
Application Report
SWRA172C–August 2008–Revised March 2015

Using AES Encryption in CC111xFx and CC251xFx

TorgeirSundet

ABSTRACT
This application report describes the key elements, and simple usage of the CC111xFx and CC251xFx
Advanced Encryption Standard (AES) encryption and decryption coprocessor.

The main objective of the document is to explain the CC111xFx and CC251xFx software required to
operate the AES coprocessor, with and without DMA assistance.

Contents
1 Introduction ... 2
2 Background ... 2
3 Using the AES Coprocessor.. 3
4 References .. 13

All trademarks are the property of their respective owners.

1SWRA172C–August 2008–Revised March 2015 Using AES Encryption in CC111xFx and CC251xFx
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

Introduction www.ti.com

1 Introduction
The AES coprocessor is typically used to encrypt the RF communication and provide RF link security, for
example, defense against unauthorized link access.

1.1 Acronyms Used in This Document

Table 1. Acronyms

Acronyms Descriptions
AES Advanced encryption standard
CBC Cipher block chaining

CBC-MAC Cipher block chaining message authentication code
CFB Cipher feedback
CTR Counter mode (encryption)
CPU Central processor unit
DMA Direct memory access
ECB Electronic code book
ISR Interrupt service routine
IV Initialization vector

NONCE Not Once
NOP No operation
OFB Output feedback (encryption)
RF Radio frequency

System-on-chip. A collective term used to refer to Texas Instruments ICs with on-chip MCU and RF transceiver.SoC Used in this document to reference the CC1110, CC1111, CC2510 and CC2511.
SPI Serial peripheral interface

UART Universal asynchronous receiver/transmitter

2 Background
In the SoC data sheets ([1] and [2]), it is stated that the SoC performs data encryption and decryption
using a dedicated coprocessor that supports the AES. The coprocessor allows encryption and decryption
to be performed with minimal CPU usage.

The coprocessor has the following features:
• ECB, CBC, CFB, OFB, CTR, and CBC-MAC modes
• Hardware support for CCM mode
• 128-bits key and IV/NONCE
• DMA transfer trigger capability

2.1 Scope
The AES coprocessor can be used to add security on a wired link (UART/SPI), or wireless link (RF).
However, for the SoC it is typically intended for radio link security. Therefore, this application report
represents how to perform AES encryption prior to transmitting a packet payload on radio, and AES
decryption after receiving a packet payload on radio. For simplicity, it is assumed that the applied AES
mode is either ECB or CBC, which implies an AES block size of 16 bytes. For other AES operation
modes, see the Modes of Operation section in the SoC data sheets ([1] and [2]).

2 Using AES Encryption in CC111xFx and CC251xFx SWRA172C–August 2008–Revised March 2015
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

www.ti.com Background

2.2 Basic AES Operation
To encrypt and decrypt a message, the following procedure must be followed:
1. Load key
2. Load initialization vector (IV)/NONCE
3. Download and upload data for encryption and decryption.

The AES coprocessor works on blocks of 128 bits. A block of data is loaded into the coprocessor,
encryption is performed, and the result must be read out before the next block can be processed. Before
each block load, a dedicated start command must be sent to the coprocessor.

3 Using the AES Coprocessor
The AES coprocessor reads data from the ENCDI register, performs encryption and decryption, and then
writes the processed data to the ENCDO register. In encryption mode, ENCDI represents the
download/input register for the data to be encrypted, while ENCDO represents the upload and output
register for the encrypted data. In decryption mode, ENCDI represents the download and input register for
the data to be decrypted, while ENCDO represents the upload and output register for the decrypted data.
The AES coprocessor is controlled and monitored by the ENCCS register.

Data between the SoC memory and AES coprocessor can be transferred using the CPU or the DMA
controller. Using the CPU prevents the CPU from performing other tasks (except from Interrupt Service
Routines) during memory transfer, but requires little code. Using the DMA controller allows the CPU to
continue with other tasks, while the DMA controller transfers data blocks between the AES coprocessor
and SoC memory, but increases code size. Upon each data block transfer the AES coprocessor can be
configured to generate a CPU interrupt, which can be used to start encryption and decryption of the next
data block.

NOTE: The AES coprocessor has been designed to work with DMA, therefore, this is the preferred
usage.

3.1 Using the AES Coprocessor With DMA
In order to use the DMA controller to support the AES coprocessor, two DMA channels must be allocated
and configured: one for downloading data from SoC memory to the AES coprocessor and another for
uploading processed data from the AES coprocessor to SoC memory.

3SWRA172C–August 2008–Revised March 2015 Using AES Encryption in CC111xFx and CC251xFx
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

Using the AES Coprocessor www.ti.com

3.1.1 Configuring DMA for the AES Coprocessor
The code required to set up DMA for AES is shown in Example 1 and implements the following main
steps:
1. Define and allocate data structure in SoC memory for DMA channel configuration (descriptor).
2. Link each allocated DMA channel descriptor with its corresponding DMA configuration register.
3. Setup DMA channel 0 to download data from SoC memory to the AES coprocessor.
4. Setup DMA channel 1 to upload data from the AES coprocessor to SoC memory.

Example 1. Configuring DMA for the AES Coprocessor

// C language code:

// Data structure for DMA descriptor
typedef struct {
unsigned char SRCADDRH;
unsigned char SRCADDRL;
unsigned char DESTADDRH;
unsigned char DESTADDRL;
unsigned char VLEN : 3;
unsigned char LENH : 5;
unsigned char LENL : 8;
unsigned char WORDSIZE : 1;
unsigned char TMODE : 2;
unsigned char TRIG : 5;
unsigned char SRCINC : 2;
unsigned char DESTINC : 2;
unsigned char IRQMASK : 1;
unsigned char M8 : 1;
unsigned char PRIORITY : 2;
} DMA_DESC;

// Allocate DMA descriptors for AES download and upload
DMA_DESC __xdata dma_ch_0, __xdata dma_ch_1;

// Link each allocated DMA channel descriptor with its corresponding
// DMA configuration register.
DMA0CFGH = (unsigned char)((unsigned short)&dma_ch_0 >> 8);
DMA0CFGL = (unsigned char)((unsigned short)&dma_ch_0 & 0x00FF);
DMA1CFGH = (unsigned char)((unsigned short)&dma_ch_1 >> 8);
DMA1CFGL = (unsigned char)((unsigned short)&dma_ch_1 & 0x00FF);

// Setup DMA channel 0 to download data to the AES coprocessor
dma_ch_0.DESTADDRH = 0xDF; // High byte address of ENCDI (AES data input)
dma_ch_0.DESTADDRL = 0xB1; // Low byte Address of ENCDI (AES data input)
dma_ch_0.VLEN = 0x00; // Use LEN for transfer count
dma_ch_0.LENH = 0; // Set to 0, because this app report assumes

// size < 256. LENL is set by the code shown
// in Example 2 and Example 3.

dma_ch_0.WORDSIZE = 0x00; // Perform byte-wise transfer
dma_ch_0.TMODE = 0x00; // Transfer a single byte after each

// DMA trigger.
dma_ch_0.TRIG = 29; // AES coprocessor requests download input data
dma_ch_0.SRCINC = 0x01; // Increment source pointer by 1 byte after

// each transfer.
dma_ch_0.DESTINC = 0x00; // Do not increment destination pointer:

// points to AES ENCDI register.
dma_ch_0.IRQMASK = 0x00; // Disable DMA interrupt to the CPU
dma_ch_0.M8 = 0x00; // Use all 8 bits for transfer count
dma_ch_0.PRIORITY = 0x01; // Guaranteed, DMA at least every second try

4 Using AES Encryption in CC111xFx and CC251xFx SWRA172C–August 2008–Revised March 2015
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

www.ti.com Using the AES Coprocessor

Example 1. Configuring DMA for the AES Coprocessor (continued)
// Setup DMA channel 1 to upload data from the AES coprocessor

dma_ch_1.SRCADDRH = 0xDF; // High byte address of ENCDO (AES data output)
dma_ch_1.SRCADDRL = 0xB2; // Low byte Address of ENCDO (AES data output)
dma_ch_1.VLEN = 0x00; // Use LEN for transfer count
dma_ch_1.LENH = 0; // Set to 0, because this app report assumes

// size < 256. LENL is set by the code shown
// in Example 2 and Example 3.

dma_ch_1.WORDSIZE = 0x00; // Perform byte-wise transfer
dma_ch_1.TMODE = 0x00; // Transfer a single byte after each

// DMA trigger.
dma_ch_1.TRIG = 30; // AES coprocessor requests upload output data.
dma_ch_1.SRCINC = 0x00; // Do not increment source pointer:

// points to AES ENCDO.
dma_ch_1.DESTINC = 0x01; // Increment destination pointer by 1 byte

// after each transfer.
dma_ch_1.IRQMASK = 0x00; // Disable DMA interrupt to the CPU
dma_ch_1.M8 = 0x00; // Use all 8 bits for transfer count
dma_ch_1.PRIORITY = 0x01; // Guaranteed, DMA at least every second try

3.1.2 Loading the AES Key and IV/NONCE Using DMA
Before commanding the AES coprocessor to perform data encryption and decryption, it must be loaded
with an AES key and an initialization vector (IV)/NONCE. In a radio application, these are typically
generated based on a standard/protocol specification. However, for simplicity, this document does not use
any particular specification for generating them. Example 2 shows the required code and implements the
following main steps:
1. Generate AES key.
2. Initialize and configure DMA for AES, according to the code shown in Example 1.
3. Setup DMA channel 0 to download from allocated key buffer to the AES coprocessor. (1)

4. Download key to AES coprocessor.
5. Generate IV/NONCE.
6. Setup DMA channel 0 to download from allocated IV/NONCE buffer to the AES coprocessor. (1)

7. Download IV/NONCE to AES coprocessor.

(1) In direct succession of arming the DMA Channels, a total of 45 NOP’s must be applied in order for
the arming to actually take effect.

5SWRA172C–August 2008–Revised March 2015 Using AES Encryption in CC111xFx and CC251xFx
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

Using the AES Coprocessor www.ti.com

Example 2. Loading the AES Key and IV/NONCE Using DMA

// C language code:

unsigned char i;

// Allocate source buffer for AES Key and IV/NONCE
__no_init unsigned char __xdata key[SIZE_OF_AES_BLOCK];
__no_init unsigned char __xdata iv_nonce[SIZE_OF_AES_BLOCK];

// Generate Key:
// In a radio application this is typically generated based on
// a standard/protocol specification. However, for simplicity,
// this app report does not use any particular specification
// for generating it.
for(i = 0; i < SIZE_OF_AES_BLOCK; i++) { key[i] = i * 2; }

//
// Place code here for DMA initialization/setup (see Example 1)
//

// Configure DMA channel 0 to read from allocated key buffer
dma_ch_0.SRCADDRH = (unsigned char)((unsigned short)key >> 8);
dma_ch_0.SRCADDRL = (unsigned char)((unsigned short)key);

// Set DMA transfer count according to key length (128 bits = 16 bytes)
dma_ch_0.LENL = SIZE_OF_AES_BLOCK;

// Arm DMA channel 0 (DMAARM.DMAARM0 = 1),
// and apply 45 NOP’s to allow the DMA arming to actually take effect.
DMAARM |= 0x01;
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");

// Download key (Set ENCCS.CMD = 10b),
// and start corresponding AES process (ENCCS.ST = 1)
ENCCS = 0x04 | 0x01;

// Monitor AES coprocessor (ENCCS.RDY) to wait until key downloaded
while(!(ENCCS & 0x08));

// Generate IV/NONCE:
// In a radio application this is typically generated based on
// a standard/protocol specification. However, for simplicity,
// this app report does not use any particular specification
// for generating it.
for(i = 0; i < SIZE_OF_AES_BLOCK; i++) { iv_nonce[i] = i; }

// Configure DMA channel 0 to read from allocated AES IV/NONCE buffer
dma_ch_0.SRCADDRH = (unsigned char)((unsigned short)iv_nonce >> 8);
dma_ch_0.SRCADDRL = (unsigned char)((unsigned short)iv_nonce);

// Set DMA transfer count according to IV/NONCE length (128 bits = 16 bytes)
dma_ch_0.LENL = SIZE_OF_AES_BLOCK;

6 Using AES Encryption in CC111xFx and CC251xFx SWRA172C–August 2008–Revised March 2015
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

www.ti.com Using the AES Coprocessor

Example 2. Loading the AES Key and IV/NONCE Using DMA (continued)
// Arm DMA channel 0 (DMAARM.DMAARM0 = 1),
// and apply 45 NOP’s to allow the DMA arming to actually take effect.
DMAARM |= 0x01;
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");

// Download IV/NONCE (Set ENCCS.CMD = 11b),
// and start corresponding AES process (ENCCS.ST = 1)
ENCCS = 0x06 | 0x01;

// Monitor AES coprocessor (ENCCS.RDY) to wait until IV/NONCE downloaded
while(!(ENCCS & 0x08));

3.1.3 Starting AES Encryption and Decryption Using DMA
After loading the key and IV/NONCE, the AES coprocessor is ready to perform data encryption and
decryption. Data to be encrypted and decrypted is downloaded to the AES coprocessor through DMA
channel 0, while the corresponding processed data is uploaded from the AES coprocessor to SoC
memory through DMA channel 1. The required code is shown in Example 3 and implements the following
main steps:
1. Initialize and configure DMA for AES, according to the code shown in Example 1.
2. Download key to the AES coprocessor, according to code shown in Example 2.
3. Download IV/NONCE to the AES coprocessor, according to code shown in Example 2.
4. Configure DMA channel 0 to download data from the allocated source buffer to the AES coprocessor.

In encryption mode, the source buffer represents the data to be encrypted. Hence, in a radio
application, this would typically be the raw data of the packet payload to be transmitted. In decryption
mode, the source buffer represents the data to be decrypted. In a radio application, this would typically
be the payload extracted from the received packet.

5. Configure DMA channel 1 to upload data from the AES coprocessor to the allocated target buffer. In
encryption mode, the target buffer represents the encrypted data. Hence, in a radio application, this
would typically be the encrypted packet payload to be transmitted. In decryption mode, the target
buffer represents the decrypted data. In a radio application, this would typically be the decrypted
payload of the received packet.

6. Arm DMA channel 0 and 1. (1)

7. Clear any pending AES interrupt requests and enable AES interrupt.
8. Start the AES encryption and decryption process. The DMA controller automatically starts downloading

source data through DMA channel 0, byte-by-byte, to the AES coprocessor. After each data block
download (16 bytes), the AES coprocessor triggers the DMA controller to upload the corresponding
processed data block to the allocated target buffer, through DMA channel 1.

9. The AES interrupt service routine (ISR), shown in Example 4, is used to trigger transfer of the next or
remaining data blocks.

(1) In direct succession of arming the DMA Channels, a total of 45 NOP’s must be applied in order for the arming to actually take effect.

7SWRA172C–August 2008–Revised March 2015 Using AES Encryption in CC111xFx and CC251xFx
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

Using the AES Coprocessor www.ti.com

NOTE: If the total length of the data to be encrypted and decrypted (source buffer) is not a multiple
of the AES block size, then the remaining bytes of the AES block must be padded with
zeros. However, for simplicity, this document assumes that the total length of the data to be
encrypted and decrypted is indeed a multiple of the AES block size.

In order for the AES coprocessor to generate an associated CPU interrupt request
(S0CON.ENCIF_x = 1,) both AES download and AES upload must be completed. For
instance, if the DMA upload channel is not armed when starting the AES encryption and
decryption, this causes lack of AES ISR execution.

Example 3. Starting AES Encryption and Decryption Using DMA

// C language code:

// Define size parameters for the AES processing:
#define SIZE_OF_ENC_BUFFER 128
#define SIZE_OF_AES_BLOCK 16
#define SIZE_OF_ENC_PACKET 8*SIZE_OF_AES_BLOCK

// Allocate global flag to identify AES mode (encryption/decryption)
unsigned char aes_enc;

__no_init BYTE __xdata aes_buffer_1[SIZE_OF_ENC_BUFFER]; // Source buffer
__no_init BYTE __xdata aes_buffer_2[SIZE_OF_ENC_BUFFER]; // Target buffer

// Set desired AES mode (encryption or decryption)
aes_enc = 0; // Only valid for decryption mode!
//aes_enc = 1; // Only valid for encryption mode!

//
// Place code here for DMA initialization/setup (see Example 1)
// Place code here for downloading key and IV/NONCE (see Example 2)
//

// Set DMA transfer count according to size of encryption/decryption packet.
// This app report assumes that the size < 256. If size ≥ 256, then it is also
// necessary to initialize the LENH parameter.
dma_ch_0.LENL = SIZE_OF_ENC_PACKET;
dma_ch_1.LENL = SIZE_OF_ENC_PACKET;

// Configure DMA channel 0 to read from the allocated source/download buffer:
// In encryption mode, the source/download buffer represents the data to be
// encrypted. For a radio application this would typically be the buffer
// holding the raw payload of the packet to be transmitted on the radio.
// In decryption mode, the source/download buffer represents the data to be
// decrypted. For a radio application, this would typically be the buffer
// holding the encrypted packet payload received on the radio.
dma_ch_0.SRCADDRH = (unsigned char)((unsigned short)aes_buffer_1 >> 8);
dma_ch_0.SRCADDRL = (unsigned char)((unsigned short)aes_buffer_1);

// Configure DMA channel 1 to write to the allocated target/upload buffer:
// In encryption mode, the target/upload buffer represents the encrypted data.
// For a radio application this would typically be the buffer holding the
// encrypted payload to be transmitted on radio.
// In decryption mode, the target/upload buffer represents the decrypted data.
// For a radio application this would typically be the buffer holding the
// decrypted packet payload received on radio.
dma_ch_1.DESTADDRH = (unsigned char)((unsigned short)aes_buffer_2 >> 8);
dma_ch_1.DESTADDRL = (unsigned char)((unsigned short)aes_buffer_2);

8 Using AES Encryption in CC111xFx and CC251xFx SWRA172C–August 2008–Revised March 2015
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

www.ti.com Using the AES Coprocessor

Example 3. Starting AES Encryption and Decryption Using DMA (continued)
// Arm DMA channel 0 and 1(Set DMAARM.DMAARM0/1 = 1),
// and apply 45 NOP's to allow the DMA arming to actually take effect.
DMAARM |= (0x02 | 0x01);
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");

// Clear any pending AES interrupt (S0CON.ENCIF_0/1 = 0)
ENCIF_1 = ENCIF_0 = 0;

// Enable AES interrupt (Set IEN0.ENCIE), and global interrupt (Set IEN0.EA)
ENCIE = 1; EA = 1;

// Configure and start AES coprocessor for the desired AES mode:
// Encryption => ENCCS.CMD = 00b, decryption mode => ENCCS.CMD = 01b.
// Use so-called Cipher Block Chaining encryption mode => ENCCS.MODE = 000b.
// Start AES processing (ENCCS.ST = 1) of source buffer (aes_buffer_1).
ENCCS = 0x00 | 0x01; // Only valid for encryption mode !
//ENCCS = 0x02 | 0x01; // Only valid for decryption mode !

// Note:
// The AES ISR, shown in Example 4, is invoked each time the AES coprocessor
// has encrypted/decrypted 128 bits (16 bytes), and ensures that the remaining
// parts of the source buffer is encrypted/decrypted.

3.1.4 Processing End of AES Block Encryption/Decryption Using DMA
As introduced in Section 3, when assisted by the DMA controller, each data block (16 bytes) transfer
between the AES coprocessor and SoC memory is performed without CPU involvement. However, each
time the AES coprocessor has completed a data block encryption and decryption, it has to be started
again in order to encrypt and decrypt the next data block in the source buffer. This task is done by the
AES ISR, as shown in Example 4.

Example 4. Processing End of AES Block Encryption/Decryption Using DMA

// C language code:

// Refer to global flag identifying AES mode
extern unsigned char aes_enc;

// AES Interrupt Service Routine (ISR):

_Pragma("vector=0x23") __near_func __interrupt void AES_ISR(void);

_Pragma("vector=0x23") __near_func __interrupt void AES_ISR(void) {

static unsigned char aesEncBlkCnt = SIZE_OF_ENC_PACKET/SIZE_OF_AES_BLOCK;
static unsigned char aesDecBlkCnt = SIZE_OF_ENC_PACKET/SIZE_OF_AES_BLOCK;

// Clear AES interrupt flag (S0CON.ENCIF_0/1 = 0)
ENCIF_1 = ENCIF_0 = 0;

// If in AES encryption mode (aes_enc = 1)
if(aes_enc) {

9SWRA172C–August 2008–Revised March 2015 Using AES Encryption in CC111xFx and CC251xFx
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

Using the AES Coprocessor www.ti.com

Example 4. Processing End of AES Block Encryption/Decryption Using DMA (continued)
// Decrement encryption block counter

aesEncBlkCnt--;

// If still data blocks left to encrypt
if(aesEncBlkCnt) {

// Configure AES coprocessor for Encryption (ENCCS.CMD = 00b),
// and start EAS encryption (ENCCS.ST = 1) of the next data block.
NCCS = 0x00 | 0x01;

// Else (all data blocks encrypted)
} else {

// Reset encryption block counter (any new AES encryption session must be
// initiated outside this ISR, ref. code shown in Example 3.
aesEncBlkCnt = SIZE_OF_ENC_PACKET/SIZE_OF_AES_BLOCK;

}
// Else (in AES decryption mode)
} else {

// Decrement decryption block counter
aesDecBlkCnt--;

// If still data blocks left to decrypt
if(aesDecBlkCnt) {

// Configure AES coprocessor for Decryption (ENCCS.CMD = 01b),
// and start AES decryption (ENCCS.ST = 1) of the next data block.
ENCCS = 0x02 | 0x01;

// Else (all data blocks decrypted)
} else {

// Reset decryption block counter (any new AES decryption session must be
// initiated outside this ISR, ref. code shown in Example 3.
aesDecBlkCnt = SIZE_OF_ENC_PACKET/SIZE_OF_AES_BLOCK;
}

}
}

3.2 Using the AES Coprocessor Without DMA
Using the AES coprocessor without assistance from the DMA controller means that the CPU must handle
all data block transfers (download or upload) between the AES coprocessor and SoC memory. During
AES download or upload, the CPU is not able to perform other tasks, except from ISRs. However, the
resulting code size is smaller than when involving DMA.

3.2.1 Loading the AES Key and IV/NONCE Without DMA
Before commanding the AES coprocessor to perform data encryption and decryption, it must be loaded
with an AES key and an IV/NONCE. In a radio application, these are typically generated based on a
standard/protocol specification. However, for simplicity, this document does not use any particular
specification for generating them.

The code in Example 5 and Example 6 have been tested for CPU clock speeds from 26 MHz down to
1.625 MHz.

10 Using AES Encryption in CC111xFx and CC251xFx SWRA172C–August 2008–Revised March 2015
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

www.ti.com Using the AES Coprocessor

Example 5 shows the required code and implements the following main steps:
1. Generate AES key.
2. Download AES key, by reading (done by CPU) from the allocated key buffer, and writing to the AES

input/download register (ENCDI).
3. Generate AES IV/NONCE.
4. Download AES IV/NONCE, by reading (done by CPU) from the allocated IV/NONCE buffer and writing

to the AES input/download register (ENCDI).

Example 5. Loading the AES Key and IV/NONCE Without DMA

// C language code:

// Define size of AES block
#define SIZE_OF_AES_BLOCK 16

// Allocate source buffers for AES key and IV/NONCE
__no_init unsigned char __xdata key[SIZE_OF_AES_BLOCK];
__no_init unsigned char __xdata iv_nonce[SIZE_OF_AES_BLOCK];

unsigned short i;

// Generate Key:
// In a radio application this is typically generated based on
// a standard/protocol specification. However, for simplicity,
// this app report does not use any particular specification
// for generating it.
for(i = 0; i < SIZE_OF_AES_BLOCK; i++) { key[i] = i * 2; }

// Download Key (Set ENCCS.CMD = 10b),
// and start corresponding AES process (ENCCS.ST = 1)
ENCCS = 0x04 | 0x01;
for (i = 0; i < SIZE_OF_AES_BLOCK; i++) {
ENCDI = key[i];
}

// Monitor AES (ENCCS.RDY) to wait until key downloaded
while(!(ENCCS & 0x08));

// Generate IV/NONCE:
// In a radio application this is typically generated based on
// a standard/protocol specification. However, for simplicity,
// this app report does not use any particular specification
// for generating it.
for(i = 0; i < SIZE_OF_AES_BLOCK; i++) { iv_nonce[i] = i; }

// Dwonload IV/NONCE (Set ENCCS.CMD = 11b)
// and start corresponding AES process (ENCCS.ST = 1)
ENCCS = 0x06 | 0x01;
for (i = 0; i < SIZE_OF_AES_BLOCK; i++) {
ENCDI = iv_nonce[i];
}

// Monitor AES (ENCCS.RDY) to wait until IV/NONCE downloaded
while(!(ENCCS & 0x08));

11SWRA172C–August 2008–Revised March 2015 Using AES Encryption in CC111xFx and CC251xFx
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

Using the AES Coprocessor www.ti.com

3.2.2 Performing AES Encryption/Decryption Without DMA
After downloading the key and IV/NONCE, the AES coprocessor is ready to perform data encryption and
decryption. In the case where the AES coprocessor is not assisted by the DMA controller, the CPU must
download or upload the data blocks between SoC memory and the AES coprocessor. Example 6 shows
the required code and implements the following main steps:
1. Download key and IV/NONCE to the AES coprocessor, according to code shown in Example 5.
2. Configure and start AES coprocessor for the desired AES mode (encryption and decryption).
3. Download data block (16 bytes) to the AES coprocessor by reading (done by CPU) from the allocated

source buffer and writing to the AES input/download register (ENCDI). In encryption mode, the source
buffer represents the data to be encrypted. Therefore, in a radio application, this would typically be the
raw data of the packet payload to be transmitted. In decryption mode, the source buffer represents the
data to be decrypted. In a radio application, this would typically be the payload extracted from the
received packet.

4. Wait until AES download is finished, that is; apply delay equivalent to 40 NOP instructions.
5. Upload data block (16 bytes) from the AES coprocessor by reading (done by CPU) from the AES

output register (ENCDO), and writing to the allocated target buffer. In encryption mode, the target buffer
represents the encrypted data. Therefore, in a radio application, this would typically be the encrypted
packet payload to be transmitted. In decryption mode, the target buffer represents the decrypted data.
In a radio application, this would typically be the decrypted payload of the received packet.

6. Repeat steps 3 - 5 until remaining data blocks have been processed by the AES coprocessor.

NOTE: If the total length of the data to be encrypted or decrypted (source buffer) is not a multiple of
the AES block size, then the remaining bytes of the AES block must be padded with zeros.
However, for simplicity, this document assumes that the total length of the data to be
encrypted or decrypted is indeed a multiple of the AES block size.

Example 6. Performing AES Encryption/Decryption Without DMA

// C language code:

// Define size parameters for the AES processing:
#define SIZE_OF_ENC_BUFFER 128
#define SIZE_OF_AES_BLOCK 16
#define SIZE_OF_ENC_PACKET 8*SIZE_OF_AES_BLOCK

__no_init BYTE __xdata aes_buffer_1[SIZE_OF_ENC_BUFFER]; // Source buffer
__no_init BYTE __xdata aes_buffer_2[SIZE_OF_ENC_BUFFER]; // Target buffer

unsigned short i, j;

//
// Place code here for downloading key and IV/NONCE (see Example 5)
//

// Perform AES encryption/decryption on allocated AES buffer ("aes_buffer_1"):
for (j = 0; j < SIZE_OF_ENC_PACKET/SIZE_OF_AES_BLOCK; j++) {

// Configure and start AES coprocessor for the desired AES mode:
// Encryption => ENCCS.CMD = 00b, decryption mode => ENCCS.CMD = 01b.
// Use so-called Cipher Block Chaining encryption mode => ENCCS.MODE = 000b.
// Start AES processing (ENCCS.ST = 1) of source buffer (aes_buffer_1).
ENCCS = 0x00 | 0x01; // Only valid for encryption mode !
//ENCCS = 0x02 | 0x01; // Only valid for decryption mode !

// Download data block (16 bytes) to AES coprocessor:
// In encryption mode, "aes_buffer_1" represents the data to be encrypted.
// In decryption mode, "aes_buffer_1" represents the data to be decrypted.
for (i = 0; i < SIZE_OF_AES_BLOCK; i++) {

ENCDI = aes_buffer_1[i+(j*SIZE_OF_AES_BLOCK)];

12 Using AES Encryption in CC111xFx and CC251xFx SWRA172C–August 2008–Revised March 2015
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

www.ti.com References

Example 6. Performing AES Encryption/Decryption Without DMA (continued)
}

// Wait until AES download is finished, that is; apply delay
// equivalent to 40 NOPs:
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");

// Upload data block (16 bytes) to allocated AES buffer:
// In encryption mode, "aes_buffer_2" represents the encrypted data.
// In decryption mode, "aes_buffer_2" represents the decrypted data.
for (i = 0; i < SIZE_OF_AES_BLOCK; i++) {

aes_buffer_2[i+(j*SIZE_OF_AES_BLOCK)] = ENCDO;
}

// Monitor AES (ENCCS.RDY) to wait until data block downloaded
while(!(ENCCS & 0x08));

}

4 References
1. CC1110Fx/CC1111Fx Low-Power System-on-Chip (SoC) With MCU, Memory, Sub-1 GHz RF

Transceiver, and USB Controller Data Sheet (SWRS033)
2. CC2510Fx/CC2511Fx Low-Power System-on-Chip (SoC) With MCU, Memory, 2.4 GHz RF

Transceiver, and USB Controller Data Sheet (SWRS055)

13SWRA172C–August 2008–Revised March 2015 Using AES Encryption in CC111xFx and CC251xFx
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SWRS033
http://www.ti.com/lit/pdf/SWRS055
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

Revision History www.ti.com

Revision History

Changes from B Revision (August 2008) to C Revision .. Page

• Removed references to CC2430 and Zigbee throughout the document. .. 1
• Corrected typecast in Example 1.. 4
• Added footnote to Section 3.1.2. .. 5
• Corrected typecast in Example 2.. 6
• Added footnote to Section 3.1.3. .. 7
• Corrected typecast in Example 3.. 8
• Information was updated in Section 3.2... 10

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

14 Revision History SWRA172C–August 2008–Revised March 2015
Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA172C

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Using AES Encryption in CC111xFx and CC251xFx
	1 Introduction
	1.1 Acronyms Used in This Document

	2 Background
	2.1 Scope
	2.2 Basic AES Operation

	3 Using the AES Coprocessor
	3.1 Using the AES Coprocessor With DMA
	3.1.1 Configuring DMA for the AES Coprocessor
	3.1.2 Loading the AES Key and IV/NONCE Using DMA
	3.1.3 Starting AES Encryption and Decryption Using DMA
	3.1.4 Processing End of AES Block Encryption/Decryption Using DMA

	3.2 Using the AES Coprocessor Without DMA
	3.2.1 Loading the AES Key and IV/NONCE Without DMA
	3.2.2 Performing AES Encryption/Decryption Without DMA

	4 References

	Revision History
	Important Notice

