JESD RESET CD	0	0	0	0	0	0	JESD INIT AB	JESD RESET AB

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 20. Register Address 13 Field Descriptions

Bit	Field	Туре	Reset	Description
D9	JESD INIT CD	R/W	1	Puts the JESD block in INITIALIZATION state when set high. In this state the JESD parameters can be programmed and the outputs will stay at 0. See also JESD start-up sequence.
D8	JESD RESET CD	R/W	0	Resets the JESD block when low
D1	JESD INIT AB	R/W	1	Puts the JESD block in initialization state when set high. In this state the JESD parameters can be programmed and the outputs will stay at 0.
D0	JESD RESET AB	R/W	0	Resets the JESD block when low

7.6.1.11 Register Address 14

Figure 83. Register Address 14, Reset: 0x00FF, Hex = E

0 0 0 0 0 0 0 0 0 0 TX LANE EN CD TX LANE EN AB	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	0		TX LANE EN CD TX LANE EN				E EN AB		

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 21. Register Address 14 Field Descriptions

Bit	Field	Туре	Reset	Description
D7:D4	TX LANE EN CD	R/W	1111	Enables JESD204B transmitter for channel C and D. Set to 1 to enable. D7 = Lane DD1 D6 = Lane DD0 D5 = Lane DC1 D4 = Lane DC0
D3:D0	TX LANE EN AB	R/W	1111	Enables JESD204B transmitter for channel A and B. Set to 1 to enable. D3 = Lane DB1 D2 = Lane DB0 D1 = Lane DA1 D0 = Lane DA0

www.ti.com

7.6.1.12 Register Address 15

Figure 84. Register Address 15, Reset: 0x0001, Hex = F

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	CTRL	F AB	0	0	0	0	0	0	CTRL	M AB

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 22. Register Address 15 Field Descriptions

Bit	Field	Туре	Reset	Description
D9:D8	CTRL F AB	R/W	00	Controls number of octets per frame for channel AB. 00 = F = 1 (default) 01 = F = 2
D1:D0	CTRL M AB	R/W	01	Controls number of converters per link for channel AB. 01 = M = 2. This is the only valid option (default)

7.6.1.13 Register Address 16

Figure 85. Register Address 16, Reset: 0x03E3, Hex = 10

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0		С	TRL K A	В		0	0	0	CTRL	L AB

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 23. Register Address 16 Field Descriptions

Bit	Field	Туре	Reset	Description
D9:D5	CTRL K AB	R/W	11111	Controls number of frames per multi-frame for channel AB. 0: $K = 1$ 30 $K = 31$ 1: $K = 2$ 31 $K = 32$ (default) And so forth
D1:D0	CTRL L AB	R/W	11	Controls number of lanes for channel AB. 01: $L = 2$ 11: $L = 4$ (default)

7.6.1.14 Register Address 19

Figure 86. Register Address 19, Reset: 0x0020, Hex = 13

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	INV SYNCb AB	HD AB	SCR EN AB	0	0	0	0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 24. Register Address 19 Field Descriptions

Bit	Field	Туре	Reset	Description
D6	INV SYNCE AB	R/W	0	Inverts polarity of SYNCbAB input 0 = Normal operation 1 = Polarity inverted
D5	HD AB	R/W	1	Enables high density mode for channel AB. This mode is needed for LMFS = 4221. 0 = High-density mode disabled for mode LMFS = 2221 1 = High-density mode enabled for mode LMFS = 4221 (default)
D4	SCR EN AB	R/W	0	Enables scramble mode for channel AB 0 = Scramble mode disabled (default) 1 = Scramble mode enabled

RUMENTS

7.6.1.15 Register Address 22

Figure 87. Register Address 22, Reset: 0x0001, Hex = 16

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	CTRL	F CD	0	0	0	0	0	0	CTRL	M CD

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 25. Register Address 22 Field Descriptions

Bit	Field	Туре	Reset	Description
D9:D8	CTRL F CD	R/W	00	Controls number of octets per frame for channel CD. 00: $F = 1$ (default) 01: $F = 2$
D1:D0	CTRL M CD	R/W	01	Controls number of converters per link for channel CD. 01: $M = 2$. This is the only valid option (default)

7.6.1.16 Register Address 23

Figure 88. Register Address 23, Reset: 0x03E3, Hex = 17

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0		С	TRL K C	D		0	0	0	CTRL	L CD

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 26. Register Address 23 Field Descriptions

Bit	Field	Туре	Reset	Description
D9:D5	CTRL K CD	R/W	11111	Controls number of frames per multi-frame for channel CD 0: $K = 1$ 30 $K = 31$ 1: $K = 2$ 31 $K = 32$ (default) And so forth
D1:D0	CTRL L CD	R/W	11	Controls number of lanes for channel CD 01: L = 2 11: L = 4 (default)

7.6.1.17 Register Address 26

Figure 89. Register Address 26, Reset: 0x0020, Hex = 1A

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	INV SYNCb CD	HD CD	SCR EN CD	0	0	0	0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 27. Register Address 26 Field Descriptions

Bit	Field	Туре	Reset	Description
D6	INV SYNCD CD	R/W	0	Inverts polarity of SYNCbCD input 0 = Normal operation 1 = Polarity inverted
D5	HD CD	R/W	1	Enables high density mode for channel CD. This mode is needed for LMFS = 4221. 0 = High density mode disabled for mode LMFS = 2221 1 = High density mode enabled for mode LMFS = 4221 (default)
D4	SCR EN CD	R/W	0	Enables scramble mode for channel CD 0 = Scramble mode disabled (default) 1 = Scramble mode enabled

7.6.1.18 Register Address 29

Figure 90. Register Address 29, Reset: 0x0000, Hex = 1D

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	TEST PATTERN EN CD	TEST PATTERN EN AB	0	TEST PATTERN	0	0	0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 28. Register Address 29 Field Descriptions

Bit	Field	Туре	Reset	Description
D6	TEST PATTERN EN CD	R/W	0	Enables test pattern output for channel C and D 0 = Normal operation 1 = Test pattern output enabled
D5	TEST PATTERN EN AB	R/W	0	Enables test pattern output for channel A and B 0 = Normal operation 1 = Test pattern output enabled
D4	TEST PATTERN	R/W	0	Selects test pattern 0 = RAMP pattern 1 = Output alternates between 0x1555 and 0x2AAA

7.6.1.19 Register Address 30

Figure 91. Register Address 30, Reset: 0x0000, Hex = 1E

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0				JESD SLI	EEP MOD	ES – EN	ABLE pin			

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 29. Register Address 30 Field Descriptions

Bit	Field	Туре	Reset	Description
D9:D0	JESD SLEEP MODES – ENABLE pin	R/W	0 0000 0000	Power-down function assigned to ENABLE pin. When any bit is set, the corresponding function is always enabled regardless of status of the ENABLE pin. D9 = JESD PLL channel CD D8 = JESD PLL channel AB D7 = Lane DD1 D6 = Lane DD0 D5 = Lane DC1 D4 = Lane DC1 D2 = Lane DB1 D2 = Lane DB1 D2 = Lane DA1 D0 = Lane DA0

Table 30. Configurations

	Description
00 0000 0000	Global power down (default)
00 0000 0000	Standby
11 0000 0000	Deep sleep
11 0000 0000	Light sleep

7.6.1.20 Register Address 31

Figure 92. Register Address 31, Reset: 0xFFFF, Hex = 1F

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	1	1	1				JESD	SLEEP	MODES	– SPI			

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 31. Register Address 31 Field Descriptions

Bit	Field	Туре	Reset	Description
D15:D0	JESD SLEEP MODES – SPI	R/W	11 1111 1111	Power-down function controlled via SPI. When a bit is set to 0, the function is powered down when ENABLE pin is high. However register 0x1E has higher priority. For example, if D9 (JESD PLL channel CD) in 0x1E is enabled, it cannot be powered down with the ENABLE pin. D9 = JESD PLL channel CD D8 = JESD PLL channel AB D7 = Lane DD1 D6 = Lane DD0 D5 = Lane DC1 D4 = Lane DB1 D2 = Lane DB1 D2 = Lane DB0 D1 = Lane DA1 D0 = Lane DA0

Table 32. Configurations

	Description
00 0000 0000	Global power down
00 0000 0000	Standby
11 0000 0000	Deep sleep
11 0000 0000	Light sleep
11 1111 1111	Normal operation (default)

Control power down function through ENABLE pin:

- 1. Configure power down mode in register 0x1E
- 2. Normal operation: ENABLE pin high
- 3. Power down mode: ENABLE pin low

Control power down function through SPI (ENABLE pin always high):

- 1. Assign power down mode in register 0x1F
- 2. Normal operation 0x1F is 0xFFFF
- 3. Power-down mode: configure power down mode in register 0x1F

7.6.1.21 Register Address 32

Figure 93. Register Address 32, Reset: 0x0000, Hex = 20

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		JESD L	ANE POI	LARITY I	NVERT						PRB	S EN			

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 33. Register Address 32 Field Descriptions

Bit	Field	Туре	Reset	Description
D15:D8	JESD LANE POLARITY INVERT	R/W	0000 0000	Set to 1 for polarity inversion D15 = Lane DD1 D14 = Lane DD0 D13 = Lane DC1 D12 = Lane DC0 D11 = Lane DB1 D10 = Lane DB0 D9 = Lane DA1 D8 = Lane DA0
D7:D0	PRBS EN	R/W	0000 0000	Outputs PRBS pattern selected in address 0x21 on the selected serial output lanes D7 = Lane DD1 D6 = Lane DD0 D5 = Lane DC1 D4 = Lane DC0 D3 = Lane DB1 D2 = Lane DB0 D1 = Lane DA1 D0 = Lane DA0

7.6.1.22 Register Address 33

Figure 94. Register Address 33, Reset: 0x0000, Hex = 21

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	PRBS	SEL	0	0	0	0	0	0	0	0	0	0	V	REF SEI	L

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 34. Register Address 33 Field Descriptions

Bit	Field	Туре	Reset	Description
D14:D13	PRBS SEL	R/W	00	Selects different PRBS output pattern (these are not 8b/10b encoded) $000 = 2^{31} - 1$ $001 = 2^7 - 1$ $010 = 2^{15} - 1$ $011 = 2^{23} - 1$
D2:D0	VREF SEL	R/W	000	Selects different input full-scale amplitude by adjusting voltage reference setting 000 = Full scale is 1.25 Vpp (default) 001 = Full scale is 1.35 Vpp 010 = Full scale is 1.5 Vpp 011 = External 100 = Full scale is 1.15 Vpp 101 = Full scale is 1.0 Vpp

TRUMENTS

XAS

7.6.1.23 Register Address 99

Figure 95. Register Address 99,Reset: 0x0000, Hex = 63

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0				TEN	IP SENS	OR			

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 35. Register Address 99 Field Descriptions

Bit	Field	Туре	Reset	Description
D8:D0	TEMP SENSOR	R	undefined	Value of on chip temperature sensor (read only). Value is 2s complement of die temperature sensor in °C For example: 0x0032 equals 50°C

7.6.1.24 Register Address 100

Figure 96. Register Address 100, Reset: 0x0000, Hex = 64

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	PRE EMP	P SEL AE	3		PRE EM	P EN AB			DCC E	EN AB		0	0	0	0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 36. Register Address 100 Field Descriptions

Bit	Field	Туре	Reset	Description
D15:D12	PRE EMP SEL AB	R/W	0000	Selects pre-emphasis of serializers for channel A and B 0 = Pre-emphasis 1 = De-emphasis
D11:D8	PRE EMP EN AB	R/W	0000	Enables pre-emphasis, 0 = disabled, 1 = enabled D11 = Lane DB1 D10 = Lane DB0 D9 = Lane DA1 D8 = Lane DA0
D7:D4	DCC EN AB	R/W	0000	Enables the duty cycle correction circuit for each of the serializers D7 = Lane DB1 D6 = Lane DB0 D5 = Lane DA1 D4 = Lane DA0

7.6.1.25 Register Address 103

Figure 97. Register Address 103, Reset: 0x0000, Hex = 67

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						OUTPUT	CURREI	NT CON	TROL AB						

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 37. Register Address 103 Field Descriptions

Bit	Field	Туре	Reset	Description
D15:D0	OUTPUT CURRENT CONTROL AB	R/W	0000 0000 0000 0000	Selects pre-emphasis current for the serializers. There are 4 bit per serializer of channel A and B. D15:D12 = Lane DB1 D11:D8 = Lane DB0 D7:D4 = Lane DA1 D3:D0 = Lane DA0

Table 38. Pre-Emphasis Level is: Decimal Value / 30

	Description
0000	Normal operation
0001	1/30
0010	2/30
and so forth	

7.6.1.26 Register Address 104

Figure 98. Register Address 104, Reset: 0x0000, Hex = 68

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
F	PRE EMF	SEL CD)		PRE EMI	P EN CD		DCC EN CD				0	0	0	0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 39. Register Address 104 Field Descriptions

Bit	Field	Туре	Reset	Description
D15:D12	PRE EMP SEL CD		0000	Selects pre-emphasis of serializers for channel C and D 0 = Pre-emphasis 1 = De-emphasis
D11:D8	PRE EMP EN CD		0000	Enables pre-emphasis, 0 = disabled, 1 = enabled D11 = Lane DD1 D10 = Lane DD0 D9 = Land DC1 D8 = Lane DC0
D7:D4	DCC EN CD		0000	Enables the duty cycle correction circuit for each of the serializers D7 = Lane DD1 D6 = Lane DD0 D5 = Land DC1 D4 = Lane DC0

RUMENTS

7.6.1.27 Register Address 107

Figure 99. Register Address 107, Reset: 0x0000, Hex = 6B

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0										
					(OUTPUT	CURREI	NT CON	FROL CD	1			OUTPUT CURRENT CONTROL CD												

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 40. Register Address 107 Field Descriptions

Bit	Field	Туре	Reset	Description
D15:D0	OUTPUT CURRENT CONTROL CD	R/W	0000 0000 0000 0000	Selects pre-emphasis current for the serializers. There are 4 bit per serializer of channel C and D. D15:D12 = Lane DD1 D11:D8 = Lane DD0 D7:D4 = Land DC1 D3:D0 = Lane DC0

Table 41. Pre-Emphasis Level is: Decimal Value / 30

	Description
0000	Normal operation
0001	1/30
0010	2/30
And so forth	

7.6.1.28 Register Address 108

Figure 100. Register Address 108, Hex = 3C

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	JESD PLL CD	JESD PLL AB

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 42. Register Address 108 Field Descriptions⁽¹⁾

Bit	Field	Туре	Reset	Description
D1	JESD PLL CD	R	1	JESD PLL for channel CD lost lock when flag is set high
D0	JESD PLL CD	R	1	JESD PLL for channel AB lost lock when flag is set high

(1) Register values in address 0x6C are read only alarms

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

In the design of any application involving a high-speed data converter, particular attention should be paid the design of the analog input, the clocking solution, and careful layout of the clock and analog signals. In addition, the JESD204B interface means there now are high-speed serial lines that should be handled to preserve adequate signal integrity at the device that receives the sample data. The ADS54J54 evaluation module (EVM) is one practical example of the design of the analog input circuit and clocking solution, as well as a practical example of good circuit board layout practices around the ADC.

8.2 Typical Application

The analog inputs of the ADS54J54 must be fully differential and biased to a desired common mode voltage, VCM. Therefore, there will be a signal conditioning circuit for each of the analog inputs. If the amplitude of the input circuit is such that no gain is needed to make full use of the full-scale range of the ADC, then a transformer coupled circuit as in Figure 101 may be used with good results. The transformer coupling is inherently low-noise, and inherently AC-coupled so that the signal may be biased to VCM after the transformer coupling. If signal gain is required, or the input bandwidth is to include the spectrum all the way down to DC such that AC coupling is not possible, then an amplifier-based signal conditioning circuit would be required.

By using the simple drive circuit of Figure 101, uniform performance can be obtained over a wide frequency range. The buffers present at the analog inputs of the device help isolate the external drive source from the switching currents of the sampling circuit.

Figure 101. Input Drive Circuit

Typical Application (continued)

Figure 102. Recommended Differential Clock Driving Circuit

8.3 Design Requirements

The ADS54J54 requires a fully differential analog input with a full-scale range not to exceed 1.25 V peak to peak, biased to a common mode voltage of 2.0 V. In addition the input circuit must provide proper transmission line termination (or proper load resistors in an amplifier-based solution) so the input of the impedance of the ADC analog inputs should be considered as well.

The clocking solution will have a direct impact on performance in terms of SNR, as shown in Figure 103. The ADS54J54 is capable of a typical SNR of 66 dBFS for input frequencies of about 100 MHz (in 14-bit bypass digital mode), so we will want to have a clocking solution that can preserve this level of performance.

8.4 Detailed Design Procedure

The ADS54J54 has an input bandwidth of approximately 900 MHz, but we will consider an application involving the first or second Nyquist zones, so we will limit the frequency bandwidth here to be under 250 MHz. We will also consider a 50-ohm signal source, so the proper termination would be $50-\Omega$ differential. As seen in Figure 104 and Figure 105, the input impedance of the analog input at 250 MHz is large compared to 50Ω , so the proper termination can be $50-\Omega$ differential as shown in Figure 101. Splitting the termination into two $25-\Omega$ resistors with an AC capacitor to ground provides a path to filter out any ripple on the common mode that may result from any amplitude or phase imbalance of the differential input, improving SFDR performance. The ADS54J54 provides a VCM output that may be used to bias the input to the desired level, but as seen in Figure 67 the signal is internally biased inside the ADC so an external biasing to VCM is not required. If an external biasing to VCM were to be employed, the VCM voltage may be applied to the mid-point of the two $25-\Omega$ termination resistors in Figure 101.

For the clock input, Figure 103 shows the SNR of the device above 100 MHz begins to degrade with external clock jitter of greater than 100 fs rms, so we will recommend the clock source be limited to approximately 100 fS of rms jitter. For the ADS54J54 EVM, the LMK04828 clock device is capable of providing a low-jitter sample clock as well as providing the SYSREF signal required as shown in Figure 62 and Figure 63, so that clocking device is one good choice for the clocking solution for the ADS54J54.

8.4.1 SNR and Clock Jitter

The signal-to-noise ratio of the channel is limited by three different factors: the quantization noise is typically not noticeable in pipeline converters and is 84 dB for a 14-bit channel. The thermal noise limits the SNR at low input frequencies while the clock jitter sets the SNR for higher input frequencies.

ADS54J54 SLASE67A – JANUARY 2015 – REVISED AUGUST 2019

(2)

www.ti.com

Detailed Design Procedure (continued)

Calculate the SNR limitation due to sample clock jitter using the following:

$$SNR_{Jitter}[dBc] = -20 \cdot \log(2\pi \cdot f_{in} \cdot T_{Jitter})$$

The total clock jitter (t_{Jitter}) has two components – the internal aperture jitter (98 fs for ADS54J54), which is set by the noise of the clock input buffer, the external clock jitter, and the jitter from the analog input signal. Calculate total clock jitter using the following:

$$T_{\text{Jitter}} = \sqrt{\left(T_{\text{Jitter,Ext.Clock}_{\text{Input}}}\right)^2 + \left(T_{\text{Aperture}_{\text{ADC}}}\right)^2}$$
(3)

External clock jitter can be minimized by using high quality clock sources and jitter cleaners, as well as bandpass filters at the clock input while a faster clock slew rate improves the channel aperture jitter.

The ADS54J54 has a thermal noise of 66 dBFS and internal aperture jitter of 98 fs. The SNR depending on amount of external jitter for different input frequencies is shown in Figure 103.

Figure 103. SNR vs Input Frequency and External Clock Jitter

8.5 Application Curves

Figure 104 and Figure 105 show the differential impedance between the channel INP and INM pins. The impedance is modeled as a parallel combination of RIN and CIN (RIN || 1 / jwCIN).

9 Power Supply Recommendations

The device requires a 1.8-V nominal supply for AVDDC, IOVDD, PLLVDD, and DVDD. The device also requires a 1.9-V supply for AVDD18 and a 3.3-V supply for AVDD33. There are no specific sequence power-supply requirements during device power-up. AVDD, DVDD, IOVDD, PLLVDD, and AVDD33 can power up in any order.

10 Layout

10.1 Layout Guidelines

The Device EVM layout can be used as a reference layout to obtain the best performance. A layout diagram of the EVM top layer is provided in Figure 107. Some important points to remember during laying out the board are:

- Analog inputs are located on opposite sides of the device pinout to ensure minimum crosstalk on the package level. To minimize crosstalk on-board, the analog inputs should exit the pinout in opposite directions, as shown in the reference layout of Figure 107 as much as possible.
- In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to minimize coupling between them. This configuration is also maintained on the reference layout of Figure 107 as much as possible.
- Digital outputs should be kept away from the analog inputs. When these digital outputs exit the pinout, the digital output traces should not be kept parallel to the analog input traces because this configuration may result in coupling from digital outputs to analog inputs and degrade performance. The digital sample data rate can be as high as 5.0 Gsps, so care must be taken to maintain the signal integrity of these signals. A low-loss dielectric circuit board is recommended or else these traces should be kept as short as possible. These traces should be kept away from the analog inputs ad n clock input to the device as well.
- At each power-supply pin, a 0.1-μF decoupling capacitor should be kept close to the device. A separate decoupling capacitor group consisting of a parallel combination of 10-μF, 1-μF, and 0.1-μF capacitors can be kept close to the supply source.

10.1.1 CML SerDes Transmitter Interface

Each of the 5 Gbps SerDes CML transmitter outputs requires AC coupling between transmitter and receiver. The differential pair should be terminated with a $100-\Omega$ resistor as close to the receiving device as possible to avoid unwanted reflections and signal degradation.

10.2 Layout Example

Layout Example (continued)

Figure 107. Top and Bottom Layers

TEXAS INSTRUMENTS

www.ti.com

11 Device and Documentation Support

11.1 Trademarks

PowerPAD is a trademark of Texas Instruments.

11.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
ADS54J54IRGCR	Active	Production	VQFN (RGC) 64	2000 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	-40 to 85	AZ54J54
ADS54J54IRGCT	Active	Production	VQFN (RGC) 64	250 SMALL T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	-40 to 85	AZ54J54

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Texas

STRUMENTS

TAPE AND REEL INFORMATION

ADS54J54IRGCR

A0

(mm)

9.3

B0

(mm)

9.3

K0

(mm)

1.5

P1

(mm)

12.0

w

(mm)

16.0

Pin1

Quadrant

Q2

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

330.0

16.4

*All dimensions are nominal						
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)

RGC

64

2000

VQFN

PACKAGE MATERIALS INFORMATION

5-Dec-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS54J54IRGCR	VQFN	RGC	64	2000	350.0	350.0	43.0

RGC 64

9 x 9, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

RGC0064H

PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

RGC0064H

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

RGC0064H

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated