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The TIDA-01084 reference design demonstrates the
use of an RF sampling DAC to generate continuous-
wave (CW), phase-aligned multitone waveforms. With
four 48-bit independent numerically-controlled
oscillators (NCOs), the 14-bit, 9-GSPS DAC38RF83
can generate four CW tones placed anywhere within
the first Nyquist zone or up to 6 GHz in the second.
This reference design covers the theory of operations,
explanation of the GUI, and directions for
programming NCOs to generate the tones without the
requirement of an external pattern generator. This
design demonstrates an easy-to-use method which
greatly simplifies and reduces the bill of materials
(BOM) for CW multitone generation.

Design Resources

TIDA-01084 Design Folder
DAC38RF83 EVM Product Folder
LMK04828 Product Folder
LMX2582 Product Folder
DAC38RF83 Product Folder
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Design Features
• Generates Multiple CW tones in First Nyquist; up to

6 GHz Supported in Second Nyquist
• Digital Single-Side Band (SSB) Upconversion
• Phase-Aligned Multitone Generation
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• Radar System
• Frequency Synthesizer
• Test and Measurement
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1 System Description
Traditionally, a CW tone can be generated by using phase-locked loop (PLL) to synthesize a relative high-
frequency tone referenced from an accurate lower-frequency reference source. In this design, an RF
sampling digital-to-analog converter (DAC) is used to generate a CW tone with input digital data.

A CW can be very useful in radar systems where the CW tone is transmitted and then received. The CW
tone generator is used as a key technology in various applications such as radio communication and on-
off keying.

In this design, the RF sampling DAC38RF83 is used to generate CW tones, which are implemented in a
way similar to direct digital synthesis (DDS). The input digital data can be routed from the JESD204B link
or internal constant data block. This design focuses on using the internal constant block to serve as input
data without the external JESD204B link establishment.

Four independent NCOs can be used to place four tones at arbitrary frequencies. If 1st Nyquist zone is of
interest, the NCOs can only place up to a 4.5 GHz tone at a maximum sampling rate of 9 GSPS. A 48-bit
NCO resolution generates a tone frequency that is very accurate with a frequency resolution of
Equation 1.

ƒresolution = ƒsample / 248 (1)

ƒresolution is the minimum frequency resolution the output tone can achieve. ƒsample is the DAC
sampling rate and also the NCOs clock rate. When ƒsample = 9 GSPS, ƒresolution can be as low as
3.1974 × 10–5 Hz.

Due to the operation in digital domain, the DAC38RF83 provides the user with faster frequency switching
time compared to analog PLL in generating CW tone. The analog PLL locking time is related to comparing
the frequency of the phase frequency detector (PFD) and loop bandwidth. The DAC38RF83 also offers
the user external trigger signals to synchronize all four NCOs inside the device, which can be used to
achieve aligned phase among output CW tones.

Moreover, by providing the same external trigger signal to multiple DAC38RF83s, all the CW tone outputs
of the DAC38RF83 devices can be synchronized. This capability is often referred to as multiple device
synchronization. Besides frequency placement and time delay programmability, the DAC38RF83 also
provides a flexible way to control output power. The output power can be controlled by tuning the following
three settings:
• Users can set the value of the constant data block in digital domain to tune output power.
• The mixer inside the DAC offers an additional 6 dB gain boost feature.
• Output full-range current of the analog output stage can be adjusted using register settings.

1.1 DAC38RF83 JESD204B 9-GSPS High-Speed DAC
The DAC38RF83 is a family of high-performance 14-bit DACs, which can run a sampling rate as high as
9.0 GSPS with programmable interpolating filters. The DAC38RF83 has four independent NCOs with 48-
bit resolution, which can be used to generate four CW tones at a very accurate frequency.

The DAC38RF83 has two DAC output channels. For each DAC channel, two digital upconverters (DDCs)
are implemented. Additionally, each DDC can use the constant input tone to generate a single tone. The
internal summation block at the DDC outputs can sum up any number of DDC outputs, which means that
the maximum number of generated tones is four tones per DAC output. The main difference between the
DAC38RF83 and DAC38RF80 is that the DAC38RF80 has internal balun at the output, which leads to
single-ended output, while the DAC38RF83 has differential output without internal balun. The DAC38RF83
offers the user the flexibility to select the output interface network.

http://www.ti.com
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1.2 LMK0482x JESD204B Compliant Jitter Cleaner
The LMK0482x family is the highest-performance clock conditioner with JESD204B support in the
industry. With up to 14 clock outputs from the low-jitter synthesizer, the output can be configured to
support JESD204B, including up to 7 JESD204B converters and logic devices with both a device clock
and SYSREF signal. Figure 1 shows the typical applications of the LMK0482xB device.

Figure 1. LMK0482xB Simplified Schematic

In this design, the LMK04828 is used to provide the SYSREF and reference clock to the DAC internal PLL
input when internal PLL is used to drive the DAC clock. The LMK04828 is featured by its JESD204B-
compliant performance, which is used to provide the common sourced SYSREF and device clock to the
DAC. If the sampling clock of the DAC38RF83 is driven by an external clock, the LMK04828 is also used
in clock distribution mode to provide the SYSREF to the DAC.

http://www.ti.com
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2 Block Diagram
Figure 2 shows the Simple CW multitone generator block diagram. The LMK04828 is used to provide the
device clock and SYSREF to the DAC38RF83. The input data of the DAC is routed from the internal
constant data block in this simple CW multitone generator design. If the DAC38RF83 on-chip PLL is used
to generate the sampling clock, then the reference clock should be provided into J4 SMA. The LMK04828
is used to divide down reference, to provide the SYSREF to the DAC. If an external sampling clock is
used to drive the DAC, then J1 is the SMA input. Because the LMK04828 cannot support input frequency
higher than 3100 MHz, when clock distribution mode is used, a divide-by-four buffer is used to divide the
sampling frequency down and then feed it to the LMK04828.

Figure 2. Block Diagram of Multitone Generator

Figure 3 shows the multitone generating logic in the following internal block diagram of the DAC38RF83.

http://www.ti.com
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Figure 3. Internal Logic of DAC38RF83

Two DC blocks can be set with amplitudes of 1 and 2. NCO1 through NCO4 can be set with frequencies
of f1, f2, f3 and f4, respectively. Using different NCO frequencies, 4 tones can be placed at arbitrary
frequency locations. The summation blocks can make summation up to 4 tones, then provide the data to
the DAC output stage. Therefore, up to 4 tones can be generated at the output of the DAC channel A and
channel B.
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3 Highlighted Products

3.1 DAC38RF80 and DAC38RF83
For more information on these devices, view the respective datasheet at www.ti.com.

3.2 LMK04821, LMK04826, and LMK04828
For more information on these devices, view the respective datasheet at www.ti.com.

4 System Design Theory

4.1 Complex Mixer in the DAC38RF83
The DAC38RF83 family of RF sampling DACs has internal DUCs for baseband-to-RF upconversion. Up to
4 complex mixers are available for the DUC. Figure 4 shows the block diagram for each complex mixer.

Figure 4. DUC Logic

Equation 2 describes the process of baseband-to-RF signal upconversion. The baseband signal BB
comes in the form of complex quadrature data. If the data stream comes from the JESD204B link, the
baseband data can either be quadrature or DC data (if needed). The quadrature data is generated through
the Hilbert transform filter. Keep in mind, the complex number j is to simply account for the orthogonality of
the relationship between Iin and Qin.

BB = Iin + jQin (2)

The block diagram of the DUC in Figure 4 is essential in performing a complex upconversion. The
complex upconversion is mathematically represented as , and can also be represented as cos2πƒLOt
+ jsin2πƒLOt. Because the RF output signal at the DUC output is essentially a real analog signal, a real
operator must be added at the final DUC output to complete the modeling of the RF upconversion. The
real RF output signal can be expressed by Equation 3.

(3)

Because the BB signal is a complex, CW waveform (for example through the baseband JESD204B TX
logic device and JESD204B data stream), the resulting RF signal is as follows in Equation 4.

(4)

http://www.ti.com
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With a full-scale complex baseband signal of cosine and sine waves (for example, amplitude of unity for
both waves), the resulting RF signal is also a full-scale cosine wave that has been upconverted by the
digital local oscillator (LO) frequency. If the baseband signal is a DC signal (for example through the
DAC38RF83 constant data path), the resulting RF signal is as follows in Equation 5.

RF = Acos2πƒLOt – Asin2πƒLOt = √2sin(2πƒLOt – 45°) (5)

The combination of cosine and sine waves is a trigonometry identity, which results in a sine wave with an
amplitude of √2A and a phase shift of –45°. The amplitude exceeds unity, which may cause digital
saturation and must be attenuated in the digital domain. Section 4.2 describes the amplitude adjustment
needed for the constant data path.

4.2 Digital LO Generation
The DAC38RF83 has dual-channel outputs. In each channel, 2 DUCs are implemented. The output of the
2 DUCs are summed together to feed into the digital input of the DAC stage. The same implementation is
used in the other DAC output channel. Moreover, the digital outputs of the 4 DUCs can be summed
together to feed into any digital input of these 2 DAC channels. The summation function is explained in
Section 4.5.

For each DUC, the DUC block handles 1 IQ pair of samples coming from the JESD block or internal DC
data (constant data path). Each DUC has 1 NCO, 1 complex mixer, and 1 summation block. Due to the
real nature of the DAC output signal, the design uses a summation block to convert the complex mixer
result to a real signal.

Figure 5 shows the internal implementation of the DUC block digital LO. Each DUC of the DAC38RF83
has its own programmable digital LO.

Figure 5. Digital Mixer Implementation

The digital LO has three modes:
• Low-Power Fs/2 and Fs/4 Coarse Mixer Mode

This mode aims to save power by not using the full-digital LO generation through the NCO. By using
basic arithmetic to generate the Fs/2, Fs/4, and –Fs/4 mixing sequences, the coarse mixer can shift
the input signal with the fixed mixing sequence Fs/2, +Fs/4, and –Fs/4. Treating the 2 complex
channels as complex vectors of the form I(t)+jQ(t), the real output of the Fs/2, +Fs/4, and –Fs/4 modes
is as follows in Equation 6.

Output = I(t)cos(2πƒCMIXt – Q(t)sin(2πƒCMIXt) (6)
Where ƒCMIX can be either Fs/2, +Fs/4, or –Fs/4. Because the sine and cosine terms are a function of
Fs/2, Fs/4, or –Fs/4 mixing frequencies, the possible resulting value of the terms can only be 1, –1, or
0. This simplified mixing sequence allows the bypassing of the full-complex signal multiplier and full
NCO. The mixer gain is unavailable in this mode (detailed later). The Fs/2, +Fs/4, and –Fs/4 mixer
blocks perform mixing through negating and swapping the I/Q channel on certain sequence of samples
as provided in Table 1

http://www.ti.com
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Table 1. Fs/2, Fs/4, and –Fs/4 Mixing Sequence

MODE MIXING SEQUENCE

Normal (coarse mixer
bypassed)

Iout = {+I1, +I2, +I3, +I4…}
Qout = {+Q1, +Q2, +Q3, +Q4…}

Fs/2
Iout = {+I1, -I2, +I3, -I4…}

Qout = {+Q1, -Q2, +Q3, -Q4…}

Fs/4
Iout = {+I1, -Q2, -I3, +Q4…}
Qout = {+Q1, +I2, -Q3, -I4…}

–Fs/4
Iout = {+I1, +Q2, -I3, -Q4}
Qout = {+Q1, -I2, -Q3, +I4}

• Medium-Power Fs/8 Mode
The Fs/8 mode is a hybrid mix, which uses all the multipliers of the full NCO mixer; however, fixed Fs/8
values are presented at the input for sine and cosine. The fixed values allow the NCO part of the mixer
to be turned off to reduce power consumption. The output of the Fs/8 coarse mixer is as follows in
Equation 7

Output = (I(t)cos(2πƒCMIXt) – Q(t)sin(2πƒCMIXt))2(mixer_gain–1) (7)
ƒCMIX is the frequency of Fs/8, mixer_gain is the gain control bit of the mixer, which allows the output
signal of the multiplier to reduce by 6 dB. Because the multipliers of the full NCO mixer are used in
Fs/8 mode case, the mixer-gain bit is applied. The DAC38RF83 can provide different Fs/8 coarse
mixing options: Fs/8, 3Fs/8, 5Fs/8, and 7Fs/8.

• Full NCO Mode
In full NCO mode, both multipliers and full NCO are used. Figure 6 shows the NCO block.

Figure 6. NCO Implementation

The frequency accumulator word is a 48-bit value, and it is offset with a 16-bit phase offset value that
is added to the upper 16 bits, before being applied to the sine and cosine lookup tables. The real
output of the complex mixer block is as follows in Equation 8.

Output = (I(t)cos(2πƒNCOt + δ) – Q(t)sin(2πƒNCOt + δ))2(mixer_gain–1) (8)
Similarly, the multipliers of the mixer are used, so the mixer_gain bit, which is used to control the gain
of the mixer, is applied. δ is the initial phase offset of the NCO.

4.3 Mixer Gain Control
The maximum output amplitude out of the signal multiplier (in medium-power Fs/8 mode or full flexible
NCO mode) occurs if input, I(t) and Q(t), are simultaneously full-scale amplitudes and the sine and cosine
arguments are equal to 2πƒCMIXt + (2N – 1) π / 4, where N = 1, 2, 3, and so on. Figure 7 shows the location
of the maximum output amplitude when I(t) = Q(t).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBO0


 cosine sine

t

Max output
occurs when both
sine and cosine 

are 0.707 

www.ti.com System Design Theory

9TIDUBO0–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Continuous-Wave Phase-Aligned Multitone Generator: DC-to-6-GHz RF-
Sampling DAC Reference Design

Figure 7. Location of Maximum Output Amplitude When I(t) = Q(t)

The mixer I/Q input can come from the JESD204B block or internal DC constant path. If the BB signal is a
DC signal (for example through the DAC38RF83 constant data path or JESD block), the resulting RF
signal is √2AsinM (2πfLO t – 45°) whose amplitude exceeds unity, which may cause digital saturation and
must be attenuated in the digital domain.

The DAC38RF83 provides a mixer_gain option to control the gain of the mixer when the signal multiplier is
used. Equation 8 shows the real output of the mixer is shown in . When mixer_gain = 1, and both I(t) and
Q(t) are simultaneously full-scale amplitude, the maximum output out of the mixer is 0.707 + 0.707 =
1.414(3 dB), which can cause clipping of the signal, and should therefore be used with caution.

When mixer_gain = 0 (default setting), the gain through the mixer is √2/2 or –3 dB. In most cases, this
loss in signal power is undesirable. TI recommends using the gain function to increase the signal by 3 dB
to compensate the loss. Hence, the mixer_gain control bit provides the 6-dB gain boost option.

4.4 Amplitude Adjustment

4.4.1 Input Code Amplitude
The DAC38RF83 family has the capability to accept either offset binary or two's complement input code
format. The DAC38RF83 works at 14-bit mode or 12-bit mode. The input code resolution is 16-bit based,
and most significant bit (MSB) aligned, therefore either the last 4 bits or last 2 bits are dummy bits. The
data format depends on user preference and system programming environment. For user input quadrature
CW tones, as shown in Equation 2, the maximum input code can only range from positive full-scale code
to negative full-scale code. For constant input code from the SPI register, as shown in Equation 5, the
maximum input code can only range from 1 / √2 of positive full-scale code to 1 / √2 of negative full-scale
code. Exceeding the maximum input code saturates the digital signal and degrades the analog output
performance. Table 2 shows the example binary codes and decimal equivalent codes. To convert offset
binary to two's complement code, simply invert the MSB.

Table 2. Binary and Decimal Equivalent Code of Offset Binary Format and Two's Complement
Format

INPUT SCALE OFFSET BINARY (16 BIT) DECIMAL
EQUIVALENT

TWO'S COMPLEMENT
CODE

DECIMAL
EQUIVALENT

+Full-scale 1111-1111-1111-1111 65535 0111-1111-1111-1111 32767
+0.75 Full-scale 1110-0000-0000-0000 57344 0110-0000-0000-0000 24576
+0.707 Full-scale 1101-1010-0111-1110 55934 0101-1010-0111-1110 23166
+0.5 Full-scale 1100-0000-0000-0000 49152 0100-0000-0000-0000 16384
+0.25 Full-scale 1010-0000-0000-0000 40960 0010-0000-0000-0000 8192

Zero 1000-0000-0000-0000 32768 0000-0000-0000-0000 0
–0.25 Full-scale 0110-0000-0000-0000 24576 1110-0000-0000-0000 –8192
–0.5 Full-scale 0100-0000-0000-0000 16384 1100-0000-0000-0000 –16384

–0.707 Full-scale 0010-0101-1000-0010 9602 1010-0101-1000-0010 –23166
–0.75 Full-scale 0010-0000-0000-0000 8192 1010-0000-0000-0000 –24576

–Full-scale 0000-0000-0000-0000 0 1000-0000-0000-0000 –32768

http://www.ti.com
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4.4.2 Output Current Adjustment
The DAC analog full-scale output current comes from 2 parts: IRBIAS and Icoarsetrim, which can be expressed
as Equation 9.

IOUTFS = IRBIAS + ICoarseTrim (9)

IRBIAS is the fixed current setting through the adjustment by the external RBIAS resistor. Normally, TI
recommendeds setting RBIAS to 3.6 KΩ for a fixed current through RBIAS of 250 uA (on-chip bandgap
reference voltage is 0.9 V). This 250 uA is scaled 128 times internally, then gives IRBIAS. IRBIAS can be
calculated by Equation 10.

IRBIAS = 128 × (VBG÷ RBIAS) = 128 × (0.9 V ÷ 3.6 KΩ) = 32 mA (10)

Icoarsetrim is the current from course trim current sources, which can be configured by the user through a SPI
register setting (register field DACFS[3:0]). The register setting can adjust Icoarsetrim, which provides a way to
let the user program the output full scale current. Equation 11 shows the detailed setting of Icoarsetrim.

Icoarsetrim = 2 × (DACFS – 11) (11)

Register field DACFS[3:0] has a range from decimal value 0 to 15, which leads to IOUTFS from 10 mA up
to 40 mA.

4.5 Complex Mixer Output Summing
Followed by the complex mixer, an inverse sinc FIR filter compensates the droop because of sample and
hold of the DAC. The output of inverse sinc FIR filter comes into a summation block, which can sum up to
four paths from the output of the total four DUCs. Namely, the output summation block allows addition of
samples from each DUC in the current channel. It is also possible to add the outputs from DUCs in
adjacent channels. The function of the block can be represented by Equation 12.

OUTSUMoutput = SAMEAB + SAMECD + ADJAB + ADJCD (12)

OUTSUMoutput is the output of the summation block. SAMEAB is the input data of the summation block from
DUC path AB in the same DAC channel. SAMECD is the input data from DUC path CD in the same DAC
channel. ADJAB is the input data from DUC path AB in the adjacent DAC channel. ADJCD is the input data
from DUC path CD in the adjacent DAC channel. Because DUC operates with 16-bit-width, the data
coming from each DUC is also 16 bits. Due to the summation operation, we should perform a rounding
operation to avoid data overflow 16 bits wide. After addition, rounding reduces the word size back to 16
bits. If two DCUs are added together, the least significant bit (LSB) bit [0] of the summation result is
obsolete, and bit [16:1] is used as the final 16-bit summation result. Depending on how many outputs of
DUCs are added, the exact number of rounding bits is decided. Table 3 shows the rounding scheme.

Table 3. Rounding Scheme of Summation Block

NUMBER OF CHANNELS ADDED NUMBER OF BITS ROUNDED
0 0, Use bits [15:0] from the result
1 1, Use bits [16:1] from the result and bit [0] used for rounding

2 2, Use bits [17:2] from the result and bits [1:0] used for
rounding

3 3, Use bits [18:3] from the result and bits [2:0] used for
rounding

4 4, Use bits [19:4] from the result and bits [3:0] used for
rounding

4.6 HD2 and IM2 Consideration
An ideal, linear, 2-port RF component transfers input signal to output signal without any distortion.
However, in practice, the DAC is an active component in the RF system, which behaves with some kind of
nonlinearity. By using the Taylor series expansion, the design approaches the nonlinearity behavior of the
DAC mathematically. By applying 2-tone signal ω1 and ω2 as the input, the second-order item of
nonlinearity generates distortion components HD2 (second-order harmonic distortion) and IM2 (second-
order intermodulation distortion). IM2 has ω1 – ω2 and components. When ω1 and ω2 are very close, ω1 –
ω2 locates around 0, and ω1 + ω2 locates around HD2. However, due to Nyquist folding back, second-order
distortions can fall in-band. This concept is explained in Section 4.7.
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4.7 HD3 and IM3 Consideration
Similar to the second-order distortion, caused by the second item of nonlinearity expansion, by applying 2-
tone signal ω1 and ω2 as the input, the third-order item generates HD3 (third-order harmonic distortion) and
IM3 (third-order harmonic distortion). IM3 distortion has components of 2ω1 – ω2, 2ω2 – ω1, 2ω1 + ω2, and
2ω2+ ω1. When ω1 and ω2 are very close to each other, IM3 has components 2ω1 – ω2 and 2ω2 – ω1 around
ω1 and ω2. 2ω1 + ω2 and 2ω2 + ω1 are located around HD3. Similar to the case of HD2, because of the
Nyquist folding back, HD3 and IMD3 may also fall in-band. As Figure 8 shows, due to the nonlinearity
caused by the DAC internal sampling holding process, harmonic distortion folds back to the first Nyquist
zone. The fundamental is in the first Nyquist zone, so the folding back harmonic distortion may fall in-
band, which degrades the in-band SFDR performance. By performing a good sampling frequency plan,
users can avoid the folding back harmonic distortion falling in-band.

Figure 8. Harmonics Folding Back

NOTE: The amplitude variation followed by the sin(x) / x function, caused by the sampling and hold
process, is ignored in this plot.

4.8 DAC Phase Noise Consideration
Let us consider the impact of phase noise due to a divider. If an ideal divider is used, the time jitter of a
certain clock edge remains the same at the input and output of the clock divider. Figure 9 shows a divide-
by-two case.

Figure 9. Time Jitter of Divided Down Clock

Jitter is a conversion of clock-phase noise power to the RMS movement of the clock sampling instant in
seconds. When the clock is divided down by N, the phase noise at the divider output is improved by 20 ×
log10(N), while the time domain jitter remains the same. Namely, there is lower-jitter energy for the divided
clock in a certain clock period.
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When it comes to the DAC output phase, users can see that the ideal DAC functions as a clock divider.
For every divide-by-N output, the output phase noise improves by 20 × log10(N) because the rising- and
falling-edge jitter contents are cut back by N. For instance, if the DAC output is at Fs/2, the phase noise
improves by 6 dB. Actual DAC output noise includes the DAC intrinsic noise, power supply noise from the
DAC core, and clock phase noise.

If optimal phase noise is required, TI recommends the highest sample rate with the lowest output
frequency. Also use the best performance clock and power supply rails.

4.9 Synchronize Mixers and NCOs
To achieve phase alignment among the four NCOs and four digital mixers, the DAC38RF83 offers several
ways to synchronize digital mixers and NCOs. Figure 10 shows the synchronization scheme for each DUC
path. The other three DUCs inside the DAC have the same synchronization design.

Figure 10. NCO and Mixer Synchronization

The mixer can be synchronized by the auto-sync signal from the SPI block. The auto-sync signal is a
synchronization signal generated after a write operation to a particular SPI register is completed. The
spi_sync signal is generated when the SPI bit SPI_SYNC is written high, which provides synchronization
to the mixer or NCO. The SYSREF signal captured by the device clock can be also used for the
synchronization purpose. The sync_from_jesd signal is generated from the JESD block. When the ILA
sequence is complete, the JESD204B block issues one pulse on the sync_out signal, which can be used
to synchronize the mixer and NCO.
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5 Getting Started Hardware

5.1 Required Hardware
The required hardware for the TIDA-01084 reference design is as follows:
• DAC38RF83 EVM Rev D – 1x EVM. (Evaluation of the DAC38RF83 is accomplished by ordering the

DAC38RF82EVM which also covers the DAC38RF83.)
• Signal generator – used to provide a reference clock to the DAC when the internal PLL of the DAC is

used, or to provide a sampling clock to the DAC when an external sampling clock is used.

5.2 DAC38RF83 EVM Setup in On-Chip PLL Mode
The DAC38RF83 has an on-chip PLL, which can be used for generating the sampling clock from a relative
low-frequency clock. The reference clock is provided at the J4 SMA input on the EVM board, and the
recommended power is 8 dBm. Meanwhile jumper JP10 should be disconnected to power down the
onboard clock divider.

5.3 DAC38RF83 EVM Setup in External Clock Mode
The DAC38RF83 can accept a sampling clock of up to 9 GSPS directly with bypassed on-chip PLL. The
sampling clock is provided through the J1 SMA input on the EVM board, and the recommended power is
16 dBm. Meanwhile, the jumper JP10 should be connected, to power up the onboard clock divider, which
is used to divide the external clock then fed into the LMK04828.

6 Getting Started Firmware

6.1 Required Software
The DAC38RF83 EVM GUI is used to control and program the onboard DAC38RF83 and onboard
LMK04828.
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7 Test Setup
This section details the test setup step-by-step to output four CW tones at the DAC channel A output.

7.1 Setup With Clocking From On-Chip PLL
1. Disconnect jumper JP10 of the DAC38RF83 EVM.
2. Apply 5-V power supply to J21 of the DAC38RF83 EVM. D11 turns green when power is provided.
3. Use the USB 2.0 type B cable to connect the PC with J16 of the DAC38RF83 EVM.
4. Connect the external 1105.92-MHz, 8-dBm clock from the signal generator to J4 SMA input of the

DAC38RF83 EVM.
5. Launch the DAC38RF83 EVM GUI.
6. Click the Reconnect FTDI? button in the upper right corner to establish the link between the PC and

DAC38RF83 EVM onboard FTDI chip.
7. Toggle the Not in RESET button twice to reset the DAC38RF83. Click the LOAD DEFAULT button to

load the default register values of the DAC38RF83 and LMK04828.
8. Set the value as in Figure 11, then click on the CONFIGURE DAC button to configure the DAC38RF83

according to the setting created.
9. Click on the PLL AUTO TUNE button to lock the DAC38RF83 on-chip PLL.
10. Click on the Reset DAC JESD Core & SYSREF TRIGGER button.

Figure 11. Quick Start Page of GUI

11. Set the Digital(DAC A) tab as shown in Figure 12. Two NCOs are enabled with frequency settings of
2135 MHz and 2145 MHz. Enable the constant input data block, and then set the value to 0x5A73,
which is –3 dB back off from the full scale, to avoid digital saturation. The summation block adds the
DAC A and DAC B outputs of up to two DUCs outputs, which provide four tones output at DAC A.
Click on the UPDATE NCO button to resync the NCO output.
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Figure 12. Digital Setting of DAC A

12. Set the Digital(DAC B) tab as below. Two NCOs are enabled with frequency settings of 2125 MHz and
2155 MHz. Enable the constant input data block and set the value to 0x5A73, which is –3 dB back off
from the full scale, to avoid digital saturate. Click on the UPDATE NCO button to resync the NCO
output.

Figure 13. Digital Setting of DAC B
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7.2 Setup With Clocking From External Sampling Clock
1. Connect jumper JP10 of the DAC38RF83 EVM.
2. Follow Steps 2 and 3 of Section 7.1.
3. Connect the external 8847.36 MHz, 16-dBm clock from the signal generator to the J1 SMA input of the

DAC38RF83 EVM.
4. Follow Steps 5 and 6 of Section 7.1.
5. Set the value as shown in Figure 14, then click on the CONFIGURE DAC button to configure the

DAC38RF83 according to the setting created.

Figure 14. Quick Start Page of GUI

6. Click on the Reset DAC JESD Core & SYSREF TRIGGER button.
7. Follow Steps 10 and 11 of Section 7.1.
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8 Test Data

8.1 Output-Tone Phase Noise Performance
Set the DAC38RF83 EVM to external clock mode with of a sampling rate of 6000 MHz, which is provided
by the SMA100A. Set the coarse gain setting to 10. Back off the digital constant data by 3 dB to avoid
saturation. Use different coarse mixer settings to generate a single CW tone at different frequencies.
Compare the phase noise of the output signal tone with respect to the phase noise of the sampling clock,
as shown in Figure 15.

Figure 15. Measured Phase Noise and Theoretical Phase Noise of CMIX Output Tones

The phase noise of the DAC output tone may be contributed to power-supply phase noise, clock phase
noise, and DAC-intrinsic phase noise. The DAC-intrinsic phase noise can be divided into clock-correlated
phase noise and clock-uncorrelated phase noise. The clock-uncorrelated phase noise may come from 1/F
noise and shot noise, which is determined by the semiconductor. The clock-correlated phase noise is a
part of the DAC-intrinsic phase noise, which is correlated to the phase noise of the sampling clock.

To get the DAC-intrinsic phase noise, it is assumed that the clock-correlated phase noise is negligible.
First, the phase noise of the DAC output tone can be measured by a phase noise analyzer in logarithm
(dB). Second, convert the measured phase noise in logarithm (dB) to linear power. Third, measure the
clock phase noise with the phase noise analyzer in logarithm (dB), and calculate the divided-down phase
noise of the clock in logarithm (dB), which is the ideal phase noise of the DAC output, then convert it into
linear power. Then, by subtracting the ideal output phase noise in linear power from the measured DAC
output phase noise linear power, results in the DAC intrinsic phase noise in linear power. Lastly, by
converting the linear power to logarithm (dB) gives the DAC intrinsic phase noise at different output
frequencies, as shown in Figure 16.
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Figure 16. DAC Intrinsic Noise at Different Output Frequencies

8.2 Four-Tones Output of DACA
Figure 17 shows the spectrum of the DACA output with the implementation of a simple multitone
generator. Four tones are centered at 2140 MHz with a separation of 10 MHz from each other.

Figure 17. Output Four Tones Spectrum

8.3 HD2 and IMD2 Performance
Set the DAC38RF83 EVM to external clock mode with a sampling rate of 5898.24 MHz. Set the coarse
gain setting to 10. Back off the digital constant data by 3 dB to avoid saturation. Use DAC channel A to
output two tones at F1 = 2135 MHz, and F2 = 2145 MHz with a separation of 10 MHz. HD2 and IMD2 are
caused by the second-order item of nonlinearity. Due to the Nyquist folding back, distortion like HD2,
IMD2, and IMD4, which are greater than Fs/2, fold back to the first Nyquist zone. As seen in Figure 18, F1
and F2 are 10 MHz apart from each other, and HD2 of F1 and HD2 of F2 is 2 × 10 MHz apart from each
other. The IMD2, IMD4, and HD2 artifacts are within the 1.6-GHz range, which designers need to plan
ahead of time, to prevent the artifacts from falling into major communications bands.
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Figure 18. HD2 and IMD2

8.4 HD3 and IMD3 Performance
Set the DAC38RF83 EVM to external clock mode with a sampling rate of 5898.24 MHz. Set the coarse
gain setting to 10. Back off the digital constant data by 3 dB to avoid saturation. Use DAC channel A to
output two tones at F1 = 2135 MHz, and F2 = 2145 MHz with a separation of 10 MHz. HD3 and IMD3 are
caused by the third-order item of nonlinearity. IMD3 components like 2F1-F2 and 2F2-F1 are close to F1
and F2, respectively, if F1 and F2 are close to each other. Figure 19 shows the IMD3 performance.

Figure 19. IMD3

By backing off the output tone power, we can get the IMD3 and IIP3 versus output power.

Table 4. IMD3 Versus Back Off Power

DIGITAL BACK OFF (dBFs) OUTPUT POWER (dBm) IMD3 (dBc) IP3 (dBm)
0 –5.86 –72.67 30.47

–3 –8.87 –70.44 26.35
–6 –11.97 –68.12 22.09
–9 –14.97 –69.05 19.57
–12 –18.03 –68.55 16.32
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Backing off the power of the digital input signal may result in less significant improvement when compared
to traditional analog devices (see Table 4). This behavior is mainly due to the quantization noise and
associated discrete levels in the RF DAC. IMD3 components 2F1+F2, 2F2+F1, and HD3 are close to each
other if F1 and F2 are close to each other, at roughly three times the fundamental frequency. If these
distortions are greater than Fs/2, aliasing occurs, and the distortion can be checked at the first Nyquist
zone, as shown in Figure 20. Because F1 and F2 are 10 MHz apart from each other, HD3 are 3 × 10 MHz
apart from each other. The IMD3 and HD3 artifacts are within the 500-MHz range, which designers need
to plan ahead of time, to prevent the artifacts from falling into major communications bands.

Figure 20. IMD3 and HD3

8.5 SYNC Output Tones
Use DAC channel A to output a single tone at 500 MHz, and DAC channel B to output a single tone at 500
MHz. Each DAC channel has the input digital data from its own DUC path AB. Using the spi_sync signal
to achieve the phase alignment between DACA and DACB is not reliable, because the spi_sync signal is
asynchronous to both DUC digital blocks. In this design, a global SYSREF pulse is the most reliable
method for synchronizing the phase between DACA and DACB. Figure 21 shows the synchronization of
the DACA and DACB output through a single SYSREF pulse.

Figure 21. Synchronization of DACA and DACB Output
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The green waveform shown in Figure 21 is a single SYSREF pulse (input to the scope is AC coupled).
The blue waveform is the DAC A output at 500 MHz. The red waveform is the DAC B output at 500 MHz.
Initially, the two tones have the same frequency of 500 MHz, but different phases. After the SYSREF is
captured, approximately 160.9 ns are required to align the phase. Figure 22 shows a closer look at the
transition from misaligned tones to aligned tones.

Figure 22. Transition From Misaligned Tones to Aligned Tones

It has been observed that it takes the same time to switch from one frequency to another frequency. In
Figure 23, the initial output frequency of DACB output is 500 MHz. By capturing the SYSREF signal, the
DACB output frequency is changed to 800 MHz, while the DACA output stays at 500 MHz. Approximately
160.53 ns are required to complete the frequency switching.

Figure 23. Transition From 500 MHz to 800 MHz
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Figure 24. Closer Look at Transition From 500 MHz to 800 MHz

When changing from one frequency to another, the NCO frequency register (for example,
FREQ_NCOAB[47:0]) should be set through SPI writing. If the NCO phase register (for example,
PHASE_NCOAB[15:0]) must be updated at the same time, the NCO phase register writing should also be
performed. The NCO phase setting is 16 bits wide, and the NCO frequency setting is 48 bits wide. The
DAC38RF83 register is 16 bits wide. Therefore, the NCO frequency setting is completed by writing three
registers. For a SPI register writing, 24 SPI clock cycles are needed, which includes an 8-bit instruction
cycle, and a 16-bit data cycle.

The maximum SPI clock rate of the DAC38RF83 is 10 MHz. Therefore, the theoretical time needed for
one NCO frequency update is 7.2 µs, and the time needed for one NCO phase update is 2.4 µs. Another
factor to consider, when the user wants to update the NCO frequency or phase of the other channel, the
SPI page should be reselected by writing the page set register PAGE_SET[15:0]. Hence, setting the page
adds 2.4 µs. In summary, the theoretical maximum time needed for one NCO frequency and phase update
should be 12 µs. If the SYSREF is used to synchronize the NCO and mixer output, the DAC outputs the
synchronized waveform in approximately 160 ns after the SYSREF is issued.
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9 Design Files

9.1 Schematics
To download the schematics, see the design files at TIDA-01084.

9.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDA-01084.

9.3 Layer Plots
To download the layer plots, see the design files at TIDA-01084.

10 Software Files
To download the software files, see the design files at TIDA-01084.

11 Terminology
• CW – Continuous wave
• DAC – Digital-to-analog converter
• SERDES – Serializers and deserialzers for high-speed serial link
• JESD204B – JEDEC standardized data transfer format for high-speed data converters
• DDS – Direct digital synthesis
• DUC – Digital upconverter
• LO – Local oscillator
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