ADS1285 32-Bit, Delta-Sigma ADC for Seismic Applications

1 Features

Selectable resolution-power modes:

 Dynamic range: 134dB at 2ms, 11.5mW Dynamic range: 129dB at 2ms, 4.8mW

Flexible digital filter:

- Selectable sinc + FIR + IIR

Linear or minimum phase

- High-pass filter

THD: < -120dB

CMRR: 125dB

Data rates: 125 SPS to 4000 SPS

Programmable gains: 1 to 64

PGA bypass option

SYNC input

Clock error compensation

Two-channel multiplexer

Offset and gain calibration

General-purpose digital I/Os

Analog supply operation: 5V, 3.3V, or ±2.5V

Reference voltage options: 5V, 4.096V, or 2.5V

2 Applications

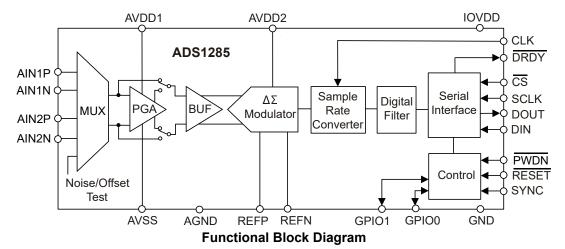
- **Energy exploration**
- Passive seismic monitoring
- Earth sciences and geology
- Precision instrumentation

3 Description

The ADS1285 is a 32-bit, low-power, analog-to-digital converter (ADC), with a programmable gain amplifier (PGA) and a finite impulse response (FIR) filter. The ADC is designed for the demanding needs of seismology equipment requiring low-noise precision digitization and extended battery run time.

The low-noise PGA allows direct connection of geophones and transformer-coupled hydrophones without the need of an external amplifier.

The ADC incorporates a high-resolution, delta-sigma $(\Delta\Sigma)$ modulator and a FIR filter with programmable phase response. The high-pass filter removes do and low-frequency content from the signal. Clock frequency error is compensated by the sample rate converter with 7ppb resolution.


Choice of power modes optimize dynamic range verses power consumption. Power consumption is further reduced by PGA bypass operation.

The ADC is available in a compact 5mm × 5mm VQFN package and is fully specified over the -40°C to +85°C ambient temperature range.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
ADS1285	RHB (VQFN, 32)	5.00mm × 5.00mm

- For more information, see Section 11.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Table of Contents

1 Features	1
2 Applications	1
3 Description	
4 Pin Configuration and Functions	
5 Specifications	
5.1 Absolute Maximum Ratings	
5.2 ESD Ratings	
5.3 Recommended Operating Conditions	
5.4 Thermal Information	
5.5 Electrical Characteristics	
5.6 Timing Requirements: 1.65V ≤ IOVDD ≤ 1.95V	
and 2.7V ≤ IOVDD ≤ 3.6V	10
5.7 Switching Characteristics: 1.65V ≤ IOVDD ≤	
1.95V and 2.7V ≤ IOVDD ≤ 3.6V	10
5.8 Timing Diagrams	11
5.9 Typical Characteristics	13
6 Parameter Measurement Information	
6.1 Noise Performance	23
7 Detailed Description	25
7.1 Overview	

7.2 Functional Block Diagram	26
7.3 Feature Description	27
7.4 Device Functional Modes	40
7.5 Programming	. 44
7.6 Register Map	49
8 Application and Implementation	54
8.1 Application Information	. 54
8.2 Typical Application	. 54
8.3 Power Supply Recommendations	56
8.4 Layout	. 57
9 Device and Documentation Support	
9.1 Receiving Notification of Documentation Updates	58
9.2 Support Resources	58
9.3 Trademarks	58
9.4 Electrostatic Discharge Caution	58
9.5 Glossary	
10 Revision History	58
11 Mechanical, Packaging, and Orderable	
Information	58

4 Pin Configuration and Functions

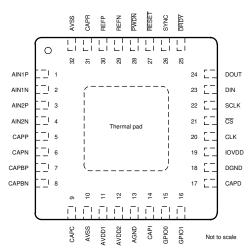


Figure 4-1. RHB Package, 32-Pin, 5mm × 5mm VQFN (Top View)

Table 4-1. Pin Functions

	PIN FUNCTION		
NO.	NAME	FUNCTION	DESCRIPTION
1	AIN1P	Analog input	Channel 1 positive input
2	AIN1N	Analog input	Channel 1 negative input
3	AIN2P	Analog input	Channel 2 positive input
4	AIN2N	Analog input	Channel 2 negative input
5	CAPP	Analog internal	PGA positive capacitor. Connect a 10nF C0G capacitor across CAPP and CAPN.
6	CAPN	Analog internal	PGA negative capacitor. Connect a 10nF C0G capacitor across CAPP and CAPN.
7	CAPBP	Analog internal	Buffer positive capacitor. Connect a 47nF C0G capacitor to AVSS.
8	CAPBN	Analog internal	Buffer negative capacitor. Connect a 47nF C0G capacitor to AVSS.
9	CAPC	Analog internal	Charge-pump capacitor. Connect a 4.7nF, minimum 10V rated capacitor to AGND.
10	AVSS	Analog supply	PGA negative analog supply. See the Analog Power Supplies section for details.
11	AVDD1	Analog supply	PGA positive analog supply. See the Analog Power Supplies section for details.
12	AVDD2	Analog supply	Modulator analog supply. See the Analog Power Supplies section for details.
13	AGND	Analog ground	Analog ground
14	CAPI	Analog internal	Input bias capacitor. Connect a 100nF ceramic capacitor to AGND.
15	GPIO0	Digital I/O	General-purpose I/O
16	GPIO1	Digital I/O	General-purpose I/O
17	CAPD	Analog output	Digital low-dropout regulator (LDO) output. Connect a 220nF ceramic capacitor to DGND.
18	DGND	Ground	Digital ground
19	IOVDD	Digital supply	Digital I/O power supply. See the IOVDD Power Supply section for details.
20	CLK	Digital input	ADC clock input
21	CS	Digital input	Serial interface select, active low
22	SCLK	Digital input	Serial interface clock
23	DIN	Digital input	Serial interface data in
24	DOUT	Digital output	Serial interface data out
25	DRDY	Digital output	Data ready, active low
26	SYNC	Digital input	ADC synchronization, active high
27	RESET	Digital input	ADC reset, active low
28	PWDN	Digital input	ADC power down, active low
29	REFN	Analog input	Negative reference input. See the Voltage Reference Input section for details.
30	REFP	Analog input	Positive reference input. See the Voltage Reference Input section for details.
31	CAPR	Analog internal	Reference bias capacitor. Connect a 100nF ceramic capacitor to AVSS.
32	AVSS	Analog supply	PGA negative supply
	Therr	mal pad	Connect the thermal pad to AVSS. Thermal vias placed in the printed circuit board (PCB) land are optional for placement of bottom side components.

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
	AVDD1 to AVSS	-0.3	5.5	
	AVSS to AGND	-2.8	0.3	
Dower supply voltages	AVDD2 to AGND	-0.3	5.5	v
Power supply voltages	AVDD2 to AVSS	-0.3	5.5	v
	IOVDD to DGND	-0.3	3.9	
	IOVDD to DGND (IOVDD connected to CAPD)	-0.3	2.2	
Grounds	AGND to DGND	- 0.3	0.3	V
Analog input voltage	AIN1P, AIN1N, AIN2P, AIN2N, REFP, REFN	AVSS - 0.3	AVDD1 + 0.3	V
Digital input voltage	CLK, DIN, SCLK, CS, GPIO0, GPIO1, SYNC, RESET, PWDN	DGND - 0.3	IOVDD + 0.3	V
Input current	Continuous, any digital or analog pin ⁽²⁾	-10	10	mA
Temperature	Junction, T _J		150	°C
remperature	Storage, T _{stg}	-60	150	°C

- (1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional this may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) Analog input pins AIN1P, AIN1N, AIN2P, AIN2N, REFP and REFN are diode-clamped to AVDD1 and AVSS. Limit the input current to 10mA in the event the analog input voltage exceeds AVDD1 + 0.3V or AVSS – 0.3V. Digital input pins are clamped to IOVDD and DGND. Limit the input current if the digital input voltage exceeds IOVDD + 0.3V or DGND – 0.3V.

5.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	2000	V
V _(ESD)	Electrostatic discrarge	Charged-device model (CDM), per JEDEC JESD22C101 ⁽²⁾	1000	v

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT	
POWE	R SUPPLY						
		AVDD1 to AVSS	3		5.25	V	
		AVDD1 to AGND	2.375				
	Analog power supplies	AVSS to AGND	-2.625		0	V	
		AVDD2 to AGND	2.375		5.25	V	
		AVDD2 to AVSS			5.25		
	Disital same and to	IOVDD to DGND	2.7		3.6	V	
	Digital power supply	IOVDD connected to CAPD 1.65			1.95	V	
ANALO	OG INPUTS	<u>'</u>					
		Reference voltage = 5V		±V _{REF} / (2 × Gain)			
V_{IN}	Differential input voltage V _{IN} = V _{AINP} – V _{AINN}	Reference voltage = 4.096V		±V _{REF} / (1.6384 × Gain)		V	
	VIN - VAINP - VAINN	Reference voltage = 2.5V		±V _{REF} / Gain			
	Abaduta innut valtaga	Buffer operation	AVSS + 0.1	A	VDD1 – 0.1	V	
	Absolute input voltage	PGA operation	AVSS + 1.1	AV	DD1 – 0.85	V	

Product Folder Links: ADS1285

5.3 Recommended Operating Conditions (continued)

over operating ambient temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
	Ablist- systematically	Buffer operation	AVSS + 0.1		MAX AVDD1 - 0.1 AVDD1 - 0.15 6% AVDD1 + 0.1 AVDD1 - AVSS + 0.1 4.2 2.6 0.2 × IOVDD 8.3 8.3 4.15	V
	Absolute output voltage	PGA operation	AVSS + 0.15			V
	Calibration range (1)				6%	FSR
VOLTA	GE REFERENCE INPUT	·				
V_{REFN}	Negative reference input		AVSS - 0.05			V
V_{REFP}	Positive reference input				AVDD1 + 0.1	V
		Reference voltage = 5V	4.9	5	AVDD1 – AVSS + 0.1	V
V _{REF}	$V_{REF} = V_{REFP} - V_{REFN}$	Reference voltage = 4.096V	4.0	4.096	4.2	V
		Reference voltage = 2.5V	2.4	2.5	2.6	V
DIGITAI	INPUTS				<u>'</u>	
V _{INL}	Low-level input voltage				0.2 × IOVDD	V
V _{INH}	High-level input voltage		0.8 × IOVDD			V
		High-power mode	6	8.192	8.3	
f _{CLK}	Clock input frequency	Mid-power mode	6	8.192	8.3	MHz
		Low-power mode	3	4.096	4.15	
TEMPE	RATURE	-				
_	A 1: 11	Operational	-50		85	**
T _A	Ambient temperature	Specification	-40		85	°C

⁽¹⁾ Calibration range is the sum of the offset and gain error correction.

5.4 Thermal Information

		ADS1285	
	THERMAL METRIC ⁽¹⁾	RHB (VQFN)	UNIT
		32 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	30	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	19.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	10.9	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	10.8	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	1.8	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note

Product Folder Links: ADS1285

5.5 Electrical Characteristics

minimum and maximum specifications over -40° C to $+85^{\circ}$ C; typical specifications are at 25°C; all specifications are at AVDD1 = 5V, AVDD2 = 2.5V to 5V, AVSS = 0V, IOVDD = 1.8V, V_{REFP} = 4.096V, V_{REFN} = 0V, V_{CM} = 2.5V, PGA gain = 1, f_{CLK} = 8.192MHz (4.096MHz low-power mode) and f_{DATA} = 500 SPS (unless otherwise noted)

	PARAMETER	TEST (CONDITIONS	MIN	TYP	MAX	UNIT	
ANALO	G INPUTS							
	Input mux on-resistance	Input 1 to input 2 cr	oss connection		60		Ω	
PGA OP	PERATION	1				,		
I _B	PGA Input bias current	High-power mode			45		nA	
Ios	PGA Input offset current	High-power mode			±3		nA	
	PGA Gain			1, 2	2, 4, 8, 16, 32, 64		V/V	
		High-power mode			5.5			
e _{n-PGA}	PGA Input voltage noise density	Mid-power mode	PGA Gain = 16		7		nV/√ \overline{Hz}	
		Low-power mode			7			
i _{n-PGA}	PGA Input current noise density	Differential			2.5		pA/√ Hz	
	Antialias filter frequency				30		kHz	
BUFFER	ROPERATION					'		
	Input current	High-power mode			±1.2			
l _B		Mid-power mode	V _{IN} = 2.5V		±1.2		μΑ	
		Low-power mode			±0.3			
DC PER	FORMANCE					'		
e _n	Noise			See Noise Per	rformance section	for details		
	Offset error	PGA operation		-350/gain - 10	±30/gain + 5	350/gain + 10		
Vos		Buffer operation		-600	±50	600	μV	
		After calibration			±1			
	0#	PGA operation			0.5/gain		\//90	
	Offset error drift	Buffer operation			1		μV/°C	
		PGA operation, gair	n = 1	-0.05%	±0.02%	0.05%		
	Gain error	After calibration			2		ppm	
		Buffer operation		-0.07%	±0.05%	0.07%		
	Gain match	Relative to PGA gai	in = 1	-0.2%	±0.06%	0.2%		
	Gain drift	All PGA gains			2		ppm/°C	
CMRR	Common-mode rejection ratio	f = 60Hz		104	120		dB	
		AVDD2		80	95		dB	
PSRR	Power-supply rejection ratio	AVSS, AVDD1	At dc	85	110		dB	
		IOVDD		100	120		dB	

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *ADS1285*

5.5 Electrical Characteristics (continued)

minimum and maximum specifications over -40° C to +85°C; typical specifications are at 25°C; all specifications are at AVDD1 = 5V, AVDD2 = 2.5V to 5V, AVSS = 0V, IOVDD = 1.8V, V_{REFP} = 4.096V, V_{REFN} = 0V, V_{CM} = 2.5V, PGA gain = 1, f_{CLK} = 8.192MHz (4.096MHz low-power mode) and f_{DATA} = 500 SPS (unless otherwise noted)

	PARAMETER	TEST (CONDITIONS	MIN TYP	MAX	UNIT
AC PERF	FORMANCE	•			•	
n-MOD	Modulator voltage noise densi	V _{REF} = 4.096V		25		nV/√Hz
			Buffer operation	-123	-114	
		High-power mode,	PGA gain = 2	-119		
		$V_{REF} = 2.5V,$ AVDD1 = 3.3V,	PGA gain = 4	-125	-116	٩D
		AVSS = 0V,	PGA gain = 8	-124		dB
		f _{IN} = 31.25Hz, V _{IN} = -0.5dBFS	PGA gain = 16	-123	-116	
			PGA gain = 32 and 64	-125		
			Buffer operation	-122	-113	
		Mid-power mode,	PGA gain = 2	-120		
		$V_{REF} = 2.5V,$ AVDD1 = 3.3V,	PGA gain = 4	-125	-118	٦D
		AVSS = 0V,	PGA gain = 8	-124		dB
		f _{IN} = 31.25Hz, V _{IN} = -0.5dBFS	PGA gain = 16	-123	-115	
			PGA gain = 32 and 64	-125		
			Buffer operation	-124	-117	
		Low-power mode,	PGA gain = 2	-122		
		$V_{REF} = 2.5V,$ AVDD1 = 3.3V,	PGA gain = 4	-124	-116	dB
		AVSS = 0V,	PGA gain = 8	-125		
		$f_{IN} = 31.25Hz,$ $V_{IN} = -0.5dBFS$	PGA gain = 16	-123	-115	
		"	PGA gain = 32 and 64	-124		
	Total harmonic distortion	High-power mode, $V_{REF}=4.096V,$ $AVDD1=5V,$ $AVSS=0V,$ $f_{IN}=31.25Hz,$ $V_{IN}=-0.5dBFS$	Buffer operation	-119	-114	dB
HD			PGA gain = 1	-119	-111	
			PGA gain = 2	-125		
			PGA gain = 4	-122	-114	
			PGA gain = 8	-118		
			PGA gain = 16	-117	-111	
			PGA gain = 32 and 64	-125		
		Mid-power mode, V _{RFF} = 4.096V,	Buffer operation	-119	-112	
			PGA gain = 1	-119	-111	
			PGA gain = 2	-125		
		AVDD1 = 5V, AVSS = 0V,	PGA gain = 4	-124	-115	dB
		$f_{IN} = 31.25Hz,$	PGA gain = 8	-119		
		$V_{IN} = -0.5 dBFS$	PGA gain = 16	-117	-111	
			PGA gain = 32 and 64	-124		
			Buffer operation	-123	-117	
		Low power mad-	PGA gain = 1	-121	-115	
		Low-power mode, V _{REF} = 4.096V,	PGA gain = 2	-124		
		AVDD1 = 5V,	PGA gain = 4	-125	-115	dB
		AVSS = 0V, f _{IN} = 31.25Hz,	PGA gain = 8	-122		
		$V_{IN} = -0.5 dBFS$	PGA gain = 16	-121	-113	
			PGA gain = 32 and 64	-123		
SFDR	Spurious-free dynamic range	f _{IN} = 31.25Hz, V _{IN} :		115		dB
	Crosstalk	f _{IN} = 31.25Hz, V _{IN} :		-140		dB

5.5 Electrical Characteristics (continued)

minimum and maximum specifications over -40° C to +85°C; typical specifications are at 25°C; all specifications are at AVDD1 = 5V, AVDD2 = 2.5V to 5V, AVSS = 0V, IOVDD = 1.8V, V_{REFP} = 4.096V, V_{REFN} = 0V, V_{CM} = 2.5V, PGA gain = 1, f_{CLK} = 8.192MHz (4.096MHz low-power mode) and f_{DATA} = 500 SPS (unless otherwise noted)

	PARAMETER	TEST (CONDITIONS	MIN	TYP	MAX	UNIT
VOLTAC	GE REFERENCE INPUT						
		High-power mode			110		
	Reference input current	Mid-power mode			110		μA/V
		Low-power mode			80		
FIR DIG	ITAL FILTER			L			
		High-power mode		250		4000	
f _{DATA}	Data rate	Mid-power mode		250		4000	SPS
FIR DIGITA SAMPLE DIGITAL I VOH		Low-power mode		125		2000	
	Pass-band ripple			-0.003		0.003	dB
	Pass-band (-0.01dB)				0.375 × f _{DATA}		Hz
	Bandwidth (-3dB)				0.413 × f _{DATA}		Hz
	Stop band				0.5 × f _{DATA}		Hz
	Stop-band attenuation (1)			135			dB
		Minimum phase filte	er, at dc		5 / f _{DATA}		
	Group delay	Linear phase filter			31/ f _{DATA}		s
		Minimum phase filter 62 / f _{DATA}					
	Settling time (latency)	Linear phase filter			62 / f _{DATA}		s
IIR DIGI	TAL FILTER						
	High-pass corner frequency			0.1		10	Hz
SAMPLI	E RATE CONVERTER						
	Clock compensation range			-244		244	ppm of f _{CLK}
	Resolution				7.45		ppb of f _{CLK}
DIGITAL	 _ INPUT/OUTPUT						TT GEN
V _{OH}	High-level output voltage	I _{OH} = 1mA		0.8 × IOVDD			V
	Low-level output voltage	I _{OL} = -1mA			(0.2 × IOVDD	V
	Input leakage			-1		1	μA
	SUPPLY						
		High-power mode	PGA operation		1.4		
		AVDD1 = 3.3V	Buffer operation		0.25		mA
		Mid-power mode	PGA operation		0.85		
		AVDD1 = 3.3V	Buffer operation		0.25		mA
		Low-power mode	PGA operation		0.8		
		AVDD1 = 3.3V	Buffer operation		0.2		mA
I _{AVDD1} ,	AVDD1, AVSS current	High-power mode	PGA operation		1.5	1.85	
I _{AVSS}		AVDD1 = 5V	Buffer operation		0.35	0.45	mA
		Mid-power mode	PGA operation		0.9	1.2	
		AVDD1 = 5V	Buffer operation		0.35	0.45	mA
		Low power made	PGA operation		0.85	1.1	
		Low-power mode AVDD1 = 5V	Buffer operation		0.25	0.45	mA
		Power-down mode			1	5	μA
		High-power mode			1.2	1.5	1211 1
	1	i ngn power mode			1.4	1.5	-
		Mid-nower mode			1 2	15	l m∆
I _{AVDD2}	AVDD2 current	Mid-power mode Low-power mode	AVDD2 = 2.5V		0.7	0.85	mA

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *ADS1285*

5.5 Electrical Characteristics (continued)

minimum and maximum specifications over -40° C to $+85^{\circ}$ C; typical specifications are at 25°C; all specifications are at AVDD1 = 5V, AVDD2 = 2.5V to 5V, AVSS = 0V, IOVDD = 1.8V, V_{REFP} = 4.096V, V_{REFN} = 0V, V_{CM} = 2.5V, PGA gain = 1, f_{CLK} = 8.192MHz (4.096MHz low-power mode) and f_{DATA} = 500 SPS (unless otherwise noted)

	PARAMETER	TEST C	CONDITIONS	MIN TYP	MAX	UNIT
		High-power mode		0.43	0.6	
		Mid-power mode		0.43	0.6	mA
	IOVDD current	Low-power mode		0.24	0.4	
1		Power-down mode		1	10	μA
IOVDD		Standby mode		200		μΛ
		High-power mode		1.2		
	IOVDD additional current	Mid-power mode	Sample rate converter operation	1.2		mA
		Low-power mode	'	0.6		
		High-power mode	PGA operation	8.3		
		AVDD1 = 3.3V AVDD2 = 2.5V	Buffer operation	4.5		mW
		Mid-power mode	PGA operation	6.5		
		AVDD1 = 3.3V AVDD2 = 2.5V	Buffer operation	4.5		mW
		Low-power mode	PGA operation	4.8		
P _d	Power dissipation (2)	AVDD1 = 3.3V AVDD2 = 2.5V	Buffer operation	2.8		mW
Fd	Fower dissipation V	High-power mode	PGA operation	11.5	14.1	
		AVDD1 = 5V AVDD2 = 2.5V	Buffer operation	5.3	6.7	mW
		Mid-power mode	PGA operation	8.3	10.8	
		AVDD1 = 5V AVDD2 = 2.5V		5.3	6.7	mW
		Low-power mode	PGA operation	6.4	8.4	
		AVDD1 = 5V AVDD2 = 2.5V	Buffer operation	3.4	5.1	mW

⁽¹⁾ Input frequencies at N × 32kHz (16kHz low-power mode) ± f_{DATA} / 2 (where N = 1, 2, 3...) intermodulate with the chopper clock. At these frequencies stop band attenuation = -90dBFS (typ).

⁽²⁾ Excluding current consumed by the voltage reference input or by sample rate converter operation. See voltage reference input current and IOVDD current of sample rate converter operation.

5.6 Timing Requirements: 1.65V ≤ IOVDD ≤ 1.95V and 2.7V ≤ IOVDD ≤ 3.6V

over operating ambient temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
CLOCK			<u> </u>		•	
		High-power mode	120.5	122.07	166	
t _{c(CLK)}	CLK period	Mid-power mode	120.5	122.07	166	ns
		Low-power mode	241	244.14	332	
		High-power mode	55			
t _{w(CLKH)}	Pulse duration, CLK high	Mid-power mode	55			ns
		Low-power mode	110			
		High-power mode	55			
$t_{w(CLKL)}$	Pulse duration, CLK low	Mid-power mode	55			ns
		Low-power mode	110			
SERIAL INT	TERFACE		<u>'</u>		'	
t _{w(CSH)}	Pulse duration, CS high		20			ns
t _{d(CSSC)}	Delay time, first SCLK rising edge after 0	CS falling edge	20			ns
t _{c(SCLK)}	SCLK period		120			ns
t _{w(SCH)}	Pulse duration, SCLK high		50			ns
t _{w(SCL)}	Pulse duration, SCLK low		50			ns
t _{su(DI)}	Setup time, DIN valid before SCLK rising	g edge	10			ns
t _{h(DI)}	Hold time, DIN valid after SCLK rising ed	lge	10			ns
t _{su(SRC-W)}	Setup time, SRC[1:0] register write before	re DRDY falling edge	256			1 / f _(CLK)
SYNC			•			
t _{w(SYNL)}	Pulse duration, SYNC low		2			1 / f _(CLK)
t _{w(SYNH)}	Pulse duration, SYNC high		2			1 / f _(CLK)
t _{su(SYNCLK)}	Setup time, SYNC high before CLK risin	g edge	10			ns
t _{h(SYNCLK)}	Hold time, SYNC high after CLK rising e	dge	10			ns
RESET			•		'	
t _{w(RSTL)}	Pulse duration, RESET low		2			1 / f _(CLK)
t _{su(RSTCLK)}	Setup time, RESET high before CLK risi	ng edge	10			ns
t _{h(RSTCLK)}	Hold time, RESET high after CLK rising	edge	10			ns

5.7 Switching Characteristics: 1.65V ≤ IOVDD ≤ 1.95V and 2.7V ≤ IOVDD ≤ 3.6V

over operating ambient temperature range and C_{LOAD} = 20pF (unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNIT				
SERIAL INT	SERIAL INTERFACE								
t _{w(DRH)}	Pulse duration, DRDY high			8	1 / f _(CLK)				
t _{p(CSDO)}	Propagation delay time, CS falling edge to DOUT driven valid			50	ns				
t _{p(SCDO)}	Propagation delay time, SCLK falling edge to new DOUT valid			50	ns				
t _{h(SCDO)}	Propagation delay time, SCLK falling edge to DOUT invalid	5			ns				
SYNC									
t _{p(SYNDR)}	Propagation delay time, SYNC rising edge to valid data DRDY falling edge	62.98145 /	f _{DATA} + 930 / f _{CLK}		S				
RESET									
t _{p(RSTDR)}	Propagation delay time, RESET rising edge to DRDY falling edge	5	516,874		1/ f _{CLK}				
PWDN									
t _{p(PDDR)}	Propagation delay time, PWDN rising edge to DRDY falling edge	62.98145 /	f _{DATA} + 946 / f _{(CLK})	S				
POWER UP									
t _{p(SUPDR)}	Propagation delay time, power supply and CLK applied to first DRDY pulse	6	550,000		1 / f _{CLK}				

Product Folder Links: ADS1285

5.8 Timing Diagrams

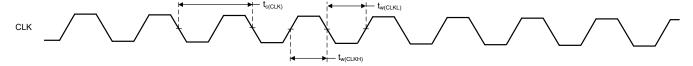


Figure 5-1. Clock Timing Requirements

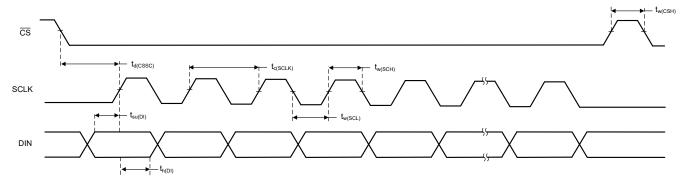


Figure 5-2. Serial Interface Timing Requirements

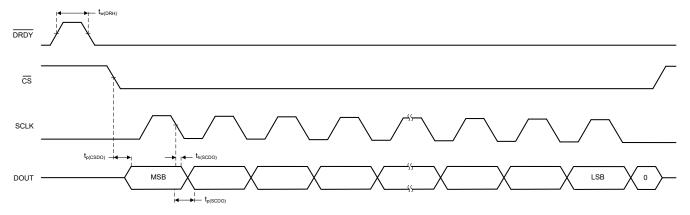


Figure 5-3. Serial Interface Switching Characteristics

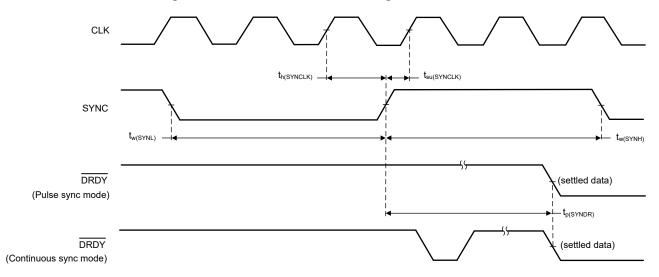


Figure 5-4. SYNC Timing Requirements and Switching Characteristics

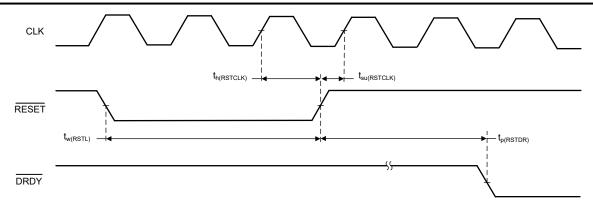


Figure 5-5. RESET Timing Requirements and Switching Characteristics

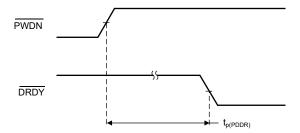


Figure 5-6. PWDN Switching Characteristics

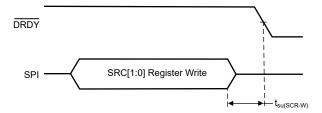


Figure 5-7. Sample Rate Converter Register-Write Timing Requirements

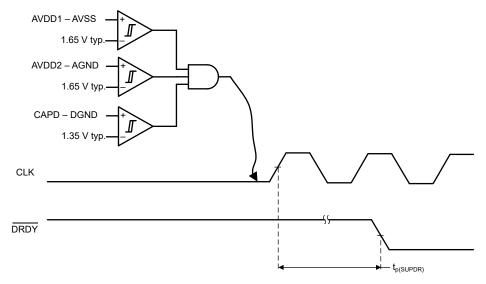
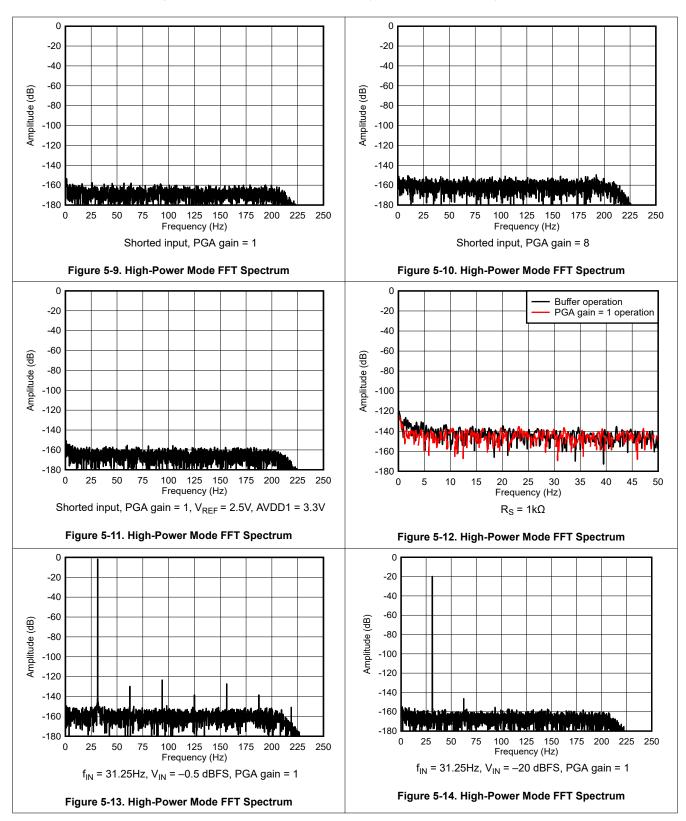
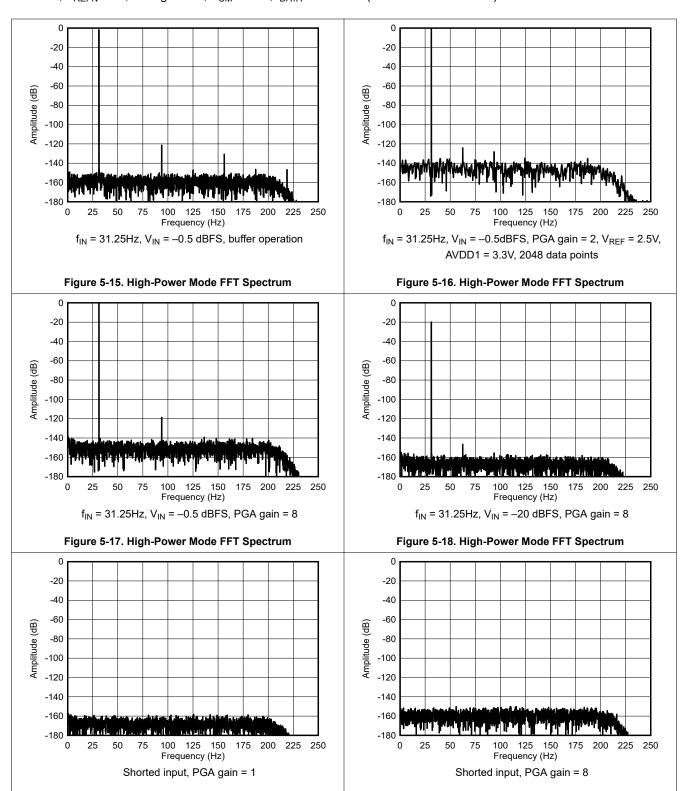
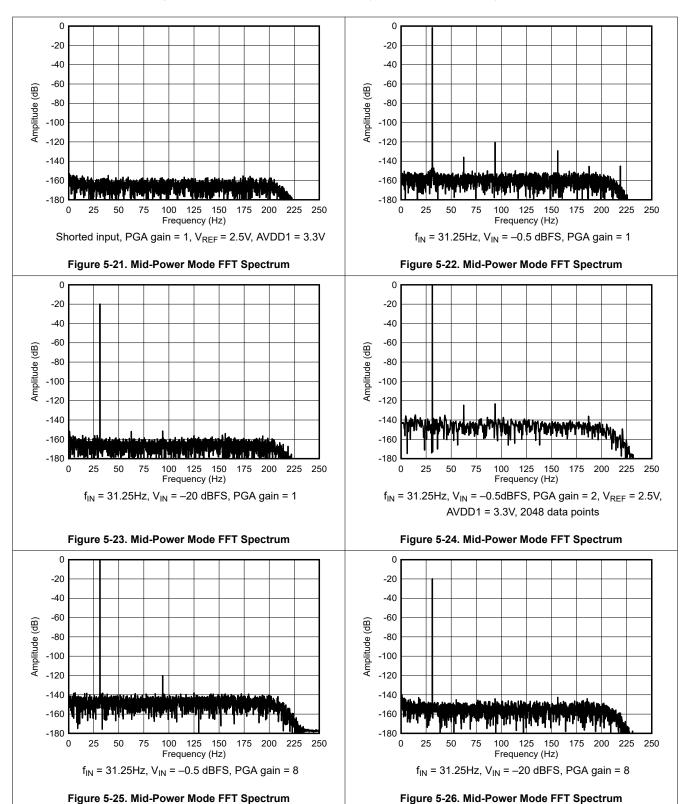



Figure 5-8. Power-Up Switching Characteristics

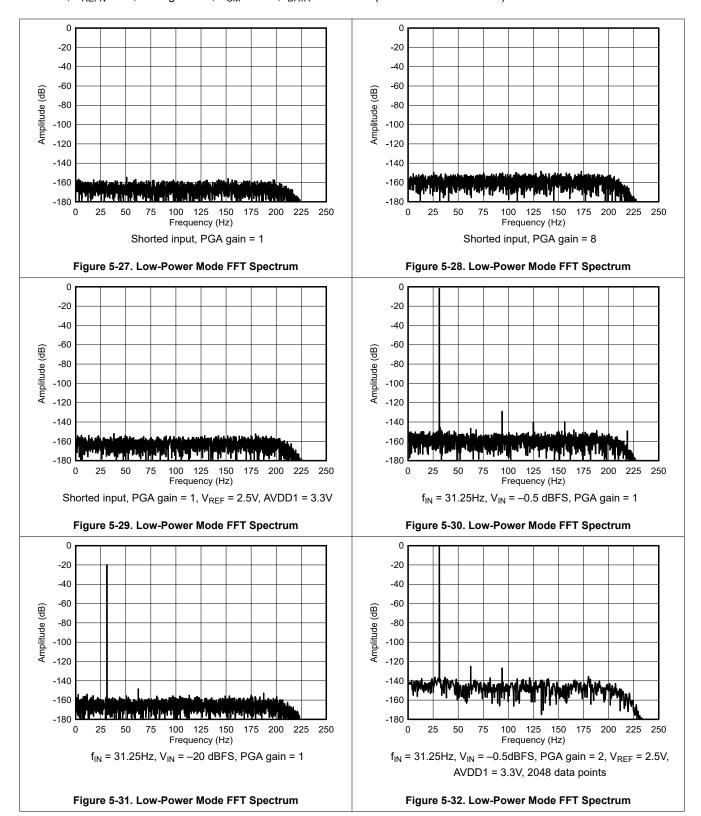

Product Folder Links: ADS1285

5.9 Typical Characteristics

at T_A = 25°C, AVDD1 = 5V, AVSS = 0V, AVDD2 = 2.5V, IOVDD = 1.8V, f_{CLK} = 8.192MHz (4.096MHz low-power mode), V_{REFP} = 4.096V, V_{REFN} = 0V, PGA gain = 1, V_{CM} = 2.5V, f_{DATA} = 500 SPS (unless otherwise noted)



Submit Document Feedback


Figure 5-19. Mid-Power Mode FFT Spectrum

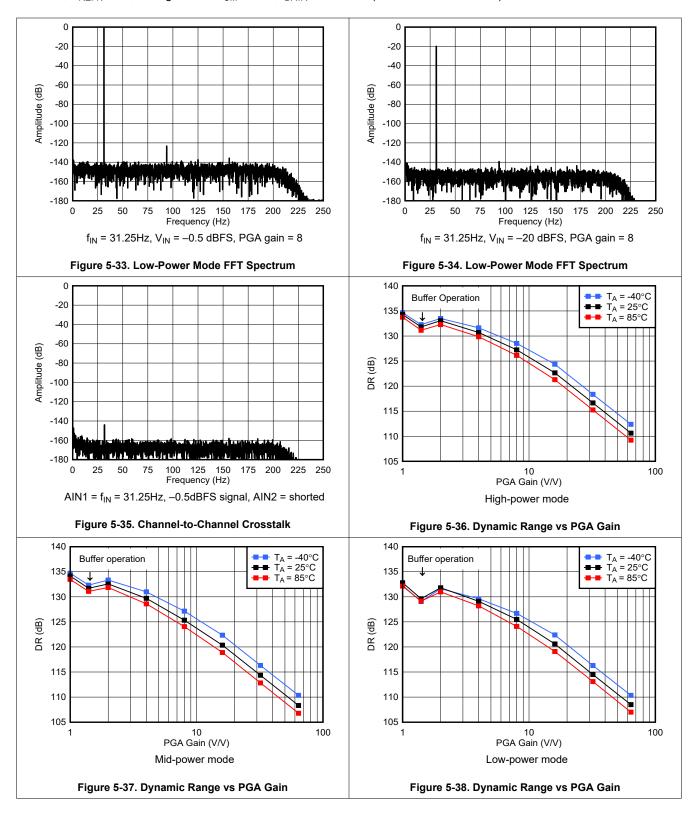
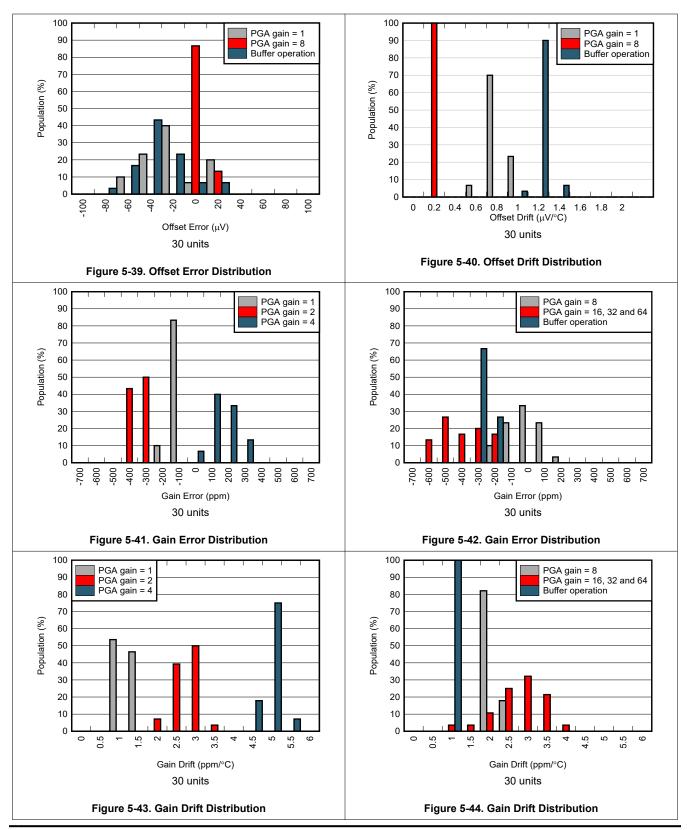
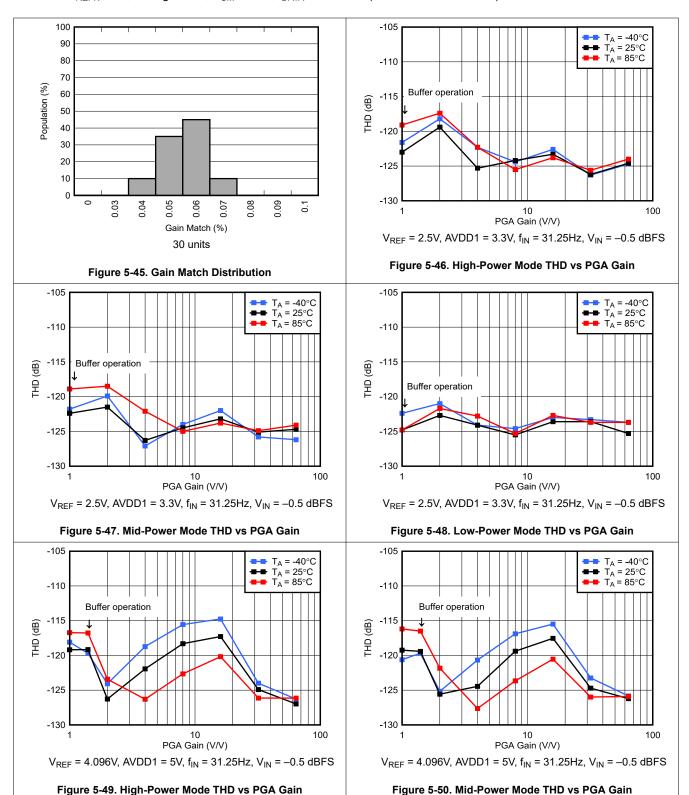
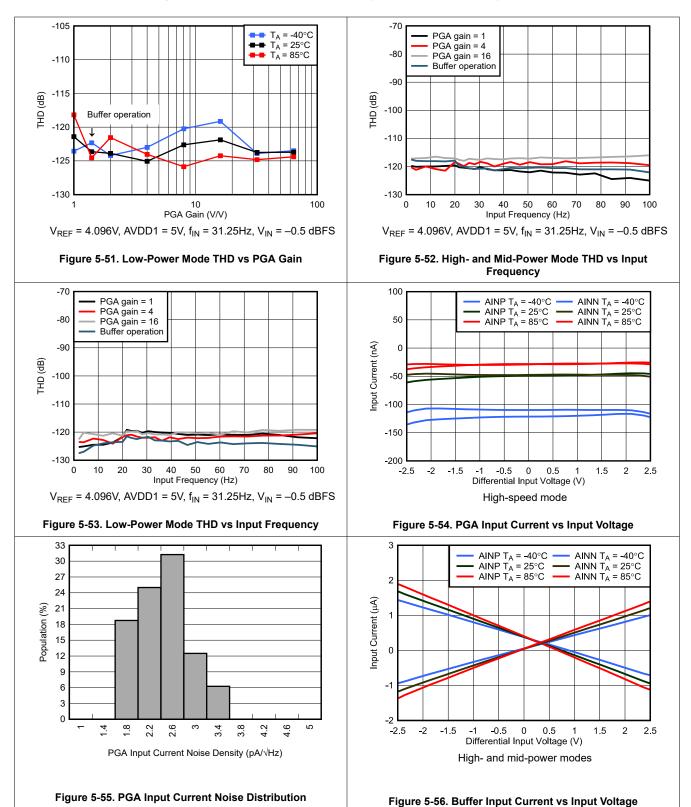
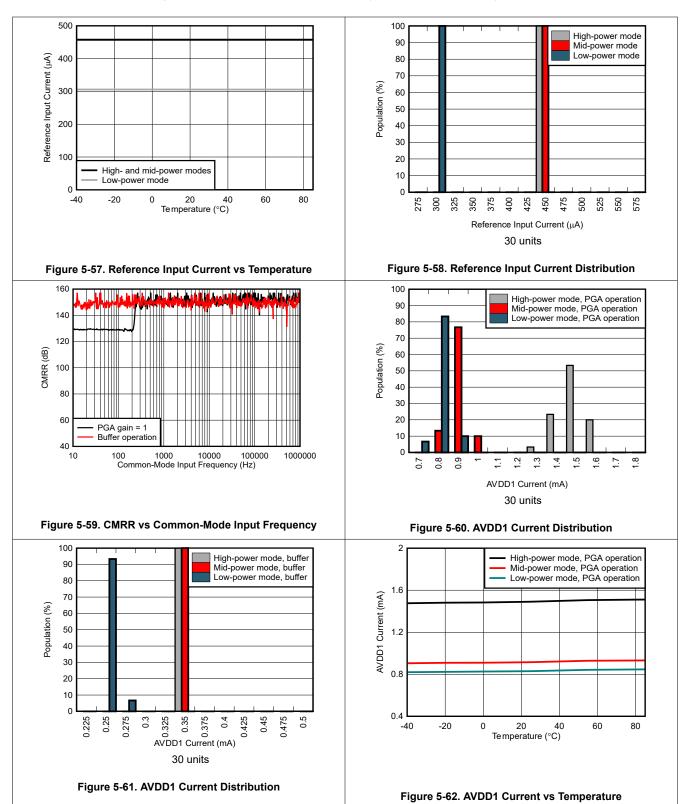

Copyright © 2025 Texas Instruments Incorporated

Figure 5-20. Mid-Power Mode FFT Spectrum

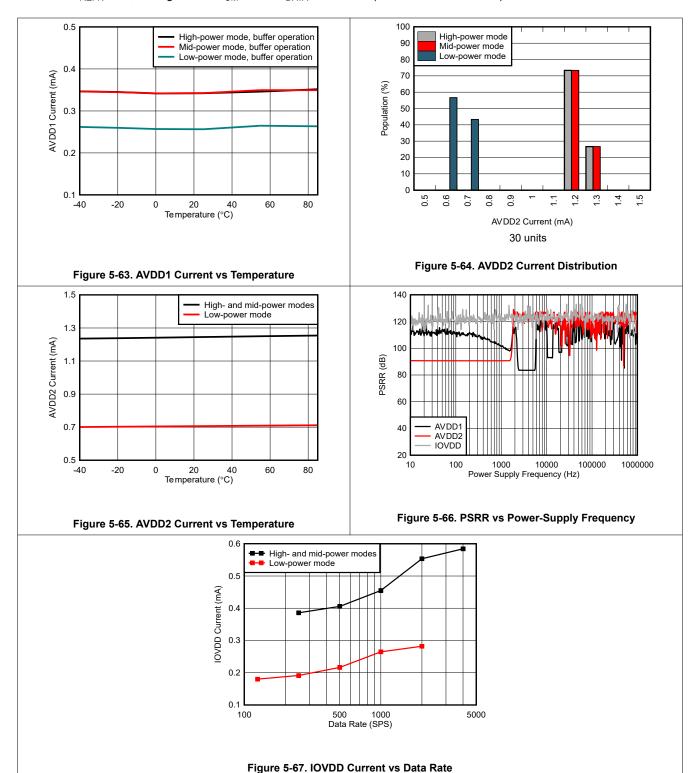








at T_A = 25°C, AVDD1 = 5V, AVSS = 0V, AVDD2 = 2.5V, IOVDD = 1.8V, f_{CLK} = 8.192MHz (4.096MHz low-power mode), V_{REFP} = 4.096V, V_{REFN} = 0V, PGA gain = 1, V_{CM} = 2.5V, f_{DATA} = 500 SPS (unless otherwise noted)


Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

at T_A = 25°C, AVDD1 = 5V, AVSS = 0V, AVDD2 = 2.5V, IOVDD = 1.8V, f_{CLK} = 8.192MHz (4.096MHz low-power mode), V_{REFP} = 4.096V, V_{REFN} = 0V, PGA gain = 1, V_{CM} = 2.5V, f_{DATA} = 500 SPS (unless otherwise noted)

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

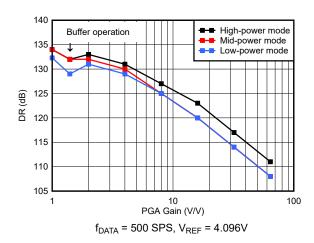
6 Parameter Measurement Information

6.1 Noise Performance

The ADS1285 is a 32-bit ADC providing three power-resolution modes, allowing optimization of noise performance verses device power consumption. The four determining factors of noise performance are the power mode, output data rate, PGA gain setting, and reference voltage selection. The high-power mode operates the PGA and modulator sampling rate at the highest capacity for best overall noise performance. The mid-power mode scales down the PGA quiescent current to reduce power consumption but results in increased PGA noise. The low-power mode reduces both the modulator sampling rate and PGA quiescent current. The result is the low-power mode has the lowest power consumption but the highest level of overall noise.

For all power modes, decreasing the output data rate reduces signal bandwidth, and therefore decreases total noise. Increasing the PGA gain reduces noise when noise is referred to the input. Dynamic range performance decreases when PGA gain is increased because the ratio of input voltage range to input-referred noise also decreases.

Noise performance also depends on the reference voltage. Operation with V_{REF} = 4.096V or 5V provides the best noise performance. Operation with V_{REF} = 2.5V (required when operating AVDD1 = 3.3V) reduces noise performance.


Dynamic range and input noise are equivalent parameters that describe the available resolution of the ADC. Equation 1 derives dynamic range from the input-referred noise data:

Dynamic Range (dB) =
$$20 \times log \left[\frac{1.768 \text{ V}}{Gain \times e_n} \right]$$
 (1)

where:

• e_n = Input-referred voltage noise (RMS)

Figure 6-1 and Figure 6-2 show dynamic range performance at f_{DATA} = 500 SPS for operation with V_{REF} = 4.096V and V_{REF} = 2.5V.

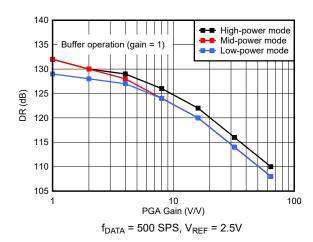


Figure 6-1. Dynamic Range vs PGA Gain

Figure 6-2. Dynamic Range vs PGA Gain

Table 6-1 through Table 6-3 list dynamic range and input-referred noise performance with $V_{REF}=4.096V$ and AVDD1 = 5V, tested with input source resistance (R_S) = 0Ω . Table 6-4 through Table 6-6 list dynamic range and input noise performance with $V_{REF}=2.5V$ and AVDD1 = 3.3V, tested with $R_S=0\Omega$. Noise data are at $T_A=25^{\circ}C$ and are representative of typical ADC performance. The data are the standard deviation of 4096 consecutive ADC conversion results with the ADC inputs shorted, measured over the 0.413 × f_{DATA} bandwidth. Because of the statistical nature of noise, repeated measurements can yield varying noise performance results.

Table 6-1. High-Power Mode Noise Performance ($V_{REF} = 4.096V$, AVDD1 = 5V, $R_S = 0\Omega$)

			DYNA	MIC RANGE		e _n , INPUT-REFERRED NOISE (μV _{RMS})					
GAIN	MODE	f _{DATA}					f _{DATA}				
		250	500	1000	2000	4000	250	500	1000	2000	4000
1	Buffer	135	132	129	126	123	0.31	0.44	0.63	0.89	1.25
1	PGA	137	134	131	128	125	0.25	0.35	0.50	0.70	0.99
2	PGA	136	133	130	127	124	0.14	0.20	0.28	0.39	0.56
4	PGA	134	131	128	125	122	0.09	0.12	0.18	0.25	0.35
8	PGA	130	127	124	121	118	0.07	0.10	0.14	0.20	0.28
16	PGA	126	123	120	117	114	0.06	0.08	0.11	0.16	0.22
32	PGA	120	117	114	111	108	0.06	0.08	0.11	0.16	0.22
64	PGA	114	111	108	105	102	0.06	0.08	0.11	0.16	0.22

Table 6-2. Mid-Power Mode Noise Performance (V_{REF} = 4.096V, AVDD1 = 5V, R_S = 0 Ω)

			DYNAN		e _n , INPUT-REFERRED NOISE (μV _{RMS})						
GAIN	MODE	f _{DATA}					f _{DATA}				
		250	500	1000	2000	4000	250	500	1000	2000	4000
1	Buffer	135	132	129	126	123	0.31	0.44	0.63	0.89	1.25
1	PGA	137	134	131	128	125	0.25	0.35	0.50	0.70	0.99
2	PGA	135	132	129	126	123	0.16	0.22	0.31	0.44	0.63
4	PGA	133	130	127	124	121	0.10	0.14	0.20	0.28	0.39
8	PGA	128	125	122	119	116	0.09	0.12	0.18	0.25	0.35
16	PGA	123	120	117	114	111	0.08	0.11	0.16	0.22	0.31
32	PGA	117	114	111	108	105	0.08	0.11	0.16	0.22	0.31
64	PGA	111	108	105	102	99	0.08	0.11	0.16	0.22	0.31

Table 6-3. Low-Power Mode Noise Performance ($V_{REF} = 4.096V$, AVDD1 = 5V, $R_S = 0\Omega$)

			DYNAM	e _n , INPUT-REFERRED NOISE (μV _{RMS})							
GAIN	MODE	f _{DATA}					f _{DATA}				
		125	250	500	1000	2000	125	250	500	1000	2000
1	Buffer	135	132	129	126	123	0.31	0.44	0.63	0.89	1.25
1	PGA	138	135	132	129	126	0.22	0.31	0.44	0.63	0.89
2	PGA	137	134	131	128	125	0.12	0.18	0.25	0.35	0.50
4	PGA	135	132	129	126	123	0.08	0.11	0.16	0.22	0.31
8	PGA	131	128	125	122	119	0.06	0.09	0.12	0.18	0.25
16	PGA	126	123	120	117	114	0.06	0.08	0.11	0.16	0.22
32	PGA	120	117	114	111	108	0.06	0.08	0.11	0.16	0.22
64	PGA	114	111	108	105	102	0.06	0.08	0.11	0.16	0.22

Table 6-4. High-Power Mode Noise Performance ($V_{REF} = 2.5V$, AVDD1 = 3.3V, $R_S = 0\Omega$)

		DYNAMIC RANGE (dB) MODE f _{DATA}						, INPUT-RE	FERRED N	IOISE (µV _{RMS}	.)	
GAIN	MODE							f _{DATA}				
		250	500	1000	2000	4000	250	500	1000	2000	4000	
1	Buffer	135	132	129	126	123	0.31	0.44	0.63	0.89	1.25	
1 ⁽¹⁾	PGA	128	125	122	119	116	0.35	0.50	0.70	0.99	1.40	
2	PGA	133	130	127	124	121	0.20	0.28	0.39	0.56	0.79	
4	PGA	132	129	126	123	120	0.11	0.16	0.22	0.31	0.44	
8	PGA	129	126	123	120	117	0.08	0.11	0.16	0.22	0.31	
16	PGA	125	122	119	116	113	0.06	0.09	0.12	0.18	0.25	
32	PGA	119	116	113	110	107	0.06	0.09	0.12	0.17	0.25	
64	PGA	113	110	107	104	101	0.06	0.09	0.12	0.17	0.25	

Product Folder Links: ADS1285

Instruments www.ti.com

Table 6-5. Mid-Power Mode Noise Performance (V_{REF} = 2.5V, AVDD1 = 3.3V, R_S = 0 Ω)

	DYNAMIC RANGE (dB)					e _n , INPUT-REFERRED NOISE (μV _{RMS})					
GAIN	MODE		f _{DATA}						f _{DATA}		
		250	500	1000	2000	4000	250	500	1000	2000	4000
1	Buffer	135	132	129	126	123	0.31	0.44	0.63	0.89	1.25
1 ⁽¹⁾	PGA	128	125	122	119	116	0.35	0.50	0.70	0.99	1.40
2	PGA	133	130	127	124	121	0.20	0.28	0.39	0.56	0.79
4	PGA	131	128	125	122	119	0.12	0.18	0.25	0.35	0.50
8	PGA	127	124	121	118	115	0.10	0.14	0.20	0.28	0.39
16	PGA	123	120	117	114	111	0.08	0.11	0.16	0.22	0.31
32	PGA	117	114	111	108	105	0.08	0.11	0.16	0.22	0.31
64	PGA	111	108	105	102	99	0.08	0.11	0.16	0.22	0.31

Table 6-6. Low-Power Mode Noise Performance ($V_{RFF} = 2.5V$. AVDD1 = 3.3V, $R_S = 0\Omega$)

	iabio	0 0. LOW .	01101 1110	40 110100	. o o	OU (TREF	2.01 , A		0.01, 115	032)		
		DYNAMIC RANGE (dB)						e _n , INPUT-REFERRED NOISE (μV _{RMS})				
GAIN	MODE			f _{DATA}			f _{DATA}					
		125	250	500	1000	2000	125	250	500	1000	2000	
1	Buffer	135	132	129	126	123	0.31	0.44	0.63	0.89	1.25	
1 ⁽¹⁾	PGA	129	126	123	120	117	0.31	0.44	0.83	0.89	1.25	
2	PGA	134	131	128	125	122	0.18	0.25	0.35	0.50	0.70	
4	PGA	133	130	127	124	121	0.10	0.14	0.20	0.28	0.39	
8	PGA	130	127	124	121	118	0.07	0.10	0.14	0.20	0.28	
16	PGA	125	122	119	116	113	0.06	0.09	0.12	0.17	0.25	
32	PGA	119	116	113	110	107	0.06	0.09	0.12	0.17	0.25	
64	PGA	113	110	107	104	101	0.06	0.09	0.12	0.17	0.25	

⁽¹⁾ Because of the limited input headroom with AVDD1 = 3.3V operation, the available input range with PGA gain operation = 1 is ±1.35V_{PD}. The dynamic range data for PGA gain = 1 and AVDD1 = 3.3V reflects the reduced input range.

7 Detailed Description

7.1 Overview

The ADS1285 is a high-resolution, low-power analog-to-digital converter (ADC) designed for applications in energy exploration, geology, and seismic monitoring where low-power consumption and high resolution are required. The converter provides 32 bits of resolution spanning data rates from 125 SPS to 4000 SPS. The programmable gain amplifier (PGA) expands the system dynamic range by accepting signals ranging from $\pm 2.5 V_{PP}$ to $\pm 0.039 V_{PP}$.

As illustrated in the Functional Block Diagram, the ADC consists of the following sections: input multiplexer (MUX), programmable gain amplifier (PGA), unity-gain buffer, delta-sigma ($\Delta\Sigma$) modulator, sample rate converter, infinite impulse response (IIR) high-pass filter (HPF), finite impulse response (FIR) low-pass filter (LPF), and an SPI-compatible serial interface used for both device configuration and conversion data readback.

The input multiplexer selects between inputs 1 and 2, and internal options designed for self-test, including an input-short option used to test offset and noise.

The input multiplexer is followed by a low-noise PGA. The PGA gain range is 1 to 16, with gains 32 and 64 provided as digital gains. The PGA is chopper-stabilized to reduce 1/f noise and input offset voltage. The PGA output connects to a buffer which drives the modulator. An external 10nF capacitor, connected to PGA output pins CAPP and CAPN, provides an antialias filter for the input signal.

The PGA can be disabled to lower device power consumption by operating the ADC with the unity-gain buffer. External 47nF capacitors connected to each buffer output filters the modulator sampling pulses.

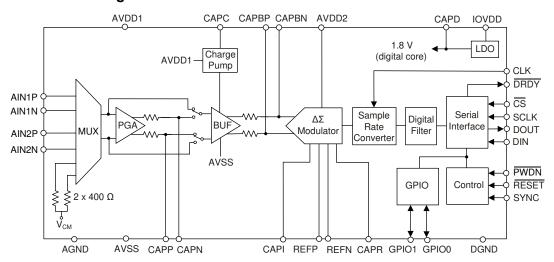
The $\Delta\Sigma$ modulator measures the differential input signal (V_{IN}) against the differential reference voltage (V_{REF}). The modulator provides three reference voltage options (2.5V, 4.096V, or 5V). The reference voltage is programmed by the user.

Modulator data are processed by the digital filter providing the final conversion result. The digital filter consists of a sinc filter followed by a programmable phase, FIR low-pass filter, and an IIR high-pass filter. The high-pass filter removes dc and low-frequency components from the data.

The sample rate converter (SRC) compensates clock frequency error by resampling the output data. The clock frequency compensation range is ±244ppm with 7ppb resolution.

User-programmable gain and offset calibration registers correct offset and gain errors.

The SYNC pin synchronizes the ADC. Synchronization has two modes of operation: pulse synchronization and continuous synchronization. The RESET pin resets the ADC, including user configuration settings. The pins are noise-resistant, Schmitt-trigger inputs to increase reliability in high-noise environments.


The PWDN pin powers down the ADC when not in use. The software power-down mode (STANDBY) is available through the serial interface

The 4-wire, SPI-compatible, serial interface reads conversion data and reads or writes device register data.

Two general-purpose digital I/Os are available for system level control.

Power for the PGA and buffer is supplied by AVDD1 and AVSS. A charge pump voltage regulator increases the input voltage range of the buffer that follows the PGA. Power for the modulator is supplied by AVDD2. IOVDD supplies the digital logic core through a 1.8V low-dropout regulator (LDO). IOVDD is the digital I/O supply.

7.2 Functional Block Diagram

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *ADS1285*

7.3 Feature Description

7.3.1 Analog Input

Figure 7-1 shows the analog input circuit and input multiplexer.

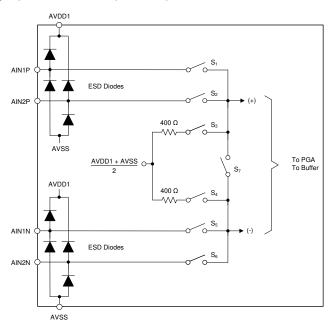


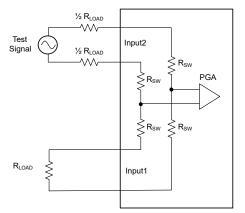
Figure 7-1. Analog Input and Multiplexer

Electrostatic discharge (ESD) diodes are incorporated to protect the ADC inputs from ESD events that occur during device manufacturing and printed circuit board (PCB) assembly process when assembled in an ESD-controlled environment. For system-level protection, consider using external ESD protection devices to protect the input that are exposed to ESD events.

If the inputs are driven below AVSS - 0.3V, or above AVDD1 + 0.3V, the protection diodes can conduct. If these conditions are possible, use external clamp diodes, series resistors, or both to limit input current to the specified maximum value. Overdriving an unused input channel can affect the conversion results of the active input channel. Clamp the overdriven voltage with Schottky diodes to prevent channel crosstalk.

The ADC incorporates two differential input channels The multiplexer selects between the two differential inputs for measurement. A test mode to measure noise and offset is also provided by the multiplexer. The shorted input test configuration is available with or without the 400Ω resistors to simulate the thermal noise generated by an 800Ω geophone. Table 7-1 summarizes the multiplexer configurations.

Table 7-1. Input Multiplexer Modes


MUX[2:0] BITS	SWITCHES	DESCRIPTION
000	S ₁ , S ₅	Input AIN1P, AIN1N connection
001	S ₂ , S ₆	Input AIN2P, AIN2N connection
010	S ₃ , S ₄	400Ω input-short test mode for offset and noise test.
011	S ₁ , S ₅ ,S ₂ , S ₆	Cross-connection test mode. Inputs AIN1P, AIN2P and AIN2P, AIN2N are connected
100	_	Reserved
101	S ₃ ,S ₄ ,S ₇	0Ω input-short test mode for offset and noise test.

To test geophone THD performance, apply a test signal to the test channel through series resistors. The series resistors are typically half the value of the geophone impedance. Select the multiplexer for the cross-connection test mode (MUX[2:0] = 011b). In cross-connection mode, the test signal is cross-fed to the geophone input.

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

Geophone THD test performance can be affected by the nonlinear on-resistance of the multiplexer (R_{SW}). Figure 7-2 shows a model of the input multiplexer resistance for the geophone THD test. Figure 7-3 shows THD performance versus a test resistor (R_{LOAD}) used to simulate geophone resistance. Small amplitude test signals (such as, V_{IN} = 0.221V), shows less THD performance degradation for geophone resistance < 500 Ω .

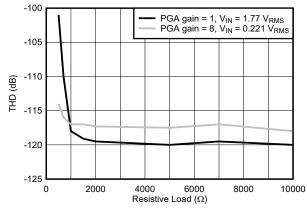


Figure 7-2. THD Versus R_{LOAD} Test Circuit

Figure 7-3. THD Performance vs R_{LOAD}

7.3.2 PGA and Buffer

Figure 7-4 shows the simplified PGA and buffer block diagram.

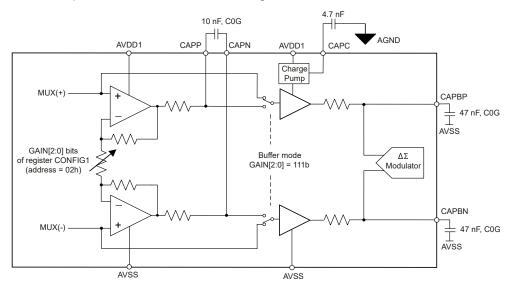


Figure 7-4. PGA and Buffer Block Diagram

The device can be operated with the PGA or the unity-gain buffer. Buffer operation disables the PGA bias, reducing device power consumption. Because of the limited input headroom for PGA gain = 1 when operating with AVDD1 = 3.3V, the buffer must be used under this condition.

7.3.2.1 Programmable Gain Amplifier (PGA)

The PGA is a low-noise, chopper-stabilized differential amplifier that extends the ADC dynamic range performance. The PGA provides analog gains from 1 to 16, with gains of 32 and 64 provided by digital scaling. The PGA output signal is routed to the CAPP and CAPN pins through 270Ω resistors. Connect an external 10nF, C0G-dielectric capacitor across these pins. An antialias filter is formed by these components to attenuate the signal level at the modulator aliasing frequency (f_{MOD}).

Product Folder Links: ADS1285

As shown in Figure 7-4, the buffer is used between the PGA and the modulator. Connect two 47nF, C0G-dielectric capacitors from each buffer output to AVSS (CAPBP and CAPBN). A voltage charge pump increases the buffer input voltage headroom. Connect an external 4.7nF capacitor between CAPC and AGND for charge pump operation.

The PGA gain is programmed by the GAIN[2:0] bits of the CONFIG1 register. Table 7-2 shows the PGA gain settings and buffer selection. The PGA gains and input signal range are irrespective of the voltage reference.

	Tubic / E. I OA Guillo	
GAIN[2:0] REGISTER BITS	PGA GAIN	INPUT SIGNAL RANGE (V _{PP})
000	1	±2.5
001	2	±1.25
010	4	±0.625
011	8	±0.3125
100	16	±0.15625
101	32	±0.078125
110	64	±0.0390625
111	Buffer mode, gain = 1	±2.5

Table 7-2. PGA Gains

Observe the PGA input and output voltage headroom specification. Figure 7-5 shows the input and output voltage headroom when operating with AVDD1 = 5V, an input common-mode voltage (V_{CM}) = 2.5V, a differential input voltage = $\pm 2.5 V_{PP}$, and at gain = 1. The absolute minimum and maximum PGA input voltage (1.25V and 3.75V) is $\pm 1/2$ of the differential signal voltage plus the common-mode voltage. The PGA provides 0.15V input voltage margin at the negative peak and 0.4V input voltage margin at the positive peak. As shown in the figure, the PGA gain increases by × 1.5 when the ADC is operated with 4.096V or 5V voltage references. The PGA provides 0.475V output voltage margin at the positive and negative peaks.

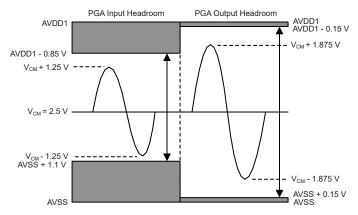


Figure 7-5. PGA Headroom (AVDD1 = 5V, PGA Gain = 1)

When operating with AVDD1 = 3.3V, the PGA cannot support $\pm 2.5V_{PP}$ input signals. Use the buffer for $\pm 2.5V_{PP}$ input signals. For $\pm 1.25V_{PP}$ input signals (PGA gain = 2), the input headroom is increased by increasing the common-mode voltage by 0.1V to AVSS + 1.75V. Figure 7-6 illustrates the input and output operating headroom for AVDD1 = 3.3V, V_{CM} = 1.75V, input signal = $\pm 1.25V_{PP}$, and gain = 2. The PGA uses normal gain scaling when V_{REF} = 2.5V.

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

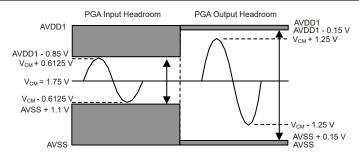


Figure 7-6. PGA Headroom (AVDD1 = 3.3V, Gain = 2)

7.3.2.2 Buffer Operation (PGA Bypass)

The ADC provides a buffer option, bypassing the PGA. Bypassing the PGA reduces device power consumption. Use the buffer for $\pm 2.5 V_{PP}$ input signals when operating AVDD1 at 3.3V. Buffer operation is enabled by setting the GAIN[2:0] bits = 111b of the Section 7.6.1.3.

Figure 7-7 shows the buffer voltage headroom with AVDD1 = 3.3V, V_{CM} = 1.65V, and the input signal = $\pm 2.5 V_{PP}$. The buffer has sufficient voltage headroom for $\pm 2.5 V_{PP}$ input signals when operating with AVDD1 = 3.3V.

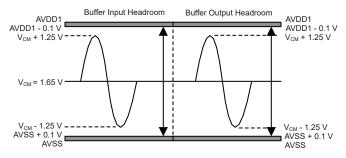


Figure 7-7. Buffer Headroom (3.3V Operation Shown)

Regardless of PGA or buffer operation, connect two 47nF, C0G-dielectric capacitors from each buffer output to AVSS (CAPBP and CAPBN). The voltage charge pump increases the buffer input operating headroom. Connect an external 4.7nF capacitor between CAPC and AGND for the charge pump operation.

7.3.3 Voltage Reference Input

The ADC requires a reference voltage for operation. The reference voltage input is differential, defined as the voltage between the REFP and REFN pins: $V_{REF} = V_{REFN}$. Because of the differential input, the VREFN trace can be routed to the voltage reference ground terminal to avoid ground noise pickup.

The device offers the choice of three reference voltages: 5V, 4.096V, or 2.5V. Maximum dynamic range performance is achieved using $V_{REF} = 5V$ or 4.096V, which requires AVDD1 = 5V for operation. If AVDD1 = 3.3V, the reference voltage is limited to 2.5V. Program the reference voltage to match the physical voltage by the REF[1:0] bits of the CONFIG1 register. Use a precision voltage reference with low noise, optimally less than $0.5\mu V_{RMS}$ over the measurement bandwidth.

Figure 7-8 illustrates a simplified reference input circuit. Similar to the analog inputs, the reference inputs are protected by ESD diodes. If the reference inputs are driven below AVSS -0.3V or above AVDD1 + 0.3V, the protection diodes can conduct. If these conditions are possible, use external clamp diodes, series resistors, or both to limit the reference input current to the specified value.

Copyright © 2025 Texas Instruments Incorporated
Product Folder Links: ADS1285

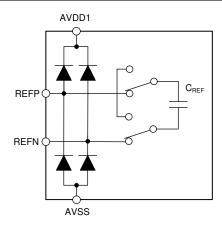


Figure 7-8. Simplified Voltage Reference Input Circuit

The ADC samples the reference voltage by an internal capacitor (C_{REF}) and then discharges the capacitor at the modulator sampling frequency (f_{MOD}). The sampling operation results in transient current flow into the reference inputs. The transient current is filtered by a $0.1\mu F$ ceramic capacitor placed directly at the reference pins with a larger $10\mu F$ to $47\mu F$ capacitor at the voltage reference output. In applications where the voltage reference drives multiple ADCs, use $0.1\mu F$ capacitors at each ADC.

The external capacitor filters the current transients, resulting in an average reference current. The average reference current is $110\mu\text{A/V}$ for high- and mid-power operating modes and $80\mu\text{A/V}$ for low-power operating mode. For example, with $V_{REF} = 4.096V$, the reference input current is $110\mu\text{A} / V \times 4.096V = 451\mu\text{A}$.

7.3.4 IOVDD Power Supply

The IOVDD digital supply operates in two voltage ranges: 1.65V to 1.95V and 2.7V to 3.6V. If operating IOVDD in the 1.65V to 1.95V range, connect IOVDD directly to the CAPD pin. Figure 7-9 shows the required connection if IOVDD is operating in the 1.65V to 1.95V range. Otherwise, if operating IOVDD in the 2.7V to 3.6V range, do not connect these pins together.

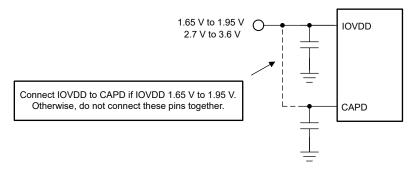


Figure 7-9. IOVDD Power-Supply Connection

7.3.5 Modulator

The modulator is a multibit delta-sigma architecture featuring low power and outstanding dynamic range performance with very low levels of spurious tones in the frequency spectrum. The modulator shapes the quantization noise of the internal quantizer to an out-of-band frequency range where the noise is removed by the digital filter. Noise remaining within the pass-band region is thermal noise with constant density (white noise). The integrated noise within the pass band is determined by the digital filter OSR.

7.3.5.1 Modulator Overdrive

The modulator is an inherently stable design and, therefore exhibits predictable recovery from input overdrive. If the modulator is overdriven at the peaks of the input signal, the filter output data can clip depending on the duration of the signal overdrive resulting from the data averaging of the digital filter. If the modulator is heavily

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

overdriven, then the likelihood of clipped conversion data increases. Be aware the group delay of the digital filter delays the occurrence of an input overdrive event from appearing in the output data.

7.3.6 Digital Filter

The digital filter decimates and filters the modulator data to provide the high-resolution output data. By adjusting the amount of filtering though the OSR, trade-offs can be made between total noise and bandwidth. Increasing the OSR lowers total noise while decreasing the signal bandwidth.

As shown in Figure 7-10, the sample rate converter (SRC) receives data from the modulator prior to input to the digital filter block. See the *Sample Rate Converter* section for details.

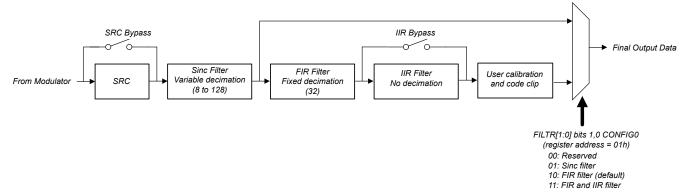


Figure 7-10. Digital Filter Block Diagram

The digital filter is comprised of three sections: a variable-decimation sinc filter; a variable-coefficient, fixed-decimation FIR filter; and a programmable high-pass filter (IIR). The desired filter path is selected by the FILTER[1:0] bits of the CONFIGO register. The sinc filter provides partially filtered data, bypassing the FIR and HPF filters and user calibration. For fully filtered data, select the FIR filter option. The IIR filter stage removes do and low-frequency data The FIR and the combined FIR + IIR filter are routed to the user calibration block and output code clipping block. See the Offset and Gain Calibration section for details of user calibration.

7.3.6.1 Sinc Filter Section

The first section of the digital filter is a variable-decimation, fifth-order sinc filter (sinx/x). Modulator data are passed through the sample rate converter to the sinc filter at the nominal rate of $f_{MOD} = f_{CLK} / 4 = 2.048 MHz$ (1.024MHz low-power mode). The sinc filter partially filters the data for the FIR filter that produces the final frequency response. The sinc filter data are intended to be used with post-processing filters to shape the final frequency response.

Table 7-3 shows the decimation ratio and the resulting output data rate of the sinc filter. The sinc filter data rate is programmed by the DR[2:0] bits of the CONFIG0 register.

		DATA RATE (SPS)
DR[2:0] BITS	SINC DECIMATION RATIO (N)	HIGH- AND MID-POWER MODES	LOW-POWER MODE
000	256	8,000	4,000
001	128	16,000	8,000
010	64	32,000	16,000
011	32	64,000	32,000
100	16	128,000	64,000

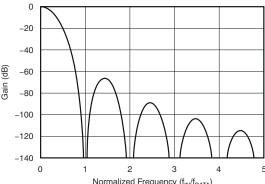
Table 7-3. Sinc Filter Data Rates

Equation 2 shows the Z-domain transfer function of the sinc filter.

$$H(Z) = \left[\frac{1 - Z^{-N}}{N(1 - Z^{-1})}\right]^{S}$$
 (2)

where:

N = Decimation ratio of Table 7-3


Equation 3 shows the frequency domain transfer function of the sinc filter.

$$|H(f)| = \left| \frac{\sin\left(\frac{\pi N \times f}{f_{MOD}}\right)}{N \sin\left(\frac{\pi \times f}{f_{MOD}}\right)} \right|^{5}$$
(3)

where:

- N = Decimation ratio shown in Table 7-3
- f = Input signal frequency
- f_{MOD} = Modulator sampling frequency = f_{CLK} / 4 (sample rate converter disabled)

The sinc filter frequency response has notches (or zeros) occurring at the output data rate and multiples thereof. At these frequencies, the filter has zero gain. Figure 7-11 shows the wide-band frequency response of the sinc filter and Figure 7-12 shows details of the –3dB response.

Normalized Frequency (f_{IN}/f_{DATA})

Figure 7-11. Sinc Filter Frequency Response

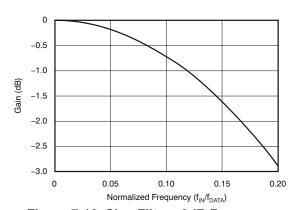


Figure 7-12. Sinc Filter -3dB Response

Figure 7-13 illustrates the sinc filter frequency response at f_{DATA} = 32 kSPS. The tones at 1kHz and harmonics are the result of dither added to the modulator input to suppress idle tones. The frequency of the dither signal is f_{MOD} divided by the combined decimation ratio shown in Table 7-4. The rise of the noise floor at 2kHz is resultant of modulator noise shaping. For sinc filter decimation N = 64 (data rate = 32 kSPS), the usable bandwidth by the use of external post filtering is 500Hz.

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

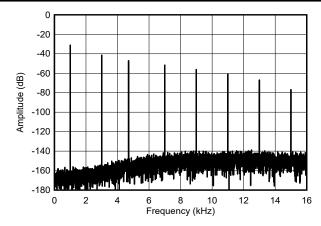


Figure 7-13. FFT Output of the Sinc Filter (f_{DATA} = 32 kSPS)

The sinc filter data bypasses the data scaling, clip stage, and user calibration, and as a result, the sinc filter data are scaled differently compared to the FIR filter. See the Conversion Data Format section for details of sinc filter data scaling.

7.3.6.2 FIR Filter Section

The second section of the digital filter is a multistage, FIR low-pass filter. Partially filtered data from the sinc filter are input to the FIR filter. The FIR filter determines the final frequency and phase response of the data. Figure 7-14 shows that the FIR filter consists of four stages.

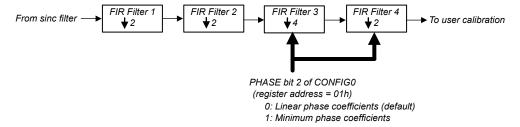


Figure 7-14. FIR Filter

The first two FIR stages are half-band filters with decimation = 2 for each stage. The third and fourth FIR stages determine the final frequency and phase response. Decimation is 4 and 2, for FIR stages three and four. The overall decimation ratio of the FIR filter is 32. Unique coefficient sets in stage 3 and 4 determine linear and minimum phase filter response. The phase response is selected by the PHASE bit of the CONFIGO register. Table 7-4 lists the combined decimation ratio of the sinc and FIR filter stages and the corresponding FIR filter data rate.

DATA RATE (SPS) HIGH- AND MID-POWER MODES **DR[2:0] BITS COMBINED DECIMATION RATIO LOW-POWER MODE** 000 8192 250 125 001 4096 500 250 010 2048 1000 500 011 1024 2000 1000 100 512 4000 2000

Table 7-4. FIR Filter Data Rate

Table 7-5 lists the FIR filter coefficients and the data scaling for the linear and minimum phase coefficients.

Product Folder Links: ADS1285

Table 7-5. FIR Filter Coefficients

	STAGE 1	STAGE 2	S1	STAGE 3		STAGE 4	
COEFFICIENT	SCALE = 1/512	SCALE = 1/8388608	SCALE = 1/134217728		SCALE = 1/134217728		
	LINEAR PHASE	LINEAR PHASE	LINEAR PHASE	MINIMUM PHASE	LINEAR PHASE	MINIMUM PHASE	
b ₀	3	-10944	0	819	-132	11767	
b ₁	0	0	0	8211	-432	133882	
b ₂	-25	103807	-73	44880	-75	769961	
b ₃	0	0	-874	174712	2481	2940447	
b ₄	150	-507903	-4648	536821	6692	8262605	
b ₅	256	0	-16147	1372637	7419	17902757	
b ₆	150	2512192	-41280	3012996	-266	30428735	
b ₇	0	4194304	-80934	5788605	-10663	40215494	
b ₈	-25	2512192	-120064	9852286	-8280	39260213	
b ₉	0	0	-118690	14957445	10620	23325925	
b ₁₀	3	-507903	-18203	20301435	22008	-1757787	
b ₁₁		0	224751	24569234	348	-21028126	
b ₁₂		103807	580196	26260385	-34123	-21293602	
b ₁₃		0	893263	24247577	-25549	-3886901	
b ₁₃		-10944	891396	18356231	33460	14396783	
		10077	293598	9668991	61387	16314388	
b ₁₅							
b ₁₆			-987253 -2635779	327749 -7171917	-7546 -94192	1518875 -12979500	
b ₁₇							
b ₁₈			-3860322	-10926627	-50629	-11506007	
b ₁₉			-3572512	-10379094	101135	2769794	
b ₂₀			-822573	-6505618	134826	12195551	
b ₂₁			4669054	-1333678	-56626	6103823	
b ₂₂			12153698	2972773	-220104	-6709466	
b ₂₃			19911100	5006366	-56082	-9882714	
b ₂₄			25779390	4566808	263758	-353347	
b ₂₅			27966862	2505652	231231	8629331	
b ₂₆			25779390	126331	-215231	5597927	
b ₂₇			19911100	-1496514	-430178	-4389168	
b ₂₈			12153698	-1933830	34715	-7594158	
b ₂₉			4669054	-1410695	580424	-428064	
b ₃₀			-822573	-502731	283878	6566217	
b ₃₁			-3572512	245330	-588382	4024593	
b ₃₂			-3860322	565174	-693209	-3679749	
b ₃₃			-2635779	492084	366118	-5572954	
b ₃₄			-987253	231656	1084786	332589	
b ₃₅			293598	-9196	132893	5136333	
b ₃₆			891396	-125456	-1300087	2351253	
b ₃₇			893263	-122207	-878642	-3357202	
b ₃₈			580196	-61813	1162189	-3767666	
b ₃₉			224751	-4445	1741565	1087392	
b ₄₀			-18203	22484	-522533	3847821	
b ₄₁			-118690	22245	-2490395	919792	
b ₄₂			-120064	10775	-688945	-2918303	
b ₄₃			-80934	940	2811738	-2193542	
b ₄₄			-41280	-2953	2425494	1493873	
b ₄₅			-16147	-2599	-2338095	2595051	
			-4648	-1052	-4511116	-79991	
b ₄₆							
b ₄₇			-874	-43 214	641555	-2260106	
b ₄₈			-73 0	214	6661730	-963855	
b ₄₉			0	132	2950811	1482337	
b ₅₀			0	33	-8538057	1480417	
b ₅₁			0	0	-10537298	-586408	
b ₅₂					9818477	-1497356	

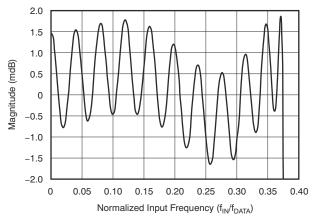


Table 7-5. FIR Filter Coefficients (continued)

COEFFICIENT	STAGE 1	STAGE 2		AGE 3	ST	STAGE 4	
	SCALE = 1/512	SCALE = 1/8388608	SCALE = 1/134217728		SCALE = 1/134217728		
	LINEAR PHASE	LINEAR PHASE	LINEAR PHASE	MINIMUM PHASE	LINEAR PHASE	MINIMUM PHASE	
b ₅₃					41426374	-168417	
b ₅₄					56835776	1166800	
b ₅₅					41426374	644405	
b ₅₆					9818477	-675082	
b ₅₇					-10537298	-806095	
b ₅₈					-8538057	211391	
b ₅₉					2950811	740896	
b ₆₀					6661730	141976	
b ₆₁					641555	-527673	
					-4511116	-327618	
b ₆₂							
b ₆₃					-2338095	278227	
b ₆₄					2425494	363809	
b ₆₅					2811738	-70646	
b ₆₆					-688945	-304819	
b ₆₇					-2490395	-63159	
b ₆₈					-522533	205798	
b ₆₉					1741565	124363	
b ₇₀					1162189	-107173	
b ₇₁					-878642	-131357	
b ₇₂					-1300087	31104	
b ₇₃					132893	107182	
b ₇₄					1084786	15644	
b ₇₅					366118	-71728	
b ₇₆					-693209	-36319	
b ₇₇					-588382	38331	
b ₇₈					283878	38783	
b ₇₉					580424	-13557	
b ₈₀					34715	-31453	
b ₈₁					-430178	-1230	
b ₈₂					-215231	20983	
b ₈₃					231231	7729	
b ₈₄					263758	-11463	
b ₈₅					-56082	-8791	
b ₈₆					-220104	4659	
b ₈₇					-56626	7126	
b ₈₈					134826	-732	
_					101135	-4687	
b ₈₉					-50629	-976	
					-94192	2551	
b ₉₁					-94192 -7546	1339	
b ₉₂							
b ₉₃					61387	-1103	
b ₉₄					33460	-1085	
b ₉₅					-25549	314	
b ₉₆					-34123	681	
b ₉₇					348	16	
b ₉₈					22008	-349	
b ₉₉					10620	-96	
b ₁₀₀					-8280	144	
b ₁₀₁					-10663	78	
b ₁₀₂					-266	-46	
b ₁₀₃					7419	-42	
b ₁₀₄					6692	9	
b ₁₀₅					2481	16	

	STAGE 1 STAGE 2 STAGE 3		STAGE 4			
COEFFICIENT	SCALE = 1/512	SCALE = 1/8388608	SCALE =	SCALE = 1/134217728		1/134217728
	LINEAR PHASE	LINEAR PHASE	LINEAR PHASE	MINIMUM PHASE	LINEAR PHASE	MINIMUM PHASE
b ₁₀₆					-75	0
b ₁₀₇					-432	-4
b ₁₀₈					-132	0
b ₁₀₉					0	0

Figure 7-15 shows the FIR pass-band frequency response to $0.375 \times f_{DATA}$ with ± 0.003 dB pass-band ripple. Figure 7-16 shows the pass-band, transition-band, and stop-band performance from 0Hz to f_{DATA} . The filter is designed for -135dB stop-band attenuation at the Nyquist frequency.

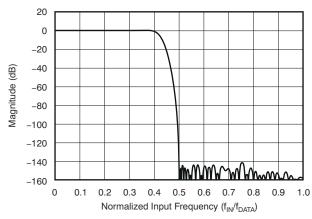


Figure 7-15. FIR Filter Pass-Band Response

Figure 7-16. FIR Filter Transition Band Response

As with many sampled systems, the filter response repeats at multiples of the modulator sample rate (f_{MOD}). The filter response repeats at frequencies = N × f_{MOD} ± f_0 , where N = 1, 2, and so on, and f_0 = filter pass-band). These frequencies, if not filtered and are otherwise present in the signal, fold back (or alias) into the pass-band causing errors. A low-pass input filter reduces the aliasing error. For a band-limited signal typical of many geophones, a single-pole filter at the PGA output is sufficient to suppress the aliasing frequencies.

7.3.6.3 Group Delay and Step Response

The FIR filter offers linear and minimum phase filter options. The pass-band, transition band, and stop-band responses of the linear and minimum phase filters are the same but differ in phase and step response behavior.

7.3.6.3.1 Linear Phase Response

A linear phase filter has the unique property that the delay from input to output is constant across all input frequencies (that is, constant group delay). The constant delay property is independent of the nature of the input signal (impulse or swept-tone), and therefore the phase is linear across frequency, which can be important when analyzing multitone signals. However, as depicted in Figure 7-17, the group delay is longer for the linear phase filter compared to minimum phase. For both the linear and minimum filters, fully settled data are available 62 conversions after a step input change occurs.

Copyright © 2025 Texas Instruments Incorporated

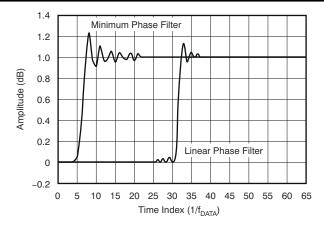


Figure 7-17. FIR Step Response

7.3.6.3.2 Minimum Phase Response

The minimum phase filter provides a short group delay for data from filter input to filter output. Figure 7-18 shows the group delay for minimum and linear phase filters. The group delay of the minimum phase filter is a function of signal frequency. The PHASE bit of the CONFIGO register programs the filter phase.

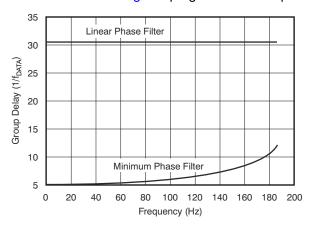


Figure 7-18. FIR Group Delay (f_{DATA} = 500 SPS)

7.3.6.4 HPF Stage

The last stage of the digital filter is the high-pass filter (HPF). The high-pass filter is implemented as a first-order, IIR filter. The high-pass filter removes dc and low frequencies from the data. The HPF is enabled by programming the FILTR[1:0] bits = 11b of the CONFIGO register.

Equation 4 shows the z-domain transfer function of the filter:

$$H(z) = \frac{2 - a}{2} \frac{1 - z^{-1}}{1 - (1 - a)z^{-1}}$$
(4)

where:

$$a = \frac{2sin(\omega_N)}{cos(\omega_N) + sin(\omega_N)}$$

- $\omega_N = \pi \times f_C / f_{DATA}$ (normalized corner frequency, radians)
- f_C = Corner frequency (Hz)
- f_{DATA} = Output data rate (Hz)

Be aware the corner frequency programming is a function of f_{DATA} . As shown by Equation 5, the value written to the HPF1, HPF0 registers is value a, computed by Equation 4, \times 2¹⁶.

$$HPF[15:0] = a \times 2^{16}$$
 (5)

Table 7-6 shows examples of the high-pass filter programming.

Table 7-6. High-Pass Filter Value Examples

HPF[15:0]	f _C (Hz)	f _{DATA} (SPS)	
0332h	0.5	250	
0332h	1.0	500	
019Ah	1.0	1000	

The HPF accumulates data to perform the high-pass function. Similar to the operation of an analog HPF after a dc step change is applied to the input, the filter takes time to accumulate data to remove dc from the signal. The lower the corner frequency, the longer the filter takes to settle.

To shorten the HPF settling time, the offset register is used as a *seed* value for the HPF accumulator. The accumulator is loaded with the offset register each time the HPF state is changed from *disabled* to *enabled*. The offset register can be preset with an estimated value, or a calibrated value if the dc level is known. To improve accuracy, scale the offset value by the inverse value of GAIN[3:0] / 400000h. The normal offset operation is disabled when the HPF is enabled.

To initialize the HPF accumulator with the OFFSET[2:0] registers:

- 1. Disable the HPF.
- 2. Write the desired value to the OFFSET[2:0] registers.
- 3. Enable the HPF. OFFSET[2:0] is loaded to the HPF data accumulator.
- 4. The HPF tracks the remaining dc value from the signal.

Subsequent writes to the OFFSET[2:0] registers are ignored. To reload the contents of the OFFSET[2:0] registers to the HPF, disable and re-enable the HPF.

7.3.7 Clock Input

A clock signal is required for operation. The clock signal is applied to the CLK pin at $f_{CLK} = 8.192 MHz$ for high-and mid-power modes and 4.096MHz for low-power mode. As with many precision data converters, a low-jitter clock is required to achieve data sheet performance. Avoid the use of R-C clock oscillators. A crystal-based clock source is recommended. Avoid ringing on the clock signal by placing a series resistor in the clock PCB trace to source-terminate. Keep the clock signal routed away from other clock signals, input pins, and analog components.

7.3.8 GPIO

The ADC provides two general-purpose I/O (GPIO) pins that can be used as digital inputs or outputs. The GPIO voltage levels are IOVDD and DGND. Figure 7-19 illustrates the GPIO block diagram.

The GPIOs are programmed by the GPIO register. The GPIOs are programmed as an input or output by the GPIOx_DIR bits. The GPIO state is read or written by the GPIOx_DAT bits. When programmed as an output, reading the GPIOx_DAT bits returns the register bit value previously written. If the GPIOs are unused, terminate the GPIOs with pulldown resistors to prevent the pins from floating.

Product Folder Links: ADS1285

Copyright © 2025 Texas Instruments Incorporated

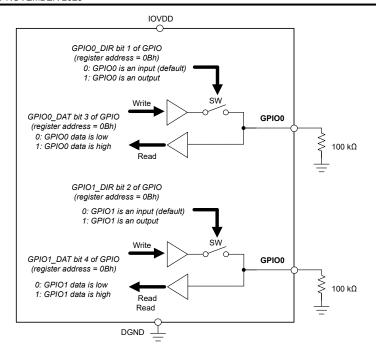


Figure 7-19. GPIO Operation

7.4 Device Functional Modes

7.4.1 Power Modes

There are three power-resolution modes offering trade-offs between power consumption and dynamic range. The modes are high power, mid power, and low power. See the Noise Performance section for details of noise performance. The MODE[1:0] bits of the CONFIGO register selects the power mode. The clock frequency for low-power mode is 4.096MHz (half-speed clock); therefore, the output data rates are also scaled by one half.

7.4.2 Power-Down Mode

Power-down is engaged by taking the PWDN pin low, or by software control, by sending the STANDBY command. To exit power-down, take PWDN high or send the WAKEUP command to exit software power-down (with the clock running). Power-down disables the analog circuit; however, the digital LDO (CAPD pin) remains biased, drawing a small bias current from IOVDD. In comparison, software power-down draws larger IOVDD bias current. In both power-down modes, the ac signals of the digital outputs are stopped but remain driven high or low. The digital inputs must not be allowed to float; otherwise, leakage current can flow from the IOVDD supply. Reset the ADC if the clock is interrupted in power-down. Synchronization is lost in power-down; therefore, resynchronize the ADC.

7.4.3 Reset

The ADC is reset by three methods: power-on reset (POR), the RESET pin, or the RESET command. Poweron reset occurs when the power-supply voltages cross the respective thresholds. See Power-Up Switching Characteristics for details. To reset the ADC by pin, drive RESET low for at least two folk cycles and return high for reset. By command, reset takes effect on the next rising f_{CLK} edge after the eighth rising edge of SCLK of the reset command. At reset, the filter is restarted and the user registers reset to default. Reset timing is illustrated in Figure 5-5.

7.4.4 Synchronization

The ADC is synchronized by the SYNC pin or by the SYNC command, resulting in restart of the digital filter cycle. Synchronization by the pin occurs on the next rising edge of CLK after SYNC is taken high on the falling edge of CLK. Synchronization by the SYNC command occurs on the rising edge of CLK following the eighth bit of the command.

The following results in loss of synchronization:

- · Power-up cycle, ADC reset, or when hardware or software power down modes are entered
- The following mode changes:
 - DR[2:0] (data rate)
 - PHASE (filter phase)
 - MODE[1:0] (power mode)
 - SYNC (synchronization mode)
 - SRC[1:0] (sample rate converter enabled or disabled)

There are two synchronization control modes: pulse sync and continuous sync. The synchronization mode is programmed by the SYNC bit of the ID/SYNC register.

7.4.4.1 Pulse-Sync Mode

The pulse-sync mode unconditionally synchronizes the ADC on the rising edge of SYNC. When synchronized, the internal filter memory is reset, \overline{DRDY} goes high, and the filter cycle restarts. The following 63 \overline{DRDY} periods are disabled to allow for digital filter settling. \overline{DRDY} asserts low when the conversion data are ready. See Figure 5-4 for synchronization timing details.

7.4.4.2 Continuous-Sync Mode

The continuous-sync mode offers the option of accepting a continuous clock signal to the SYNC pin. The ADC compares the period of the SYNC clock signal to N periods of the \overline{DRDY} signal to qualify resynchronization. Initially, the first SYNC positive edge synchronizes the ADC. Resynchronization occurs only when the time period between rising edges of SYNC over N multiple \overline{DRDY} periods differ by at least \pm one f_{CLK} cycle, where N=1,2,3 and so on. Otherwise, the SYNC clock period is in synchronization with the existing \overline{DRDY} pulses, so no resynchronization occurs. Be aware the continuous sync mode cannot be used when the sample rate converter is enabled.

After synchronization, \overline{DRDY} continues to pulse; however, data are held low for 63 data periods to allow for the digital filter to settle. See Figure 5-4 for the \overline{DRDY} behavior. Because of the initial delay of the digital filter, the SYNC input signal and the \overline{DRDY} pulses exhibit an offset time. The offset time is a function of the data rate.

7.4.5 Sample Rate Converter

The sample rate converter (SRC) compensates clock frequency error by re-sampling the modulator data at a new rate set by the compensation factor written to the SRC registers. The frequency compensation range is ± 244 ppm with 7.45ppb (1 / 2^{27}) resolution.

Clock frequency error is compensated by writing a value to the SCR0 and SRC1 registers. The register value is in 2's-complement format for positive and negative frequency error compensation. Positive register data values decrease the data rate frequency (increases the period). The new data rate frequency is observed by the frequency of the DRDY signal.

Table 7-7 shows example values of frequency compensation. 8000h disables the sample rate converter. 0000h passes the data through with no compensation but adds an 8 / f_{CLK} delay to the time delay of SYNC input to the \overline{DRDY} pulses.

Table 7-7. Example SRC Values

SRC[15:0] VALUE	COMPENSATION FACTOR
7FFFh	(1 – 32,767 / 2 ²⁷) × f _{DATA}
0001h	$(1 - 1/2^{27}) \times f_{DATA}$
0000h	1 × f _{DATA}
FFFFh	$(1 + 1/2^{27}) \times f_{DATA}$
8001h	(1 + 32,767 / 2 ²⁷) × f _{DATA}
8000h	1 × f _{DATA} (SRC disabled)

Resynchronize the ADC after the sample rate converter is enabled or disabled. Because the SRC is a digital function, operation is deterministic without error. The SRC trim value can be written all at the same time, or written incrementally up to a target value to minimize the step change of frequency. Use the multibyte command operation to write to the SRC registers and complete the write operation 256 CLK cycles before the DRDY falling edge. This procedure loads the high and low bytes simultaneously before the bytes are internally processed. See Figure 5-7 for details.

7.4.6 Offset and Gain Calibration

The ADC integrates calibration registers to correct offset and gain errors. As shown in Equation 6 and Figure 7-20, the 24-bit offset value (OFFSET[23:0]) is subtracted from the filter data before multiplication by the 24-bit gain value (GAIN[23:0]), divided by 400000h. The data are clipped to 32 bits to yield the final output. The offset operation is bypassed when the high-pass filter is enabled.

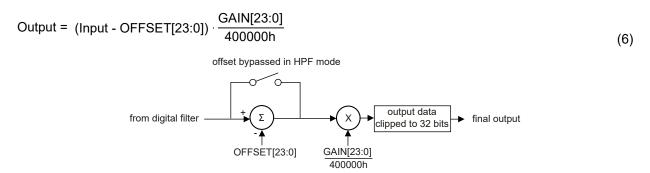


Figure 7-20. Calibration Block Diagram

7.4.6.1 OFFSET Register

Offset correction is by a 24-bit word consisting of three 8-bit registers (high address is the MSB). The offset value is left-justified to align to the 32-bit data. The offset value is 2's-complement coding with a maximum positive value of 7FFFFFh and a maximum negative value of 800000h. OFFSET is subtracted from the conversion data; see Table 7-8. Offset error is corrected by the offset calibration command with the input-short multiplexer option, or by collecting shorted-input ADC data and writing the value to the registers.

Although the offset correction range is from -FS to +FS, the sum of offset and gain correction must not exceed 106% of the uncalibrated range.

When the high-pass filter is enabled, offset correction is disabled. The offset value is used instead as a starting value to shorten the high-pass filter settling time. To reload the offset value to the HPF, disable and re-enable the high-pass filter. See the HPF Stage section for more details.

Table 1-0. Offset Calibration Values						
OFFSET[31:0]	CALIBRATED OUTPUT CODE (1)					
00007Fh	FFFF8100h					
000000h	0000000h					
FFFF7Fh	00008100h					

Table 7-8 Offset Calibration Values

Ideal code value with no offset error. (1)

7.4.6.2 GAIN Register

Gain correction is through a 24-bit word, consisting of three 8-bit registers (high address = MSB). The gain value is 24 bits, coded in straight binary and normalized to 1.0 for GAIN[23:0] equal to 400000h. With a calibration signal applied, gain error is calibrated by either the gain calibration command, or by collecting ADC data and writing a computed value to the gain registers. Table 7-9 lists examples of the GAIN[23:0] register values. Although the range of gain values can be much greater or less than 1, the sum of offset and gain correction must not exceed 106% of the uncalibrated range.

GAIN[31:0]	GAIN CORRECTION FACTOR
433333h	1.05
400000h	1.00
3CCCCh	0.95

7.4.6.3 Calibration Procedure

ADC calibration can be performed using the ADC calibration commands or by performing manual calibration. The calibration procedure is as follows:

- 1. Select the PGA or buffer operation, input channel, and PGA gain condition for calibration.
- 2. Preset the OFFSET register = 000000h and the GAIN register = 400000h.
- 3. Disable the high-pass filter for offset calibration. Short the inputs to the system, or use the input MUX to provide the input short. A system-level input short can yield more accurate calibration. After the input settles, either send the OFSCAL command or perform a manual calibration.
 - a. OFSCAL command. After the command is sent, \overline{DRDY} is driven low 81 conversion periods later to indicate calibration is complete. The OFFSET register is updated with the new calibration value. As shown in Figure 7-21, the first data output uses the new OFFSET value.
 - b. Manual calibration. Wait at least 64 conversions for the digital filter to settle then average a number of data points to improve calibration accuracy. Write the value to the 24-bit OFFSET register.
- 4. Apply a gain calibration voltage. After the input settles, either send the GANCAL command or perform a manual calibration.
 - a. GANCAL command. Apply a positive dc full-scale calibration voltage. After the command is sent, DRDY is driven low 81 conversion periods later to indicate calibration is complete. The ADC calculates GAIN such that the full-scale code is equal to the applied calibration signal. As shown in Figure 7-21, the first data output uses the new GAIN value.
 - b. Manual calibration. Apply an ac signal coherent to the sample rate or dc calibration signal that are slightly below full-scale (for example, 2.4V for gain = 1). Using a calibration signal less than full-scale range prevents clipped output codes that otherwise lead to incorrect calibration. Wait 64 conversions for the digital filter to settle then average a number of data points to improve calibration accuracy. For ac-signal calibration, use a number of coherent signal periods to compute the RMS value.

Equation 7 computes the value of GAIN for manual calibration.

$$GAIN[23:0] = 400000h \cdot \frac{Expected Output Code}{Actual Output Code}$$
(7)



Figure 7-21. Calibration Command

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

7.5 Programming

7.5.1 Serial Interface

Conversion data are read and ADC configuration is made through the SPI-compatible serial interface. The interface consists of four signals: CS, SCLK, DIN, and DOUT. DRDY asserts low when conversion data are ready. The serial interface is passive (peripheral mode), where the serial clock (SCLK) is an input. The ADC operates in SPI mode 0, where CPOL = 0 and CPHA = 0. In mode 0, SCLK idles low and data are updated on the SCLK falling edges and are read on the SCLK rising edges.

7.5.1.1 Chip Select (CS)

CS is an active-low input that selects the serial interface for communication. A communication frame is started by taking $\overline{\text{CS}}$ low and is ended by taking $\overline{\text{CS}}$ high. Because only one command per frame is permitted, toggle $\overline{\text{CS}}$ between commands. Taking \overline{CS} high before the command is completed resets the operation and blocks further SCLK inputs. CS high forces DOUT to a high-impedance state. DRDY remains active regardless of the state of

7.5.1.2 Serial Clock (SCLK)

SCLK is the serial clock input that shifts data into and out of the ADC. The ADC latches DIN data on the rising edge of SCLK. DOUT data are shifted out on the falling edge of SCLK. Keep SCLK low when not active. The SCLK pin is a Schmidt-trigger input that reduces sensitivity to SCLK noise. However, keep the SCLK signal as noise free as possible to prevent inadvertent shifting of the data.

7.5.1.3 Data Input (DIN)

DIN is used to input data to the ADC. DIN data are latched on the rising edge of SCLK.

7.5.1.4 Data Output (DOUT)

DOUT is the data output pin. Data are shifted out on the falling edge of SCLK and are latched by the host on the rising edge. Because the conversion data MSB is on DOUT when \overline{CS} is driven low (\overline{DRDY} low), the MSB of the data is read on the first rising edge of SCLK. Minimize trace length to reduce load capacitance on the pin. Place a series termination resistor close to the pin to terminate the PCB trace impedance. Taking CS high forces DOUT to a high-impedance state.

7.5.1.5 Data Ready (DRDY)

DRDY is an active-low output that indicates conversion data are ready. DRDY is active regardless of the state of CS. DRDY is driven high on the first falling edge of SCLK, regardless if data is being read or a command is input. As shown in Figure 7-22, if data are not retrieved, DRDY pulses high for eight f_{CLK} periods.

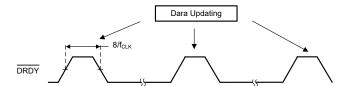


Figure 7-22. DRDY With No Data Retrieval

D0000000h

C5680000h

7.5.2 Conversion Data Format

≤ -2.5V / Gain

As listed in Table 7-10, the conversion data are coded in 32-bit, 2's-complement format to represent positive and negative numbers. If desired, the data read operation can be shortened to 24 bits by taking $\overline{\text{CS}}$ high. Data scaling from the Sinc filter is dependent on the value of V_{REF} and whether PGA or buffer operation.

	CONVERSION CODES ⁽¹⁾						
	FIR FILTER						
V _{IN} (V)	V _{REF} = 2.5V, 4.096V or 5V	V _{REF} = 2.5V	V _{REF} = 4.096V	V _{REF} = 5V			
≥ 2.5V × (2 ³¹ – 1) / 2 ³¹ / Gain	7FFFFFFh	3FFFFFFh	3A980000h	30000000h			
2.5V / (Gain × (2 ³¹ – 1))	0000001h	<0000001h	<00000001h	<00000001h			
0	00000000h	0000000h	00000000h	00000000h			
–2.5V / (Gain × 2 ³¹)	FFFFFFFh	>FFFFFFFh	>FFFFFFFh	>FFFFFFFFh			

C0000000h

Table 7-10. Output Data Format

Excluding the effects of reference voltage error, noise, linearity, offset, and gain errors.

80000000h

(2) In buffer operation when V_{REF} = 4.096V or 5V, the data from the sinc filter are scaled 66.6% compared to PGA mode. Because of the relatively low value of OSR, full 32-bit resolution is not available in sinc filter operation. When overdriven, the sinc filter continues to output code values beyond nominal ± full-scale until the point of modulator saturation.

7.5.3 Commands

Table 7-11 lists the commands for the ADC. Most commands are one byte in length. However, the number of bytes for the register read and write commands depend on the amount of register data specified in the command.

Table 7-11.	Command	Descriptions

MNEMONIC	TYPE	DESCRIPTION	BYTE 1 ⁽¹⁾	BYTE 2
WAKEUP	Control	Wake from standby mode or NOP	0000 000x (00h or 01h)	_
STANDBY	Control	Enter standby (software power-down mode)	0000 001x (02h or 03h)	_
SYNC	Control	Synchronize	0000 010x (04h or 5h)	_
RESET	Control	Reset	0000 011x (06h or 07h)	_
RDATA	Data	Read conversion data	0001 0010 (12h)	_
RREG	Register	Read nnnn registers beginning at address rrrr	0010 rrrr (20h + rrrr) ⁽²⁾	0000 nnnn (00h + nnnn) ⁽³⁾
WREG	Register	Write nnnn registers beginning at address rrrr	0100 rrrr (40h + rrrr) ⁽²⁾	0000 nnnn (00h + nnnn) ⁽³⁾
OFSCAL	Calibration	Offset calibration	0110 0000 (60h)	_
GANCAL	Calibration	Gain calibration	0110 0001 (61h)	_

- (1) x = Don't care.
- (2) rrrr = Starting address for register read and write commands.
- (3) nnnn = Number of registers to be read or written 1. For example, to read or write three registers, nnnn = 2.

7.5.3.1 Single Byte Command

Figure 7-23 shows the general format of a single byte command (for the response bytes of the RDATA command, see the RDATA command).

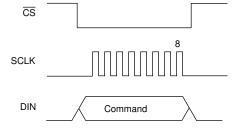


Figure 7-23. Single Byte Command Format

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

7.5.3.2 WAKEUP: Wake Command

The WAKEUP command exits standby mode to resume normal operation. If the ADC is already powered, the command is no operation (NOP). When exiting standby mode, the ADC requires resynchronization. See the *Power-Down Mode* section for details of power-down mode.

7.5.3.3 STANDBY: Software Power-Down Command

The STANDBY command enters the software power-down mode. The ADC exits software power-down mode by the WAKEUP command. See the *Power-Down Mode* section for details of power-down mode.

7.5.3.4 SYNC: Synchronize Command

The SYNC command synchronizes the ADC. Synchronization occurs at the eighth bit of the SYNC command byte. When synchronized, the current conversion is stopped and restarted. To synchronize multiple ADCs by software command, send the command simultaneously to all devices. The SYNC pin must be high when using the command. See the *Synchronization* section for details of synchronization.

7.5.3.5 RESET: Reset Command

The RESET command resets the ADC. See the *Reset* section for details of the reset operation.

7.5.3.6 Read Data Direct

There are two methods in which to read conversion data: read data direct and read data by command.

Read data direct does not require a command, instead after \overline{DRDY} falls low, simply apply SCLK to read the data. Figure 7-24 shows the read data direct operation. When \overline{DRDY} falls low, take \overline{CS} low to start the read operation. \overline{CS} low causes DOUT to transition from tri-state mode to the output of the data MSB. Data are read on the rising edge of SCLK and updated on the falling edge of SCLK. \overline{DRDY} returns high on the first falling edge of SCLK. DOUT is low after 32 data bits are read. To read the same data again before new data are available, use the RDATA command.

Keep DIN low when reading conversion data. If the RDATA (read conversion data) or RREG (read register data) command is sent, output data are interrupted in response to the command. If \overline{DRDY} falls low during the read operation, the new data are lost unless a minimum of three bytes of the old data are read.

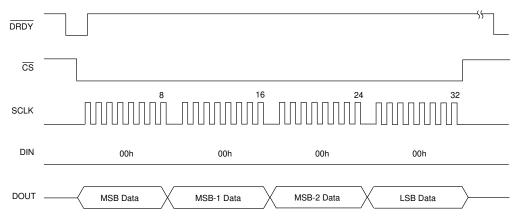


Figure 7-24. Read Data Direct

7.5.3.7 RDATA: Read Conversion Data Command

The RDATA command (Figure 7-25) is useful to re-read data within the same conversion period or to read data interrupted by a read register command. In both cases, \overline{DRDY} is high because \overline{DRDY} is driven high on the first SCLK of the previous operation. If \overline{DRDY} is high, the first output byte is zero followed by data. If low, the first output byte is byte 1 of the conversion data, which is restarted for output byte 2.

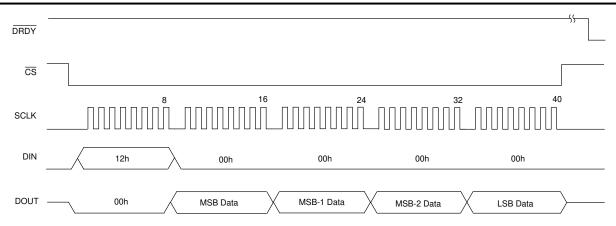


Figure 7-25. Read Conversion Data by Command

7.5.3.8 RREG: Read Register Command

The RREG command reads register data. The command is comprised of two bytes followed by output of the designated number of register bytes. The ADC auto-increments the address up to the number of registers specified in byte 2 of the command. The incrementing address does not wrap. The first byte of the command is the opcode added to the register starting address, and the second byte is the number of registers to read minus one.

- First command byte: 0010 rrrr, where rrrr is the starting register address
- Second command byte: 0000 nnnn, where nnnn is the number of registers to read minus one

Figure 7-26 shows an example of a three-register read operation starting at register address 01h. The first register data appears on DOUT at the 16th falling edge of SCLK. The data are latched on the rising edge of SCLK.

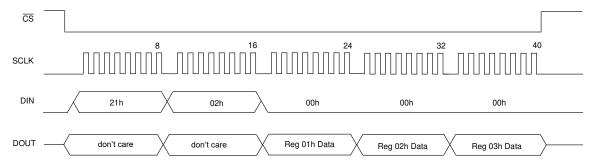


Figure 7-26. Read Register Data

7.5.3.9 WREG: Write Register Command

The WREG command is used to write register data. The command is two bytes followed by the designated number of register bytes to be written. The ADC auto-increments the address up to the number of registers specified in the command. The incrementing address does not wrap. The first byte of the command is the opcode added to the register starting address, and the second byte is the number of registers to write minus one.

First command byte: 0100 rrrr, where *rrrr* is the starting address of the first register.

Second command byte: 0000 nnnn, where *nnnn* is the number of registers to write minus one.

Data bytes: Depending on the number of registers specified.

Figure 7-27 shows an example of a three-register write operation starting at register address 01h.

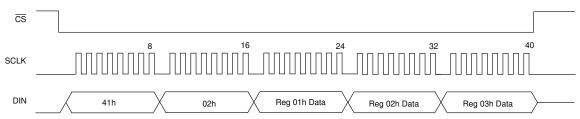


Figure 7-27. Write Register Data

7.5.3.10 OFSCAL: Offset Calibration Command

The OFSCAL command performs offset calibration. See the *Calibration Procedure* section for details of operation.

7.5.3.11 GANCAL: Gain Calibration Command

The GANCAL command performs a gain calibration. See the *Calibration Procedure* section for details of operation.

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *ADS1285*

7.6 Register Map

Collectively, the registers contain all the information needed to configure the device (such as data rate, filter mode, specific reference voltage, and so on). The registers are accessed by the read and write commands (RREG and WREG). Registers can be accessed individually, or accessed in multiples given by the number of registers specified in the command field.

Changes made to certain register bits result in a filter reset, thus requiring resynchronization of the ADC. See the *Synchronization* section for details.

Table 7-12. Register Map

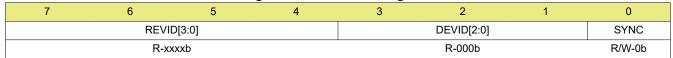
	Table 7 12. Register map									
ADDRESS	REG LINK	RESET	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
00h	ID/SYNC	xxxx0000b		REVI	D[3:0]		DEVID[2:0] SY			SYNC
01h	CONFIG0	00010010b	MOD	E[1:0]		DR[2:0]		PHASE	FILTE	R[1:0]
02h	CONFIG1	0000000b		MUX[2:0]		REF	[1:0]	GAIN[2:0]		
03h	HPF0	00110010h				HPF	[7:0]	•		
04h	HPF1	00000011b				HPF[[15:8]			
05h	OFFSET0	0000000b		OFFSET[7:0]						
06h	OFFSET1	0000000b	OFFSET[15:8]							
07h	OFFSET2	0000000b	OFFSET[23:16]							
08h	GAIN0	0000000b	GAIN[7:0]							
09h	GAIN1	0000000b	GAIN[15:8]							
0Ah	GAIN2	01000000b	GAIN[23:16]							
0Bh	GPIO	000xx000b	RESERVED GPI01_DAT GPI00_DAT GPI01_DIR GPI00_DIR RESER				RESERVED			
0Ch	SRC0	0000000b	SRC[7:0]							
0Dh	SRC1	10000000b	SRC[15:8]							

7.6.1 Register Descriptions

Table 7-13 shows the register access codes for the ADS1285 registers.

Table 7-13. ADS1285 Access Codes

Access Type	Code	Description
R	R	Read
R-W	R/W	Read or write
W	W	Write
-n		Value after reset or the default value


Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

7.6.1.1 ID/SYNC: Device ID, SYNC Register (Address = 00h) [Reset = xxxx0000b]

Figure 7-28. ID/SYNC Register

Table 7-14. ID/SYNC Register Field Descriptions

Bit	Field	Туре	Reset	Description
7:4	REVID[3:0]	R	xxxxb	Factory-programmed die revision. These bits identify the revision of the die. The die revision is subject to change without notification.
3:1	DEVID[2:0]	R	000b	Factory-programmed device identification. These bits identify the ADC. 000b = ADS1285
0	SYNC	R/W 0b		Synchronization mode selection. See the Synchronization section for details. 0b = Pulse-sync mode 1b = Continuous-sync mode

7.6.1.2 CONFIG0: Configuration Register 0 (Address = 01h) [Reset = 12h]

Figure 7-29. CONFIG0 Register

7	6	5	4	3	2	1	0	
MOD	E[1:0]		DR[2:0]		PHASE	FILTE	₹[1:0]	
R/W-00b			R/W-010b			R/W-10b		

Table 7-15. CONFIG0 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7:6	MODE[1:0]	R/W	00Ь	Power mode selection. See the <i>Power Modes</i> section for details. 00b = High 01b = Mid 10b = Low 11b = Reserved
5:3	DR[2:0]	R/W	010b	Data rate selection. See the <i>Digital Filter</i> section for details. 000b = 250 SPS (125 SPS in low-power mode) 001b = 500 SPS (250 SPS in low-power mode) 010b = 1000 SPS (500 SPS in low-power mode) 011b = 2000 SPS (1000 SPS in low-power mode) 100b = 4000 SPS (2000 SPS in low-power mode) 101b-111b = Reserved
2	PHASE	R/W	Ob	FIR filter phase selection. See the <i>Digital Filter</i> section for details. 0b = Linear phase 1b = Minimum phase
1:0	FILTR[1:0]	R/W	10b	Digital filter configuration. See the <i>Digital Filter</i> section for details. 00b = Reserved 01b = Sinc filter output 10b = FIR filter output 11b = FIR + IIR filter output

7.6.1.3 CONFIG1: Configuration Register 1 (Address = 02h) [Reset = 00h]

Figure 7-30. CONFIG1 Register

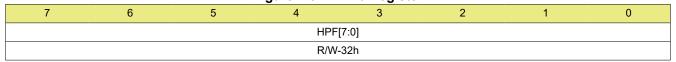
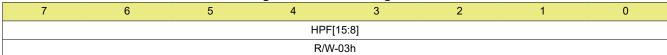

7	6	5	4	3	2	1	0	
	MUX[2:0]		REF	[1:0]	GAIN[2:0]			
	R/W-000b		R/W	-00b	R/W-000b			

Table 7-16. CONFIG1 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7:5	MUX[2:0]	R/W	000Ь	Input MUX selection. See the <i>Analog Input</i> section for details. $000b = Input 1$ $001b = Input 2$ $010b = Internal short with a 400\Omega resistor 011b = Input 1 and input 2 100b = Reserved 101b = Internal short with a 0\Omega resistor 110b, 111b = Reserved$
4:3	REF[1:0]	R/W	00b	Select reference voltage operation. See the <i>Voltage Reference Input</i> section for details. 00b = 5V 01b = 4.096V 10b = 2.5V 11b = Reserved
2:0	GAIN[2:0]	R/W	000Ь	PGA gain selection. See the <i>PGA</i> and <i>Buffer</i> section for details. 000b = 1 001b = 2 010b = 4 011b = 8 100b = 16 101b = 32 110b = 64 111b = Buffer operation

7.6.1.4 HPF0, HPF1: High-Pass Filter Registers (Address = 03h, 04h) [Reset = 32h, 03h]

Figure 7-31. HPF0 Register

Figure 7-32. HPF1 Register

Table 7-17. HPF0, HPF1 Registers Field Description

Bit	Field	Туре	Reset	Description
15:0	HPF[15:0]	R/W		High-pass filter programming. These registers program the corner frequency of the high-pass filter. See the <i>HPF Stage</i> section for details.

Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: ADS1285

7.6.1.5 OFFSET0, OFFSET1, OFFSET2: Offset Calibration Registers (Address = 05h, 06h, 07h) [Reset = 00h, 00h, 00h]

Figure 7-33. OFFSET0 Register

7	6	5	4	3	2	1	0		
OFFSET[7:0]									
R/W-00h									

Figure 7-34. OFFSET1 Register

7	6	5	4	3	2	1	0			
OFFSET[15:8]										
	R/W-00h									

Figure 7-35. OFFSET2 Register

7	6	5	4	3	2	1	0		
OFFSET[23:16]									
R/W-00h									

Table 7-18. OFFSET0, OFFSET1, OFFSET2 Registers Field Description

Bit	Field	Туре	Reset	Description
23:0	OFFSET[23:0]	R/W	000000h	Offset calibration.
				These bits are the 24-bit offset calibration word. The format is
				2's-complement coding. The ADC subtracts the value of offset
				from the conversion result prior to the gain calibration operation.
				See the Offset and Gain Calibration section for details.

7.6.1.6 GAIN0, GAIN1, GAIN2: Gain Calibration Registers (Address = 08h, 09h, 0Ah) [Reset = 00h, 00h, 40h]

Figure 7-36. GAIN0 Register

7 6 5 4 3 2 1 0										
GAIN[7:0]										
	R/W-00h									

Figure 7-37. GAIN1 Register

7	6	5	4	3	2	1	0			
GAIN[15:8]										
	R/W-00h									

Figure 7-38. GAIN2 Register

7	6	5	4	3	2	1	0		
GAIN[23:16]									
			R/W	′-40h					

Table 7-19. GAIN0, GAIN1, GAIN2 Registers Field Description

Bit	Field	Туре	Reset	Description
23:0	GAIN[23:0]	R/W	400000h	Gain calibration.
				These bits are the 24-bit, gain calibration word. Gain calibration
				is straight binary coding. The register value is divided by
				400000h (2 ²²) and multiplied with the conversion data. The gain
				operation occurs after the offset operation. See the Offset and
				Gain Calibration section for details.

7.6.1.7 GPIO: Digital Input/Output Register (Address = 0Bh) [Reset = 000xx000b]

Figure 7-39. GPIO Register

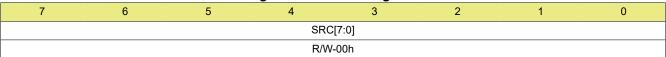
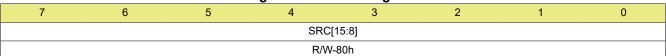

7	7 6 5		4	3	2	1	0
RESERVED		GPIO1_DAT	GPIO0_DAT	GPIO1_DIR	GPIO0_DIR	RESERVED	
R/W-000b		R/W-xb	R/W-xb	R/W-0b	R/W-0b	R/W-0b	

Table 7-20. GPIO Register Field Descriptions


Bit	Field	Туре	Reset	Description
7:5	RESERVED	R/W	000b	Always write 000b.
4	GPIO1_DAT	R/W	xb	GPIO1 data. See the GPIO section for details. 0b = GPIO1 is low 1b = GPIO1 is high
3	GPIO0_DAT	R/W	xb	GPIO0 data. 0b = GPIO0 is low 1b = GPIO0 is high
2	GPIO1_DIR	R/W	0b	GPIO1 direction. 0b = GPIO1 is an input 1b = GPIO1 is an output
1	GPIO0_DIR	R/W	0b	GPIO0 direction. 0b = GPIO0 is an input 1b = GPIO0 is an output
0	RESERVED	R/W	0b	Always write 0b.

7.6.1.8 SRC0, SRC1: Sample Rate Converter Registers (Address = 0Ch, 0Dh) [Reset = 00h, 80h]

Figure 7-40. SRC0 Register

Figure 7-41. SRC1 Register

Table 7-21. SRC0, SRC1 Registers Field Description

Bit	Field	Туре	Reset	Description
15:0	SRC[15:0]	R/W		Sample rate converter. These registers program the sample rate converter. See the Sample Rate Converter section for details of operation. 8000h = SRC function is disabled

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The ADS1285 is a high-resolution ADC designed for low-power seismic data acquisition equipment. Optimizing performance requires special attention to the support circuitry and printed-circuit board (PCB) layout. As much as possible, locate noisy circuit components (such as microcontrollers, oscillators, switching regulators, and so forth) away from the ADC input circuit components, reference voltage, and the ADC clock signal.

8.2 Typical Application

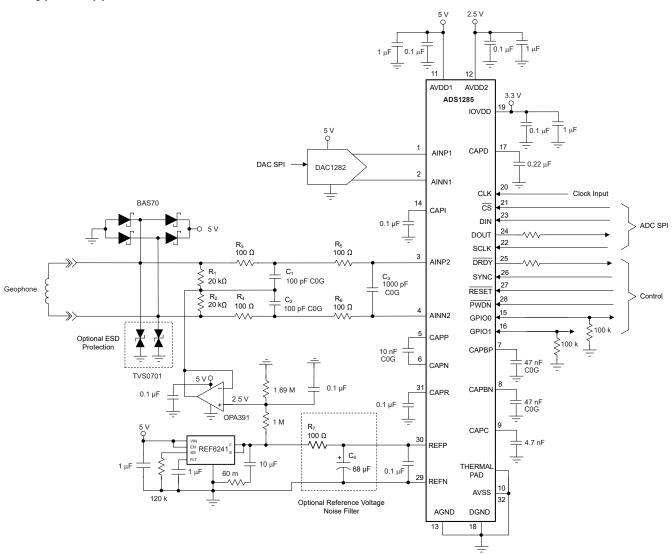


Figure 8-1. Geophone Input Application Example

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *ADS1285*

8.2.1 Design Requirements

Figure 8-1 depicts a typical application of a geophone input circuit. The application shows the ADC operating with a 5V power supply and a 2.5V level-shift voltage applied to the ADC inputs. The goal of this evaluation is to analyze the effect of noise resulting from source resistance. The source resistance is the sum of the series input resistors and the geophone output resistance.

8.2.2 Detailed Design Procedure

Referring to Figure 8-1, Schottky diodes (BAS70 or equivalent) protect the ADC inputs from voltage overloads. The ADC inputs are protected from ESD events by the optional ESD protection diodes (TVS0701). The geophone signal is level-shifted to mid-supply by driving the input termination resistors (R_1 and R_2) common point to 2.5V. The level-shift voltage is derived from the reference voltage and is buffered by the OPA391 op amp. The input termination resistors also provide the input bias current return path for the ADC inputs.

The input signal is filtered to reduce out-of-band noise. The filter is comprised of common-mode and differential sections. The common-mode section filters noise common to both inputs, consisting of R_3 , R_4 , C_1 , and C_2 . The differential section filters differential noise, consisting of R_3 through R_6 and C_3 . The resistor values are kept low to reduce thermal noise.

The REF6241 4.096V voltage reference is used. The ADC must be programmed to match the value of the reference voltage. The optional noise filter consisting of R_7 and C_3 reduces reference noise. Resistor R_7 increases gain error resulting from the impedance of the reference input.

The AVDD1 power supply voltage = 5V, with AVSS connected to AGND. The AVDD2 voltage is 2.5V to minimize power consumption. If IOVDD = 1.8V, connect the CAPD pin to IOVDD.

Besides the power supply pins, place additional capacitors at certain pins. Capacitors are required between CAPP – CAPN, REFP – REFN, and at the CAPBP, CAPBN, CAPI, CAPR, CAPC, and CAPD pins with the capacitance values given in Figure 8-1. The CAPP – CAPN, CAPBP, and CAPBN capacitors are COG type.

The DAC1282 provides a low-distortion signal to test THD performance, and through the DAC1282 dc test mode, test geophone impulse response. Increase the value of the DAC1282 capacitors CAPP and CAPN to 10nF to optimize the ADS1285 THD test performance. See the DAC1282 data sheet for additional circuit details.

8.2.3 Application Curves

Table 8-1 lists the effect of source resistance (R_S) and device input current noise on dynamic range performance. Selected values of R_S and input current noise, obtained from the input current noise distribution of Figure 8-2 (1.5 pA/ $\sqrt{\text{Hz}}$ and 3 pA/ $\sqrt{\text{Hz}}$), are evaluated. Thermal noise voltage of the source resistance, input current noise × source resistance, and ADC input-referred noise voltage are summed as RMS values to derive the total noise. Dynamic range is calculated from the total noise result.

Figure 8-2. PGA Input Current Noise Distribution

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

Table 8-1. Source Resistance Noise

R _S (Ω)	GAIN	i _n NOISE (pA/√Hz)	R _S NOISE (μV)	i _n × R _S NOISE (μV)	ADC SELF-NOISE (μV)	TOTAL NOISE (μV)	DR (dB)
	1	1.5		0	0.44	0.44	132.1
0	'	3	0	0	0.44	0.44	132.1
0	16	1.5		0	0.11	0.11	120.1
	16	3		0	0.11	0.11	120.1
	1	1.5	-0.06	0.024	0.44	0.445	132.0
1000	'	3		0.048		0.446	132.0
1000	16	1.5		0.024		0.127	118.8
	16	3		0.048	0.11	0.134	118.4
	1	1.5		0.11	0.44	0.472	131.5
5000	'	3	0.40	0.22	U. 44	0.508	130.8
5000	40	1.5	0.13	0.11	0.44	0.202	114.8
	16	3		0.21	0.11	0.277	112.0

Data for the analysis is shown for low-power mode operation over a 206Hz noise bandwidth (f_{DATA} = 500 SPS). For PGA gain = 1, 5000 Ω source resistance has a minor effect on dynamic range performance. However, at PGA gain = 16, dynamic range performance can degrade from –5dB to –8dB depending on the level of device input current noise. 1000 Ω source resistance has 1.6dB degradation at gain = 16 for input current noise density = 3pA/ \sqrt{Hz} .

8.3 Power Supply Recommendations

The ADC has four power supplies: AVDD1, AVDD2, AVSS, and IOVDD. Among the power-supply options, the number of power supplies can be reduced to a single 3.3V supply used for AVDD1, AVDD2, and IOVDD, with AVSS connected to ground. Be aware that 3.3V operation limits the reference voltage to 2.5V and requires using the buffer for gain = 1.

The power supplies can be sequenced in any order. The ADC is held in reset until the power supplies have crossed the retrospective power-on voltage thresholds and the clock signal is applied (see Figure 5-8 for details of the voltage thresholds).

8.3.1 Analog Power Supplies

The ADC has three analog power supplies, AVDD1, AVDD2, and AVSS, all of which must be well regulated and free from switching power-supply noise (voltage ripple < 1mV). The AVDD1 power-supply voltage is relative to AVSS and powers the PGA and buffer. AVSS is the negative power supply. The ADC can be configured for single-supply operation with AVDD1 = 5V or 3.3V with AVSS connected to ground. Because the minimum voltage of AVDD1 to AGND = 2.375V, dual-supply operation is only possible when AVDD1 – AVSS = ± 2.5 V. Single-power supply operation requires a level-shift voltage at the geophone input through the input termination resistors. The level-shift voltage is typically equal to AVDD1 / 2. Bypass AVDD1 with 1μ F and 0.1μ F parallel capacitors to AVSS.

The AVDD2 power supply powers the modulator. To simplify system power management, AVDD2 can be connected AVDD1, regardless whether AVDD1 and AVSS are configured for single- or dual-supply operation (AVDD2 voltage range is 2.375V to 5.25V with respect to AGND). Bypass AVDD2 with $1\mu F$ and $0.1\mu F$ parallel capacitors to AGND.

8.3.2 Digital Power Supply

IOVDD is the digital power supply. IOVDD is the digital pin I/O voltage and also powers the digital core by an 1.8V low-dropout regulator (LDO). The LDO output is the CAPD pin and is bypassed with a $0.22\mu F$ capacitor to DGND. Do not externally load the CAPD voltage output. Bypass the IOVDD pin with $1\mu F$ and $0.1\mu F$ parallel capacitors to DGND.

If IOVDD is in the range of 1.65V to 1.95V, tie the IOVDD and CAPD pins together. This connection forces the internal LDO off, thereby the IOVDD voltage now directly powers the digital core. Pay close attention to the absolute maximum voltage rating of IOVDD driving the CAPD pin to avoid damaging the device.

8.3.3 Grounds

The ADC has two ground pins, AGND and DGND. Connect the AGND and DGND pins together at the ADC to a single ground plane using short direct connections.

8.3.4 Thermal Pad

The thermal pad does not carry device current but must be soldered and connected to the most negative power-supply voltage (AVSS). Because of the low power dissipation, PCB thermal vias can be omitted to provide space for bottom layer components under the device.

8.4 Layout

8.4.1 Layout Guidelines

Figure 8-3 shows the layout of the geophone input application example of Figure 8-1. In most cases, a single unbroken ground plane connecting the grounds of the analog and digital components is preferred. A four-layer PCB is used, with the inner layers dedicated for ground and power-supply planes. Low resistance power-supply planes are necessary to maintain THD performance.

Connect the REFN pin of the ADC directly to the ground terminal of the voltage reference to avoid ground noise coupling. Similarly, avoid ground noise between the tie-points of termination resistors R_1 and R_2 by connecting the resistors together first, then connect to ground (dual-supply operation).

Place the smaller of the parallel power-supply bypass capacitors closest to the device supply pins. The thermal pad of the package connects to the most negative power-supply voltage (AVSS). Figure 8-3 shows single-supply operation, with AVSS tied to AGND. In this case, the thermal pad connects to AGND. For dual-supply operation, connect the thermal pad to AVSS.

8.4.2 Layout Example

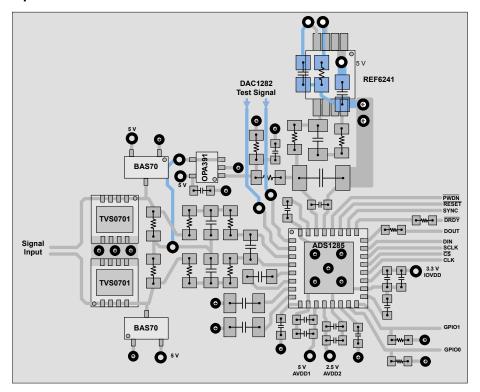


Figure 8-3. Example Layout

Page

9 Device and Documentation Support

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Notifications to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

	Changed legend of AVDD1 Current vs Temperature plot in Typical Characteristics section	
_		
C	hanges from Revision * (May 2022) to Revision A (December 2022)	Page

First public release, changed document status from Advance Information to Production Data1

11 Mechanical, Packaging, and Orderable Information

Changes from Revision A (December 2022) to Revision B (October 2025)

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

24-Oct-2025

www.ti.com

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
ADS1285IRHBR	Active	Production	VQFN (RHB) 32	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 85	ADS 1285
ADS1285IRHBR.A	Active	Production	VQFN (RHB) 32	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 85	ADS 1285
ADS1285IRHBT	Active	Production	VQFN (RHB) 32	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 85	ADS 1285
ADS1285IRHBT.A	Active	Production	VQFN (RHB) 32	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 85	ADS 1285

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

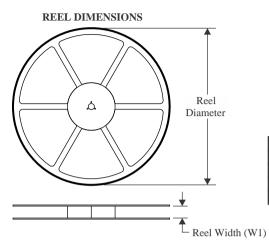
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

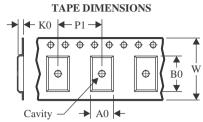
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


PACKAGE OPTION ADDENDUM

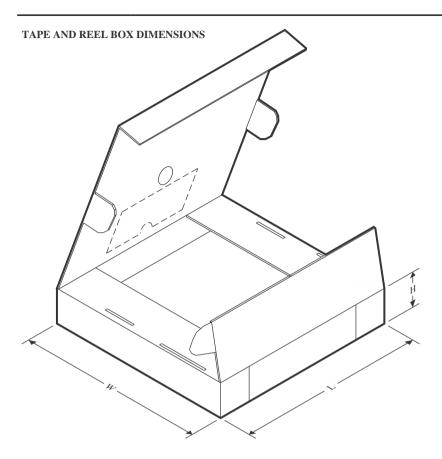

www.ti.com 24-Oct-2025

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Oct-2025

TAPE AND REEL INFORMATION

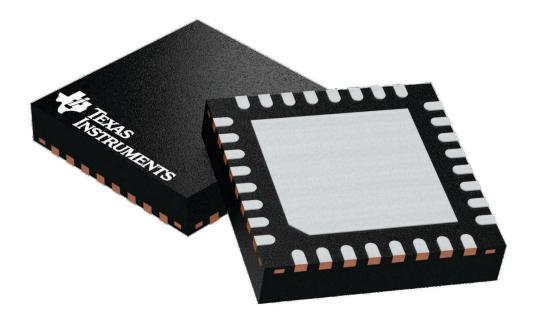
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS1285IRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
ADS1285IRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2

www.ti.com 24-Oct-2025

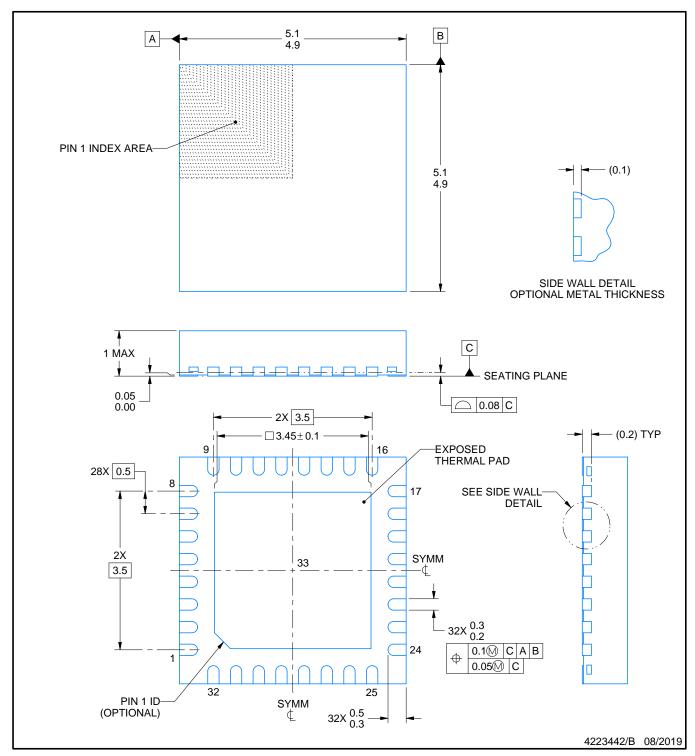


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS1285IRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
ADS1285IRHBT	VQFN	RHB	32	250	210.0	185.0	35.0

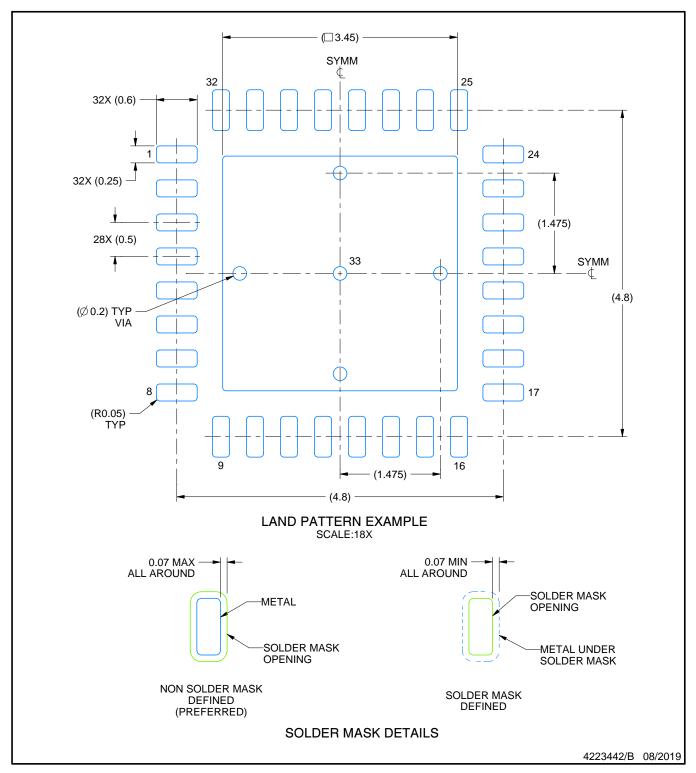
5 x 5, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224745/A

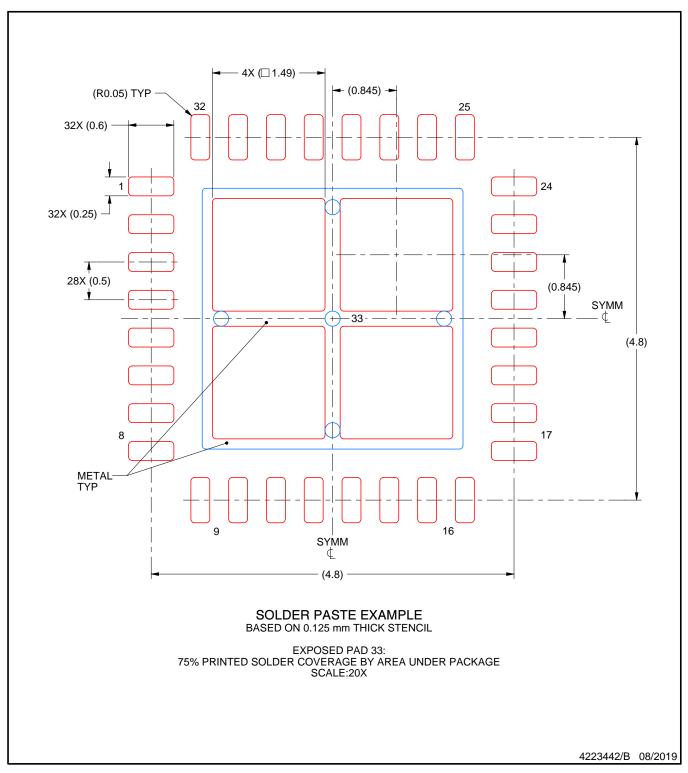
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025