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Introduction

Cameras are the most precise mechanisms used to capture accurate data at high 
resolution. Like human eyes, cameras capture the resolution, minutiae and vividness 
of a scene with such beautiful detail that no other sensors such as radar, ultrasonic 
and lasers can match. The prehistoric paintings discovered and dated back tens 
of thousands of years ago in caves across the world are testaments that pictures 
and paintings coupled with visual sense have been the preferred method to convey 
accurate information [1].

The next engineering frontier, that some might argue will be the most challenging 
for the technology community, is real-time machine vision and intelligence. The 
applications include, but are not limited to, real-time medical analytics (surgical robots), 
industrial machines and cars that are driven with autonomous intelligence. In this 
particular paper, we will focus on autonomous Advanced Driver Assistance Systems 
(ADAS) applications and how cameras and stereo vision in particular is the keystone for 
safe, autonomous cars that can “see and drive” themselves.

The key applications that require cameras for ADAS are shown below in Figure 1. 
Some of the applications shown can be implemented using just a vision system such 
as forward-, rear- and side-mounted cameras for pedestrian detection, traffic sign 
recognition, blind spots and lane detect systems. Others such as intelligent adaptive 
cruise control can be implemented robustly as a fusion of radar data with the camera 
sensors, especially for complex scenarios such as city traffic, curvy non-straight roads 
or higher speeds.

Figure 1: Applications of camera sensors for ADAS in a modern vehicle: (a) Forward facing camera for – lane 
detect, pedestrian detect, traffic sign recognition and emergency braking. (b) Side- and rear-facing cameras 
for parking assistance, blind spot detection and cross traffic alerts
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What kind of camera 
is needed?

All the real world scenes that a camera encounters 

are three dimensional. The objects that are at 

different depths in real world may appear to be 

adjacent to each other in the two-dimensional 

mapped world of the camera sensor. Figure 2 

shows a picture from the Middlebury image 

dataset [2]. Clearly the motor bike in the foreground 

of the picture is about two meters closer to the 

camera than the storage shelf in the background. 

Please pay attention to point 1 and 2 annotated 

in the figure. The red box (point 1) that is in the 

background appears adjacent to the forks (2) of the 

bike in the captured image, even though it is at least 

two meters farther away from the camera. Human 

brain has the power of perspective that allows us to 

make the decision about depth from a 2-D scene. 

For a forward-mounted camera in the car, the ability 

to analyze perspective does not come as easy.

If we have a single camera sensor mounted and 

capturing video that needs to be processed and 

analyzed, that system is called a monocular (single-

eyed) system, whereas a system with two cameras, 

separated from each other is called a stereo vision 

system. Before we go any further, please have a 

look at Table 1 that compares the basic attributes 

of a monocular-camera ADAS with a stereo-camera 

system.

Comparison 
parameter

Mono-camera 
system

Stereo-camera 
system

Number of image 
sensors, lenses and 
assembly

1 2

Physical size of the 
system

Small (6” × 4” × 1”) Two small assemblies 
separated by  

~25–30 cm distance

Frame rate 30 to 60 frames per 
second

30 frames per second

Image processing 
requirements

Medium High

Reliability of detecting 
obstacles and 
emergency braking 
decisions

Medium High

System is reliable for Object detection (lanes, 
pedestrians, traffic 

signs)

Object detection “AND”
calculate distance-to-

object

System cost 1× 1.5×

Software and algorithm 
complexity

High Medium

Table 1: High-level comparison of system attributes 
for a mono- vs. stereo-camera ADAS system

The monocular-camera-based video system can 

do many things reasonably well. The system and 

analytics behind it can identify lanes, pedestrians, 

many traffic signs and other vehicles in the path of 

the car with good accuracy. Where the monocular 

system is not as robust and reliable is in calculating 

the 3-D view of the world from the planar 2-D frame 

that it receives from the single camera sensor. That’s 

not surprising if we consider the natural fact that 

humans (and most advanced) animals are born with 

Figure 2: Image from 2014 Middlebury database. 
The motor bike in the foreground is much closer 
to the camera than the storage shelf, though all 
objects appear adjacent in a 2-D mapped view.

Point 2 – forks of motor bike

Point 1 – red box on shelf
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two eyes. Before analyzing this problem in further 

detail, please take a look at Figure 3. This figure 

describes at high level the process and algorithms 

used to analyze the video (image) frame received 

from a camera sensor.

The first stage in Figure 3 is the image pre-

processing step, where various filters are run on 

the image (typically every pixel), to remove sensor 

noise and other un-needed information. This 

stage also converts the format of the received 

BAYER data from camera sensor to a YUV or 

RGB mode that can be analyzed by subsequent 

steps. On the basis of the preliminary feature 

extraction (edges, haar, Gabor filters, Histogram 

of oriented gradients, etc.) done in this first stage, 

the second and third stages further analyze the 

images to identify regions of interest by running 

algorithms such as segmentation, optical flow, 

block matching and pattern recognition. The final 

stage utilizes region information and feature data 

generated from the prior stages to create intelligent 

analysis decisions about the class of the object in 

the regions of interest. This brief explanation does 

not quite do justice to the involved ADAS image-

processing algorithms’ field, however since the 

primary objective of this article is to highlight the 

additional challenges and robustness that a stereo 

vision system provides, the block-level algorithmic 

information is sufficient background for us to delve 

deeper into the topic. 

How does a monocular 
camera measure 
distance to an object 
from 2-D data?

There are two distinct possibilities through which the 

distance measurement is performed by a monocular 

camera. The first of these is based on the simple 

Figure 3: High-level algorithm flow and processes for analyzing an image in ADAS system
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premise that the objects closer to the camera 

appears bigger, and therefore takes up a larger pixel 

area in the frame. If an object is identified as a car, 

then the size of the object can be approximated by 

a maximum-covering-rectangle drawn around it. 

The bigger the size of this rectangle, the closer that 

object is to the camera (i.e. the car). The emergency 

braking algorithm will assess if the distance to each 

object identified in the frame is closer than a safe 

predefined value, then initiate the collision avoidance 

or driver warning actions as necessary. See Figure 4 

for a simple illustration of this idea.

Simplicity and elegance are both benefits of this 

method, however there are some drawbacks to 

this approach. The distance to any identified object 

cannot be assessed until the object is pre-identified 

“correctly”. Consider the scenario shown in Figure 

5. There are three graphical pedestrians shown

in this figure. Pedestrian 1 is a tall person, while

pedestrian 2 is a shorter boy. The distance of both

these individuals to the camera is same. The third

pedestrian (3) shown in the picture is farther away

from the camera, and is again a tall person. Here

the object detection algorithm will identify and draw

rectangles around the three identified pedestrians.

Unfortunately the size of the rectangle drawn around 

the short boy (individual 2), who is much closer to 

the camera than the tall person (individual 3) who is 

farther will be equal. Therefore, size of an identified 

object in pixels on the captured 2-D frame is not 

a perfectly reliable indicator of the distance of that 

object from the camera. The other issue to consider 

is if an object remains unidentified in a scene, 

then its distance cannot be ascertained, since the 

algorithm does not know the size of the object (in 

pixels). The object can remain unidentified for a 

multitude of reasons such as occlusion, lighting and 

other image artifacts.

The second method which can be utilized to 

calculate the distance of an object using monocular 

cameras is called “structure-from-motion (SFM)”. 

Since the camera is moving hence in theory, 

consecutive frames captured in time can be 

Figure 4: A picture showing various identified objects and 
their estimated distance from a monocular camera. It is 
clear that the more the distance of the identified object 
from the car, smaller is the maximum covering rectangle 
size [3], [17].

Figure 5 –

1 - Tall person 2 – Short boy 

3 – Tall person 

Camera is moving towards  
the pedestrians

Figure 5: A virtual info-graphic showing 3 pedestrians in the 
path of a moving vehicle with camera. The pixel size of the 
individuals 3 and 2 are exactly same, however individual 2 is 
much closer to the vehicle than individual 3.[4]
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compared against each other for key features. 

Epipolar geometry defines constrained parameters 

for where a given point in 3-D space can move to 

in two consecutive frames captured by a moving 

(translated and possibly rotated) camera. SFM is an 

involved topic by itself and therefore in this article, 

we will draw attention to the challenges of distance 

computation using SFM rather than the mechanics 

and mathematics of how it is done. For readers 

who are deeply interested in how SFM works 

Reference [5] is a good summary. It is sufficient here 

to understand a high-level flow of how an SFM 

algorithm works (Figure 6).

Given the data flow, it is easy to understand the 

challenges the SFM-based distance computation 

Parameter Challenges of SFM-based distance computation 

Images not captured 
simultaneously

Unlike stereo, the camera does not capture 
two frames simultaneously. SFM operates on 
temporal frames. Therefore, the movement of the 
camera needs to be captured “accurately”. In an 
automotive scenario, that information is based 
on the accurate data of vehicle speed, steering 
angles, etc. An online and continuous camera 
rig calibration is not as accurate as a fixed, pre-
calibrated stereo camera rig. 
Because of temporal discontinuity, critical intensity 
differences may appear in the image 
Occlusions appearing in the image due to temporal 
discontinuity make feature correspondence difficult

Computation 
requirements

A dense optical flow is computationally expensive 
compared to a dense stereo flow. 
A sparse optical flow may miss out on critical 
features that don’t match in two images

Noisy images Noise assumptions (brightness constancy) may 
be violated more for a temporal series of images 
compared to two images captured simultaneously 
Need to over-constrain and over-calculate the 
computation to compensate for noise

Table 2: Challenges for SFM-based distance 
computation

faces for a monocular camera system. Please see 

Table 2 for the list of these issues. 

How does stereo vision 
calculate distance 
of objects from 2-D 
planar data?

Before radars were invented, ships already used 

stereo reflection mechanisms coupled with a 

clockwork dial to calculate distance of enemy or 

pirate ships. (This information would then be used 

to aim the cannon at enemy ships.) There were 

two, sometimes more, mirrors (stereo) mounted 

on each side of the ship hull. A system of carefully 

arranged reflection mirrors relayed the images from 

the primary stereo mirrors to a control station. An 

operator on the control station would adjust the 

clockwork mechanism to superimpose and align 

the two images received over each other. The 

reading on the pre-calibrated dial attached to the 

clockwork would indicate the distance of the enemy 

ship. The fundamental stereo algorithm has not 

changed for centuries now. Therefore, the methods 

are stable and reliable. The regularity and stability 

of algorithms allows the opportunity to design an 

optimum hardware machine to perform the stereo 

vision calculations.

Figure 7 on the following page shows the stereo 

geometry equations. If the two cameras are 

calibrated, then the problem of finding distance to 

an object can be reformulated to find the disparity 

Image 2 @ T + 30 mS

Image 1 @ T Extract salient features
(corners, edges, end

points) Sparse optical flow
computation at the

feature points

Compute 3-D distance
of OF and epipolar
constraints derivedImage rectification

Camera calibration

Figure 6: A high-level data flow for SFM-based distance calculation. The sparse optical flow (OF) may be 
replaced with the dense flow calculation (for every pixel) as well. The above flow assumes 30 fps.
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between the simultaneous images captured by 

the left and right cameras for that point. For pre-

calibrated stereo cameras, the images could 

be rectified such that epipolar geometrical lines 

are simple horizontal searches (on the same 

row) for every point between two images. The 

disparity is then defined as the number of pixels 

a particular point has moved in the right camera 

image compared to the left camera image. This 

concept is crucial to remember, since it allows 

regular computation patterns that are amenable for 

hardware implementation. Before we delve deeper 

into this topic, the concept of disparity needs to be 

clarified further.

Stereo disparity 
calculation and 
accuracy of 
calculated distance

Figure 8 shows three different graphs to 

demonstrate the relationship between disparity 

and the distance-to-object. The first thing to 

notice is that the measured disparity is inversely 

proportional to the distance of an object. The 

closer an object is to the stereo cameras; more 

is the disparity and vice-versa. Theoretically, a 

point with zero disparity is infinitely away from the 

cameras. Concretely, the calculation shows that 

for the chosen physical parameters of the system 

(see Figure 8-a), a disparity of 1 pixel implies a 

distance of ~700 meters, while for a calculated 

disparity of 2 pixels, the estimated distance is ~350 

meters. That is a really large resolution and if the 

disparity calculation is inaccurate by one pixel, 

then the estimated distance will be incorrect by a 

large amount (for longer distances > 100 meters). 

For shorter distances (lower part of the curves in 

Figure 8 < 50 meters), the resolution of distance 

calculation is much more improved. It is evident 

by the distance calculation points in the graphs 
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Figure 7: Stereo geometry equations. The depth of a point 
in 3-D space is inversely proportional to the disparity of that 
point between the left and right cameras. [6]
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Figure 8: Distance vs. disparity graphs for different accuracy of calculation. The distance accuracy improves 
with increased pixelar accuracy of disparity calculation. Calculations made for (a) 30-cm distance between 
two cameras, (b) focal length of 10 mm, (c) pixel size of 4.2 microns.
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which crowd together. In this range, if the disparity 

calculation is inaccurate by one pixel (or less), the 

calculated distance is wrong by approximately two 

to three meters.

There are methods to improve the accuracy of the 

system further. As shown by Figures 8(b) and 8(c), 

if the disparity calculation is performed at half or 

quarter pixel levels, then the resolution of distance 

calculation improves proportionally. In those 

scenarios, for distances larger than 100 meters (but 

less than 300 meters), the resolution of calculated 

distance for consecutive disparity increase is ~30–

40 meters. For distances smaller than 100 meters, 

the accuracy can be better than 50 cms. It may be 

important to reiterate that the accuracy needs to 

be maximized (preferable to < 0.1 meters range) 

for a collision avoidance system operating for close 

distances. At the same time, operating range of the 

stereo camera needs to be improved, even at the 

cost of slight loss to accuracy if needed. 

The range of the stereo 
camera ADAS system

If you see the basic stereo equation (Figure 7) 

once again, then it is evident that to improve 

the maximum range of the system, the distance 

computation needs to be reasonably accurate for 

low disparities. That can be achieved by any of the 

following three methods. Each of these methods 

have associated trade offs for mechanical or 

electronic design and eventually system cost. 

(a)  Use a smaller pixel size ® If we use a smaller

pixel size (let’s say half), and if everything else

stays the same, the range improves by about

50 percent (for the same accuracy)

(b)  Increase the distance between the two

cameras ® If “T” is increased to double, and

if everything else stays the same, the range 

improves by about 50 percent (for the same 

accuracy)

(c)  Change the focal length ® If “f” is increased

to double, and if everything else stays the

same, the range improves by about 50

percent (for the same accuracy), but field of

view narrows down

(d)  Use a computation system that calculates

stereo disparity with sub-pixel accuracy

Although mathematically feasible, options (b) and 

(c) have a direct bearing on the physical attributes

of the system. When a stereo system needs to

be mounted in a car, typically it will have a fixed

dimension or the requirement for the system

to be as small as possible. This aesthetic need

goes against increasing the distance between the

cameras (T) or the focal length (f). Therefore, most

practical options for an accurate stereo distance

calculation system with high range and accuracy

revolve around options (a) and (d) above.

The process

Figure 9 on the following page shows the high-level 

block diagram for data flow and compute chains 

to calculate the stereo disparity. Please note the 

absence of the camera calibration step that was 

present in the SFM block diagram in Figure 6, and 

that there is no need to search for features in the 

dense stereo disparity algorithm either. Identifying 

features and objects is required for SFM-based 

distance calculation methods that compute distance 

based on the size of an object.

The image rank transformation is most often the 

first or second step in the stereo image processing 

pipe. The purpose of this step is to ensure that 
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the subsequent block comparisons between two 

images are robust to real-world noise conditions 

such as illumination or brightness changes between 

the left and right images [7]. These changes can be 

caused by many factors. Some of these include 

different illumination because of varied points of 

view from the two cameras and slight differences 

between the shutter speeds and other jitter artifacts 

that may cause the left and right images to be 

captured at slightly different points of time by 

the cameras.

There are various papers and approaches 

suggested by researchers for different rank 

transform options for images and how they impact 

the robustness of disparity calculations [8]. The 

image rectification step in Figure 9 ensures that the 

subsequent disparity calculation can be performed 

along the horizontal epipolar search lines. The 

next steps in the process are actual calculation of 

disparity, confidence levels of the computation and 

post processing. The dense disparity calculation 

is mostly performed in spatial domain although 

there are some approaches suggested to calculate 

disparity in frequency domain [9].

These approaches attempt to take advantage of the 

fact that large FFTs can be calculated comparatively 

quickly, yet there are other complications involved 

in FFT that don’t tilt the balance in its favor yet. 

Without the need to go deeper into that discussion 

in this article, it is a fair claim that most (if not 

all) productized stereo disparity algorithms are 

implemented in spatial domain. At the most basic 

level, this analysis requires that for every pixel in the 

left (transformed) image, we need to pick a small 

block of pixels surrounding it.

Next, we need to search in the right side 

(transformed) image along the epipolar (horizontal) 

line until finding where the same block is located. 

This computation is performed for every possible 

value of disparity (from one to the maximum—64 

or 128 or any other value). The difference (or cross 

correlation) between the left and right side block 

will approach minima (maxima) close to the actual 

value of disparity for the pixel. The performed 

“moving-window” block comparison and matching 

will calculate how much the block has moved, 

and the result will be used to calculate distance of 

that particular pixel in 3-D space. This process is 

shown in Figure 10. One such example of disparity 

calculation using rank transform followed by sum 

of absolute differences (SAD) based cost function 

minimization is given in [8].

Image right

Image left

Image rectification
(To enable

horizontal epipolar
searches)

Post
process

Compute
distance
for every

pixel

Calculate disparity and
confidence levels for
every pixel (dense)

Image rank

Image rank

Figure 9: A high-level data and algorithm flow for stereo disparity-based distance computation.

Figure 10: Simple SAD-based block-comparison 
algorithm for finding disparity.

Shift block and compare in the right image for best match

Best match = disparity for pixel

Repeat calculation for every pixel in left image

For every possible value of disparity in right image
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The SAD-based approach for finding disparity is 

elegant and sometimes too simplistic. The basic 

premise of this approach is that for a given block 

of pixels, the disparities are equal, however this is 

almost never true at the edges of the objects. If 

you review Figure 2 again and pay attention to the 

annotations made for forks of the motor cycle and 

the red box, you would quickly realize that there 

will be many adjacent pixels where disparity will 

be different. It is indeed normal since the “red box 

on the shelf” is about two meters farther from the 

camera than the “forks”. The disparity for a small 

block of pixels may change drastically at object 

boundaries and marginally for slanted or curved 

surfaces. The “cones and faces” image from 

Middlebury dataset [10] highlights this fact perfectly. 

The adjacent pixels found over one cone (slightly 

slanted surface) will have minor disparity changes, 

while the object boundaries will have large disparity 

differences. Using a simple SAD-based algorithm 

along with rank transform will leave large disparity 

holes on both occlusions such as the artifacts 

that are visible only in one camera and object 

boundaries.

To resolve such inaccuracies with deterministic run 

time, an elegant approach was suggested by [11]. 

This approach is called “semi global matching”. 

In this approach, a smoothness cost function is 

calculated for every pixel in more than one direction 

(4, 8 or 16). The cost function calculation is shown 

in Figure 12 below. The objective is to optimize the 

cost function S(p,d) in multiple directions for every 

pixel and to ensure a smooth disparity map. The 

original paper for SGM suggested 16 directions for 

optimization of the cost function, though practical 

implementations have been attempted for 2, 4 and 

8 directions as well.

A concrete implementation of SGM cost functions 

and optimization algorithm is shown in Figure 13 on 

the following page. With this pseudo-code segment, 

it is easy to assess the memory, computation and 

Figure 11: Cones and faces from Middlebury dataset. The disparity calculation is performed using simple 
SAD. The disparity keeps changing marginally on the curved surfaces, while it changes drastically on the 
object boundaries. See the disparity holes in the fence on the top-right, other object discontinuities and 
occlusions on left border.

Left Right Disparity map

Figure 12: Optimization cost function equations 
for SGM.
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eventually hardware complexity requirements to 

enable SGM-based computation in real time.

Computation and 
memory requirements 
for the disparity 
calculation

As you can well imagine, this calculation is 

compute heavy for ADAS applications. A typical 

front-facing stereo camera rig is a set of 1-Mpixel 

cameras operating at 30 frames per second. The 

first steps in the disparity calculation process are 

rank transforms. A typical rank transform is a 

census transform or a slightly modified version. 

The inputs required are both stereo images, while 

the outputs are census-transformed image pairs. 

The computation required for census transform 

for an N×N block around the pixel is to perform 

60 million, N×N census transforms. Every census 

transform done for a pixel over a N×N block 

requires N2 comparison operations. Some other 

involved rank transforms need an N2 point sort for 

every pixel. It is safe to assume that the minimum 

possible requirement is to run 60 million × N2 

comparison operations for rank transformation in 

practical systems deployed on real vehicles for next 

few years.

The second step in the process requires image 

rectification to ensure that the epipolar disparity 

searches are needed on the horizontal lines. The 

third step is more interesting since It involves 

calculation of C(p,d), Lr(p,d) and S(p,d) for every 

pixel and disparity combination (see Figure 13). 

If C(p,d) is a block-wise SAD operation and the 

block size is N×N, the required system range 

is ~200 meters and the accuracy of distance 

calculated required half-pixel disparity calculation 

then the system will require to calculate C(p,d) for 

64–128 disparity possibilities. The total compute 

requirements for C(p,d) with these parameters are 

to perform 60 million × N2 × 128 SAD operations 

every second.

The calculation of Lr(p,d) needs to be done for every 

pixel in “r” possible directions, hence the calculation 

of this term (see Figure 13) needs to be done 60 

million × 128 × r times. The calculation for one pixel 

requires five additions (if you consider subtraction 

a special form of addition) and one minima-finding 

operation. Putting it together, the calculation of 

Lr(p,d) per second needs 60 million × 128 × r 

× 5 additions and 60 million × 128 × r minima 

computations for four terms.

Figure 13: Pseudo code for implementation of SGM.

8 1

3 0

7 1

4 0

3 0

Pixel values Census

6 1

6 1

5 14 T T = 11011001

8 5

3 0

7 4

4 1

3 0

Pixel values Pixel rank

6 3

6 3

5 24 1 T = 5,4,0,2,1,3,0,1,3

Figure 14: Rank transform examples for images. The left part of the image is simple census transform. The 
right half is called “complete rank transform” [7].
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The calculation of S(p,d) needs to be done r times 

for every possible pixel and disparity value, every 

computation of S(p,d) requires “r” additions and 

one comparison. The total operations needed for 

calculating this per second are 60 million × 128 × r 

additions and 60 million × 128 comparisons.

Putting all three together, an accurate SGM-

based disparity calculation engine, running 

on 1 Mpixel, 30-fps cameras and intending to 

calculate 128 disparity possibilities will need to 

perform approximately 1 Tera operations (additions, 

subtractions, minima finding) every second. To put 

this number in perspective, advanced general-

purpose processors in embedded domain issue 

seven to ten instructions per cycle. Some of these 

instructions are SIMD type, i.e., they can tackle 

8–16 pieces of data in parallel. Considering the 

best IPC that a general-purpose processor has to 

offer, a quad-core processor running at 2 GHz will 

offer about 320 Giga 64-bit operations. Even if we 

consider that most of the stereo pipeline will be 16 

bits and the data can be packed in 64-bit bins with 

100 percent efficiency, a quad-core general-purpose 

processor is hardly enough to meet the demands 

of a modern day ADAS stereo vision system. The 

objective of a general-purpose processor is to 

afford high-level programmability of all kinds. What 

it means is that designing a real-time ADAS stereo 

vision system requires specialized hardware. 

Robustness of 
calculations

The purpose of ADAS vision systems is to avoid 

or at least minimize the severity of road accidents. 

More than 1.2 million people are killed every year 

due to road accidents, making it the leading cause 

of death for people aged 15–29 years. Pedestrians 

are the most vulnerable road users, with more 

than 250,000 pedestrians succumbing to injuries 

each year. The major cause of road accidents is 

mistakes made by drivers either due to inattention 

or fatigue. Therefore, the most important purpose 

of an ADAS vision system for emergency braking 

is to reduce the severity and frequency of the 

accidents. That is a double-edged requirement 

since a vision system not only has to estimate the 

distances correctly with high robustness every 

video frame and every second, but also minimize 

the false positive scenarios. To ensure the ADAS 

system is specified and designed for the right 

level of robustness, ISO 26262 was created as 

an international standard for the specification, 

design and development of electronics system for 

automotive safety applications.

A little calculation here will bring out the estimated 

errors in computing distance for a stereo vision 

system. Please see Figure 15. If the error tolerances 

for the focal length (f) and the distance between 

the cameras (T) is 1 percent and the accuracy of 

disparity calculation algorithm is 5 percent, then 

the calculated distance (Z) will still be about 2.5 

percent inaccurate. Improving the accuracy of the 

disparity calculation algorithm to a sub-pixel (quarter 

or half pixel) level therefore is important. This has 

two implications. The first being increased post-

processing interpolation compute requirements 

of the algorithm and the hardware. The second 

requirement is more sophisticated and is related to 

ISO 26262.

Z=f T/d
If f, T & calculated d have a standard deviation of s , s & s

respectively, then

s = ((s )  + (s )  + (s ) )

f T d

Z d T f
2 2 2 1/2

Figure 15: Statistical error estimation for calculated 
distance by a stereo vision system [13].
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the opportunities for ADAS applications

The architecture and design needs to ensure 

that both transient and permanent errors in the 

electronic components are detected and flagged 

within the fault tolerant time interval (FTTI) of the 

system. The calculation of FTTI and the other 

related metrics is beyond the scope of this article, 

yet it should suffice to point out that the electronic 

components used to build the system need to 

enable achieving the required ASIL levels for the 

ADAS vision system. 

System hardware 
options and summary

In this article, we reviewed the effectiveness of 

various algorithm options in general and stereo-

vision algorithms in particular to calculate distance 

for an automotive ADAS safety emergency 

braking system. Texas Instruments is driving 

deep innovation in the field of ADAS processing 

in general, and efficient and robust stereo-vision 

processing in particular.

There can be many different electronic system 

options to achieve the system design and 

performance objectives for an ADAS safety vision 

system. Heterogeneous chip architectures by Texas 

Instruments (TDA family) are suitable to meet the 

performance, power, size and ASIL functional safety 

targets for this particular application. A possible 

system block diagram for stereo and other ADAS 

systems using TI TDA2x and TDA3x devices and 

demonstrations of the technology are available at 

www.ti.com/ADAS. 

References
[1]  Cave paintings: http://en.wikipedia.org/wiki/

Cave_painting#Southeast_Asia

[2]  D. Scharstein, H. Hirschmüller, Y. Kitajima, G.

Krathwohl, N. Nesic, X. Wang, and P. Westling.

“High-resolution stereo datasets with

subpixel-accurate ground truth”. In German

Conference on Pattern Recognition (GCPR 2014),

Münster, Germany, September 2014

[3]  Figure credit: “Vision-based Object Detection and

Tracking”, Hyunggic!, http://users.ece.cmu.

edu/~hyunggic/vision_detection_tracking.

html

[4]  Image credit: pixabay.com

[5]  3D Structure from 2D Motion, http://www.

cs.columbia.edu/~jebara/papers/sfm.pdf

[6]  Chapter 7 “Stereopsis” of the textbook of E.

Trucco and A. Verri, Introductory Techniques for

3-D Computer Vision, Prentice Hall, NJ, 1998 and

lecture notes from https://www.cs.auckland.

ac.nz/courses/compsci773s1t/lectures/

773-GG/topCS773.htm

[7]  “The Complete Rank Transform: A Tool for

Accurate and Morphologically Invariant Matching

of Structures”, Mathematical Image Analysis

Group, Saarland University, http://www.mia.

uni-saarland.de/Publications/demetz-

bmvc13.pdf

[8]  “A Novel Stereo Matching Method based on Rank

Transformation”, Wenming Zhang , Kai Hao*,

Qiang Zhang, Haibin Li  Reference:

http:// ijcsi.org/papers/IJCSI-10-2-1-39-44.pdf

[9]  “FFT-based stereo disparity estimation for stereo

image coding”, Ahlvers, Zoelzer and Rechmeier

http://en.wikipedia.org/wiki/Cave_painting#Southeast_Asia
http://en.wikipedia.org/wiki/Cave_painting#Southeast_Asia
http://www.cs.middlebury.edu/~schar/papers/datasets-gcpr2014.pdf
http://www.cs.middlebury.edu/~schar/papers/datasets-gcpr2014.pdf
http://www.ti.com/lit/ug/sprugs2c/sprugs2c.pdf
http://users.ece.cmu.edu/~hyunggic/vision_detection_tracking.html
http://users.ece.cmu.edu/~hyunggic/vision_detection_tracking.html
http://users.ece.cmu.edu/~hyunggic/vision_detection_tracking.html
http://www.pixabay.com
http://www.cs.columbia.edu/~jebara/papers/sfm.pdf
http://www.cs.columbia.edu/~jebara/papers/sfm.pdf
https://www.cs.auckland.ac.nz/courses/compsci773s1t/lectures/773-GG/topCS773.htm
https://www.cs.auckland.ac.nz/courses/compsci773s1t/lectures/773-GG/topCS773.htm
https://www.cs.auckland.ac.nz/courses/compsci773s1t/lectures/773-GG/topCS773.htm
http://www.mia.uni-saarland.de/Publications/demetz-bmvc13.pdf
http://www.mia.uni-saarland.de/Publications/demetz-bmvc13.pdf
http://www.mia.uni-saarland.de/Publications/demetz-bmvc13.pdf
http://ijcsi.org/papers/IJCSI-10-2-1-39-44.pdf


[10]  “Semi-Global Matching”,

http://lunokhod.org/?p=1356

[11]  “Accurate and Efficient Stereo Processing by 

Semi-Global Matching and Mutual Information”, 

https://ieeexplore.ieee.org/

document/1467526

[12]  “More than 270,000 pedestrians killed on roads 

each year”, http://www.who.int/

mediacentre/news/notes/2013/

make_walking_

safe_20130502/en/

[13]  “Propagation of Error”, http://chemwiki. 

ucdavis.edu/Analytical_Chemistry/

Quantifying_Nature/Significant_Digits/

[14]  Optical flow reference: “Structure from

Motion and 3D reconstruction on the easy

in OpenCV 2.3+ [w/ code]” http://www.

morethantechnical.com/2012/02/07/

structure-from-motion-and-3d-

reconstruction-on-the-easy-in-opencv-2-3-

w-code/

[15]  Mutual information reference: “Mutual

Information as a Stereo Correspondence

Measure”, http://repository.upenn.edu/cgi/

viewcontent.cgi?article=1115&context=cis_

reports

[16]  Image entropy analysis using Matlab®

[17]  Image credit: “Engines idling in New York despite

law”, CNN News, http://www.cnn.com/

2012/02/06/health/engines-new-york-law/

SPRY300A© 2020 Texas Instruments Incorporated

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard 
terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing 
orders. TI assumes no  liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. 
The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

The platform bar is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

http://lunokhod.org/?p=1356 
http://www.who.int/mediacentre/news/notes/2013/make_walking_safe_20130502/en/
http://www.who.int/mediacentre/news/notes/2013/make_walking_safe_20130502/en/
http://www.who.int/mediacentre/news/notes/2013/make_walking_safe_20130502/en/
http://chemwiki.ucdavis.edu/Analytical_Chemistry/Quantifying_Nature/Significant_Digits/Propagation_of_Error
http://chemwiki.ucdavis.edu/Analytical_Chemistry/Quantifying_Nature/Significant_Digits/Propagation_of_Error
http://chemwiki.ucdavis.edu/Analytical_Chemistry/Quantifying_Nature/Significant_Digits/Propagation_of_Error
http://www.morethantechnical.com/2012/02/07/structure-from-motion-and-3d-reconstruction-on-the-easy-in-opencv-2-3-w-code/
http://www.morethantechnical.com/2012/02/07/structure-from-motion-and-3d-reconstruction-on-the-easy-in-opencv-2-3-w-code/
http://www.morethantechnical.com/2012/02/07/structure-from-motion-and-3d-reconstruction-on-the-easy-in-opencv-2-3-w-code/
http://www.morethantechnical.com/2012/02/07/structure-from-motion-and-3d-reconstruction-on-the-easy-in-opencv-2-3-w-code/
http://www.morethantechnical.com/2012/02/07/structure-from-motion-and-3d-reconstruction-on-the-easy-in-opencv-2-3-w-code/
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1115&context=cis_reports
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1115&context=cis_reports
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1115&context=cis_reports
http://www.cnn.com/2012/02/06/health/engines-new-york-law/
http://www.cnn.com/2012/02/06/health/engines-new-york-law/
https://ieeexplore.ieee.org/document/1467526


IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you 
permission to use these resources only for development of an application that uses the TI products described in the resource. Other 
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third 
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, 
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on 
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable 
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com



