
TMS320C6727, TMS320C6727B,

TMS320C6726, TMS320C6726B,

TMS320C6722, TMS320C6722B,

TMS320C6720

Digital Signal Processors

Silicon Errata

Silicon Revisions 1.2, 1.1, 1.0

SPRZ232F
 July 2005

Revised October 2008

Copyright  2008, Texas Instruments IncorporatedCopyright  2008, Texas Instruments Incorporated

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

2

REVISION HISTORY

This revision history highlights the technical changes made to SPRZ232E to generate SPRZ232F.

Scope: Added Advisory 1.2.4, Do Not Use SPI Slave Mode With Phase = 1.

PAGE(S)
NO. ADDITIONS/CHANGES/DELETIONS

14 Added Advisory 1.2.4, Do Not Use SPI Slave Mode With Phase = 1

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

3

Contents
1 Introduction 4.

1.1 Device and Development-Support Tool Nomenclature 5.

1.2 Revision Identification 6.

2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications and Usage Notes 7.

2.1 Usage Notes for Silicon Revision 1.2 7.

Usage Note 1.2.1: Slave Mode: NEW Deselect Error Flag Detects Transfer Aborted by Master 7.

Usage Note 1.2.2: Master Mode: C2EDELAY and T2EDELAY Formula is Different Than
Described in SPRU718, and Depends Upon the SPIFMT.PRESCALEx Value 7.

Usage Note 1.2.3: Master Mode: How Delay Periods Work in Combination 8.

Usage Note 1.2.4: Master 4-Pin Enable and 5-Pin Modes: Minimum SPIx_ENA Deassertion Period
During T2EDELAY 8.

Usage Note 1.2.5: Master Mode: CSHOLD Bit Needs to be Initialized Twice After Reset 8.

Usage Note 1.2.6: Master Mode: Restrictions on When SPIDAT1 can be Updated With a
New SPIFMTx Register 9.

Usage Note 1.2.7: Slave Mode: Only SPIFMT0 Should be Used 9.

Usage Note 1.2.8: Clearing of SPI Interrupt Flags may be Blocked by Simultaneous Set Condition.
Caution Should be Taken When Clearing Interrupt Flags or Flags may Remain Set. 9.

Usage Note 1.2.9: Slave 5-Pin Mode: Use of ENABLE_HIGHZ = ‘1’ is Recommended,
ENABLE_HIGHZ = ‘0’ Not Recommended 10.

Usage Note 1.2.10: Bootloader Patch may be Required for SPI Slave Boot 10.

2.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications 11.

Advisory 1.2.1 SPI Master Mode: Extra Step Required to Use CSHOLD 11.

Advisory 1.2.2 Do Not Use SPI Master Boot Mode for Silicon Revision 1.2/C9230C100 ROM 13.

Advisory 1.2.3 I2C: I2C Boot Modes of C672x Devices Do Not Always Function Correctly 13.

Advisory 1.2.4 Do Not Use SPI Slave Mode With Phase = 1 14.

3 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications and Usage Notes 15.

3.1 Usage Notes for Silicon Revision 1.1 15.

3.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications 15.

Advisory 1.1.1 SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies 15.

Advisory 1.1.2 SPI Slave Mode Only: Final SPIx_SOMI Bit has Short Hold Time 28.

Advisory 1.1.3 SPI Master Mode: Do not Use WDELAY 31.

Advisory 1.1.5 SPI Master Mode: Do Not Use T2EDELAY and T2CDELAY 32.

Advisory 1.1.6 SPI: SPI Error Flags Incorrectly Cleared 33.

4 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications and Usage Notes 34.

4.1 Usage Notes for Silicon Revision 1.0 34.

4.2 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications 35.

Advisory 1.0.1 Oscillator and Clock Input: Device Start-up Issue 35.

5 Documentation Support 38.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

4

1 Introduction

This document describes the known exceptions to the functional specifications for the TMS320C6727,
TMS320C6727B, TMS320C6726, TMS320C6726B, TMS320C6722, TMS320C6722B, and TMS320C6720 digital
signal processors.† [See the TMS320C6727, TMS320C6726, TMS320C6722 Floating-Point Digital Signal
Processors data sheet (literature number SPRS268) and the TMS320C6727B, TMS320C6726B, TMS320C6722B,
TMS320C6720 Floating-Point Digital Signal Processors data sheet (literature number SPRS370).]

The advisory numbers in this document are not sequential. Some advisory numbers have been moved to the next
revision and others have been removed and documented in the user’s guide. When items are moved or deleted,
the remaining numbers remain the same and are not resequenced.

This document also contains “Usage Notes”. Usage Notes highlight and describe particular situations where the
device’s behavior may not match presumed or documented behavior. This may include behaviors that affect device
performance or functional correctness. These notes will be incorporated into future documentation updates for the
device (such as the device-specific data sheet), and the behaviors they describe will not be altered in future silicon
revisions.

Aureus is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.
† Throughout the remainder of the document, TMS320C6727 (or C6727), TMS320C6727B (or C6727B), TMS320C6726 (or C6726),

TMS320C6726B (or C6726B), TMS320C6722 (or C6722), TMS320C6722B (or C6722B), and/or TMS320C6720 (C6720) will be referred to as
TMS320C672x (or C672x).

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

5

1.1 Device and Development-Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP
devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS
(e.g., TMS320C6727). Texas Instruments recommends two of three possible prefix designators for its support
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering
prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).

Device development evolutionary flow:

TMX Experimental device that is not necessarily representative of the final device’s electrical specifications

TMP Final silicon die that conforms to the device’s electrical specifications but has not completed quality and
reliability verification

TMS Fully qualified production device

Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.

TMDS Fully qualified development-support product

TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:

“Developmental product is intended for internal evaluation purposes.”

TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the
device have been demonstrated fully. TI’s standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system because their
expected end-use failure rate still is undefined. Only qualified production devices are to be used.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

6

1.2 Revision Identification

The device revision can be determined by the Die PG code marked on the top of the package. The location of the
Die PG code for the C672x packages is shown in Figure 1. Figure 1 also shows an example of the types of C672x
package symbolization.

DSP

TMS320C672x
#yy-#######

Die PG Code

NOTE: Qualified devices are marked with the letters “TMS” at the beginning of the device name, while nonqualified devices are marked
with the letters “TMX” or “TMP” at the beginning of the device name.

Figure 1. Example, Die PG Codes for TMS320C672x Device Packages

Silicon revision is identified by a code on the chip. The code is of the format #yy-#######. For example, if yy is
“11”, then the silicon is revision 1.1, etc. Table 1 lists the silicon revisions associated with each die PG code for the
C6727, C6727B, C6726, C6726B, C6722, C6722B, and C6720 devices.

Table 1. Die PG Codes

Die PG Code
(yy) Silicon Revision Comments

12 1.2
TMS320C6727BZDH, TMS320C6727BGDH, TMS320C6726BRFP,
TMS320C6722BRFP, and TMS320C6720RFP

11 1.1
TMS320C6727GDH, TMS320C6727ZDH, TMS320C6726RFP, and
TMS320C6722RFP

10 1.0
Initial silicon revision:
TMX320C6727GDH, TMX320C6727ZDH, TMX320C6726RFP, and
TMX320C6722RFP

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

7

2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications and Usage
Notes

2.1 Usage Notes for Silicon Revision 1.2

Usage Notes highlight and describe particular situations where the device’s behavior may not match presumed or
documented behavior. This may include behaviors that affect device performance or functional correctness. These
notes will be incorporated into future documentation updates for the device (such as the device-specific data
sheet), and the behaviors they describe will not be altered in future silicon revisions.

Usage Note 1.2.1: Slave Mode: NEW Deselect Error Flag Detects Transfer Aborted by Master.
(Applies to silicon revision 1.2 only.)

A new error (DESELECT) has been added to the SPI for use in slave 4-Pin Chip Select and 5-Pin modes. The
control bits for this interrupt are SPIINT0.DESELCTENA (SPIINT0 bit 2), SPILVL.DESELECTLVL (SPILVL bit 2),
and SPIFLG.DESELECTFLG (SPIFLG bit 2). Note that the DESELECT error takes the place of the parity error
which was not functional on silicon revisions 1.1 and 1.0.

The DESELECT error flag is set whenever a transmission is started by the master but is aborted before the slave
receives a complete word. The slave views a new transfer as started if the SPIx_SCS pin is asserted and at least
one SPIx_CLK edge for the new transfer is detected by the slave. After the transfer has started, the slave expects
the master to keep the SPIx_SCS pin asserted until all bits have been shifted. If SPIx_SCS is deasserted early,
then the DESELECT flag is set.

When the DESLECT flag is set, an error interrupt can be generated. The slave should respond to this error
interrupt by resetting the SPI module through either the SPIGCR0.RESET or the SPIGCR1.ENABLE bit. Then it
should attempt to resynchronize to the master before releasing the SPI from reset. The resynchronization step will
be dependent on what type of error has occurred on the master (e.g., the master might have completely reset due
to a watchdog timeout).

Usage Note 1.2.2: Master Mode: C2EDELAY and T2EDELAY Formula is Different Than Described in
SPRU718, and Depends Upon the SPIFMT.PRESCALEx Value.
(Applies to silicon revision 1.2 only.)

The formula for the C2EDELAY and T2EDELAY period differs from what is described in the TMS320C672x DSP
Serial Peripheral Interface (SPI) Reference Guide (literature number SPRU718) in the following ways:

1. For values of SPIFMT.PRESCALEx < 127, the C2EDELAY and T2EDELAY counters use
(SPIFMT.PRESCALEx + 2) * SYSCLK2 as an increment period, and not (SPIFMT.PRESCALEx + 1) as
currently described in the TMS320C672x DSP Serial Peripheral Interface (SPI) Reference Guide
(literature number SPRU718).

2. For values of SPIFMT.PRESCALE ≥ 127, the C2EDELAY and T2EDELAY counters do not use the
SPIFMT.PRESCALEx at all, but instead increment every SYSCLK2 period.

The TMS320C672x DSP Serial Peripheral Interface (SPI) Reference Guide (literature number SPRU718) will be
updated to reflect the changes described above.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

8

Usage Note 1.2.3: Master Mode: How Delay Periods Work in Combination.
(Applies to silicon revisions 1.2, 1.1, and 1.0.)

In Master Mode, when multiple delay periods are used in combination, in general they are applied serially. For
example, at the start of a transfer the delay periods are applied in the following order:

1. C2TDELAY

2. C2EDELAY (begins counting after completion of C2TDELAY)

However, in 5-Pin Master Mode, the C2TDELAY and C2EDELAY periods are terminated as soon as the master
samples the SPIx_ENA pin is asserted . If the assertion occurs during the C2TDELAY period, then the C2TDELAY
period terminates early and the C2EDELAY period is skipped entirely.

At the end of a transfer, the delay periods are applied in this order:

1. T2CDELAY

2. T2EDELAY (starts counting after T2CDELAY completes)

3. WDELAY (starts counting after T2EDELAY completes)

However, in 5-Pin Master Mode, the T2CDELAY and T2EDELAY periods are terminated as soon as the master
samples the SPIx_ENA pin deasserted . If the deassertion occurs during the T2CDELAY period, then the
T2CDELAY period terminates early and the T2EDELAY period is skipped. If the WDELAY period is enabled, it
always occurs and is not affected by the timing of the slave driving SPIx_ENA.

Usage Note 1.2.4: Master 4-Pin Enable and 5-Pin Modes: Minimum SPIx_ENA Deassertion Period During
T2EDELAY.
(Applies to silicon revision 1.2 only.)

In Master 4-Pin Enable and 5-Pin Modes, the T2EDELAY period defines the time by which the master must see the
slave respond to the completion of the previous transfer with the deassertion of SPIx_ENA. If the master does not
see this occur, then a DESYNC error occurs because it is assumed that the slave bit count is different than the
master’s bit count.

It should be noted that the master samples the SPIx_ENA input during the T2EDELAY with a sample period equal
to the SPIx_CLK period: [(SPIFMTx.PRESCALEx + 1) * SYSCLK2]. If the slave does not deassert the SPIx_ENA
pin for at least longer than [(SPIFMTx.PRESCALEx + 1) * SYSCLK2], then it is possible that the master will miss
the deassertion and set the DESYNC error flag.

Therefore, if the T2EDELAY period is used, then the minimum period of SPIx_ENA deassertion between transfers
must be greater than [(SPIFMTx.PRESCALEx + 1) * SYSCLK2].

Usage Note 1.2.5: Master Mode: CSHOLD Bit Needs to be Initialized Twice After Reset.
(Applies to silicon revisions 1.2, 1.1, and 1.0.)

In addition to the procedure described in Advisory 1.2.1 (SPI Master Mode: Extra Step Required to Use CSHOLD),
the SPIDAT1.CSHOLD bit should be initialized twice with the same value after reset and before the first SPI
transfer. This is required to clear an internal pipeline stage in the CSHOLD logic.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

9

Usage Note 1.2.6: Master Mode: Restrictions on When SPIDAT1 can be Updated With a New SPIFMTx
Register.
(Applies to silicon revisions 1.2, 1.1, and 1.0.)

In master mode, writes to SPIDAT1 that change the selected SPIFMTx register by using a different value for
SPIDAT1.DFSEL[1:0] need to be made with great caution:

1. Changes should only be made once the SPI master has completed all programmed delay periods
(T2CDELAY, T2EDELAY, and WDELAY).

2. Changes should be made separately from initiating a transfer (i.e., only the upper bytes of SPIDAT1
should be written when changing SPIDAT1.DFSEL[1:0], then transfer should be initiated with a
separate write to SPIDAT1[15:0]).

Note that the SPI interrupts occur before the T2CDELAY, T2EDELAY, and WDELAY periods begin, so a delay must
be inserted between the SPI interrupt and the write which updates SPIDAT1.DFSEL[1:0].

If SPIDAT1.DFSEL[1:0] is changed before the delay periods have completed, then the SPI may hang and require a
software reset, or the duration of the remaining delay period may be changed unexpectedly.

Usage Note 1.2.7: Slave Mode: Only SPIFMT0 Should be Used.
(Applies to silicon revisions 1.2, 1.1, and 1.0.)

In slave mode, only one format register should be used (SPIFMT0). The slave does not support dynamically
switching between different format registers. Also, any changes to the SPIFMT0 register should be avoided while
the SPI is enabled.

Usage Note 1.2.8: Clearing of SPI Interrupt Flags may be Blocked by Simultaneous Set Condition. Caution
Should be Taken When Clearing Interrupt Flags or Flags may Remain Set.
(Applies only to silicon revision 1.2.)

The SPIFLG register contains data and error interrupt flag bits, most of which are also mirrored in the upper bits of
the SPIBUF register. Each interrupt flag bit has its own set and clear conditions (which differ slightly from flag bit to
flag bit). For example, the SPIFLG.RXINTFLG is set when data is copied from the shift register to the SPIBUF
register, and cleared by one of the following conditions:

• Reading the SPIBUF register that includes some bits in the SPIBUF[15:0] range

• Writing a ‘1’ to the SPIFLG.RXINTFLG bit

• Reading TGINTVECT0 when the value “100100” is returned (indicating receiver interrupt on level 0)

• Reading TGINTVECT1 when the value “100100” is returned (indicating receiver interrupt on level 1)

Note that the above set and clear conditions apply only to SPIFLG.RXINTFLG; the conditions for each of the other
interrupt flag bits are documented in the TMS320C672x DSP Serial Peripheral Interface (SPI) Reference Guide
(literature number SPRU718A or later revision).

A conflict happens when the set condition occurs either simultaneously or a SYSCLK2 cycle before one of the
clear conditions; in this case, the interrupt flag will remain set. On earlier silicon revisions, the priority was reversed
(clear took priority over set); but this was changed on silicon revision 1.2 to fix the problem of flags being cleared
erroneously and causing events to be dropped.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

10

When polling the interrupt flags in a software loop, it is necessary to implement two actions that clear the interrupt
flag to ensure that at least one of the actions is successful. For example, one could poll the SPIBUF register for
the SPIBUF.RXEMPTY flag to be ‘0’ (SPIBUF.RXEMPTY is the inverted version of SPIFLG.RXINTFLG). But this
should be followed immediately by another clear action such as a write to SPIFLG.RXINTFLG of ‘1’ (to clear).
Since at most one of the two clear actions will collide with the flag being set, this ensures the SPIFLG.RXINTFLG
bit will be cleared.

If SPIFLG.RXINTFLG is not cleared, then the next time that polling occurs, it will appear as if new data is ready in
SPIBUF, even if it is not ready.

When using the error interrupt capability of the SPI, if one of the SPIFLG error interrupts is left ‘set’ at the end of an
ISR, new error interrupts will be blocked. This is because the CPU looks for a transition from ‘0’ to ‘1’ on its
interrupt request line, and leaving the flag set will keep the request line at the logic ‘1’ level. Therefore, it is
strongly recommended that the interrupt flags be read back and verified to be cleared before exiting an interrupt
service routine.

Also, for SPI data transfer events, it is strongly recommended that the dMAX event inputs 13 and 14 be used
instead of polling the SPIBUF or SPIFLG registers in software. These dMAX event inputs are triggered by the SPI0
and SPI1 DMA requests (as opposed to SPI0 and SPI1 interrupt requests). The DMA requests are not blocked if
the interrupt flag remains set.

Usage Note 1.2.9: Slave 5-Pin Mode: Use of ENABLE_HIGHZ = ‘1’ is Recommended, ENABLE_HIGHZ = ‘0’
Not Recommended.
(Applies to silicon revisions 1.2, 1.1, and 1.0.)

In Slave 5-Pin Mode, the SPI is intended to indicate a ‘Not Ready’ whenever the SPIx_SCS input is deasserted;
however, if the slave is configured to drive the SPIx_ENA pin in a push-pull mode (ENABLE_HIGHZ = ‘0’) then the
slave may ignore the SPIx_SCS deassertion and assert SPIx_ENA if new data is written to the slave
SPIDAT0/SPIDAT1 register before SPIx_SCS is deasserted.

However, if the slave is configured to drive SPIx_ENA in open-drain mode (ENABLE_HIGHZ = ‘1’), then the slave
behaves properly and the SPIx_ENA pin is placed in a high-impedance state whenever SPIx_SCS is deasserted.

Therefore, if multiple slaves need to share the SPIx_ENA pin, it is highly recommended that the open-drain mode
(ENABLE_HIGHZ = ‘1’) with external pullup resistor be used.

Usage Note 1.2.10: Bootloader Patch may be Required for SPI Slave Boot.
(Applies only to silicon revision 1.2.)

Silicon revision 1.2 contains a fix for the issue described in Advisory 1.1.2: SPI Slave Mode Only: Final SPIx_SOMI
Bit has Short Hold Time.

For silicon revision 1.2, the hold time on the final SPIx_SOMI bit is now determined by software. The ROM
bootloader provides about 35 SYSCLK1 cycles of delay, which translates to approximately 110 ns of hold time at
300-MHz SYSCLK1. If this is not sufficient for a particular SPI master, then the ROM bootloader must be patched
to provide additional hold time before the C672x PLL is enabled. Contact your TI support representative for more
information if such a patch is required in your application.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

11

2.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications

SPI Master Mode: Extra Step Required to Use CSHOLDAdvisory 1.2.1

Revision(s) Affected : 1.2, 1.1, 1.0

Details : The SPI module chip-select hold (CSHOLD) feature allows the device to instruct the SPI to
keep the chip-select pin asserted between transfers. This feature applies in master mode and
is enabled by writing a ‘1’ to SPIDAT1.CSHOLD (bit 28).

When data is written to the SPIDAT1 register with the CSHOLD bit set to ‘1’, the master is
supposed to keep the SPIx_SCS pin asserted after the transfer completes. When data is
written to the SPIDAT1 register with CSHOLD set to ‘0’, the master is supposed to de-assert
the SPIx_SCS pin after the transfer completes.

For example, assume that the device needs to send two 16-bit words (0x1234 and 0x5678) to
a SPI slave that requires its chip select to remain asserted between the transfers. This is a
common requirement when communicating with SPI memory devices.

According to the SPI specification, the sequence:

• Write 0x10001234 to SPIDAT1 for transmission of 0x1234 (CSHOLD = 1)

• Write 0x00005678 to SPIDAT1 for transmission of 0x5678 (CSHOLD = 0)

should produce the expected result as illustrated in Figure 2.

SPIx_CLK

SPIx_SIMO

SPIx_SCS

(a) Write SPIDAT1
= 0x10001245
(CSHOLD=1)

(b) Write SPIDAT1
= 0x00005678
(CSHOLD=0)

(a) (b)

Figure 2. Expected CSHOLD Behavior

Instead, what actually occurs is that SPIx_SCS is momentarily de-asserted at the beginning of
the second write, as illustrated in Figure 3.

SPIx_CLK

SPIx_SIMO

SPIx_SCS

(a) Write SPIDAT1
= 0x10001245
(CSHOLD=1)

(b) Write SPIDAT1
= 0x00005678
(CSHOLD=0)

(a) (b)

Figure 3. Actual CSHOLD Behavior—32-Bit Writes to SPIDAT1

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

12

SPI Master Mode: Extra Step Required to Use CSHOLD (Continued)

Both Figure 2 and Figure 3 assume that SPIDAT1 is written using a single 32-bit write
instruction. If SPIDAT1 is instead written using an 8-bit or 16-bit instruction to write to the
CSHOLD field, followed by a 16-bit write to the transmit shift register field of SPIDAT1, then
what actually occurs is illustrated in Figure 4. This is the same case as illustrated in Figure 3
except that the de-assertion of SPIx_SCS lasts for the duration between writing to a ‘0’ to the
CSHOLD field and writing new data to the transmit shift register.

SPIx_CLK

SPIx_SIMO

SPIx_SCS

(a) Write (8 or 16−bit)
SPIDAT1.CSHOLD=1

(c) write (8 or 16−bit)
SPIDAT1.CSHOLD=0

(d) write of
0x5678 to SPIDAT1[15:0]

(b) write of
0x1234 to SPIDAT1[15:0]

(a) (b) (c) (d)

Figure 4. Actual CSHOLD Behavior—32-Bit Writes to SPIDAT1

Workaround : For each word in the sequence of words during which SPIx_SCS should be held low, write to
the SPIDAT1 register with the CSHOLD bit set to ‘1’. Follow this by a write to only the
CSHOLD field of SPIDAT1, setting CSHOLD = 0 to de-assert SPIx_SCS. See Figure 5 for an
illustration.

SPIx_CLK

SPIx_SIMO

SPIx_SCS

(a) Write SPIDAT1
= 0x10001245
(CSHOLD=1)

(c) Write SPIDAT1.CSHOLD=0
using 8 or 16 bit write.
(do not write to SPIDAT1[15:0])

(b) Write SPIDAT1
=0x10005678
(CSHOLD=1)

(a) (b) (c)

Figure 5. Workaround Assuming 32-Bit Writes to SPIDAT1 Followed by a Write Only to CSHOLD

Alternatively, write to the CSHOLD field only of SPIDAT1 before and after the transfer to toggle
the SPIx_SCS pin. During the transfer, write only to the data field of SPIDAT[15:0] using 16-bit
(halfword) write commands. See Figure 6 for an illustration.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

13

SPI Master Mode: Extra Step Required to Use CSHOLD (Continued)

SPIx_CLK

SPIx_SIMO

SPIx_SCS

(a) Write (8 or 16−bit)
SPIDAT1.CSHOLD=1

(d) write (8 or 16−bit)
SPIDAT1.CSHOLD=0

(c) write of
0x5678 to SPIDAT1[15:0]

(b) write of
0x1234 to SPIDAT1[15:0]

(a) (b) (c) (d)

Figure 6. Workaround Assuming Halfword Writes to SPIDAT1

Do Not Use SPI Master Boot Mode for Silicon Revision 1.2/C9230C100 ROMAdvisory 1.2.2

Revision(s) Affected : 1.2

Details : The C9230C100 ROM bootloader does not handle the change described in Usage Note 1.2.8:
Clearing of SPI Interrupt Flags may be Blocked by Simultaneous Set Condition correctly when
it polls the SPI in the SPI Master boot mode. This can result in a failure to boot. The problem
can be affected by timing variations on silicon and therefore may not appear on all devices.

Workaround : None

I2C: I2C Boot Modes of C672x Devices Do Not Always Function CorrectlyAdvisory 1.2.3

Revision(s) Affected : 1.2, 1.1, 1.0

Details : The C9230C100 ROM bootloader (RBL) sets the initial value of the I2C module’s prescalar
that result in the I2C peripheral operating outside of its design specifications. The initial
prescalar value is set to 0x0D, which results in the prescaled module clock operating slower
than the allowed minimum of 6.7 MHz [see the “I2C Input Clock” figure in the TMS320C672x
DSP Inter-Integrated Circuit (I2C) Module Reference Guide (literature number SPRU877)],
regardless of the device’s input clock. This may result in a failure to boot. The problem can be
affected by timing variations on the silicon and therefore may not appear on all devices. Both
master and slave modes are affected. The problem can be mitigated by changing the I2C
clock settings (via AIS commands) as soon as possible in the boot process. However, the
possibility of data corruption will exist for the duration of time that the module clock is out of
specification. Therefore, the I2C master and slave boot modes do not always function
correctly.

Workaround : Use the parallel Flash or HPI boot modes.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

14

Do Not Use SPI Slave Mode With Phase = 1Advisory 1.2.4

Revision(s) Affected : 1.2, 1.1, 1.0

Details : The SPIx Module allows the user to select Phase = 0 or Phase = 1 for SPI transmissions by
setting SPIFMTx.16 (PHASEx); however, in SPI Slave Mode with Phase = 1, there is a narrow
timing window where an “extra shift” can occur and the most significant bit (MSb) of the next
transmission is lost. This timing window occurs when the SPIDATx register is serviced (to load
new data) within ±1 SYSCLK2 cycle of the last SPICLK edge.

The timing of the SPIDATx servicing versus SPICLK edge depends on the SPICLK frequency,
the SYSCLK2 frequency, and CPU or dMAX load. The timing of SPIDATx servicing is visible
through the SPIENA pin.

Workaround : Since the timing of when the SPIDATx register is serviced with respect to the last SPICLK
edge can vary, it is not recommended that Phase = 1 be used. Because Phase = 0 does not
have this issue or the timing dependency, use Phase = 0.

This advisory does not affect Master Mode.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

15

3 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications and Usage
Notes

3.1 Usage Notes for Silicon Revision 1.1

Usage Notes highlight and describe particular situations where the device’s behavior may not match presumed or
documented behavior. This may include behaviors that affect device performance or functional correctness. These
notes will be incorporated into future documentation updates for the device (such as the device-specific data
sheet), and the behaviors they describe will not be altered in future silicon revisions.

See Usage Notes 1.2.3, 1.2.5, 1.2.6, 1.2.7, and 1.2.9 in Section 2.1, Usage Notes for Silicon Revision 1.2.

3.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin AnomaliesAdvisory 1.1.1

Revision(s) Affected : 1.1, 1.0

Details : This advisory applies to both the SPI0 and SPI1 modules on the C672x DSP. The C672x SPI
modules sample the SPIx_SCS pin incorrectly, which can result in:

• the slave erroneously transferring data while it is deselected

• issues with the sharing of the SPIx_ENA pin with other slave devices on the same SPI
bus.

In four-pin with chip-select slave mode and five-pin slave mode, the SPI module provides a
chip-select input (SPIx_SCS). The chip-select input facilitates the sharing of the same SPI bus
with other slave devices.

The master asserts the chip select on the device with which it intends to communicate and
de-asserts the chip select on other slave devices before it begins the SPI transfer. The
deselected slave device(s) should then:

• ignore activity on the SPI bus while SPIx_SCS remains de-asserted

• place their SPIx_SOMI pin in a high-impedance state to avoid conflicting with transmit
data from the selected slave

• de-assert their SPIx_ENA output by either 3-stating the pin or driving it high.
(SPIINT0.ENABLEHIGHZ controls the choice of 3-stating the pin or driving it high)

The C672x SPI modules do not correctly implement the SPIx_SCS function. This can lead to
the C672x SPI receiving data erroneously when it is not selected. In five-pin mode, it can also
lead to a conflict on the SPIx_ENA pin.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

16

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies (Continued)

The SPI module samples the SPIx_SCS pin only at the beginning of a transfer. Once
SPIx_SCS is asserted, the SPI enters a transfer state and remains in this state until the
transfer completes, regardless of the state on the SPIx_SCS pin during the transfer.†

If the master de-asserts SPIx_SCS and selects a different slave device, the C672x SPI still
completes the transfer and, in error, receives the data intended for the other slave device.
Also, transmit data is consumed in error and must be re-transmitted. However, it appears as if
no data is transmitted. This is due to SPIx_SCS de-assertion asynchronously placing the
SPIx_SOMI in a high-impedance state. This also means that the deselected slave SPI does
not conflict with transmit data from the selected device.

In five-pin mode, the SPIx_SCS pin is also supposed to force the slave to de-assert its
SPIx_ENA output pin to allow multiple slaves to share the same handshake line. Only the
selected slave device should assert SPIx_ENA.

Instead of the correct behavior, the C672x SPI module drives the SPIx_ENA with its actual
ready status whenever it is in the transfer state. This means while the SPI slave is in the
transfer state erroneously, it drives its actual ready status on the SPIx_ENA line instead of
indicating “not ready”.

The most common reason for the SPI slave to enter the transfer state erroneously is due to
the timing of the master de-asserting SPIx_SCS at the end of a valid transfer (or series of
transfers).

The C672x SPI module begins sampling the SPIx_SCS line to begin a new transfer almost
immediately after the final receive edge of the SPIx_CLK. In most cases, it is not feasible for
the master to de-assert SPIx_SCS in time to avoid an additional erroneous transfer following a
series of valid transfers.

The SPI module does not meet the timing requirements that are outlined in the C672x data
sheet SPI parameter 26, td(SPC_SCSH)S, which specifies a minimum delay time from the final
SPIx_CLK edge until the de-assertion of SPIx_SCS. Instead, in order to avoid a subsequent
erroneous transfer, the timing requirements outlined in Figure 7 and Figure 8 must be met.
These place a requirement on the maximum delay time for SPIx_SCS de-assertion.

† In four-pin with chip-select mode. In five-pin mode, when the slave services the SPI transmit buffer is also a factor
(see Figure 8).

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

17

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies (Continued)

Figure 7 illustrates the timing requirement on the de-assertion of the SPIx_SCS pin in the
four-pin with chip-select mode. If the master does not meet this requirement, the slave will
enter the transfer state again and receive the next word transferred on the SPI bus as well as
consume any data already written to the transmit buffer.

Note that in most cases, the device system clock (P) is between 6 ns to 8 ns and the delay is
negative. This means the master must actually de-assert the SPIx_SCS pin before the final
receive clock edge. But the slave also 3-states its SPIx_SOMI output when SPIx_SCS is
de-asserted, so the master may not be able to receive the final data bit correctly if it
de-asserts SPIx_SCS early. (Timing requirements of SPI master devices vary; so, consult the
data sheet of the particular master.)

SPIx_CLK

SPIx_CLK

SPIx_CLK

SPIx_CLK

SPIx_SIMO

SPIx_SOMI

SPIx_SCS

Max: P − 15 ns

Final Receive
Clock EdgePolarity 0

Phase 0

Polarity 0
Phase 1

Polarity 1
Phase 0

Polarity 1
Phase 1

P = SYSCLK2 Period

Figure 7. Timing Requirement of SPIx_SCS De-assertion in Four-Pin With Chip-Select Mode

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

18

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies (Continued)

Figure 8 illustrates the timing requirement on the de-assertion of SPIx_SCS in five-pin mode.
The timing requirements of this mode are looser than those in the four-pin with chip-select
mode.

In five-pin mode, the slave delays entering the transfer state until SPIx_SCS is asserted and
the transmit buffer (SPIDAT0 or SPIDAT1) has been written with data for the next transfer.
This provides additional time for the master to de-assert SPIx_SCS. As long as the master
de-asserts SPIx_SCS 2P + 15 ns before the slave writes to SPIDAT0 or SPIDAT1, the slave
will not enter the transfer state until SPIx_SCS is asserted again, and the erroneous transfer
may be avoided.

SPIx_CLK

SPIx_CLK

SPIx_CLK

SPIx_CLK

SPIx_SIMO

SPIx_SOMI

SPIx_SCS

 Min: 2P + 15 ns

Slave Writes
SPIDATPolarity 0

Phase 0

Polarity 0
Phase 1

Polarity 1
Phase 0

Polarity 1
Phase 1

P = SYSCLK2 Period

Figure 8. Timing Requirement of SPIx_SCS De-assertion in Five-Pin Mode

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

19

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies (Continued)

The second most common reason for an erroneous transfer is a glitch on the SPIx_SCS pin
while the slave SPI is idling between transfers. Since the slave SPI samples SPIx_SCS using
SYSCLK2, any low-going glitch that lasts longer than a SYSCLK2 period will cause the SPI
slave to enter the transfer state. Additionally, any glitch that is shorter than a SYSCLK2 period
may still cause the SPI slave to enter the transfer state; but in this case, it depends upon
whether or not the slave captures the glitch.

There are several ways that the manner in which the slave samples SPIx_SCS can create a
system-level problem. These are:

1. A glitch on SPIx_SCS may cause the slave SPI to receive data erroneously.

2. The timing of SPIx_SCS de-assertion may cause the slave to receive data erroneously.

3. In both of the above cases, if the slave does not receive enough SPIx_CLK clocks while
deselected to complete the erroneous transfer before being selected again, it will lose
synchronization with the master.

4. If the slave is deselected and is in the transfer state in error, but there are no clocks on
SPIx_CLK, then no improper transfer will occur.

5. In five-pin mode, the slave drives the SPIx_ENA pin incorrectly while it is in the transfer
state and SPIx_SCS is de-asserted. This can be a problem if multiple slave devices share
the SPIx_ENA pin.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

20

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies (Continued)

Figure 9 illustrates the case where the slave SPI captures a glitch on the chip-select line and
enters the transfer state erroneously. If transfers to another slave device follow this event, then
the C672x slave will erroneously receive the first character transmitted to the other selected
slave device. Since SPIx_SCS is de-asserted, the C672x SPI holds its SPIx_SOMI pin in a
high-impedance state and does not interfere with the data transmitted back to the SPI bus
master by the selected slave device. After the erroneous transfer completes, the slave
remains idle until the next assertion of SPIx_SCS. (See Figure 11 for the case where there are
not enough clocks to complete the erroneous transfer.)

SPIx_CLK

SPIx_SIMO

SPIx_SOMI

SPIx_SCS

Glitch on chip select
causes slave to enter
transfer state in error.

Slave receives this
character and generates
transmit and receive
DMA events in error.
SPIx_SOMI remains in
a high−impedance state.

Slave correctly
ignores this
transfer.

Slave transmits and
receives correctly
once selected again.

Glitch on Chip Select
While DSP SPI is Idle

Other Device
Selected

Other Device
Selected

C672x DSP
Selected

Figure 9. Glitch on Chip Select Causing Erroneous Transfer

Figure 10 illustrates almost the same case as Figure 9, except the slave device enters the
transfer state due to the master failing to meet the timing requirements for de-assertion of the
slave SPIx_SCS input following a valid transfer as illustrated in Figure 7 and Figure 8.

SPIx_CLK

SPIx_SIMO

SPIx_SOMI

SPIx_SCS

Slave receives this
character and generates
transmit and receive
DMA events in error.
SPIx_SOMI remains in
a high−impedance state.

Slave correctly
ignores this
transfer.

Slave transmits and
receives correctly
once selected again.

C672x DSP
Selected

Other Device
Selected

Other Device
Selected

C672x DSP
Selected

Master does not
meet required timing
for chip select
de−assertion. Slave
re−enters transmit
state before master
de−asserts chip select.

Figure 10. Erroneous Transfer Due to Master De-asserting Chip Select Late

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

21

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies (Continued)

Figure 11 illustrates the case where the slave enters the transfer state in error due to the
master de-asserting SPI_SCS too late to meet the timing requirements. (Note: the same issue
applies if the slave device enters the transfer state due to a glitch on SPIx_SCS.) If there are
not enough clocks for the completion of the erroneous transfer while the slave is deselected,
the slave will remain in the transfer state. When selected, the slave will first complete the
erroneous transfer using the first bits from the valid transfer. The slave then begins another
transfer in the middle of the valid transfer, and synchronization to the master is lost. Data
received while synchronization is lost will be invalid.

The slave will regain synchronization only after SPIx_SCS is de-asserted and there is a
sufficient number of clocks on to allow the slave to complete an invalid transfer and enter the
idle state before the master asserts SPIx_SCS again.

SPIx_CLK

SPIx_SIMO

SPIx_SOMI

SPIx_SCS

Improper Transfer

Slave begins
transfer in error,
but does not
complete the
transfer due to
too few clocks.

C672x DSP
Selected

Other Device
Selected

C672x DSP
Selected

Master does not
meet required timing
for chip select
de−assertion. Slave
re−enters transmit
state before master
de−asserts chip select.

Slave remains
in transfer state.

Slave completes
the erroneous transfer
using the first bits from
the next transfer, then
begins a new transfer
mid character.
Synchronization is lost.

Figure 11. Loss of Synchronization to Character Boundary

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

22

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies (Continued)

Figure 12 illustrates the case where the slave enters the transfer state in error due to the
master de-asserting SPI_SCS too late to meet the timing requirements. (Note: the same issue
applies if the slave device enters the transfer state due to a glitch on SPIx_SCS.)

If there are no clocks on the slave SPIx_CLK line while SPIx_SCS is de-asserted, then even
though the slave is in the transfer state during this time period, no shifting occurs. This means
that when the master selects the slave again for another transfer, this transfer will complete
correctly. In four-pin mode, the error would go undetected. In five-pin mode, only SPIx_ENA
remains a problem (see Figure 13).

SPIx_CLK

SPIx_SIMO

SPIx_SOMI

SPIx_SCS

Slave enters the transfer state
in error, but no clocks occur
so no bits are received in error.

Slave completes
the transfer it
began in error,
but error goes
undetected.

C672x DSP
Selected

C672x DSP
Selected

Master does not
meet required timing
for chip select
de−assertion. Slave
re−enters transmit
state before master
de−asserts chip select.

Figure 12. Slave Enters Transfer State in Error, but Error Goes Undetected

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

23

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies (Continued)

Figure 13 illustrates the relationship between the issues described in Figure 9−Figure 12 and
the SPIx_ENA pin in five-pin slave mode. When any of the issues illustrated in
Figure 9−Figure 12 occur and the slave enters the transfer state incorrectly, the slave drives
SPIx_ENA incorrectly while it remains in the transfer state. Instead of indicating that it is not
ready as it should whenever SPIx_SCS is de-asserted, the slave will indicate its actual ready
state until it completes the erroneous transfer and enters the idle state again.

This will typically only cause a problem when sharing SPIx_ENA, since the de-selected slave
may force the enable line to indicate ready even if the slave actually selected is not ready.

Note that Figure 13 illustrates the case where SPIINT0.ENABLEHIGHZ has been set to drive
the SPIx_ENA pin in a push-pull mode. However, the same issue applies when configuring
SPIINT0.ENABLEHIGHZ for open-drain mode, except instead of driving SPIx_ENA high as
shown in Figure 13, the slave places the pin in a high-impedance state to de-assert
SPIx_ENA.

SPIx_CLK

SPIx_SIMO

SPIx_SOMI

SPIx_SCS

SPIx_ENA

SPIx_ENA

incorrect

C672x DSP
Selected

Other Device
Selected

Other Device
Selected

C672x DSP
Selected

correct behavior

actual behavior

The slave indicates its actual ready state while it is in the
transfer state, even if it is in the transfer state in error due to
the issues sampling chip select. This behavior is incorrect.

Figure 13. Slave Drives Enable Line Incorrectly During the Time it is in the Transfer State Erroneously

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

24

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies (Continued)

Workaround : There are several possible workarounds to this issue. These include:

1. In four-pin mode, meet the timing requirements of Figure 7.

2. In five-pin mode, meet the timing requirements of Figure 8.

3. Add an external logic gate to qualify SPIx_CLK (and SPIx_ENA if required) by SPIx_SCS.

4. Increase the character length of the C672x SPI and make the corresponding change on
the master side. Pad the transmit and receive words appropriately to fill out the increased
character length. De-assert SPIx_SCS early.

The first two workarounds are possibly the simplest, but may also be the most difficult to
implement depending upon the capabilities of the SPI master. The first three workarounds
require a separate workaround for Advisory 1.1.2. Only the fourth workaround addresses this
advisory as well as Advisory 1.1.2.

Workaround 1 and Workaround 2 are self-explanatory (timing requirements must be met).

The third workaround involves the addition of external logic gates. Figure 14 illustrates this
workaround circuit. The external circuit forces the SPIx_CLK line inactive whenever the SPI
bus SELECT line for the C672x device is inactive. While this does not prevent the SPI slave
from entering the transfer state in error, it does ensure that no clocks will reach SPIx_CLK
while SPIx_SCS is de-asserted. In other words, at the DSP pins this circuit creates the
situation illustrated in Figure 12.

Figure 14 also shows the external logic required to correct the behavior of the SPIx_ENA pin
in case five-pin mode is required and it is also necessary to share a single SPIx_ENA line
among multiple slave devices. When using this logic, SPIINT0.ENABLEHIGHZ must be
configured to drive SPIx_ENA out of the DSP actively, even if the final interface to the SPI bus
is open-drain.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

25

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies (Continued)

SPIx_SCS

SPIx_CLK

SELECT

SPIx_ENA

1

0

S

† Inactive Level
‡ ‘1’ if Polarity = 1
§ ‘0’ if Polarity = 0

Tie ‘1’ ‡

Tie ‘0’ §

Push-Pull Mode

Hi-Z Mode

C672x Device

CLOCK 0

1Tie Inactive †
S

Figure 14. Workaround 3 Using External Logic Gates

The fourth workaround is a modification of the SPI bus character length and takes advantage
of the ability to program the slave SPI character length with values up to 31. The SPI character
length in slave mode is programmed using the bit field in SPIFMT0.CHARLEN[4:0]. The SPI
documentation says that values of 0x11 through 0x1F have an indeterminate result. The SPI
will actually interpret these values from 17 to 31 bits correctly; however, the SPI shift registers
are limited to 16 bits, so normally the SPI cannot make use of these values.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

26

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies (Continued)

Figure 15 illustrates the operation of the SPI module in 3-pin mode with
SPIFMT0.CHARLEN[4:0] programmed with a value greater than 0x10. In this case, the value
of this field is 0x18 for a character length of 24 bits. This means that the slave SPI requires
24 clocks on SPIx_CLK to complete a single transfer. However, from an internal viewpoint, the
slave only writes one 16-bit word to SPIDAT0/SPIDAT1 at the beginning of the transfer and
only reads one 16-bit word from SPIBUF at the end of the transfer. As illustrated in Figure 15,
the data written to SPIDAT0/SPIDAT1 will appear on the SPIx_SOMI pin during the first 16 SPI
clock periods, followed by 8 indeterminate bits. Also, the data received in the SPIBUF register
is the last 16 bits that appear on the SPIx_SIMO pin. The first 8 bits are shifted in but
eventually discarded by the slave.

SPIx_CLK

SPIx_SIMO

SPIx_SOMI

SPIx_SCS

X X X X X X X X r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 rA rB rC rD rE rF

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 tA tB tC tD tE tF X X X X X X X X

Valid Transmit Data from DSP on First 16 Bits

DSP Receives Last 16 Bits

Total of 24 SPI Clocks

Figure 15. Slave SPI Operation With Character Length of 24 Bits

Figure 16 illustrates the suggested workaround sequence, assuming that the SPI master is a
microcontroller using an 8-bit character length.

SPIx_CLK

SPIx_SIMO

SPIx_SOMI

SPIx_SCS

X X X X X X X X r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 rA rB rC rD rE rF

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 tA tB tC tD tE tF X

Valid Transmit Data from DSP on First 16 Bits

DSP Receives Last 16 Bits

Single 24−bit Transfer (DSP slave)

First Byte (Master) Second Byte (Master) Third Byte (Master)

Advisory 1.1.2
issue now occurs
at the end of
the 24th bit.
SPIx_SOMI is
a don’t care
here.

Master de−asserts
chip select at
the end of its
second byte.

Figure 16. Complete 16-Bit Transfer in 24-Bit Character Using Fourth Workaround

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

27

SPI: Slave Mode Four-Pin Chip-Select and Five-Pin Anomalies (Continued)

The microcontroller should view the transfer as 3 bytes. The microcontroller should transmit a
dummy byte followed by 2 data bytes (r0−r7 and r8−rF in Figure 16). It should receive two
valid data bytes (t0−t7 and t8−tF in Figure 16) and discard the third data byte it receives.

The microcontroller should also de-assert the SPIx_SCS line between the second and
third bytes. This will ensure that it meets the requirement on the de-assertion of SPIx_SCS
(see Figure 7 and Figure 8) because in this case, it will be de-asserting SPIx_SCS eight SPI
clocks before the end of the transfer from the point of view of the DSP slave SPI.

The slave transmits all its valid data bits during the first sixteen clocks and the master discards
the final eight bits (their value is a “don’t care”). So, it is fine for the slave to place SPIx_SOMI
in a high-impedance state during the final eight bits of the transfer.

This workaround prevents the slave from entering the transfer state in error due to the timing
requirements for de-assertion of SPIx_SCS. However, it does not protect against the issue of
a glitch on the SPIx_SCS line initiating a transfer. The system design needs to ensure that a
glitch on SPIx_SCS does not occur.

Assuming this can be done, then this workaround also avoids any problems with SPIx_ENA,
since these problems only occur when the slave SPI has entered the transfer state in error.

This approach also resolves the issue discussed in Advisory 1.1.2 because the final bit
transmitted by the DSP moves from the sixteenth bit position (‘tF’) to the 24th bit position,
which is a “don’t care” in this approach.

NOTE: The fourth workaround needs to be removed once silicon is available to correct the
issue described in this advisory. The reason is that once this defect is corrected, the C672x
SPI module will not respond to the final eight bit clocks supplied by the master with SPIx_SCS
de-asserted.

This advisory is fixed on the Revision 1.2 silicon.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

28

SPI Slave Mode Only: Final SPIx_SOMI Bit has Short Hold TimeAdvisory 1.1.2

Revision(s) Affected : 1.1, 1.0

Details : According to the TMS320C6727, TMS320C6726, TMS320C6722 Floating-Point Digital Signal
Processors data sheet (literature number SPRS268), the output hold time on the SPIx_SOMI
pin when the SPI is in slave mode is 0.5*tc(SPC)S − 10 ns on all bits except for the final bit. The
final bit is supposed to be held until the slave writes new data into the SPIDAT0/SPIDAT1
register, typically several hundred nanoseconds when serviced by the dMAX.

However, after the final receive edge on the SPI clock, the SPI automatically copies the
receive data buffer back into the transmit shift register.† The new value of the transmit shift
register appears on the SPIx_SOMI pin immediately after the copy occurs. This means that
the output hold time actually provided by the slave SPI is limited to the time it takes for the
copy to complete.

For the C672x device, this time is 1.5*SYSCLK2 periods. With a typical SYSCLK2 period
of 8 ns (based on 250-MHz SYSCLK1 and 125-MHz SYSCLK2), the resulting output hold time
is only 12 ns.

Figure 17 illustrates the data sheet specification for the output hold time on the final bit (for the
SPI in slave mode) versus the hold time on actual silicon.

SPIx_CLK

SPIx_CLK

SPIx_CLK

SPIx_CLK

SPIx_SOMI

SPIx_SOMI

toh(SPC_SOMI)S − final bit

toh(SPC_SOMI)S − final bit

Final Receive
Clock Edge

Polarity 0 Phase 0

Polarity 0 Phase 1

Polarity 1 Phase 0

Polarity 1 Phase 1

Final bit should be held until
SPIDAT0/SPIDAT1 is written

Datasheet

Actual Silicon

Actual output hold time on final bit
is 1.5*P minimum. (P=SYSCLK2 Period)

Figure 17. Actual Output Hold Time on Slave SPIx_SOMI Final Bit Versus Data Sheet
† It is implemented this way to maintain the illusion of a single shift register for both transmit and receive, even

though there are actually separate shift registers inside the module.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

29

SPI Slave Mode Only: Final SPIx_SOMI Bit has Short Hold Time (Continued)

This may not be sufficient hold time for many master SPI devices. Consult the data sheet of
the master device to determine whether or not there is a hold time issue.

Workaround : If the master does require additional hold time, then there are several options.

One workaround is to select a master device that has a hold time requirement on data shifted
into its SPI port that is less than the time provided by the DSP. For example, some master SPI
devices have an input hold time requirement of ‘0 ns’.

If the master device is already chosen, and it requires more hold time than the DSP provides,
then several additional options are available:

• A small gap between the DSP output hold time specification in slave mode and the
requirements of the master can be worked around by adding additional delay to the
SPIx_CLK and SPIx_SOMI connections between the master and slave devices. This
can be accomplished using logic gates or an R−C network. See Figure 18.

• A large output delay can be worked around by implementing a software SPI on the
master microcontroller and sampling the SPIx_SOMI pin from the DSP before the final
receive clock edge.

• Another option to work around a large gap in specifications is to implement the fourth
workaround suggested in Advisory 1.1.1. That workaround also corrects the issue
described in this advisory by making the final bit transmitted by the slave SPI a “don’t
care”, in which case it does not matter whether or not it is received correctly by the
master device.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

30

SPI Slave Mode Only: Final SPIx_SOMI Bit has Short Hold Time (Continued)

SPIx_CLK

SPI_SOMI

C672x Device

SPI Clock

SPI SIMO

SPI Master

or

or

Delay Element
on Clock, SOMI,

or Both

Figure 18. Additional Hold Time Through Delay on Clock and/or SOMI

This advisory is fixed on the Revision 1.2 silicon.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

31

SPI Master Mode: Do not Use WDELAYAdvisory 1.1.3

Revision(s) Affected : 1.1, 1.0

Details : In master mode, the SPI supports a 6-bit field, SPIFMTx.WDELAY[5:0], which sets a minimum
delay value in SYSCLK2 cycles between transfers. Writing to SPIDAT1 with the
SPIDAT1.WDEL field activates the delay.

For slave devices that require a delay between transfers, the WDELAY field should simplify
servicing the slave with a DMA engine such as dMAX.

While the WDELAY feature does actually ensure a minimum delay between transfers if
enabled, it is not useful in the current implementation because the SPI discards any data
written to the SPIDAT0/SPIDAT1 register before the delay counter expires.

Workaround : If WDELAY is used, ensure that the DMA or CPU delays writing new data to the SPI transmit
buffer until after the WDELAY counter expires

Note that implementing such a workaround by itself will ensure the desired delay, even without
the WDELAY counter. Therefore, the recommendation is to implement any required delay in
software and avoid using the WDELAY counter

This advisory is fixed on the Revision 1.2 silicon.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

32

SPI Master Mode: Do Not Use T2EDELAY and T2CDELAYAdvisory 1.1.5

Revision(s) Affected : 1.1, 1.0

Details : In master mode with four-pin and five-pin options, the SPI module provides four delay fields to
specify additional timing relationships between the SPIx_CLK and the SPIx_SCS and
SPIx_ENA pins. These fields are part of the SPIDELAY register.

The SPIDELAY.C2TDELAY and SPIDELAY.C2EDELAY fields specify additional timings at the
start of the SPI transfer. These fields are safe to use.

However, a hazard exists with the use of SPIDELAY.T2EDELAY and SPIDELAY.T2CDELAY,
which specify additional timings at the end of an SPI transfer.

If these fields are enabled and the CPU or DMA writes new data to SPIDAT0 or SPIDAT1
during the time period specified by these delay counters, then the SPI internal state machines
will lock up.

Workaround : SPIDELAY.T2EDELAY provides for error-checking by specifying a maximum delay time from
the final SPIx_CLK to the slave device de-asserting SPIx_ENA. This feature provides
error-checking for a specific error condition, slave de-synchronization. This condition occurs if
the slave SPI misses one or more SPIx_CLK edges. Error-checking for this condition can be
disabled without any other effect to SPI communications. Therefore, it is strongly
recommended that SPIDELAY.T2EDELAY be set to 0x00; otherwise, there is a risk of the SPI
module becoming locked up.

The SPIDELAY.T2CDELAY provides an automatic delay between the final SPIx_CLK edge
and the master de-asserting the SPIx_SCS field. It is also strongly recommended that
SPIDELAY.T2CDELAY be set to 0x00; otherwise, there is a risk of the SPI module becoming
locked up.

If the slave device requires more hold time between the final SPIx_CLK edge and the master
de-assertion of SPIx_SCS with SPIDELAY.T2CDELAY set to 0, then this delay can be
generated by:

• Begin the transfer with the SPIDAT1.CSHOLD field set to ‘1’.

• After the transfer completes, implement the required delay using the DSP CPU or
dMAX.

• Set the SPIDAT1.CSHOLD field to ‘0’ to de-assert the SPIx_SCS pin. (Use an 8- or
16-bit write to avoid writing to SPIDAT1[15:0] and initiating another transfer in the
process.)

This advisory is fixed on the Revision 1.2 silicon.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

33

SPI: SPI Error Flags Incorrectly ClearedAdvisory 1.1.6

Revision(s) Affected : 1.1, 1.0

Details : On silicon revisions 1.1 and 1.0, the SPI error interrupt flags (OVRNINTFLG, BITERRFLG,
DESYNCFLG, TIMEOUTFLG, and PARERRLFG) are updated as a group any time any one of
the interrupt flags is set. This may result in the setting of one interrupt flag clearing a
previously set interrupt flag.

For example, consider the following sequence of events:

1. TIMEOUTFLG is set.

2. Set condition for the TIMEOUTFLG no longer active (but TIMEOUTFLG should remain
set).

3. BITERRFLG is set, but TIMEOUTFLG is also updated and is ‘cleared’ because the set
condition is no longer active.

The example above applies to any interrupts in the group of error interrupts. Practically, this
means that only last error interrupt is actually registered, and previous error interrupts which
may have occurred can be lost.

Workaround : None

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

34

4 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications and Usage
Notes

4.1 Usage Notes for Silicon Revision 1.0

Usage Notes highlight and describe particular situations where the device’s behavior may not match presumed or
documented behavior. This may include behaviors that affect device performance or functional correctness. These
notes will be incorporated into future documentation updates for the device (such as the device-specific data
sheet), and the behaviors they describe will not be altered in future silicon revisions.

See Usage Notes 1.2.3, 1.2.5, 1.2.6, 1.2.7, and 1.2.9 in Section 2.1, Usage Notes for Silicon Revision 1.2.

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

35

4.2 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications

Oscillator and Clock Input: Device Start-up IssueAdvisory 1.0.1

Revision(s) Affected : 1.0

Details : A problem in the OSCIN and CLKIN path can result in the device internal clocks being
disabled after power up.

The most noticable indicator of this problem is the lack of any I/O activity after power up
(except for the crystal oscillator which is not affected). Specifically, the EM_CLK output pin
does not toggle when this problem occurs.

Both the OSCIN and CLKIN paths of the C672x include a special de-glitch cell (labeled “DG”
in Figure 19). The de-glitch cell is designed to filter out short glitches that might occur due to
system-level noise and to prevent these glitches from disturbing the PLL during normal
operation, improving the robustness of the C672x devices.

OSCVDD

C5

C7

C8

X1

RS

RB

OSCIN

OSCOUT

OSCVSS

CLKIN

Clock
Input
From

OSCIN
to

PLL

On-Chip 1.2-V Oscillator

(a)

External 3.3-V
LVCMOS-Compatible Clock Source

(b)

OSCVDD

OSCIN

OSCOUT

OSCVSS

CLKIN

Clock
Input
From

CLKIN
to

PLL

CVDD (1.2 V)

NC

DG

DG

DG

DG

C6

Figure 19. OSCIN and CLKIN Input Paths

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

36

Oscillator and Clock Input: Device Start-up Issue (Continued)

However, the de-glitch cell on Revision 1.0 of the C672x devices has a defect that can leave
its output in an uninitialized state until an edge appears on its input.

This creates a problem given that one of the two input sources of the C672x clock must be
tied low. The input which is tied low does not see any edges upon power up, leaving its
corresponding de-glitch circuit in an uninitialized state.

If the uninitialized de-glitch circuit should power up in a logic “1” state, then it effectively blocks
the other clock source from propogating past the OR gate shown in Figure 19.

Note that the de-glitch circuit is not initialized by the C672x RESET pin, so that once the
C672x powers up in a bad state, the only way to clear the state is to cycle power again. Even
cycling power again may not clear the condition.

Also note that it is not possible to “screen” C672x devices for this problem, since the bias of
the de-glitch to power up in a logic “0” versus logic “1” state is not predictable and will be
sensitive to changes in the operating conditions (e.g., voltage, temperature) of the device.

This problem will be corrected on a future revision of the C672x device.

Workaround : For Revision 1.0 silicon, the following workaround is needed to ensure reliable power up.

The workaround to this problem is to provide at least one edge on the “tied low” pin during
reset so that the low level on this pin can propogate through the de-glitch circuit to the OR
gate.

This means that the circuit of Figure 19(a) should be modified to provide one or more edges
on the CLKIN pin while RESET is low. Likewise, in Figure 19(b), the OSCIN pin requires one
or more edges while RESET is low.

After RESET is released, the unused clock input must be driven to a steady logic “0” so that
the clock input to the PLL remains periodic.

An external device such as a Microcontroller or CPLD might be used to provide this
functionality, especially if it controls RESET to the C672x device.

Alternatively, a simple circuit can be constructed from a 74LV132 (Quad NAND gate with
Schmidt-Trigger inputs) to correct the issue. This circuit is illustrated in Figure 20 and
Figure 21. The circuit provides a clock of approximatetly 1.5 MHz while RESET is low and
drives a low-level output when RESET is high. The two circuits are identical except for the
extra resistor divider in Figure 21, which is required because the DSP OSCIN pin operates
from CVDD.

82 pF

DVDD

CLKIN

10 k�

DVDD

RESET

Use 74LV132
Schmidt Trigger

Quad NAND Gate

Figure 20. Example Workaround Circuit if Crystal Oscillator is Used as C672x Clock Input

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

37

Oscillator and Clock Input: Device Start-up Issue (Continued)

82 pF

DVDD

OSCIN

10 k�

DVDD

RESET

200 �

100 �

Use 74LV132
Schmidt Trigger

Quad NAND Gate

Figure 21. Example Workaround Circuit if CLKIN Pin is Used as C672x Clock Input

SPRZ232FC6727/B, C6726/B, C6722/B, C6720 Silicon Errata

38

5 Documentation Support

For more information on the C672x digital signal processors, see the following data manuals:

• TMS320C6727, TMS320C6726, TMS320C6722 Floating-Point Digital Signal Processors Data Manual
(literature number SPRS268)

• TMS320C6727B, TMS320C6726B, TMS320C6722B, TMS320C6720 Floating-Point Digital Signal
Processors Data Manual (literature number SPRS370)

• C9230C100 TMS320C672x Floating-Point Digital Signal Processor ROM Data Manual (literature number
SPRS277)

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

