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configured as a difference amplifier and reference 
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1 Design Summary  

The design requirements are as follows:  

 Supply Voltage: 3.3 V  

 Input: -1 A to + 1 A 

 Output: 110 mV to 3.19 V 

 Maximum Shunt Voltage: ±100 mV 

The design goals and performance are summarized in Table 1.  Figure 1 depicts the measured transfer 
function of the design. 

Table 1. Comparison of Design Goals, Simulation, and Measured Performance 

 Goal Simulated (typ) Calculated (typ) Measured 

Total Unadjusted 
Error (%) 

±1.0% ±0.893% ±0.53% ±0.621% 

 

Figure 1: Measured Transfer Function 
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2 Theory of Operation 

Low-side current sensing is desirable because the common-mode voltage is near ground.  Therefore the 
current sensing solution is independent of the bus voltage, VBUS.  When sensing bidirectional currents, a 
reference voltage must be added to differentiate between positive and negative currents.  Figure 2 depicts 
a general circuit topology for a low side, bidirectional current sensing solution.  This topology is particularly 
useful when cost is a priority at the expense of accuracy and printed circuit board (PCB) space. 

The shunt voltage (VSHUNT) is created by the load current (ILOAD) flowing through the shunt resistor (RSHUNT).  
VSHUNT is amplified by an op amp (U1A) according to the gain set by the ratio of R4 to R3.  To achieve the 
transfer function in Equation (1) and to minimize errors as described in Table 2, set R4=R2 and R3=R1. 

To provide the reference voltage in this design, divide down the supply voltage (VCC) using R5 and R6.  The 
reference voltage is then buffered using an op amp (U1B). 
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Figure 2: Design Schematic 

Equation (1) depicts the ideal transfer function for the schematic shown in Figure 2. 

 REFAmp_DiffSHUNTOUT VGainVV   (1) 

Where 

 SHUNTLOADSHUNT RIV   (2) 
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2.1 Error Analysis 

There are two types of errors introduced by the circuit in Figure 2: offset and gain.  To obtain more 
information about these types of errors, please refer to TIPD129.  Table 2 lists the error sources and their 
respective type(s). 

Table 2. Design Error Sources 

Error Source Description Error Type 

Shunt resistor Shunt resistor tolerance Gain 

Difference Amplifier  U1A and R1-R4 create a difference amplifier.  
The ratios of R2/R1 and R4/R3 introduce a gain 

error.  The absolute value of the ratios 
introduce a gain error and the matching of the 

ratios determine the CMRR performance, 
which translates to an offset error.  

Offset & Gain 

Reference Voltage The accuracy of the voltage divider created by 
R5 and R6 yields an offset error. 

Offset 

These errors ultimately combine and are measured at the output as gain and offset errors.  It is common to 
combine them using the root sum squared (RSS) method.  This method is used when combining errors 
with a normal distribution, thereby yielding typical total error.  For a worst-case total error, simply add all 
error terms directly.   

  

http://www.ti.com/tool/tipd129
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3 Component Selection 

3.1 Shunt Resistor (RSHUNT) 

As shown in Figure 2, the value of VSHUNT is the ground potential for the system load.  If the value of VSHUNT 
is too large, it may cause issues when interfacing with systems whose ground potential is truly 0 V.  If the 
value of VSHUNT is too negative, it may violate the input common-mode voltage of the differential amplifier in 
addition to potential interfacing issues.  Therefore it is important to limit the voltage across the shunt 
resistor.  Equation (5) calculates the maximum value of RSHUNT given a maximum shunt voltage of 100 mV. 

 

 m100
A1

mV100

I

V
R

)MAX(LOAD

)MAX(SHUNT

)MAX(SHUNT  

(5) 

Since cost is a priority in this design, a shunt resistor with 0.5% tolerance was selected. 

3.2 Operational Amplifiers 

The shunt voltage in this design can range from -100 mV to +100 mV.  It is divided down by R1 and R2.  
The op amp configured as a difference amplifier (U1A) must have an input common-mode that includes 
this voltage range.  Therefore an op amp with rail-to-rail input (RRI) that extends below GND is 
recommended.  The output swing of the amplifier should also be rail-to-rail output (RRO) to maximize the 
dynamic range of the system.  A CMOS op amp is suggested because the supply voltage is 3.3 V.  The 
supply-splitter op amp (U1B) should have low offset voltage.  Since there are 2 op amps in this design, a 
dual package minimizes the required area.   

This design utilizes the OPA2313 because it is a RRI/O CMOS device.  In addition, the cost vs. 
performance of the device is excellent. 

3.3 Reference Voltage Resistors (R5-R6) 

Since the load current range is symmetric (-1 A to 1 A), the resistors that divide down the supply voltage 
should be equal so that the reference voltage is mid supply (1.65 V).  Since cost is a priority in this design, 
the tolerance should be consistent with the shunt resistor tolerance (0.5%).  Finally, select resistors that 
are large enough to meet the system’s power consumption requirement.  For this design, 10 kΩ resistors 
were chosen.  

3.4 Difference Amplifier Gain Setting Resistors (R1-R4) 

Equations (6) and (7) show the input common-mode and output voltage range of the OPA2313 given a 
3.3V supply. 

 V5.3VmV200 CM   (6) 

 V2.3VmV100 OUT   (7) 

The gain is calculated as shown in Equation (8).    
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







  

(8) 

The resistor value selected for R1 and R3 was 1 kΩ. The resistor value selected for R2 and R4 was 
15.4 kΩ, which is the nearest 0.1% value to the ideal value of 15.5 kΩ.  Therefore the ideal gain of the 
difference amplifier is 15.4 V/V.  
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4 Simulation 

4.1 Transfer Function 

Figure 3 shows the TINA-TI™ schematic used to simulate the dc transfer function. 

 

Figure 3: TINA-TI™ Transfer Function Schematic 

Figure 4 depicts the simulated dc transfer function results using nominal component values. 

 

Figure 4: Simulated Nominal Output Voltage vs. Load Current 
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These results correlate with the ideal minimum and maximum output voltages as calculated in Equations 
(9) and (10). 

 mV110V65.1
V

V
4.15mV100V MIN_OUT   (9) 

 

 V19.3V65.1
V

V
4.15mV100V MAX_OUT   (10) 

4.2 Monte Carlo Simulation Error Analysis 

To analyze error due to the op amps, tolerance of RSHUNT, the difference amplifier resistors R1-R4, and the 
reference voltage divider resistors R5-R6, a 1,000 point Monte-Carlo simulation was run at -1 A and 1  A 
input currents. The results of the Monte-Carlo simulation are shown in Table 3. 

Table 3. DC Transfer Results from Calibrated Monte-Carlo Analysis 

 
Average (µ) Std. Dev. (σ) 

VOUT (V) at -1A 119.481035m 3.424383m 

VOUT (V) at 0A 1.659374 2.215354m 

VOUT (V) at 1A 3.199267 3.608592m 

Using the mean (µ) and standard deviation (σ) from the Monte-Carlo simulation, a prediction of the typical 
(±1σ) offset error is calculated using Equation (12). 

  
%7.0100

65.1

65.11
(%)rOffsetErro SIM_TYP 


  

(11) 

Similarly, a prediction of the typical gain error is calculated below. 
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





 

 

(12) 

 

4.3 DC Sweep Error Analysis 

In addition to the Monte Carlo simulation, worst-case dc sweeps of the circuit in Figure 3 were simulated 
while varying the resistors within their typical values (±1σ), which is 1/3 of their given tolerance.  For 
example, resistors with a tolerance of 0.1% were change to 0.033%.  The typical offset error was 
simulated to be 0.86% and the gain error was 0.24%.  These results correlate well with the Monte Carlo 
simulation. 

4.4 Simulated Results Summary 

Table 4 compares the simulation results with the design goals. 

Table 4. Design Goals with Simulated Performance 

 Goal Simulated-MC Simulated-DC Sweep 

Offset Error  0.7% 0.86% 

Gain Error  0.22% 0.24% 

Total Error ±1% 0.734% (RSS) 0.893% (RSS) 
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5 PCB Design 

The PCB schematic and bill of materials can be found in Appendix A. 

5.1 PCB Layout 

Figure 5 depicts the printed circuit board (PCB) layout.  The traces for the shunt voltage are balanced and 
short.  Wide, short traces were used for the load current path to minimize impedance.  All other standard 
PCB layout practices were observed. 

 

Figure 5: PCB Layout 
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6 Verification & Measured Performance 

6.1 Transfer Function 

The output voltage was measured while sweeping the input current from -1 A to 1 A.  Five boards were 
assembled and measured.  The transfer function measurement for Board 1 is shown in Figure 6 while the 
remaining results can be found in Appendix C. 

 

Figure 6: Measured Output Voltage vs. Load Current (Board #1) 

The ideal circuit gain (which is the product of the shunt gain, 0.1, and difference amplifier gain, 15.4) is 1.54V/V.  
The ideal offset voltage is equal to the reference voltage, or 1.65V.  Using a straight-line approximation for the 
results yields the measured gain and offset as shown in Figure 6.  The gain and offset error for board #1 is 
calculated below. 
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6.2 Measured Results Summary 

The measured results are summarized in Table 5. 

Table 5. Measured Performance Summary 

 GE(%) Offset Error (%) RSS Total Error (%) 

Board 1 -0.022 -0.343 0.344 

Board 2 -0.011 -0.146 0.146 

Board 3 -0.084 0.026 0.088 

Board 4 0.029 0.448 0.449 

Board 5 -0.010 0.621 0.621 
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7 Modifications 

The most significant error contribution is the offset error due to the reference voltage divider accuracy and 
op amp offset voltage.  In order to minimize this error, consider using resistors with a tighter tolerance.  
Alternate op amps with less offset voltage are listed below.  Note that the input common-mode range for 
the alternate op amps is less than the OPA2313.  Therefore it is suggested to limit the shunt voltage to no 
more than 50 mV below the negative rail for design margin. 

Table 6: Alternate Op Amps 

Op Amp 
VOS @ 25ºC  

(max, µV) 
Vcm(min) Vcm(max) 

Output Swing 
to Supply (mV) 

BW  

(typ, MHz) 

OPA2313 2500 (V-)-0.2 (V+)+0.2 100 1 

OPA2317 90 (V-)-0.1 (V+)+0.1 100 0.3 

OPA2320 150 (V-)-0.1 (V+)+0.1 35 20 

OPA2330 50 (V-)-0.1 (V+)+0.1 100 0.35 

OPA2333 10 (V-)-0.1 (V+)+0.1 50 0.35 

OPA2365 200 (V-)-0.1 (V+)+0.1 20 50 

OPA2376 25 (V-)-0.1 (V+)+0.1 30 5.5 

In order to decrease gain error, consider either resistors with a tighter tolerance or a RRI/O instrumentation 
amplifier (e.g. INA326).  For solutions that require low-drift, consider using a current shunt monitor and 
dual-output reference (e.g. TIPD156) because all resistors are integrated in the package and will drift 
together. 
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Appendix A.  

A.1 Electrical Schematic 

 

Figure A-1: Electrical Schematic 
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A.2 Bill of Materials 

 

Quantity Designator Value Description Manufacturer Manufacturer Part Number DigiKey Part Number 

1 VCC Red Test Point, TH, Compact, Red Keystone 5005 5005K-ND 

3 GND Black Test Point, TH, Compact, Black Keystone 5006 5006K-ND 

1 Vout White Test Point, Compact, White, TH Keystone 5007 5007K-ND 

1 Vref Orange Test Point, Compact, Orange, TH Keystone 5008 5008K-ND 

1 Iin Yellow Test Point, Compact, Yellow, TH Keystone 5009 5009K-ND 

1 C2 0.1uF CAP, CERM, 0.1uF, 25V, +/-10%, X7R, 0603 AVX 06033C104KAT2A 478-3714-1-ND 

1 C3 100pF CAP, CERM, 100pF, 50V, +/-5%, C0G/NP0, 0603 AVX 06035A101JAT2A 478-1175-1-ND 

2 R1, R3 1.00k RES 1K OHM 1/16W .1% 0603 SMD Bourns CRT0603-BY-1001ELF CRT0603-BY-1001ELFCT-ND 

1 RL 10.0k RES 10K OHM 1/10W 1% 0603 Stackpole Electronics Inc RMCF0603FT10K0 RMCF0603FT10K0CT-ND 

1 Rshunt 0.1 RES 0.1 OHM 1/2W 0.5% 1206 Ohmite LVK12R100DER LVK12R100DERCT-ND 

4 U94, U95, U96, U97   MACHINE SCREW PAN PHILLIPS 4-40 B&F Fastener Supply PMSSS 440 0025 PH H703-ND 

1 U1   IC OPAMP GP 1MHZ RRO 8VSSOP Texas Instruments 
OPA2313IDGK 

296-35004-ND 

2 R5, R6 10.0k RES 10.0K OHM 1/16W .5% 0603 SMD Susumu Co Ltd 
RR0816P-103-D 

RR08P10.0KDCT-ND 

2 R2, R4 15.4k RES 15.4K OHM 1/10W .1% 0603 SMD Susumu Co Ltd RG1608P-1542-B-T5 RG16P15.4KBCT-ND 

4 U90, U91, U92, U93   STANDOFF HEX 4-40THR ALUM 1L" Keystone 2205 2205K-ND 

1 C1 10uF CAP, TA, 10uF, 25V, +/-10%, 0.5 ohm, SMD AVX TPSC106K025R0500 478-1762-1-ND 

Figure A-2: Bill of Materials 
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Appendix B.  

B.1 Error Analysis 

The transfer function for this design is given in Equation (15). 

 REFSHUNTOUT VGainVV   (15) 

Equation (16) is the transfer function in terms of circuit voltages, currents, and components.  This equation 
aids in understanding the error analysis.   
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B.1.1 Offset Errors 

The reference voltage supplied by the resistor divider (R5 and R6) and U1B will introduce an offset error.  
Given a tolerance of ±0.5% for the resistors, supply voltage (VCC) of 3.3V, and ideal dividing ratio of ½, the 
maximum offset voltage due to R5 and R6 is calculated in Equation (17). 

 mV25.8
0.5%)(1)%5.0(1

l%5.01
-Ratio IdealVV CCMAX_6R5R_OS 















 (17) 

This error calculation represents the worst-case scenario.  Assuming the resistor values observe a 
Gaussian 6σ (±3σ) distribution, dividing the tolerance by 3 will yield a typical error analysis (±1σ). This 
result is calculated in Equation (18). 

 mV76.2
0.167%)(1)%167.0(1

l%167.01
-Ratio IdealVV CCTYP_6R5R_OS 















 (18) 

In addition to the offset due to R5 and R6, the op amps U1A and U1B have typical offset voltages of 
±0.5mV (±2.5mV maximum).  

 mV5.0V TYP_1U_OS   (19) 

 mV5.2V MAX_1U_OS   (20) 
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The CMRR performance of the op amp U1A also introduces an offset error.  Equations (21) and (22) 
calculate the typical and maximum offset errors introduced by the OPA313 given a common-mode voltage 
near zero.  For more information on this calculation, please refer to Part III of the Current Sensing 
Fundamentals article series. 

 V8.97

10

1
V65.1V

dB20

dB85TYP_CMRR_A1U_OS 
















  (21) 
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1
V65.1V

dB20

dB70MAX_CMRR_A1U_OS 
















  

(22) 

Finally, the CMRR performance of the difference amplifier also introduces an offset error.  The CMRR 
performance of a discrete difference amplifier can be calculated using Equation (23).  [1]   

 

100

(%)R
4

Gain1
log20CMRR

tolerance
10dB




  (23) 

The worst-case CMRR performance of the difference amplifier in a gain of 15.4 V/V using 0.1% resistors is 
72.25 dB.  The typical CMRR is 81.8 dB (calculated using 0.033% resistors).   

The common-mode voltage of the difference amplifier (defined as the average voltage at the input pins) 
can range from -50 mV to 50 mV.  Therefore, the offset voltage due to the difference amplifier CMRR is 
calculated in Equations (24) and (25). 

 V1.4

10

1
mV50V

dB20

dB8.81TYP_DA_OS 


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








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





  

(25) 

Table 7 summarizes the offset voltage errors.   

Table 7. Summary of Calculated Offset Errors 

 Typical Maximum 

Resistor Divider ±2.76mV ±8.25mV 

U1A & U1B ±0.5mV ±2.5mV 

U1A CMRR ±97.8µV ±0.52mV 

Difference Amp 
CMRR 

±4.1µV ±12.2µV 
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The offset voltages due to the resistor divider (R5 and R6) and the offset voltage of U1B add directly to the 
output of U1A.  The remaining offset voltages are referred to the output of the circuit (RTO) by multiplying 
by the gain of the difference amplifier (15.4V/V). Therefore we can calculate the total offset error referred 
to the output as shown in Equation (26).  The typical and maximum offset voltages referred to the output 
are depicted in Equations (27) and (28). 

      2DA_OS
2

CMRR_A1U_OS
2

A1U_OS
2

B1U_OS
2

6R5R_OSRTO_Total_OS VGainVGainVGainVVV   
(26) 

 mV33.8V TYP_RTO_Total_OS   
(27) 

 mV23.40V MAX_RTO_Total_OS   
(28) 

Given an ideal offset voltage of 1.65V, the offset typical and maximum offset errors are calculated below. 
 

 

 

 

 

%5.0100
65.1

mV33.8
(%)rOffsetErro CALC_TYP 


  (29) 

 

%44.2100
65.1

mV23.40
(%)rOffsetErro CALC_MAX 


  

(30) 

The calculated typical offset error correlates well with the simulated results (0.7% and 0.86%).  The 
calculated maximum offset error is larger than the simulated results because the amplifier simulation 
models only model the typical offset error. 
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B.1.2 Gain Errors 

The shunt resistor, RSHUNT, introduces a gain error.  In this design, the tolerance of RSHUNT is 0.5%.  Also, 
any mismatch in the gain setting resistors of the difference amplifier (R4 and R3) introduce gain error.  
Since they each have a tolerance of 0.1% (ε=0.001), the worst-case gain error introduced by the gain-
setting resistors of the difference amplifier is approximately 0.2% as calculated in Equation (31).   
 

%2.0...%2002.0100
1

1
1(%)GE Amp_Diff 




















  

(31) 

The following equations calculate the typical (using 1/3 of the resistor tolerance) and maximum gain error 
expected for this design. 
 

%18.007.0167.0GE 22
TYP   

(32) 

 %54.02.05.0GE 22
MAX   (33) 

 

B.1.3 Total Error 

The total error, including both offset and gain errors, is calculated in Equations (34) and (35).   

 %53.0GErOffsetErroError
2

TYP
2

TYPTYP_Total   (34) 

 

%5.2GErOffsetErroError
2

MAX
2

MAXMAX_Total   

(35) 
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Appendix C.  
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C.3 Board #4 

 

C.4 Board #5 
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