
User's Guide
Getting Started with Bootloading on C2000™
Microcontrollers

Matt Kukucka

ABSTRACT

Embedded processors often need to be programmed in situations where a JTAG debug probe cannot be reliably
used to program the target device. In these cases, engineers need to rely on programming methods leveraging
peripherals such as USB (Universal Serial Bus) or Controller Area Network Flexible Data-Rate (CAN-FD).
C2000™ devices aid in this endeavor through the inclusion of several bootloading utilities in the Boot ROM to
load firmware into the on-chip RAM. These utilities are useful, but can be initially confusing to understand and
debug in reality. This document introduces the fundamental bootloading configurations and describes how to
leverage the most common boot modes to load application code into the on-chip flash.

Table of Contents
1 Introduction...4
2 Configuring the Boot Mode..6

2.1 Standalone Boot...6
2.1.1 Boot Mode Select Pins (BMSP)...7
2.1.2 Boot Definition Table (BOOTDEF)...8
2.1.3 Boot ROM OTP Configuration Registers...10
2.1.4 CPU2 Boot Flow.. 10

2.2 Emulation Boot...12
3 Programming the Flash..13

3.1 Flash API..14
3.2 Flash Kernels... 14

4 Bootloading Code to Flash.. 16
4.1 C2000 Hex Utility... 16
4.2 Common Boot Modes.. 17

4.2.1 Boot to Flash... 17
4.2.2 SCI Boot.. 20
4.2.3 CAN Boot...27
4.2.4 CAN-FD Boot...35
4.2.5 USB Boot...42

5 FAQ...48
5.1 Selecting the BMSP GPIOs with a Software-based Implementation... 48
5.2 Running a Flash Kernel from the Flash Instead of the RAM..48
5.3 No Symbols Defined When Debugging Boot ROM..51
5.4 Writing Values in the OTP Using the On-Chip Flash Tool ... 53
5.5 Writing Values in the OTP Using the Flash API Plugin.. 55

6 Summary... 56
7 References.. 57

List of Figures
Figure 1-1. General Bootloader Design Flow.. 5
Figure 3-1. On-Chip Flash Tool Location in CCS v12..13
Figure 3-2. On-Chip Flash Tool Location in CCS v20..13
Figure 4-1. Adding Post-Build Steps to Invoke the Hex Utility ..16
Figure 4-2. Opening the Target Configuration Menu in CCS... 18
Figure 4-3. Launching a Target Configuration in CCS... 18

www.ti.com Table of Contents

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-4. Connecting to the Target Core in CCS.. 18
Figure 4-5. Navigating to the Memory Browser in CCS...19
Figure 4-6. Emulating a Zero-pin Boot to Flash (0x0009 0000)...19
Figure 4-7. Finding the Converted SCI Kernel Output File.. 21
Figure 4-8. F2800157 LaunchPad UART Routing Schematic... 22
Figure 4-9. Routing the SCI TX or RX (GPIO28 or GPIO29) Signals to the BoosterPack (BP) Pins 22
Figure 4-10. Jumping the XDS TX, RX to the SCI TX, RX GPIOs.. 23
Figure 4-11. Opening the Target Configuration Menu in CCS... 23
Figure 4-12. Launching a Target Configuration in CCS... 24
Figure 4-13. Connecting to the Target Core in CCS.. 24
Figure 4-14. Navigating to the Memory Browser in CCS...24
Figure 4-15. Emulating a Zero-pin SCI Boot with SCIRXDA to GPIO28 and SCITXDA to GPIO29..25
Figure 4-16. Finding the XDS COM Port in Device Manager.. 25
Figure 4-17. Commanding the Serial Flash Programmer to Download the Application.. 26
Figure 4-18. Running the Application After Loading the Application into Flash...26
Figure 4-19. F280039C LaunchPad CAN Transceiver and Connector Schematic..28
Figure 4-20. Adding a Predefined Symbol for the Correct LaunchPad CAN GPIO Assignments... 29
Figure 4-21. Including the Local CAN Timing Header File...29
Figure 4-22. Confirming the CAN Timing Settings...29
Figure 4-23. Generating the DCAN kernel txt output...30
Figure 4-24. Setting the CAN Routing Switch..31
Figure 4-25. Opening the Target Configuration Menu in CCS... 31
Figure 4-26. Launching a Target Configuration in CCS... 32
Figure 4-27. Connecting to the Target Core in CCS.. 32
Figure 4-28. Navigating to the Memory Browser in CCS...32
Figure 4-29. Emulating a Zero-pin CAN Boot with CANRXA=GPIO5 and CANTXA=GPIO4..33
Figure 4-30. DCAN Flash Programmer Kernel Loaded... 34
Figure 4-31. DCAN Flash Programmer Application Loaded..34
Figure 4-32. F280039C LaunchPad CAN Transceiver and Connector Schematic..36
Figure 4-33. Adding a Predefined Symbol for the Correct LaunchPad CAN GPIO Assignments... 37
Figure 4-34. Generating the CAN Kernel txt Output.. 37
Figure 4-35. Setting the CAN Routing Switch..38
Figure 4-36. Opening the Target Configuration Menu in CCS... 39
Figure 4-37. Launching a Target Configuration in CCS... 39
Figure 4-38. Connecting to the Target Core in CCS.. 39
Figure 4-39. Navigating to the Memory Browser in CCS...40
Figure 4-40. Emulating a Zero-pin MCAN Boot with CANRXA=GPIO5 and CANTXA=GPIO4...40
Figure 4-41. MCAN Flash Programmer Kernel Loaded...42
Figure 4-42. MCAN Flash Programmer Application Loaded... 42
Figure 4-43. Generating the Correct USB Kernel Bin Output.. 43
Figure 4-44. Configure the F2837xD controlCard to Debug Using CCS and the Onboard XDS Emulator............................... 44
Figure 4-45. Opening the Target Configuration Menu in CCS... 44
Figure 4-46. Launching a Target Configuration in CCS... 45
Figure 4-47. Connecting to the Target Core in CCS.. 45
Figure 4-48. Navigating to the Memory Browser in CCS...45
Figure 4-49. Configuring the F2837xD controlCard to Emulate USB Boot..46
Figure 4-50. Browsing C2000Ware for the USB Windows Drivers.. 46
Figure 4-51. The F28x7x USB Boot Loader device appearing in the Device Manager... 47
Figure 5-1. Adding a File to a Project into CCS...49
Figure 5-2. Excluding the RAM Linker Command File from the Compiler Build.. 49
Figure 5-3. Creating a New Build Configuration for the Project...50
Figure 5-4. Creating the CPU1_FLASH Build Configuration... 50
Figure 5-5. Add the Predefined Symbol _FLASH to Initialize Flash Functions..51
Figure 5-6. Opening the Target Configuration Menu in CCS... 52
Figure 5-7. Launching a Target Configuration in CCS... 52
Figure 5-8. Connecting to the Target Core in CCS.. 52
Figure 5-9. CCS View When No Boot ROM Symbols Are Loaded..52
Figure 5-10. Navigating to Load Symbols in CCS... 53
Figure 5-11. Locating the Boot ROM Source Files.. 53
Figure 5-12. Example 1: Flash Plugin Boot Configuration Programmed... 54
Figure 5-13. Example 2: Flash Plugin Boot Configuration Programmed... 55

Table of Contents www.ti.com

2 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

List of Tables
Table 2-1. F280015x Device Default Boot Modes... 6
Table 2-2. Device Default Boot Mode Select Pins... 6
Table 2-3. Boot Configuration Type Per Device Family... 7
Table 2-4. BOOTPIN-CONFIG Bit Fields...8
Table 2-5. BOOTDEF Bit Fields...9
Table 2-6. F280015x Device Boot Modes..9
Table 2-7. F280015x Boot ROM Registers.. 10
Table 2-8. CPU1TOCPU2IPCBOOTMODE Register Details...11
Table 2-9. Emulation Boot Register Locations...12
Table 5-1. Resulting Zero Pin Boot Configuration..54
Table 5-2. Two Boot Mode Select Pin Configuration .. 55

Trademarks
C2000™, LaunchPad™, Code Composer Studio™, and BoosterPack™ are trademarks of Texas Instruments.
Microsoft Visual Studio® is a registered trademark of Microsoft Corporation.
All trademarks are the property of their respective owners.

www.ti.com Trademarks

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

1 Introduction

Note
This document only applies to C28x-based microcontrollers. For details on C29x bootloading,
please refer to the device-specific Technical Reference Manual.

As applications grow in complexity, the capability for bug squashing, feature additions, and embedded firmware
modification is increasingly essential, especially for maintaining device safety and security integrity in the field.
C2000 devices accomplish an implementation of firmware updates by offering simple loading utilities in the boot
ROM (factory-programmed, Read-Only Memory).

ROM loaders, often referred to as bootloaders, reside in the target device’s boot ROM and allow application
code to be loaded from an external host through software. Bootloaders serve as a reliable alternative to JTAG
debug probes, which require expensive and specialized hardware with direct access to the target device.

Albeit device dependent, users can select from various peripheral bootloaders as a medium to load firmware
onto the target device, such as:

1. Serial Communications Interface (SCI)
2. Serial Peripheral Interface (SPI)
3. Inter-Integrated Circuit (I2C)
4. Controller Area Network (CAN)
5. Controller Area Network Flexible Data-rate (CAN-FD)
6. Universal Serial Bus (USB)
7. Parallel GPIOs

Every C2000 device has a subset of default boot modes available to be selected. However, if the user requires
access to a boot mode not offered in the default boot table or the flexibility for using different GPIO assignments,
the One-Time Programmable (OTP) memory must be configured. The OTP registers allow for alternate boot
modes to be selected if not offered in the default boot table.

If the user opts to use a peripheral bootloader to load new code onto the device, the application image must be
generated in a specific format beforehand, as described in Section 4.1. Once the application is prepared, the
data transfer between the boot ROM and host device can proceed over the selected peripheral bootloader. The
application code is then loaded into the on-chip RAM by the bootloader and executed.

Peripheral bootloaders are present in every C2000 device's ROM and are simple to use, but are limited to only
load code into RAM. Flash kernels bridge the gap between the ROM and Flash by providing an intermediary
means to write code into the Flash from the RAM, as described in Section 3.2.

However, users getting started with C2000 bootloading can fall into pitfalls that prove challenging to debug if
there is a single misstep along the boot flow (see Figure 1-1 for a general design overview). There are four
phases to bootloader design that this report seeks to clarify:
1. Choosing and configuring the appropriate boot mode
2. Preparing an application to be loaded onto the device through a peripheral bootloader in the boot ROM
3. Loading an application into RAM with a bootloader
4. Using a flash kernel to program the Flash

Introduction www.ti.com

4 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Select the boot mode

Is a default boot
mode?

Configure the default boot
mode select pinsProgram the OTP memory

Prepare application image
to be loaded via the

peripheral ROM bootloader

Peripheral
bootloading

required?

No Yes

Load the application
into device RAM

Branch to application

Yes

No Boot to application code

Figure 1-1. General Bootloader Design Flow

www.ti.com Introduction

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

2 Configuring the Boot Mode
At the end of the ROM boot sequence, the device decides if emulation or standalone boot needs to be entered
depending on if there is a JTAG debugger connected. This is achieved by reading the "DCON" bit in the JTAG
state machine (except for on F2837xD/F2837xS/F2807x devices, which poll the “TRSTn” pin). Emulation boot
mimics the standalone boot flow by sourcing registers located in the RAM that are identical in structure and
configuration to the boot registers in the One-Time Programmable (OTP) memory. Consequently, emulation boot
allows for the boot registers to be written to as many times as necessary.

Note
TI highly recommends using emulation mode to debug and verify correctness of the device boot
configurations before attempting to program the OTP, as you can only program the OTP once.

This chapter details the configuration and usage of standalone boot (in Section 2.1) and emulation boot (in
Section 2.2), but note that the emulation boot flow is demonstrated later in Section 4.2.

2.1 Standalone Boot

Note
This chapter is based on the F280015x family of devices, but can be applied any device that employs
the BOOTPIN-CONFIG/BOOTDEF registers, as listed in Table 2-3. Device specific information can be
found in the Boot ROM chapter of the device's Technical Reference Manual (TRM).

On every CPU reset, the device executes a pre-defined boot sequence in the boot ROM depending on the
reset type and boot configuration. After successfully initializing the device (assuming no debugger is connected),
the Boot Mode Select Pins (BMSPs) are polled to determine which boot mode to invoke. The BMSPs can be
mapped to external GPIO pins, either defined by the device’s default configuration (Table 2-1) or the user’s
custom definition in the OTP memory (see Section 2.1.1 for more details). Referred to as standalone boot,
this procedure provides more flexibility for conducting firmware updates through the peripheral modules on the
device rather than having a debugger directly connected.

All the latest C2000 devices are pre-programmed with boot modes that can be selected using the default
BMSPs, given per device family in Table 2-2. From the selection of factory default boot modes, the device has
the option to boot directly to the Flash memory or load new application code into RAM over pre-determined
peripheral communication modules, without requiring any boot registers to be programmed. However, what if the
user needs to use a peripheral not included in the default boot modes or needs more customizing in the boot
options?

Table 2-1. F280015x Device Default Boot Modes
Boot Mode GPIO24

(Default boot mode select pin 1)
GPIO32

(Default boot mode select pin 0)
Parallel IO 0 0

SCI / Wait Boot 0 1

CAN 1 0

Flash 1 1

Table 2-2. Device Default Boot Mode Select Pins
GPIO 24 and GPIO 32 GPIO 72 and GPIO 84

Device Families F28002x,
F28003x,
F28004x,
F280013x,
F280015x,
F28P55x

F2837xD,
F2837xS,
F2807x,
F2838x,
F28P65x

Configuring the Boot Mode www.ti.com

6 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

2.1.1 Boot Mode Select Pins (BMSP)

The Boot Mode Select Pins (BMSPs) are decoded by the device and used to index the boot definition table,
determining which boot mode to execute. Besides the default boot configurations available on every device,
users can opt for other BMSPs and boot modes by programming the OTP memory. While the memory contents
for a ROM are determined at manufacturing time, the OTP can be programmed only once after production
allowing for more flexibility in applications where reliable and repeatable reading of data is required.

In the context of standalone boot loading, programming the OTP is required when:

1. A boot option is not supported by the default boot options
2. Different GPIOs are required for the peripherals or BMSPs
3. Different entry point to the application is required
4. The flexibility of using multiple boot options is required

Depending on the device families (as listed in Table 2-3), the BMSPs can be modified by writing to the respective
BOOTPIN-CONFIG or BOOTCTRL memory locations in the user-configurable Dual Code Security Module
(DCSM) OTP [7].

Note
In the DCSM, there are two independent secure zones to which securable resources can be assigned
– Zone 1 (Z1) and Zone 2 (Z2). The security module restricts the CPU access to on-chip secure
memory and resources without interrupting or stalling CPU execution. When a read occurs to a secure
memory location, the read returns a zero value and CPU execution continues with the next instruction.
This, in effect, blocks read and write access to secure memories through the JTAG port. Note that
insecure resources can still be accessed by the JTAG debugger.

The BOOTPIN-CONFIG register is a 32-bit wide location consisting of four 8-bit wide partitions. Three partitions
are designated for the BMSPs and the final partition is a key that designates validity of the OTP configuration.
This register can be found in the DCSM OTP as Z1-OTP-BOOTPIN-CONFIG and Z2-OTP-BOOTPIN-CONFIG
depending on which zone is being configured.

Note
The configurations programmed in Z2 take priority over the configurations in Z1. Therefore, TI
recommends to use the Z1 location first and then Z2 next if the OTP configurations need to be altered.

The BOOTPIN-CONFIG registers in the DCSM OTP can be programmed using the On-Chip Flash tool in CCS
or Flash API (see Section 5.4 or Section 5.5, respectively for steps), or graphically with the DCSM tool in
SysConfig [8].

Table 2-3. Boot Configuration Type Per Device Family
BOOTPIN-CONFIG and BOOTDEF Devices BOOTCTRL Devices

F28002x,
F28003x,
F28004x,

F280013x,
F280015x,

F2838x,
F28P55x,
F28P65x

F2807x,
F2837xD,
F2837xS

The BMSPs can be set to almost any GPIO (see the Configuring Boot Mode Pins chapter in the device-specific
TRM for exceptions) to be used during boot up, where GPIO0 is 0x0, GPIO1 is 0x01, and so on. Although the
BMSPs need to be manually pulled high or low with the external GPIO pins in most cases, a software-controlled
firmware update is possible following the method described in Section 5.1.

The BMSPs can also be used in both the boot ROM and the application afterward (with alternate functionality)
as long as the hold time for boot-mode pins is not violated (see Reset - XRSn - Timing Requirements in the data
sheet) [29].

www.ti.com Configuring the Boot Mode

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/document-viewer/TMS320F2800157/datasheet#GUID-XXXXXXXX-SF0T-XXXX-XXXX-000000256649/GUID-XXXXXXXX-SF0L-XXXX-XXXX-000000256649
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Note
However, if a LaunchPad™ or controlCard is being used, then the default BMSPs are manually pulled
up/down with the external boot switches and cannot be safely used in an application after.

The number of BMSPs used either expands or restricts the potential boot modes selectable in the boot table
exponentially. If three BMSPs are used, then up to 8 boot options are selectable. Reducing to two BMSPs
means only four boot options are available. Using zero BMSPs means that a single boot option is automatically
selected, eliminating the need for external manipulation of the GPIOs as well as freeing up other pins needed to
be repurposed for boot pins.

Disabling any particular BMSP can be achieved by writing 0xFF to the same BOOTPIN-CONFIG memory
location as when changing the GPIO number used. When decoding the boot mode, BMSP0 is the least-
significant bit and BMSP2 is the most-significant bit of the boot table index value. TI recommends to start
with disabling BMSP2 when disabling BMSPs.

In standalone boot, if the Z1 or Z2 OTP loaded registers are not written to with the correct BOOTPIN-
CONFIG_KEY (0x5A) designating register validity, then the default BMSPs are decoded to index the default
boot table.

Table 2-4. BOOTPIN-CONFIG Bit Fields
Bit Name Description

31:24 Key Write 0x5A to these 8-bits to tell the boot ROM code that the bits in this register are
valid.

23:16 Boot Mode Select Pin 2 (BMSP2) Refer to BMSP0 description.

15:8 Boot Mode Select Pin 1 (BMSP1) Refer to BMSP0 description.

7:0 Boot Mode Select Pin 0 (BMSP0) Set to the GPIO pin to be used during boot (up to 255).
0x0 = GPIO0, 0x01 = GPIO1, and so on.
Writing 0xFF disables this BMSP and this pin is no longer used to select the boot
mode.

Note
In the case when BMSP2 is only used (BMSP1 and BMSP0 are disabled), then only the boot table
indexes of 0 and 4 are selectable. In the case when BMSP0 is only used, then the selectable boot
table indexes are 0 and 1. This is important to keep in mind when programming the boot options in
the boot table as each BMSP still maintains positional weight regardless of the condition of the other
BMSPs.

Note

Devices that use the BOOTCTRL register (see Table 2-3) have a different boot flow and configuration
from the device families that use the BOOTPIN-CONFIG register.

When programmed with a valid key, the BOOTCTRL register allows for different GPIOs to be used as
the two-boot mode select pins. The total customizable BMSPs for BOOTCTRL devices is fixed at two,
as opposed to the maximum of three for BOOTPIN-CONFIG devices. However, the same GPIO can
be assigned to both BMSPs, allowing for a single pin use case on all devices.

Please see the device-specific TRM for more details on the BOOTCTRL register.

2.1.2 Boot Definition Table (BOOTDEF)

When BMSPs are configured in the OTP, a custom boot mode table must also be defined by writing to the boot
definition table registers (BOOTDEF) with boot option entries. Replacing the default boot mode selection table,
the user-defined BOOTDEF table is indexed using the customized BMSPs in the OTP. For example, instead of
parallel boot being tied to boot option 0 in the default configuration, the user can now set the first boot option to
any available boot mode, and so on.

Configuring the Boot Mode www.ti.com

8 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

The BOOTDEF table is set up by configuring a 64-bit register (see Table 2-5), split into two 32-bit wide locations
in the DCSM OTP, called Z1-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH (or Z2-OTP-BOOTDEF-LOW
and Z2-OTP-BOOTDEF-HIGH depending on which zone is configured). These registers are then partitioned into
8-bit wide entries, defining each boot option to be used.

The range of customizable boot modes in the BOOTDEF table depends on how many BMSPs are being used.
Recall, zero BMSPs allows for one table entry, one BMSP allows up to two table entries, two BMSPs allows up
to four table entries, and three BMSPs allows up to eight table entries.

To configure the BOOTDEF table:
1. Select a boot option in the GPIO Assignments section of the data sheet or Technical Reference Manual
2. Set the associated BOOTDEF value of the boot option in the intended BOOTDEF-LOW or BOOTDEF-HIGH

OTP memory location.

The BOOTDEF registers in the DCSM OTP can be programmed using the On-Chip Flash tool in CCS or Flash
API (see Section 5.4 or Section 5.5 respectively for steps), or graphically with the DCSM tool in SysConfig [8].

Once programmed with valid BOOTDEFs, the boot definition table can be indexed with the BMSPs configured in
the BOOTPIN-CONFIG register to select which boot option is executed in the boot ROM on reset.

Table 2-5. BOOTDEF Bit Fields
BOOTDEF Name Byte Position Name Description

BOOT_DEF0 7:0

[3:0] BOOT_DEF0 Mode
Set the boot mode number from Table 2-6. Any unsupported boot
mode causes the device to either go to wait boot (debugger
connected) or boot to Flash (standalone).

[7:4] BOOT_DEF0
Options

Set alternate/additional boot options. This can include changing the
GPIOs for a particular boot peripheral or specifying a different Flash
entry point. Refer to GPIO Assignments for valid BOOTDEF values
to set in the table.

BOOT_DEF1 15:8 BOOT_DEF1 Mode/
Options

Refer to BOOT_DEF0 description.

BOOT_DEF2 23:16 BOOT_DEF2 Mode/
Options

BOOT_DEF3 31:24 BOOT_DEF3 Mode/
Options

BOOT_DEF4 39:32 BOOT_DEF4 Mode/
Options

BOOT_DEF5 47:40 BOOT_DEF5 Mode/
Options

BOOT_DEF6 55:48 BOOT_DEF6 Mode/
Options

BOOT_DEF7 63:56 BOOT_DEF7 Mode/
Options

Table 2-6. F280015x Device Boot Modes
Boot Number Boot Mode

0 Parallel

1 SCI/Wait

2 CAN

3 Flash

4 Wait

5 RAM

6 SPI

7 I2C

8 CAN-FD

10 Secure Flash

www.ti.com Configuring the Boot Mode

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/document-viewer/TMS320F2800157/datasheet#GUID-86DCC978-3FAA-4699-A45E-A253ECB6B7D5/TITLE-SPRUIN7GPIO_ASSIGNMENTS
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Note

There are exceptions to the configurability of the boot selection table depending on the device family:
1. On F2833x devices, the boot table is not customizable and restricted to the factory default
2. On F2802x, F2803x, F2806x, F2837xD, F2837xS, and F2807x, the boot table is semi-

customizable, as the 4th entry in the default boot table (GET mode) can be programmed to one
additional boot mode

This is different from devices that use the BOOTDEF register (see Table 2-3), allowing for up to eight boot
modes to be selected. Please see the device-specific TRM for more details on BOOTCTRL.

2.1.3 Boot ROM OTP Configuration Registers

The boot ROM code involves numerous memory addresses and registers used during execution, supporting
boot configurations from DCSM Zone 1 (Z1) and Zone 2 (Z2) registers. The user-configurable DCSM OTP
locations used in the standalone boot flow can only be programmed once. The configuration of these registers is
detailed in Section 2.1.

In the DCSM context, BOOTPIN-CONFIG maps to GPREG1, and BOOTDEF-LOW/BOOTDEF-HIGH map to
GPREG3/GPREG4 respectively. Table 2-7 provides these locations.

Section 5.4 and Section 5.5 detail how to program the DCSM OTP with the On-Chip Flash Tool and Flash API
respectively, following example use cases. SysConfig can also be used to program the DCSM OTP with an
intuitive graphical user-interface (GUI) [8].

Note
The register addresses in Table 2-7 are for the F280015x family of devices. Device specific
information can be found in the Boot ROM chapter's Boot ROM Registers table in the Technical
Reference Manual (TRM).

Table 2-7. F280015x Boot ROM Registers
Boot Flow Register Name Boot ROM Name Register Address User OTP Address

Standalone
(Using Z1)

Z1-GPREG1 Z1-OTP-BOOTPIN-CONFIG 0x0005 F008 0x0007 8008
Z1-GPREG2 Z1-OTP-BOOT-GPREG2 0x0005 F00A 0x0007 800A
Z1-GPREG3 Z1-OTP-BOOTDEF-LOW 0x0005 F00C 0x0007 800C
Z1-GPREG4 Z1-OTP-BOOTDEF-HIGH 0x0005 F00E 0x0007 800E

Standalone
(Using Z2)

Z2-GPREG1 Z2-OTP-BOOTPIN-CONFIG 0x0005 F088 0x0007 8208
Z2-GPREG2 Z2-OTP-BOOT-GPREG2 0x0005 F08A 0x0007 820A
Z2-GPREG3 Z2-OTP-BOOTDEF-LOW 0x0005 F08C 0x0007 820C
Z2-GPREG4 Z2-OTP-BOOTDEF-HIGH 0x0005 F08E 0x0007 820E

2.1.4 CPU2 Boot Flow

Note
This section is based on the F28P65x family of devices. Device specific information can be found in
the Boot ROM chapter of the device-specific Technical Reference Manual (TRM).

While CPU1 can be booted in different modes based on the boot pin configuration, CPU2 must be booted by
CPU1 using the Inter-Processor Communication (IPC) module [9]. The CPU1 application configures boot mode
for CPU2 through the IPCBOOTMODE register and controls when CPU2 is released from reset to boot.

Regardless of the reset source, CPU2 requires the IPC flag to be set by CPU1 on every reset to confirm the
contents of the IPCBOOTMODE register are valid and continue the boot process. CPU2 acknowledges and
clears the flag during boot up.

Configuring the Boot Mode www.ti.com

10 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

At a high-level, the CPU2 boot sequence is as follows:

1. CPU2 boots up and is either:
a. Held in reset
b. In Wait boot mode waiting for the IPC Flag

2. CPU1 application configures the CPU1TOCPU2IPCBOOTMODE register
3. CPU1 sets the CPU1TOCPU2IPCFLG0 to confirm the contents of CPU1TOCPU2IPCBOOTMODE are valid
4. If CPU2 is held in reset, the CPU1 application releases CPU2
5. CPU2 acknowledges and clears the IPC flag during boot up
6. CPU2 boot ROM runs the specified boot mode in CPU1TOCPU2IPCBOOTMODE

The IPCBOOTMODE register bit-field configurations and requirements for booting CPU2 are shown in the
IPCBOOTMODE Details section of the F28P65x TRM. Table 2-8 details how this register can be configured for
F28P65x devices.

Similar to the CPU1 BOOTPIN-CONFIG and BOOTDEF registers, CPU1TOCPU2IPCBOOTMODE is configured
as follows:

1. The upper 8-bits contains the key indicating validity (0x5A)
2. The lower 8-bits sets CPU2's boot mode
3. Bits 16-19 specifies the number of words to be copied from CPU1TOCPU2MSGRAM1 to CPU2 M1RAM if

“Copy from IPC Message RAM and Boot to M1RAM" boot mode is invoked

Table 2-8. CPU1TOCPU2IPCBOOTMODE Register Details
Bit Name Valid Values Description

31:24 Key 0x5A Key must be set for this register to
be considered valid.

23:20 Reserved - Reserved

19:16 IPC Message RAM Copy
Length

0x0 = 0 words (Boot mode not used)
0x1 = 100 words
0x2 = 200 words
...
0x9 = 900 words
0xA = 1000 words

Sets the data length (in
words) for the "Copy from IPC
Message RAM and Boot to
M1RAM" boot mode. This is the
number of words to be copied
from CPU1TOCPU2MSGRAM1 to
CPU2 M1RAM.

If not using this boot mode, set
value to 0x0.

15:8 Reserved - Reserved

7:0 CPU2 Boot Mode

0x00 = None/Wait Boot
0x01 = IPC Message RAM copy and boot to M1RAM
0x03 = Flash Boot Option 0 (Sector 0)
0x05 = Boot to M0RAM
0x0A = Secure Flash Boot Option 0 (Sector 0)
0x0B = Boot to User OTP
0x23 = Flash Boot Option 1 (Sector 4)
0x2A = Secure Flash Boot Option 1 (Sector 4)
0x43 = Flash Boot Option 2 (Sector 8)
0x4A = Secure Flash Boot Option 2 (Sector 8)
0x63 = Flash Boot Option 3 (Sector 13)
0x6A = Secure Flash Boot Option 3 (Sector 13)

Sets the boot mode for CPU2

www.ti.com Configuring the Boot Mode

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

2.2 Emulation Boot
If a JTAG debugger is connected to the device, then the device enters emulation boot mode. Like standalone
boot mode, boot options other than those in default boot table can be accessed by programming the emulation
boot registers located in RAM, lending users the capability to program boot configurations repeatedly. Thus,
emulation boot allows users to test boot configurations and view the state of the boot ROM with a debugger (see
Section 5.3).

Note
TI highly recommends using emulation mode to debug and verify correctness of the device boot
configurations before attempting to program the OTP, as you can only program the OTP once.

• EMU-BOOTPIN-CONFIG is the emulation equivalent of Z1-OTP-BOOTPIN-CONFIG/Z2-OTP-BOOTPIN-
CONFIG, and can be programmed to experiment with different boot modes without writing to OTP.

• EMU-BOOTDEF-LOW/EMU-BOOTDEF-HIGH are the emulation equivalents of Z1-OTP-BOOTDEF-LOW/Z1-
OTP-BOOTDEF-HIGH.

The emulation locations located in RAM can be written to as many times as needed at the locations defined in
Table 2-9 using the memory browser in CCS:

Table 2-9. Emulation Boot Register Locations
Boot ROM Name Register Address

EMU-BOOTPIN-CONFIG 0x0000 0D00

EMU-GPREG2 0x0000 0D02

EMU-BOOTDEF-LOW 0x0000 0D04

EMU-BOOTDEF-HIGH 0x0000 0D06

At the start of the emulation boot mode, the EMU-BOOTPIN-CONFIG and EMU-BOOTDEF locations are
checked, and the EMU-BOOTPIN-CONFIG-KEY is verified.
• If EMU-BOOTPIN-CONFIG-KEY is equal to 0xA5, then the CPU emulates standalone boot, essentially using

the OTP definitions if already programmed.
• If EMU-BOOTPIN-CONFIG-KEY is equal to 0x5A, then the emulation BOOTDEF options are decoded using

the specified BMSPs and the selected boot mode is executed.

Configuring the Boot Mode www.ti.com

12 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

3 Programming the Flash
Before attempting to program the device, understand how the non-volatile memory of C2000 devices works. The
Flash memory on C2000 devices allow users to easily erase and re-program the device without losing data after
loss of power. Erase operation set all bits in a given sector to 1, while programming operations selectively clear
bits to 0.

During development, an application executable can be programmed into the Flash memory using Code
Composer Studio™ (CCS) [1]. When CCS identifies that the application code is mapped into the Flash memory,
the On-Chip Flash Plugin is automatically invoked to load the executable to the Flash. By default, the plugin
erases the Flash before programming, generates the ECC for the executable, and then programs and verifies
the application into the Flash.

The Flash Plugin GUI can be used when connected to the target CPU core and found in CCS at:

• For CCS v12, Tools > On-Chip Flash

Figure 3-1. On-Chip Flash Tool Location in CCS v12
• For CCS v20, right-click the intended CPU in the Debug view and navigate to Properties > Flash Settings

(Flash Settings is found under the Categories drop-down menu)

Figure 3-2. On-Chip Flash Tool Location in CCS v20

www.ti.com Programming the Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

TI also offers application flashing with UniFlash [2], a standalone JTAG based Flash programming tool with
a smaller footprint than that of CCS due to less debug support. Nonetheless, UniFlash provides all the GUI
operations that the CCS On-Chip Flash plugin does.

3.1 Flash API
Flash operations on all C2000 operations are performed by the CPU. Algorithms are loaded into RAM and
executed by the CPU to perform any Flash operations. For instance, erasing or programming the Flash of a
C2000 device with CCS entails loading Flash algorithms into the RAM over JTAG and having the CPU execute
them.

All Flash operations are performed using the Flash Application Programming Interface (API); the device-specific
library and reference guide is available in C2000Ware [3] at “libraries/flash_api”. Applications that require erase
or program Flash at runtime can link the Flash API library to perform Flash programming.

However, applications that call the Flash API are not advised to execute from the same Flash bank, since
erasing or programming the Flash while also executing code introduces race conditions and undefined behavior.
Hence, the Flash API needs to be executed from the RAM or another Flash bank (if additional banks exists for
the same core).

This can be achieved by allocating the Flash API to the “.ti.ramfunc” section in the linker command file,
designating a Flash load address and RAM run address, and then copying the functions to RAM in the main
function before executing. Comprehensive details on Flash programming on C2000 devices can be referenced in
[4] and [5].

Note
On multicore devices, one CPU cannot access another CPU's allocated Flash bank. For instance, the
Flash bank of the CPU2can only be programmed by executing the Flash API from CPU2 RAM.

3.2 Flash Kernels
Given that the bootloaders in the boot ROM can only load code into RAM, flash kernels serve as a link between
the ROM and flash by providing a mechanism for flash-based firmware upgrades in the field over various
communication protocols (SCI, CAN, I2C, and so forth.). Programming the flash can be achieved by using the
ROM bootloader to download the flash kernel to RAM, and then running the flash kernel in the RAM to download
the application to the flash using the Flash API.

Before any application data is received, the flash kernel erases the flash of the device to prepare for
programming. Once the host starts sending the application code, a buffer is used to hold the received contiguous
blocks of application code. When the buffer is full or a new block of non-contiguous data is detected, the code
in the buffer is programmed. After the entire application is received and programmed to flash, the flash kernel
branches to the entry point of the application.

TI has developed flash kernels to load code from the RAM to the flash based on the boot ROM source code, and
can be found in the examples folder of C2000Ware. A similar development flow can be applied by the user to
implement a custom bootloader for a specific application. The boot ROM source code used by device boot flow,
including the peripheral bootloaders, can be viewed in C2000Ware at:

• C2000Ware_x_xx_xx_xx > libraries > boot_rom > DEVICE_FAMILY > REV# > rom_sources >
DEVICE_FAMILY_ROM > bootROM > source

On devices with multiple flash banks, the flash kernel projects can be adapted to execute from the flash instead
of the RAM to program another flash bank. This allows users to simply jump to the flash kernel located in the
flash and avoid using the bootloaders in the boot ROM. For more details on how to implement this, refer to
Section 5.2.

Programming the Flash www.ti.com

14 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Note

On multicore devices (that is, F2838x, F2837xD, or F28P65x), CPU1 and CPU2 kernel projects can
utilize the bootloader in CPU1 to download a modified bootloader (that is, flash kernel) for CPU2 to
download the CPU2 application image.

Once CPU1 operations are completed, CPU1 can write the CPU2 kernel into shared message RAM
(CPU1TOCPU2MSGRAM) with an instruction for CPU2 to branch to the CPU2 entry point in the
CPU2 IPC message copy destination RAM (M1RAM) during the CPU2 boot sequence. After the
branch instruction is written to M1RAM and the CPU2 boot sequence is complete, CPU2 starts
execution from M1RAM and branches to CPU2 kernel entry point. The CPU1 kernel is waiting for the
CPU2 kernel commands to finish before proceeding.

Please refer to the device-specific technical reference manual for more details on IPC protocol.

All in all, the general flow for using a flash kernel is follows:

1. Reset the device and use the intended boot mode
2. Transfer the flash kernel from the host to the device via the bootloader in the boot ROM
3. The flash kernel takes control after the ROM bootloader is complete
4. The kernel erases the old application code from flash memory on the controller
5. Kernel configures a connection with host and receive the new application code using the intended peripheral

communications protocol
6. Kernel writes the newly received application code to flash memory and transfers control to the application
7. Newly received code from host executes

www.ti.com Programming the Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 15

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

4 Bootloading Code to Flash
At the beginning of device boot up, the device decides if firmware is programmed into the Flash that needs to
be executed or if code needs to be loaded in using a ROM loader. This is determined by examining the BMSPs,
either defined by the user in the OTP, the emulation registers, or following the factory default boot configuration.

However, if a bootloader is selected that loads code from an external host, the application image needs to
formatted and delivered in a specific procedure to be successfully programed into the RAM. Flash kernels can
then be applied to bridge the gap between the Flash and RAM by linking the flash APIs to enable the kernels to
erase and program flash.

This section demonstrates how to program and/or execute an application onto Flash for the most common boot
modes (Flash, SCI, CAN, CAN-FD, and USB) by walking through the entire flow, from device boot configuration
to flash kernel execution.

4.1 C2000 Hex Utility
The ROM loader requires data to be presented as a data stream and boot table. The structure is common to all
ROM loaders and is described in detail in the Bootloader Data Stream Structure section of the device-specific
TRM. Users can easily generate applications in this format using the hex2000 utility included with the TI C2000
compiler.

This file format can even be generated as part of the Code Composer Studio build process by adding a
post-build step line in the project properties, as seen in Figure 4-1. The hex2000 utility can also be configured
in a GUI by enabling the C2000 Hex Utility in the project properties and selecting the necessary conversion
options.

In case of C2000 ROM bootloaders, the following line needs to be added to the post-build steps in the CCS Build
(Project Properties > CCS Build > Steps > Post-build steps) for the firmware project loaded into the on-chip flash
and the flash kernel project loaded into RAM:

SCI, CAN, CAN-FD Bootloading:

"${CG_TOOL_HEX}" "${BuildArtifactFileName}" -boot -sci8 -a -o "${BuildArtifactFileBaseName}.txt"

USB Bootloading:

"${CG_TOOL_HEX}" "${BuildArtifactFileName}" -boot -b -o "${BuildArtifactFileBaseName}.dat"

Figure 4-1. Adding Post-Build Steps to Invoke the Hex Utility

Bootloading Code to Flash www.ti.com

16 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

The hex utility supports creation of the boot table required for the SCI, SPI, I2C, CAN, and Parallel I/O loaders.
The hex utility adds the required information to the file such as the key value, reserved bits, entry point, address,
block start address, block length and terminating value. The contents of the boot table vary slightly depending on
the boot mode and the options selected when running the hex conversion utility. The actual file format required
by the host (ASCII, binary, hex, and so on) differs from one specific application to another and some additional
conversion can be required.

See the TMS320C28x Assembly Language Tools User's Guide [11] for detailed description of the hex2000
options used to generate a boot table.

4.2 Common Boot Modes
This section gives a complete description of the entire flow of programming and executing an application onto
Flash for the most common boot modes (Flash, SCI, CAN, CAN-FD, and USB).

Note

This section predominantly focuses on the boot execution paths when the emulator (JTAG) is
connected and no BMSPs are used (zero-pin boot). The emulation procedure can easily be translated
to standalone boot with different BMSP configurations by referring to Section 5.4 or Section 5.5, as the
emulation boot configuration registers in RAM are formatted identically to the OTP registers.

4.2.1 Boot to Flash

Note
Although these steps were conducted on an F2800157 LaunchPad, the general flow can be easily
applied to any C2000 devices that support custom BMSPs and boot definition tables (all devices
provided in Table 2-3). Refer to the device-specific TRM for details for the device that is intended to
boot load on.

If the user needs to boot to code already programmed in the on-chip flash, then users can either use the default
BMSPs to boot to flash entry point address 0x0008 0000, or configure the BOOTPIN-CONFIG and BOOTDEF
registers to boot to a specific flash address.

Note
Certain devices feature a secure flash boot option present on devices that can be used to perform
an application boot from flash with an additional security layer of boot code authentication before the
actual code execution. Please refer to Secure BOOT on C2000 Device [13] for the general procedure
of enabling a secure boot. Users can verify the availability of the secure flash boot feature in the
device-specific TRM.

The default BMSPs to configure boot to flash can be found in the TMS320F280015x Real-Time Microcontrollers
data sheet. If the user sets both GPIO24 and GPIO32 to 1, then the boot ROM branches to flash entry address
0x0008 0000 without needing to configure the device registers.

However, if users need to boot to a different flash sector, then the BOOTCONFIG and BOOTDEF registers need
to be configured for the specific boot option. Refer to the GPIO Assignments section in the data sheet to find
which boot option to configure to reach the intended flash entry point. These steps describe how to emulate boot
to flash entry point 0x0009 0000. For example, boot option 0x63.

Note
An application can be loaded into different flash locations by using linker command files. Refer to the
Compiler Tools User Manual description on Linker Command Files [12] for details on how to load code
into a particular flash address.

1. Open CCS to a workspace.
2. Select View > Target Configurations.

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 17

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/ug/spru513/spru513.pdf
https://www.ti.com/document-viewer/TMS320F2800157/datasheet#GUID-088A6613-9711-4F67-B3CE-E1CFC95EDFAA/TITLE-SPRSP45DEVICE_BOOT_MODES
https://www.ti.com/document-viewer/TMS320F2800157/datasheet#GUID-088A6613-9711-4F67-B3CE-E1CFC95EDFAA/TITLE-SPRSP45DEVICE_BOOT_MODES
https://www.ti.com/document-viewer/TMS320F2800157/datasheet#GUID-67F14BD1-2F1E-4ED9-9D02-549C15BE3702/TITLE-SPRSP45GPIO_ASSIGNMENTS
https://software-dl.ti.com/codegen/docs/tiarmclang/compiler_tools_user_guide/compiler_manual/linker_description/index.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-2. Opening the Target Configuration Menu in CCS
3. Users can import a project for this device to CCS and use that to connect to the device, or copy the target

configuration file (.ccxml) from C2000Ware (C2000Ware_x_xx_xx_xx > device_support > DEVICE_FAMILY
> common > targetConfigs) to the User Defined target configurations.
a. Find the device target config and then manually launch by right clicking.

Figure 4-3. Launching a Target Configuration in CCS

4. When CCS brings up the debug window, select the intended CPU and connect to the target.

Figure 4-4. Connecting to the Target Core in CCS
5. If a window pops up stating there is a break in the boot ROM with no debug information available, or outside

of program code, then follow Section 5.3 to debug the boot ROM.
6. Once the symbols are loaded, open the memory browser by going to View > Memory Browser.

Bootloading Code to Flash www.ti.com

18 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-5. Navigating to the Memory Browser in CCS
7. In the memory browser tab, navigate to address 0xD00. Recall that the 0xD00 location specifies the

BMSPs with the validity key (EMU-BOOTPIN-CONFIG) and 0xD04-0xD05 specifies the boot definitions
(EMU-BOOTDEF-LOW).

8. The objective is to configure a zero-pin boot to flash address 0x0009 0000, so all BMSPs need to disabled
and the EMU-BOOTDEF-LOW needs to be set to 0x63 in the lowest index. If the boot option is programmed
to any other entry in EMU-BOOTDEF-LOW, then the intended boot mode is not selected.
a. Set 0xD00-0xD01 (EMU-BOOTPIN-CONFIG) to 0x5AFF FFFF.
b. Set 0xD04 (EMU-BOOTDEF-LOW) to 0x0063.

Note
Zero-pin boot means that the device automatically boots to the first entry defined the BOOTDEF
table. This is achieved by disabling all BMSPs, thus allowing the device to only consider one boot
option.

Figure 4-6. Emulating a Zero-pin Boot to Flash (0x0009 0000)
9. Reset the CPU and perform an external reset (XRSn). Then, click on Resume to begin the boot sequence.
10. Now, the device boots to flash address 0x0009 0000 on reset, as specified by boot option 0x63.

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 19

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

4.2.2 SCI Boot

Note
Although these steps were conducted on an F2800157 LaunchPad, the general flow can be easily
applied to any C2000 devices that support custom BMSPs and boot definition tables (all devices
provided in Table 2-3). Refer to the device-specific TRM for the device that is intended to boot load on.

The SCI flash kernel is based on the ROM bootloader, communicating with the host PC application provided in
C2000Ware (C2000Ware_x_xx_xx_xx > utilities > flash_programmers > serial_flash_programmer) and providing
feedback to the host on the receiving of packets and completion of commands given.

Note

This section details CPU1 SCI boot loading. For a more detailed explanation on the SCI kernel
commands and functionality, or steps on how to use CPU2 or Connectivity Manager (CM) SCI
bootloader, refer to the Serial Flash Programming of C2000 Microcontrollers application note [12].

Flash kernel source and project files for CCS are provided in C2000Ware, in the examples directory of the
corresponding device. These projects have a post-build step in which the compiled and linked .out file is
converted into the correct boot hex format needed by the SCI ROM bootloader and is saved as the project
name with a .txt extension.

1. Find the SCI flash kernel project for the intended device in C2000Ware and import into CCS.
Device Build Configurations Location

F2802x RAM C2000Ware_x_xx_xx_xx > device_support > f2802x > examples > structs >
f28027_flash_kernel

F2803x RAM C2000Ware_x_xx_xx_xx > device_support > f2803x > examples > c28 >
f2803x_flash_kernel

F2805x RAM C2000Ware_x_xx_xx_xx > device_support > f2805x > examples > c28 >
f28055_flash_kernel

F2806x RAM C2000Ware_x_xx_xx_xx > device_support > f2806x > examples > c28 >
f28069_sci_flash_kernel

F2807x RAM C2000Ware_x_xx_xx_xx > device_support> f2807x > examples > cpu1 >
F2807x_sci_flash_kernel

F2833x RAM C2000Ware_x_xx_xx_xx > device_support > f2833x > examples >
f28335_flash_kernel

F2837xS RAM C2000Ware_x_xx_xx_xx > device_support > f2837xs > examples > cpu1 >
F2837xS_sci_flash_kernel > cpu01

F2837xD RAM C2000Ware_x_xx_xx_xx > device_support > f2837xd > examples > dual >
F2837xD_sci_flash_kernels

F28004x RAM, Flash with LDFU, Flash
without LDFU

C2000Ware_x_xx_xx_xx > driverlib > f28004x > examples > flash, select
flashapi_ex2_sci_kernel

F2838x RAM CPU1-CPU2
C2000Ware_x_x_xx_xx > driverlib > f2838x>examples>c28x_dual>flash_kernel
CPU1-CM
C2000Ware_x_x_xx_xx > driverlib > f2838x>examples>c28x_cm>flash_kernel

F28002x RAM, Flash with LDFU C2000Ware_x_xx_xx_xx > driverlib > f28002x > examples > flash, select
flash_kernel_ex3_sci_flash_kernel

F28003x RAM, Flash with LDFU C2000Ware_x_xx_xx_xx > driverlib > f28003x > examples > flash, select
flash_kernel_ex3_sci_flash_kernel

F280013x RAM C2000Ware_x_xx_xx_xx > driverlib > f280013x > examples > flash, select
flash_kernel_ex3_sci_flash_kernel

Bootloading Code to Flash www.ti.com

20 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/an/sprabv4/sprabv4.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Device Build Configurations Location

F280015x RAM C2000Ware_x_xx_xx_xx > driverlib > f280015x > examples > flash, select
flash_kernel_ex3_sci_flash_kernel

F28P65x RAM C2000Ware_x_xx_xx_xx > driverlib > f28p65x > examples > c28x_dual >
flash_kernel

F28P55x RAM C2000Ware_x_xx_xx_xx > driverlib > f28p55x > examples > flash,
select f28p55x_flash_ex3_sci_flash_kernel

2. Make sure that the Active Build Target Configuration of the SCI flash kernel project is set to RAM because
the kernel needs to be linked for execution in the RAM.

3. Build the kernel project. These projects have a post-build step in which the compiled and linked .out file is
converted into the correct boot hex format needed by the SCI ROM bootloader and is saved as the example
name with a txt extension.
a. If txt output is not generated, then follow Section 4.1 to make sure that the correct post-build step to

generate the hex file is defined.

Figure 4-7. Finding the Converted SCI Kernel Output File

4. Repeat the build process for the firmware code that is loaded into the flash by the kernel.
a. Confirm that the Active Build Target Configuration is set for the Flash.
b. Confirm that the correct post-build step to generate the txt file is defined.
c. Build the firmware project.

After building the kernel and firmware projects in CCS, set up the device hardware correctly to communicate
with the host PC running the serial_flash_programmer executable provided in C2000Ware. The first task is to
make sure the boot mode select pins are configured properly to boot the device to SCI boot mode. If the user
needs to load code from an external host in the on-chip flash, then the default BMSPs or BOOTPIN-CONFIG
and BOOTDEF registers can configure SCI boot.

The default BMSPs to enable SCI boot can be found in the TMS320F280015x Real-Time Microcontrollers data
sheet. If the user sets GPIO24 to 0 and GPIO32 to 1, then the boot ROM jumps to the SCI bootloader with
SCIRXDA to GPIO28 and SCITXDA to GPIO29 without needing to program the device registers.

However, if the user wants the flexibility of using SCI boot with different GPIO assignments, then the OTP or
emulation BOOTCONFIG and BOOTDEF registers need to be configured for the specific boot option. Refer to
the GPIO Assignments section in the data sheet to find which SCI boot option fits the GPIO requirements.

When using the serial_flash_programmer executable, the appropriate SCI bootloader GPIO pins to the Rx and
Tx pins need to be connected to the host PC COM port. A transceiver is often needed to convert a Virtual

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 21

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/document-viewer/TMS320F2800157/datasheet#GUID-088A6613-9711-4F67-B3CE-E1CFC95EDFAA/TITLE-SPRSP45DEVICE_BOOT_MODES
https://www.ti.com/document-viewer/TMS320F2800157/datasheet#GUID-088A6613-9711-4F67-B3CE-E1CFC95EDFAA/TITLE-SPRSP45DEVICE_BOOT_MODES
https://www.ti.com/document-viewer/TMS320F2800157/datasheet#GUID-67F14BD1-2F1E-4ED9-9D02-549C15BE3702/TITLE-SPRSP45GPIO_ASSIGNMENTS
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

COM port from the PC to GPIO pins that can connect to the device. On some systems, like the controlCARD or
LaunchPad, an FTDI chip is used to interface the GPIO pins used for SCI communication to a USB Virtual COM
port.

For the F2800157 LaunchPad, the PC must connect to the USB on the LaunchPad and use the UART routing
on the device to connect to the GPIO pins to the XDS110 COM Port. The schematics for the UART routing
can be found in C2000Ware_x_xx_xx_xx > boards > (LaunchPads or controlCARDs) > DEVICE_NAME > Rev#
> documentation. For F2800157, SCIRXDA is internally routed to GPIO28 and SCITXDA to GPIO29 using the
default SCI_SEL settings, so boot option 0x01 needs to be configured.

Figure 4-8. F2800157 LaunchPad UART Routing Schematic

However, users can also elect to use jumpers to externally route the XDS110 COM port to the GPIO
BoosterPack™ (BP) header. This is helpful if alternative SCI GPIO assignments are selected and a connection to
the XDS COM port is required. The steps below demonstrate how to externally route the XDS110 COM port to
GPIO28 or GPIO29 on the F2800157 LaunchPad.

1. Make sure the UART routing is set to connect to BoosterPack™ (BP) for GPIO28 and GPIO29 (SCI_Sel1 =
1); not internally to the XDS110 COM port. This allows the SCI-A signals to output in the BP header pins.

Figure 4-9. Routing the SCI TX or RX (GPIO28 or GPIO29) Signals to the BoosterPack (BP) Pins

Bootloading Code to Flash www.ti.com

22 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

2. Remove the jumpers for the TXD and RXD pins on the J101 header. Note that the XDS RXD pin (closer to
the XDS circuit) is connected to the MCU TXD, and is the pin closer to the XDS circuit. Similarly, the XDS
TXD is connected to the MCU RXD.

3. Attach a jumper wire from XDS TXD to GPIO28 (SCI-A RX) and a jumper wire from the XDS RXD to GPIO
29 (SCI-A TXD) according to the XDS110 Target Interface section in the board schematic.

Figure 4-10. Jumping the XDS TX, RX to the SCI TX, RX GPIOs

Now, the device needs to be set up to emulate a zero-pin SCI boot with boot option 0x01, SCIRXA = GPIO28
and SCITXA = GPIO29.

1. Open CCS to a workspace.
2. Select View > Target Configurations.

Figure 4-11. Opening the Target Configuration Menu in CCS
3. Users can import a project for this device to CCS and use that to connect to the device, or copy the target

configuration file (.ccxml) from C2000Ware (C2000Ware_x_xx_xx_xx > device_support > DEVICE_FAMILY
> common > targetConfigs) to the User Defined target configurations.
a. Find the device target config and then manually launch by right-clicking.

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 23

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/df/sprr476/sprr476.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-12. Launching a Target Configuration in CCS

4. When CCS brings up the debug window, select the intended CPU and connect to the target.

Figure 4-13. Connecting to the Target Core in CCS
5. If a window pops up stating there is a break in the boot ROM with no debug information available, or outside

of program code, then follow Section 5.3 to debug the boot ROM.
6. Once the symbols are loaded, open the memory browser by going to View > Memory Browser.

Figure 4-14. Navigating to the Memory Browser in CCS
7. In the memory browser tab, navigate to address 0xD00. Recall that the 0xD00 location specifies the

BMSPs with the validity key (EMU-BOOTPIN-CONFIG) and 0xD04-0xD05 specifies the boot definitions
(EMU-BOOTDEF-LOW).

8. The objective is to configure a zero-pin SCI boot with SCIRXDA to GPIO28 and SCITXDA to GPIO29, so all
BMSPs need to disabled and the EMU-BOOTDEF-LOW needs to be set to 0x01 in the lowest index. If the
boot option is programmed to any other entry in EMU-BOOTDEF-LOW, then the intended boot mode is not
selected.
a. Set 0xD00-0xD01 (EMU-BOOTPIN-CONFIG) to 0x5AFF FFFF.
b. Set 0xD04 (EMU-BOOTDEF-LOW) to 0x0001.

Bootloading Code to Flash www.ti.com

24 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Note
Zero-pin boot means that the device automatically boots to the first entry defined the BOOTDEF
table. This is achieved by disabling all BMSPs, thus allowing the device to only consider one boot
option.

Figure 4-15. Emulating a Zero-pin SCI Boot with SCIRXDA to GPIO28 and SCITXDA to GPIO29

9. Reset the CPU and perform an external reset (XRSn). Then, click on Resume to begin the boot sequence.
10. If there is a break in the boot ROM with no debug information available, or outside of program code, then

follow the Section 5.3 to load the boot ROM symbols. Afterwards, confirm that the device is in SCI autobaud
lock.

Now, the SCI bootloader (with GPIO assignments as specified by the boot option 0x01) in the ROM begins
executing and waits to autobaud lock with the host (for the A character to be received to determine the baud rate
at which the communications occurs). At this point, the device is ready to receive code from the host.

The command line PC utility is a programming design that can easily be incorporated into scripting environments
for applications like production line programming. This was written using Microsoft Visual Studio® in C++. The
project and source can be found in C2000Ware (C2000Ware_x_xx_xx_xx > utilities > flash_programmers >
serial_flash_programmer).

To use this tool to program the C2000 device, make sure that the target board has been reset and is currently
in the SCI boot mode as configured above, and connected to the PC COM port. The command line usage of the
tool for a single core SCI boot is described below, where -d, -k, -a, -p are mandatory parameters. If the baud rate
is omitted, then the baud rate is set to 9600 by default. More details on the parameters of the utility is detailed in
[12].

serial_flash_programmer.exe –d DEVICE -k KERNEL_FILE -a APPLICATION_FILE -p COM# -b BAUDRATE -v

1. Find the XDS110 UART COM port by navigating to the Device Manager > Ports (COM & LP).

Figure 4-16. Finding the XDS COM Port in Device Manager
2. Navigate to the folder containing the compiled serial_flash_programmer executable

(C2000Ware_x_xx_xx_xx > utilities > flash_programmers > serial_flash_programmer). Run the executable
serial_flash_programmer.exe with the following command.

serial_flash_programmer.exe –d DEVICE_NAME –k <path_to_kernel_hex> -a <path_to_application_hex>
-p COM# -v

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 25

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Note

Both the flash kernels and flash application must be in the SCI8 boot format as discussed in Section
4.1.

This automatically connects to the device, perform an auto baud lock, and download the CPU1 kernel into RAM
and execute. Now, the CPU1 kernel is running and waiting for a packet from the host.

1. The serial_flash_programmer prints the options to the screen to choose from that is sent to the device
kernel. Select 1-DFU CPU1 to flash the application to CPU1. In this case, the original command already
specified the application file, so no additional information is required at this point.

Figure 4-17. Commanding the Serial Flash Programmer to Download the Application
2. After the execution of the command, the application needs to be executed. To run the application, select

6-Run CPU1 and specify branch address 0x0008 0000 (flash entry point of application). The application that
was successfully SCI boot loaded onto the device now executes the application loaded in flash.

Figure 4-18. Running the Application After Loading the Application into Flash

Bootloading Code to Flash www.ti.com

26 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

4.2.3 CAN Boot

Note
Although these steps were conducted on an F280039C LaunchPad, the general flow can be easily
applied to any C2000 devices that support custom BMSPs and boot definition tables (all devices
provided in Table 2-3). Refer to the device-specific TRM for the device details that is intended to boot
load on.

The DCAN flash kernel is based on the ROM bootloader, communicating with the host PC application
provided in C2000Ware (C2000Ware_x_xx_xx_xx > utilities > flash_programmers > dcan_flash_programmer)
and providing feedback to the host on the receiving of packets and completion of commands given. The source
and executable for the host application are found in the dcan_flash_programmer folder. For a more detailed
explanation on kernel functionality, refer to the CAN Flash Programming of C2000 Microcontrollers application
note [16].

The following devices are supported by the dcan_flash_programmer in C2000Ware:

1. F28003x
2. F280015x
3. F28P65x

Note
In the F280015x LaunchPad, the built-in CAN transceiver and connecter does not map to any possible
CAN GPIO assignments and requires soldering to short the correct GPIOs to the transceiver [32].

Note
The term DCAN used in this report is defined as DCAN flash kernels, DCAN flash programmer,
and refer to the Controller Area Network communication interface (CAN) [13] Version D designed by
Bosch. The DCAN flash programmer described in this document refers to the CAN module.

DCAN Flash Kernel is based off DCAN ROM loader sources. To enable this code to erase and program flash,
flash APIs must be incorporated, which is done by linking the flash APIs.

Before any application data is received, the F28P65x and F280015x DCAN flash kernels erase the flash of the
device readying for programming. The F28P65x and F280015x DCAN flash kernel projects allow the user to
specify which flash banks and flash sectors to erase before the application is programmed. This is discussed in
more detail in the CAN Flash Programming of C2000 Microcontrollers application note [16].

After the appropriate locations in flash memory are erased, the application load begins. A buffer is used to hold
the received contiguous blocks of application code. When the buffer is full or a new block of non-contiguous data
is detected, the code in the buffer is programmed. This continues until the entire application is received.

Before writing to a sector for the first time, the F28003x DCAN flash kernel checks to see if the sector has been
erased. If the sector has not been erased, then the F28003x Flash kernel has the Flash API execute an erase
operation. After this, a buffer is filled up with content to be written into Flash, and a program command is sent
from the Flash API. Once the write has occurred, the Flash kernel has the Flash API verify that the segment was
written into Flash at the correct address. Once the kernel has copied everything to Flash, the project jumps to
the entry address of the image.

After the DCAN module is initialized in the flash kernel, this module waits for the host to send in the firmware
image. The flash kernel receives 8 bytes at a time from the host and places the contents into an intermediate
RAM buffer. This buffer is then written into Flash in 128-bit or 512-bit increments.
• F28P65x and F280015x DCAN flash kernel projects support 512-bit programming

– If desired, there is also a 128-bit programming project available for the F28P65x devices
– The F280015x flash API supports 128-bit programming, but the flash kernel was implemented using

512-bit programming
• F28003x DCAN flash kernel project supports 128-bit programming

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 27

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/sprad51
https://www.ti.com/lit/sprad51
https://www.ti.com/lit/an/sprad51/sprad51.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

All of the sections of the firmware image stored in flash are aligned according to the number of bits being
programmed at once.

• If programming 128-bits at once (F28003x), then the flash sections of the application are aligned to
a 128-bit boundary. In the linker command file for the firmware image, all initialized sections need to be
mapped to Flash sectors, and after each mapping, an ALIGN(8) directive needs to be added to verify the
128-bit alignment.

• If programming 512-bits at once (F280015x and F28P65x), then the flash sections of the application
are aligned to a 512-bit boundary. In the linker command file for the firmware image, all initialized sections
need to be mapped to Flash sectors, and after each mapping, an ALIGN(32) directive needs to be added to
verify the 512-bit alignment.

Note
The ALIGN(x) directive inserts padding bytes until the programmed location becomes aligned on a x
word boundary. For C2000, the word size is 16-bits, so 16-bit programming requires ALIGN(1), 32-bit
programming requires ALIGN(2), and so on.

Flash kernel source and project files for CCS are provided in C2000Ware, in the examples directory of the
corresponding device. These projects have a post-build step in which the compiled and linked .out file is
converted into the correct boot hex format needed by the DCAN ROM bootloader and is saved as the project
name with a .txt extension.

The correct GPIO assignments needed for CAN routing in the LaunchPad can be confirmed by inspecting the
schematics for the CAN Transceiver and Connector in C2000Ware_x_xx_xx_xx > boards > (LaunchPads or
controlCARDs) > DEVICE_NAME > Rev# > documentation. On LAUNCHXL-F280039C, the transceiver RXD is
internally routed to GPIO5 and TXD to GPIO4, hence boot option 0x02 needs to be configured.

Figure 4-19. F280039C LaunchPad CAN Transceiver and Connector Schematic

1. Find the DCAN flash kernel project for the intended device in C2000Ware and import into CCS. For
example, the DCAN flash kernel for F28003x is found at C2000Ware_x_x_xx_xx > driverlib > f28003x >
examples > flash.

2. Make sure that the Active Build Target Configuration of the DCAN flash kernel project is set to RAM, since
the kernel needs to be linked for execution in the RAM.

3. If using a LaunchPad, then apply the predefined symbol _LAUNCHXL_F280039C in Project Properties >
CCS Build > C2000 Compiler > Predefined Symbols to use correct GPIO assignments for the LaunchPad in
device.h.

Bootloading Code to Flash www.ti.com

28 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-20. Adding a Predefined Symbol for the Correct LaunchPad CAN GPIO Assignments
4. At power-up, the device boot ROM is clocked from an on-chip 10MHz oscillator (INTOSC2). This value

needs to be set as the primary internal clock source in the flash kernel and is the default clock at reset.
In device.h, uncomment and use #define USE_PLL_SRC_INTOSC on line 295. Comment out #define
USE_PLL_SRC_XTAL.

5. In DCAN_boot.c, confirm that the local copy of bootloader_can_timing.h is included on line 64 instead of the
auto-generated header file found in the include folder.

Figure 4-21. Including the Local CAN Timing Header File
6. In bootloader_can_timing.h, confirm lines 51-53 defines the following CAN timing settings:

a. 1Mbps bitrate
b. 20Mhz CAN clock
c. 20ms bit time

Figure 4-22. Confirming the CAN Timing Settings

7. Build the kernel project. These projects have a post-build step in which the compiled and linked .out file
is converted into the correct boot hex format needed by the DCAN ROM bootloader and is saved as the
example name with a txt extension.

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 29

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

a. If txt output is not generated, then follow the steps in Section 4.1 to make sure that the correct post-build
step to generate the hex file is defined.

Figure 4-23. Generating the DCAN kernel txt output

8. Open the flash kernel txt file in a text editor and change bytes 3-4 to be C0 7A. These bytes contain
metadata to configure the bitrate of the CAN bus.

9. Repeat the build process for the firmware code that is loaded into the flash by the kernel.
a. Confirm that the Active Build Target Configuration is set for the Flash.
b. Confirm that the correct post-build step to generate the hex file is defined.
c. Build the firmware project.

After building the kernel and firmware projects in CCS, set up the device hardware correctly to be able to
communicate with the host PC running the dcan_flash_programmer provided in C2000Ware. The first task to do
is make sure the boot mode select pins are configured properly to boot the device to CAN boot mode. If the user
needs to load code from an external host in the on-chip flash, then users can either use the default BMSPs, if
supported, to configure CAN boot or configure the BOOTPIN-CONFIG and BOOTDEF registers.

The default BMSPs to enable CAN boot can be found in the TMS320F28003x Real-Time Microcontrollers data
sheet. If the user sets GPIO24 to 1 and GPIO32 to 0, then the boot ROM jumps to the CAN bootloader with
CANRXA to GPIO5 and CANTXA to GPIO4 without needing to program the device registers.

However, if the user wants the flexibility of using CAN boot with different GPIO assignments, then the OTP or
emulation BOOTCONFIG and BOOTDEF registers need to be configured for the specific boot option. Refer to
the GPIO Assignments in the TMS320F28003x Real-Time Microcontrollers data sheet to find which CAN boot
option fits the GPIO requirements.

The hardware components needed to run the examples are a C2000 device connected to a CAN transceiver and
a PEAK PCAN-USB Pro FD analyzer.

1. The LaunchPad devices contain an onboard CAN transceiver. Confirm that the PEAK PCAN-USB Pro FD
Analyzer is connected to the LaunchPad through the ground, CAN-Lo and CAN-Hi connections.

2. Confirm that the onboard CAN Routing switch needs to be set low (to XCVR) for the transceiver to
communicate using the GPIOs.

Bootloading Code to Flash www.ti.com

30 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/document-viewer/TMS320F280039C/datasheet#GUID-4DDB07F7-3765-484B-9D59-E298FF304A70/TITLE-SPRSP45DEVICE_BOOT_MODES
https://www.ti.com/document-viewer/TMS320F280039C/datasheet#GUID-4DDB07F7-3765-484B-9D59-E298FF304A70/TITLE-SPRSP45DEVICE_BOOT_MODES
https://www.ti.com/document-viewer/TMS320F280039C/datasheet#GUID-9C8CECAB-FBD3-4C63-BB4D-E52D11AE140B/TITLE-SPRSP45GPIO_ASSIGNMENTS
https://www.ti.com/document-viewer/TMS320F280039C/datasheet#GUID-4DDB07F7-3765-484B-9D59-E298FF304A70/TITLE-SPRSP45DEVICE_BOOT_MODES
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-24. Setting the CAN Routing Switch

Note
For controlCards, a custom designed CAN transceiver board and the HSEC-180-pin controlCard
Docking Station needs to be used. The custom-designed transceiver board is connected to the
controlCard using four connections: ground, 3.3V, CANTX and CANRX.

Now, the device needs to be set up to emulate a CAN boot with boot option 0x02, CANRXA = GPIO5 and
CANTXA = GPIO4. There is only ≃10 second timeout window to send the first CAN frame to device.

1. Open CCS to a workspace.
2. Select View > Target Configurations.

Figure 4-25. Opening the Target Configuration Menu in CCS
3. Users can import a project for this device to CCS and use that to connect to the device, or copy the target

configuration file (.ccxml) from C2000Ware (C2000Ware_x_xx_xx_xx > device_support > DEVICE_FAMILY
> common > targetConfigs) to the User Defined target configurations.
a. Find the device target config and manually launch by right clicking.

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 31

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-26. Launching a Target Configuration in CCS

4. When CCS brings up the debug window, select the intended CPU and connect to the target.

Figure 4-27. Connecting to the Target Core in CCS
5. If a window pops up stating there is a break in the boot ROM with no debug information available, or outside

of program code, then follow the steps in Section 5.3 to debug the boot ROM.
6. Once the symbols are loaded, open the memory browser by going to View > Memory Browser.

Figure 4-28. Navigating to the Memory Browser in CCS
7. In the memory browser tab, navigate to address 0xD00. Recall that the 0xD00 location specifies the

BMSPs with the validity key (EMU-BOOTPIN-CONFIG) and 0xD04-0xD05 specifies the boot definitions
(EMU-BOOTDEF-LOW).

8. The objective is to configure a zero-pin CAN boot with CANRXA = GPIO5 and CANTXA = GPIO4, so all
BMSPs need to disabled and the EMU-BOOTDEF-LOW needs to be set to 0x02 in the lowest index. If the
boot option is programmed in any other entry in EMU-BOOTDEF-LOW, then the intended boot mode is not
selected.
a. Set 0xD00-0xD01 (EMU-BOOTPIN-CONFIG) to 0x5AFF FFFF.
b. Set 0xD04 (EMU-BOOTDEF-LOW) to 0x0002.

Note
Zero-pin boot means that the device automatically boots to the first entry defined the BOOTDEF
table. This is achieved by disabling all BMSPs, thus allowing the device to only consider one boot
option.

Bootloading Code to Flash www.ti.com

32 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-29. Emulating a Zero-pin CAN Boot with CANRXA=GPIO5 and CANTXA=GPIO4
9. Reset the CPU and perform an external reset (XRSn). Then, click on Resume to begin the boot sequence.
10. If there is a break in the boot ROM with no debug information available, or outside of program code, then

follow the Section 5.3 to load the boot ROM symbols. Afterwards, confirm that the device is in CAN boot.

Now, the CAN bootloader (with GPIO assignments as specified by the boot option 0x02) in the ROM begins
executing and waits for a CAN frame to be transmitted from the host. At this point, the device is ready to receive
code from the host.

Note
The CAN bootloader has a 10 second window for accepting CAN frames. If offered in the device boot
options, then the SEND_TEST modes remove the timeout. These options use the same GPIO pins for
communication as equivalent boot options. However, the GPIO pins transmit a frame before beginning
the boot-loading process to help ascertain proper functionality of the module. In the case of F280039x
devices, boot options 0x82 can be used to avoid the timeout while using the same GPIO assignments
as boot option 0x02.

The command line PC utility is a programming solution that can easily be incorporated into scripting
environments for applications like production line programming. This was written using Microsoft Visual
Studio in C++. The project and source can be found in C2000Ware (C2000Ware_x_xx_xx_xx > utilities >
flash_programmers > dcan_flash_programmer).

The host is responsible for sending the DCAN kernel image and flash (firmware) image to the MCU. The PEAK
PCAN-USB Pro FD CAN bus analyzer is used as the host. The flash programmer project is built and run on
Visual Studio 2019. The host programmer uses the PCAN_Basic API from PEAK [17]. The PCAN_Basic API can
be used to send and receive CAN frames on the CAN analyzer.

Note
The PEAK PCAN-USB Pro FD CAN bus analyzer is backwards compatible to receive both CAN
frames as well as CAN-FD frames.

On the F28003x device, the clock to the CAN module is switched to the external clock source by the Boot ROM.
The external clock is 20MHz in the LaunchPad and the controlCard. The Boot ROM configures the nominal bit
rate to be 100Kbps. The host CAN programmer configures the PEAK CAN analyzer to have the same clock and
nominal bit rate value.

The host initializes the analyzer for CAN usage, sends the kernel over in 2-byte increments, and then sends over
the image in 8-byte increments with a delay of 10ms between each frame to give the Flash API time to program
the data received into Flash. Once the firmware image has been written, the host CAN programmer exits.

To use this tool to program the C2000 device, make sure that the target board has been reset and is currently
in the CAN boot mode as configured above, and connected to the PEAK PCAN-USB Pro FD CAN bus analyzer.
The command line usage of the tool for a single core CAN boot is described below, where -d, -k, and -a are

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 33

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

mandatory parameters. Verbose output can be enabled with -v. More details on the parameters of the utility are
detailed in [4].

dcan_flash_programmer.exe –d DEVICE -k KERNEL_FILE -a APPLICATION_FILE -v

1. Navigate to the folder containing the compiled dcan_flash_programmer executable
(C2000Ware_x_xx_xx_xx > utilities > flash_programmers > dcan_flash_programmer).

2. Open a terminal and run the executable dcan_flash_programmer with the following command:

dcan_flash_programmer.exe –d DEVICE_NAME –k <path_to_kernel_hex> -a <path_to_application_hex> -v

This first loads the DCAN flash kernel into RAM of the device using the bootloader. The bytes transferred over
the CAN bus can be seen in the terminal. Then, the kernel executes and loads and programs flash with the file
specified by the ‘-a’ command line argument as seen in Figure 4-30 and Figure 4-31. The kernel branches to the
application and begins executing if successfully loaded into the flash.

Figure 4-30. DCAN Flash Programmer Kernel Loaded

Figure 4-31. DCAN Flash Programmer Application Loaded

Bootloading Code to Flash www.ti.com

34 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

4.2.4 CAN-FD Boot

Note
Although these steps were conducted on an F280039C LaunchPad, the general flow can be easily
applied to any C2000 devices that supports custom BMSPs and boot definition tables (all devices are
provided in Table 2-3). Refer to the device-specifc TRM for the device that is intended to boot load on.

ROM bootloaders can only load code into RAM, which is why ROM bootloaders are used to load in flash kernels
to allow code to be stored in the flash, as described in Section 3.2. The CAN flash kernel is based on the
ROM bootloader, communicating with the host PC application provided in C2000Ware (C2000Ware_x_xx_xx_xx
> utilities > flash_programmers > can_flash_programmer) and providing feedback to the host on the receiving of
packets and completion of commands given. The source and executable for the host application are found in the
can_flash_programmer folder. For more information on kernel functionality, refer to the CAN Flash Programming
of C2000 Microcontrollers application note [16].

The following devices are supported by the can_flash_programmer in C2000Ware:
1. F28003x
2. F28P55x
3. F28P65x

Note

The term MCAN, MCAN flash kernels, CAN flash programmer, and so forth refer to the Modular
Controller Area Network (MCAN) in this document. MCAN is an interchangeable term with Controller
Area Network Flexible Data-Rate (CAN-FD) [15]. The CAN flash programmer described in this
document refers to the MCAN module.

The flash kernel project is modeled after the MCAN ROM bootloader. This goes straight into the MCAN_Boot
function which has been modified to write to Flash. The MCAN module initialization for the flash kernel is the
same as the bootloader. The clock source for the MCAN module, the nominal and data bit rates, GPIO pins, and
so forth, are set by the kernel on initialization according to the boot mode.

Before any application data is received, the F28P55x kernel erases the flash of the device, readying for
programming. Additionally, the F28P55x MCAN flash kernel project allows the user to specify which flash banks
and flash sectors to erase before the application is programmed. This is described in more detail in the Custom
Flash Bank and Sector Erase section of the CAN Flash Programming of C2000 Microcontrollers application note
[16].

The F28003x kernel checks each flash sector if the flash sector been erased before programming the
application. If the flash sector is has not been previously erased, then the sector is erased and the application
data is written.

The F28P65x kernel erases the flash at the beginning of the application download process. Erasing flash can
take a few seconds. Note, that while the application load presents as failed, the flash is being erased.

After the appropriate locations in flash memory are erased, the application load begins. The flash kernel receives
64 bytes at a time from the host and places the contents into an intermediate RAM buffer. This buffer is then
written into Flash in 128-bit or 512-bit increments.

• F28003x and F28P65x MCAN flash kernels write 128-bits at a time
• F28P55x MCAN flash kernel writes 512-bits at a time

After the RAM buffer is filled up with content to be written into Flash, a program command is sent from the Flash
API. Once the write has occurred, the Flash kernel has the Flash API verify that the segment was written into
Flash at the correct address. Once the kernel has copied everything to Flash, the project jumps to the entry
address of the image.

All of the sections of the firmware image stored in flash must be aligned according to the number of bits being
programmed at once.

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 35

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/sprad51
https://www.ti.com/lit/sprad51
https://www.ti.com/lit/an/sprad51/sprad51.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

• If programming 128-bits at once (F28003x and F28P65x), then the flash sections of the application
are aligned to a 128-bit boundary. In the linker command file for the firmware image, all initialized sections
need to be mapped to Flash sectors. After each mapping, an ALIGN(8) directive needs to be added to verify
the 128-bit alignment.

• If programming 512-bits at once (F28P55x), then the flash sections of the application are aligned to
a 512-bit boundary. In the linker command file for the firmware image, all initialized sections need to be
mapped to Flash sectors. After each mapping, an ALIGN(32) directive needs to be added to verify the 512-bit
alignment.

Note
The ALIGN(x) directive inserts padding bytes until the programmed location becomes aligned on a x
word boundary. For C2000, the word size is 16-bits, so 16-bit programming requires ALIGN(1), 32-bit
programming requires ALIGN(2), and so on.

The protocol used to transfer the application data follows the MCAN ROM loader protocol. With the original
MCAN ROM loader protocol, nominal bitrate used is 1Mbps and transmits 64 bytes per frame from the host to
the target device for nominal bit timing. The data bitrate used by the protocol is 2Mbps for data bit timing.

Flash kernel source and project files for CCS are provided in C2000Ware in the corresponding examples
directory of the device. These projects have a post-build step in which the compiled and linked .out file is
converted into the correct boot hex format needed by the MCAN ROM bootloader and is saved as the project
name with a txt extension.

The correct GPIO assignments needed for CAN routing in the LaunchPad can be confirmed by inspecting the
schematics for the CAN Transceiver and Connector in C2000Ware_x_xx_xx_xx > boards > (LaunchPads or
controlCARDs) > DEVICE_NAME > Rev# > documentation. On LAUNCHXL-F280039C, the transceiver RXD is
internally routed to GPIO5 and TXD to GPIO4, hence BOOTDEF 0x02 needs to be configured.

Figure 4-32. F280039C LaunchPad CAN Transceiver and Connector Schematic

1. Find the MCAN flash kernel project for the intended device in C2000Ware and import into CCS. For
example, the MCAN flash kernel for F28003x is found at C2000Ware_x_x_xx_xx > driverlib > f28003x >
examples > flash

2. Make sure that the Active Build Target Configuration of the MCAN flash kernel project is set to RAM because
the kernel needs to be linked for execution in the RAM.

3. Add the predefined symbol _LAUNCHXL_F280039C in Project Properties > CCS Build > C2000 Compiler >
Predefined Symbols to use correct GPIO assignments for the LaunchPad in device.h.

Bootloading Code to Flash www.ti.com

36 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-33. Adding a Predefined Symbol for the Correct LaunchPad CAN GPIO Assignments
4. At power-up, the device boot ROM is clocked from an on-chip 10MHz oscillator (INTOSC2). This value

needs to be set as the primary internal clock source and is the default clock at reset. In device.h, uncomment
and use #define USE_PLL_SRC_INTOSC on line 295. Comment out #define USE_PLL_SRC_XTAL.

5. Build the kernel project. These projects have a post-build step in which the compiled and linked .out file
is converted into the correct boot hex format needed by the MCAN ROM bootloader and is saved as the
example name with a txt extension.
a. If txt output is not generated, then follow the steps in Section 4.1 to make sure that the correct post-build

step to generate the hex file is defined.

Figure 4-34. Generating the CAN Kernel txt Output

6. Repeat the build process for the application code that is loaded into the flash by the kernel.
a. Confirm that the Active Build Target Configuration is set for Flash.
b. Confirm that the correct post-build step to generate the hex file is defined.
c. Build the firmware project.

After building the kernel and firmware projects in CCS, set up the device hardware correctly to be able to
communicate with the host PC running the can_flash_programmer provided in C2000Ware. The first task to
do is make sure the boot mode select pins are configured properly to boot the device to CAN-FD boot mode.

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 37

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

If the user needs to load code from an external host in the on-chip flash, then users need to configure the
BOOTPIN-CONFIG and BOOTDEF registers since this is not available as a default boot option. Refer to the
GPIO Assignments in the TMS320F28003x Real-Time Microcontrollers data sheet to find which CAN-FD boot
option fits the GPIO requirements.

The hardware components needed to run the examples are a C2000 device connected to a CAN transceiver and
a PEAK PCAN-USB Pro FD analyzer.

1. The LaunchPad devices contain an onboard CAN transceiver. Confirm that the PEAK PCAN-USB Pro FD
Analyzer is connected to the LaunchPad through the ground, CAN-Lo and CAN-Hi connections.

2. Confirm that the onboard CAN Routing switch needs to be set low (to XCVR) for the transceiver to
communicate using the GPIOs.

Figure 4-35. Setting the CAN Routing Switch

Note
For controlCards, a custom-designed CAN transceiver board needs to be used, and the HSEC-180-pin
ControlCard Docking Station. The custom-designed transceiver board is connected to the ControlCard
using four connections: ground, 3.3V, CANTX and CANRX.

The device needs to be set up to emulate a zero-pin CAN boot with boot option 0x02, CANRXA = GPIO5 and
CANTXA = GPIO4. Now, the device needs to be set up to emulate a zero-pin CAN-FD boot with boot option
0x08, CANRXA = GPIO5 and CANTXA = GPIO4. Note that there is only approximately 10 seconds to send the
first CAN frame to device.

1. Open CCS to a workspace.
2. Select View > Target Configurations.

Bootloading Code to Flash www.ti.com

38 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/document-viewer/TMS320F280039C/datasheet#GUID-9C8CECAB-FBD3-4C63-BB4D-E52D11AE140B/TITLE-SPRSP45GPIO_ASSIGNMENTS
https://www.ti.com/lit/pdf/SPRSP61
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-36. Opening the Target Configuration Menu in CCS
3. Users can import a project for this device to CCS and use that to connect to the device, or copy the target

configuration file (.ccxml) from C2000Ware (C2000Ware_x_xx_xx_xx > device_support > DEVICE_FAMILY
> common > targetConfigs) to the User Defined target configurations.
a. Find the device target config and then manually launch by right-clicking:

Figure 4-37. Launching a Target Configuration in CCS

4. When CCS brings up the debug window, select the intended CPU and connect to the target.

Figure 4-38. Connecting to the Target Core in CCS
5. If a window pops up stating there is a break in the boot ROM with no debug information available, or outside

of program code, then follow the steps in Section 5.3 to debug the boot ROM.
6. Once the symbols are loaded, open the memory browser by going to View > Memory Browser.

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 39

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-39. Navigating to the Memory Browser in CCS
7. In the memory browser tab, navigate to address 0xD00. Recall that the 0xD00 location specifies the

BMSPs with the validity key (EMU-BOOTPIN-CONFIG) and 0xD04-x0D05 specifies the boot definitions
(EMU-BOOTDEF-LOW).

8. The objective is to configure a zero-pin CAN boot with CANRXA = GPIO5 and CANTXA = GPIO4, so all
BMSPs need to disabled and the EMU-BOOTDEF-LOW needs to be set to 0x08 in the lowest index. If the
boot option is programmed to any other entry in EMU-BOOTDEF-LOW, then the intended boot mode is not
selected.
a. Set 0xD00-0xD01 (EMU-BOOTPIN-CONFIG) to 0x5AFF FFFF.
b. Set 0xD04 (EMU-BOOTDEF-LOW) to 0x0008.

Note
Besides the lower eight bytes in EMU-BOOTDEF-LOW, EMU-BOOTDEF-LOW and EMU-
BOOTDEF-HIGH can be any set to any value as the values are ignored in zero-pin boot.

Figure 4-40. Emulating a Zero-pin MCAN Boot with CANRXA=GPIO5 and CANTXA=GPIO4

9. Reset the CPU and perform an external reset (XRSn). Then, click on Resume to begin the boot sequence.
10. If there is a break in the boot ROM with no debug information available, or outside of program code, then

follow the steps in Section 5.3 to load the boot ROM symbols. Afterwards, confirm that the device is in CAN
boot.

Now, the MCAN bootloader (with GPIO assignments as specified by the boot option 0x08) in the ROM begins
executing and waits to for a CAN frame to be transmitted from the host. At this point, the device is ready to
receive code from the host.

Bootloading Code to Flash www.ti.com

40 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Note
The MCAN bootloader has a 10 second window for accepting CAN-FD frames. If offered in the device
boot options, then the SEND_TEST modes remove the timeout. These options use the same GPIO
pins for communication as equivalent boot options. However, the GPIO pins transmit a frame before
beginning the boot-loading process to help ascertain proper functionality of the module. In F280039x
devices, boot options 0x68 can be used to avoid the timeout while using the same GPIO assignments
as boot option 0x08.

The command line PC utility is a programming solution that can easily be incorporated into scripting
environments for applications like production line programming. This was written using Microsoft Visual
Studio in C++. The project and source can be found in C2000Ware (C2000Ware_x_xx_xx_xx > utilities >
flash_programmers > can_flash_programmer).

The host is responsible for sending the MCAN kernel image and flash (firmware) image to the MCU. The PEAK
PCAN-USB Pro FD CAN bus analyzer is used as the host. The flash programmer project is built and run on
Visual Studio 2019. The host programmer uses the PCAN_Basic API from PEAK [17]. The PCAN_Basic API can
be used to send and receive CAN-FD frames on the CAN analyzer.

Note
The PEAK PCAN-USB Pro FD CAN bus analyzer is backwards compatible to receive both CAN
frames as well as CAN-FD frames.

On the F28003x device, the clock to the MCAN module is switched to the external clock source by the Boot
ROM. The external clock is 20MHz in the LaunchPad and the ControlCard. The Boot ROM configures the
nominal bit rate to be 1Mbps, and the data bit rate to be 2Mbps. The host CAN programmer configures the
PEAK CAN analyzer to have the same clock, nominal and data bit rate values.

The host initializes the analyzer for CAN-FD usage, sends the kernel over in 64-byte increments, and sends
over the image in 64-byte increments with a delay of 100ms between each frame to give the Flash API time to
program the data received into Flash. Once the firmware image has been written, the host CAN programmer
exits.

To use this tool to program the C2000 device, make sure that the target board has been reset and is currently
in the CAN boot mode as configured above, and connected to the PEAK PCAN-USB Pro FD CAN bus analyzer.
The command line usage of the tool for a single core MCAN boot is described below, where -d, -k, and -a are
mandatory parameters. Verbose output can be enabled with -v. More details on the parameters of the utility is
detailed in [14].

can_flash_programmer.exe –d DEVICE -k KERNEL_FILE -a APPLICATION_FILE -v

1. Navigate to the folder containing the compiled dcan_flash_programmer executable
(C2000Ware_x_xx_xx_xx > utilities > flash_programmers > can_flash_programmer).

2. Open a terminal and run the executable can_flash_programmer.exe with the following command.

can_flash_programmer.exe –d DEVICE_NAME –k <path_to_kernel_hex> -a <path_to_application_hex> -v

This loads the MCAN flash kernel into RAM of the device using the bootloader. The bytes transferred over the
MCAN bus can be seen in the terminal. Then, the kernel executes and loads and programs flash with the file
specified by the ‘-a’ command line argument, as seen in Figure 4-41 and Figure 4-42. The kernel branches to the
application and begins executing if successfully loaded into the flash.

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 41

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-41. MCAN Flash Programmer Kernel Loaded

Figure 4-42. MCAN Flash Programmer Application Loaded

4.2.5 USB Boot

Note
Since C2000 LaunchPads do not have a USB peripheral allowing for USB data transfer, unlike
controlCards, these steps are based on a F28379D controlCARD Rev 1.3. More importantly, early
silicon versions have a known bug in the USB bootloader preventing the device to communicate with
the host PC, therefore, at least Rev C silicon for F28379D must be used.

The USB flash kernel is based on the ROM bootloader, communicating with the host PC application provided in
C2000Ware (C2000Ware_x_xx_xx_xx > utilities > flash_programmers > usb_flash_programmer) and essentially
performing the same operations as the ROM bootloader. Because the ROM bootloader is equipped with the
flash API, the bootloader is able to erase and program flash to perform the firmware update.

Bootloading Code to Flash www.ti.com

42 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Note
This section demonstrates CPU1 USB boot loading. For a more detailed explanation on the USB
kernel functionality and CPU2 usage, refer to the USB Flash Programming of C2000 Microcontrollers
application report [20].

Flash kernel source and project files for CCS are provided in C2000Ware, in the examples directory of the
corresponding device. These projects have a post-build step in which the compiled and linked .out file is
converted into the correct boot hex format needed by the SCI ROM bootloader and is saved as the project
name with a .dat extension.

1. Find the USB flash kernel project for the intended device in C2000Ware and import into CCS.
a. For F2837xD devices, the kernels can be found in C2000Ware_x_xx_xx_ > device_support > f2837xD >

dual > F2837xD_usb_flash_kernels.

2. Make sure that the USB flash kernel project Active Build Target Configuration is set to RAM, since the kernel
needs to be linked for execution in the RAM.

Figure 4-43. Generating the Correct USB Kernel Bin Output
3. Build the kernel project. These projects have a post-build step in which the compiled and linked .out file is

converted into the correct binary format needed by the USB ROM bootloader and is saved as the example
name with a .dat extension.

Note
If .dat output is not generated, then follow the steps in Section 4.1 to verify that the correct post-build
step to generate the binary file is defined.

4. Repeat the build process for the firmware code that is loaded into the flash by the kernel.
a. Confirm that the Active Build Target Configuration is set for Flash.
b. Follow the steps in Section 4.1 to verify that the correct post-build step to generate the binary file is

defined.
c. Build the firmware project.

After building the kernels in CCS, set up the device correctly to communicate with the host PC running the
usb_flash_programmer.

1. Connect the mini-USB and micro-USB from the controlCARD to the host PC.

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 43

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/spraco7
https://www.ti.com/lit/spraco7
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

2. Set controlCARD GPIOs to debug using CCS and the On-Card XDS100v2 Emulator [20]. Refer to the ROM
Bootloader section in the USB Flash Programming of C2000™ Microcontrollers application report for the
connectivity options.
a. Set A:SW1 Position 1 to On (up) and Position 2 to Off (down).

Figure 4-44. Configure the F2837xD controlCard to Debug Using CCS and the Onboard XDS Emulator
3. Open CCS to a workspace.
4. Select View > Target Configurations.

Figure 4-45. Opening the Target Configuration Menu in CCS
5. Users can import a project for this device to CCS and use that to connect to the device, or copy the target

configuration file (.ccxml) from C2000Ware (C2000Ware_x_xx_xx_xx > device_support > DEVICE_FAMILY
> common > targetConfigs) to the User Defined target configurations.
a. Find the device target config and then manually launch by right-clicking.

Bootloading Code to Flash www.ti.com

44 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/xdsdebugprobes/emu_xds100.html
https://www.ti.com/lit/pdf/SPRACO7
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-46. Launching a Target Configuration in CCS

6. When CCS brings up the debug window, select the intended CPU and connect to the target.

Figure 4-47. Connecting to the Target Core in CCS
7. If a window pops up stating there is a break in the boot ROM with no debug information available, or outside

of program code, then follow the steps in Section 5.3 to debug the boot ROM.
8. Once the symbols are loaded, open the memory browser by going to View > Memory Browser.

Figure 4-48. Navigating to the Memory Browser in CCS
9. In the memory browser tab, navigate to address 0xD00.
10. Set device up for emulation USB Boot. The BMODE value is defined as 0x0C in the Configuring Get

Boot Options section of the TMS320F28003xD Real-Time Microcontrollers technical reference manual [23].
Program 0xD00 to 0x0C5A.

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 45

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/spruiw9
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 4-49. Configuring the F2837xD controlCard to Emulate USB Boot
11. Reset the CPU and then click on Resume to enable the USB boot sequence.
12. If there is a break in the boot ROM with no debug information available, or outside of program code, then

follow the steps in Section 5.3 to load the boot ROM symbols. Afterward, confirm that the device is in USB
boot in the boot ROM.

Command line options and file IO can be done through the C standard library, but USB operations can only
be done through the device driver framework of the operating system. There are two widely-used libraries that
provide this capability.

The first is libusb, an open-source (LGPL) library that features a Unix-style API. The second is WinUSB, which is
part of the Windows Driver Development Kit. Both libraries run in user mode and provide generic access to USB
devices without the need for a customer driver. Libusb is very easy to use and is also available on Linux, but it's
somewhat slower and any distribution is complicated by the license. WinUSB is harder to use, but is faster and
the resulting software is simpler to distribute.

The precompiled version of usb_flash_programmer.exe included with C2000Ware uses WinUSB, but source
code is provided for both libraries. The WinUSB drivers need to be installed on the device for the USB
bootloader to run.

1. Go to the Device Manager and right-click on the unrecognized device under Universal Serial Bus controllers.
The F28379D displays as Stellaris Device Firmware Upgrade.

2. Select Update Drivers > Browse my computer for drivers > Let me pick from a list of available drivers on my
computer > Have Disk.
a. Input this into the Copy from manufacturer’s files from:

C2000Ware_x_xx_xx_xx\utilities\flash_programmers\usb_flash_programmer\windows_driver\x86

Figure 4-50. Browsing C2000Ware for the USB Windows Drivers

Bootloading Code to Flash www.ti.com

46 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

3. Now, the WinUSB drivers are installed onto the device and appear as F28x7x USB Boot Loader under the
Texas Instruments Microcontrollers category if done successfully.

Figure 4-51. The F28x7x USB Boot Loader device appearing in the Device Manager
4. Reset the CPU and perform an external reset (XRSn). Then, click on Resume to begin the boot sequence.

The command line PC utility is a lightweight (approximately 64KB executable) programming solution that
can easily be incorporated into scripting environments for applications like production line programming.
This was written using Microsoft Visual Studio in C++. The project and source can be found in
C2000Ware (C2000Ware_x_xx_xx_xx > utilities > flash_programmers > usb_flash_programmer > src >
VS2010_USBLoader2000).

Input filepaths are loaded in ascending order on the command line, so the flash kernel filepath must be provided
listed first to be loaded into the RAM. After the flash kernel is loaded, the ROM transfers control and the kernel
begins to execute to program the application to the flash. The flash kernel must prepare the device for flash
programming before the device is ready to begin communications, so a small delay is needed. During this time,
the flash kernel configures the PLL and flash wait states.

At the beginning of the download process, some preliminary data is transferred before the actual flash
application code, including a key, a few reserved fields, and the application entry point. This is after the entry
point is received that the kernel begins to erase the flash. Erasing the flash can take a few seconds. Note, that
while the application load looks as if failed, the flash is being erased. Once the flash is erased, the application
load continues by transferring each block of application code and programming to flash.

1. Navigate to the folder containing the compiled usb_flash_programmer executable (C2000Ware_x_xx_xx_xx
> utilities > flash_programmers > usb_flash_programmer).

2. Open a terminal and run the executable usb_flash_programmer.exe with the following command:

usb_flash_programmer.exe <path_to_kernel_dat> <path_to_application_dat>

Note
Both the flash kernels and flash application MUST be in the binary boot format as discussed earlier in
Section 4.1.

Once the application is programmed into flash, the flash kernel attempts to run the application by branching to
the entry point that was transferred at the start of the application load process.

www.ti.com Bootloading Code to Flash

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 47

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

5 FAQ
This section details recommendations to common roadblocks encountered by users when attempting to boot
load across the various peripheral boot modes.

5.1 Selecting the BMSP GPIOs with a Software-based Implementation
Question: Is there a way to implement a software-based boot loading process without manual intervention?

Answer: C2000™ Software Controlled Firmware Update Process application report [7] describes a software-
controlled firmware update process on C2000 devices using existing boot modes without the need to manually
select boot mode. The method described in this document directly applies to F28004x device and can be applied
to legacy devices with necessary modifications.

5.2 Running a Flash Kernel from the Flash Instead of the RAM
Question: How to modify the flash kernels to run from the flash instead of the RAM?

Answer: On multibank devices, users can implement a custom bootloader in the flash to directly load application
code onto the other flash banks. On single-bank devices, a custom bootloader in the flash can perform firmware
upgrades on individual sectors within the same flash bank, but the Flash API must execute from RAM.

Note
Flash API functions and the application functions that call Flash API must not be executed from
the same bank. Executing the Flash API on the same bank can introduce race conditions when
programing and erasing data. The Flash API needs to be executed from the RAM or another flash
bank (if another bank exists for the same core). [6]

Using a custom bootloader provides more flexibility to the user in the boot flow, allowing for different peripheral
GPIOs to be used as opposed to only having access to a limited, predefined set of GPIO assignments in the
boot ROM. Having a custom bootloader also effectively reduces the number of steps in the bootloading process
as there's no need to load an intermediate flash kernel into the RAM to program the flash.

Moreover, having a flash-based bootloader can also act as a fail-safe if the firmware upgrade process fails.
Booting to code that does not get upgraded (that is, the flash-based bootloader) minimizes the chance that
the device tries to boot to corrupted code, since the bootloader can use multiple methods to verify the existing
firmware (key value, checksum, and so forth.). The same can be achieved in a RAM-based flash kernel too, but
it's not practical to load this in every time the device boots.

One way to implement a custom bootloader is to modify the existing flash kernel projects in C2000Ware to
execute from the flash instead of the RAM. This requires modifications to the kernel's linker command file,
which specifies where the application is loaded in memory, and adding a pre-defined symbol to be used by the
compiler.

Note

The following steps modify the F28P55x SCI flash kernel to execute from the flash, but the same flow
can be applied to any C2000 device with an existing flash kernel project in C2000Ware.

FAQ www.ti.com

48 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/an/spracn1/spracn1.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

1. Right-click the project and select Add Files/Folders.

Figure 5-1. Adding a File to a Project into CCS
2. Navigate to the following path in C2000Ware and select the generic flash linker command file for the

intended device.
a. C2000Ware_X_XX_XX_XX\device_support\DEVICE_NAME\common\cmd

3. Right-click the RAM linker command file and select Exclude from Build, so the flash linker command file is
used in the compiler build.

Figure 5-2. Excluding the RAM Linker Command File from the Compiler Build

www.ti.com FAQ

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 49

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Note

With the generic flash linker command file, the kernel is loaded into flash bank 0 (entry point at
0x80000). If users want to place the kernel in a different flash bank, then modify the SECTIONS
allocated to flash bank 0 in the linker command file to the intended flash bank.

Furthermore, in MEMORY portion of the linker command file, BEGIN must also be updated to the
intended flash entry point location (codestart) as needed, including the flash bank origin and length
specifications to account for the codestart allocation at the entry point.

Refer to [33] for more details on linker command file directives.
4. Create a new build configuration by right-clicking the project and navigating to Build Configurations >

Manage...

Figure 5-3. Creating a New Build Configuration for the Project

a. Name the build configuration CPU1_FLASH and opt to copy settings from the CPU1_RAM configuration.

Figure 5-4. Creating the CPU1_FLASH Build Configuration

5. Set the active build configuration to CPU1_FLASH.
6. In device.c, the time critical code and flash setup code (called Ramfuncs) is copied to the RAM. Moreover,

the flash initialization function to setup flash waitstates must reside in RAM. Since the kernel is executing in
the flash now, the symbol _FLASH must be defined for these conditions to occur.
a. Right-click and navigate to the Properties > Tools > C2000 Compiler > Predefined Symbols. Define the

symbol _FLASH.

FAQ www.ti.com

50 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

Figure 5-5. Add the Predefined Symbol _FLASH to Initialize Flash Functions

7. Re-build the flash kernel project with the CPU1_FLASH build configuration. Now, the flash kernel is built to
execute from the flash and can be programmed onto the device flash.

Note
Since the kernel is already loaded onto the device, then the serial_flash_programmer_appIn.exe in
C2000Ware must be used. This executable can be called with the same command line arguments as
the normal serial flash programmer, but the kernel argument (-k) is not required.

5.3 No Symbols Defined When Debugging Boot ROM
Question: When I debug the boot ROM, the ROM states there is a break in the boot ROM with no debug
information available, or outside of program code. What am I missing?

Answer: Users can step through the device boot ROM by loading the boot ROM symbols (.out file) to the
device. Loading symbols can be a valuable debug method. This option adds the symbols available in the
generated project .out file for debugging purposes instead of loading the actual .out program onto the core by
CCS. This is also why users can use this method with the boot ROM or built-in bootloaders to debug and get
enhanced visibility.

1. Open CCS to a workspace.

www.ti.com FAQ

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 51

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

2. Select View > Target Configurations.

Figure 5-6. Opening the Target Configuration Menu in CCS
3. Users can import a project for this device to CCS and use that to connect to the device, or copy the target

configuration file (.ccxml) from C2000Ware (C2000Ware_x_xx_xx_xx > device_support > DEVICE_FAMILY
> common > targetConfigs) to the User Defined target configurations in this window (View > Target
Configurations). Either way, find the device target config and manually launch by right-clicking:

Figure 5-7. Launching a Target Configuration in CCS
4. When CCS brings up the debug window, select the intended CPU and connect to the target.

Figure 5-8. Connecting to the Target Core in CCS
5. At this point, a window pops up stating there is a break in the boot ROM with no debug information available,

or outside of program code.

Figure 5-9. CCS View When No Boot ROM Symbols Are Loaded

FAQ www.ti.com

52 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

6. Navigate to the toolbar and click the button to Load Symbols.

Figure 5-10. Navigating to Load Symbols in CCS
7. Load the boot ROM .out file. This can be found in C200Ware at:

a. C2000Ware_x_xx_xx_xx > libraries > libraries > boot_rom > DEVICE_FAMILY > REV# > rom_sources >
CPU# > ccs_files > Release

8. If a window pops up stating the source file cannot be found, then users can select Locate File and find in
C2000Ware at:
a. C2000Ware_x_xx_xx_xx > libraries > boot_rom > DEVICE_FAMILY > REV# > rom_sources > CPU# >

DEVICE_FAMILY_ROM > bootROM > source

Figure 5-11. Locating the Boot ROM Source Files

The file opens to show the current instruction in the boot ROM and users can go through how to debug, reset
and restart the device.

5.4 Writing Values in the OTP Using the On-Chip Flash Tool
This section demonstrates how to program the OTP using the On-Chip Flash Tool with two example use cases.

Note

Although this section is based on F280015x devices, the same flow can be applied to any C2000
device that supports custom BMSPs and boot mode tables.

Device specific information can be found in the Boot ROM chapter of the device's Technical Reference
Manual (TRM).

1. After launching a debug session with the intended CPU core, open the On-Chip Flash Tool (see Section 3 for
how to find in CCS).

2. Find GPREG(BOOTCTRL) under Zone 1 or 2 (recall Zone 2 takes precedence over Zone 1). Users can
write to the OTP-BOOTPIN-CONFIG and OTP-BOOTDEF-LOW/OTP-BOOTDEF-HIGH registers.

www.ti.com FAQ

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 53

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

a. Table 2-7 shows the locations for the boot configuration registers on F280015x devices, and can be
found in the Boot ROM Configuration Registers section in the device-specific TRM. The Register Name
column is how the boot ROM registers are referenced in the On-Chip Flash tool.

Example 1: Zero Boot Modes Select Pins

This use case exhibits a scenario for an application that does not wish to use any BMSPs and always have the
device boot to Flash entry point 0x88000.

Refer to GPIO Assignments section in the device TRM for values to set in the table. For Flash entry points, see
the Entry Points section in the TRM details about the entry point addresses for various boot modes. These entry
points direct the boot ROM what address to branch to at the end of booting as per the selected boot mode.

1. Program the BOOTPIN_CONFIG location in OTP as follows:
a. Set BOOTPIN_CONFIG.BMSP0 to 0xFF (disabled)
b. Set BOOTPIN_CONFIG.BMSP1 to 0xFF (disabled)
c. Set BOOTPIN_CONFIG.BMSP2 to 0xFF (disabled)
d. Set BOOTPIN_CONFIG.KEY to 0x5A for the boot ROM to treat these register bits as valid and use the

custom boot table

2. Program the BOOTDEF location options for the device. This essentially sets up a device-specific boot mode
table.
a. Set BOOTDEF.BOOTDEF0 to 0x23 for booting to Flash (entry address option 1). This sets Flash boot to

boot table index 0.

Figure 5-12 shows the completed input fields in the On-Chip Flash tool to program this example.

Figure 5-12. Example 1: Flash Plugin Boot Configuration Programmed

Table 5-1. Resulting Zero Pin Boot Configuration
BMSP Index BOOTDEF

0 0x23 (Flash Boot to address 0x88000)

Example 2: Two Boot Modes Select Pins

This use case demonstrates a more common scenario for an application using two boot mode select pins to
select between CAN, Secure Flash, and SCI boot in the custom boot table.

Refer to GPIO Assignments section in the device TRM for values to set in the table. For Flash entry points, see
the Entry Points section in the TRM details about the entry point addresses for various boot modes. These entry
points direct the boot ROM what address to branch to at the end of booting as per the selected boot mode.

1. Program the BOOTPIN_CONFIG location in OTP as follows:
a. Set BOOTPIN_CONFIG.BMSP0 to a user specified GPIO, such as 0x2A for GPIO42
b. Set BOOTPIN_CONFIG.BMSP1 to a user specified GPIO, such as 0x58 for GPIO88
c. Set BOOTPIN_CONFIG.BMSP2 to 0xFF (disabled)
d. Set BOOTPIN_CONFIG.KEY to 0x5A for the boot ROM to treat these register bits as valid and use the

custom boot table.

FAQ www.ti.com

54 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

2. Program the BOOTDEF location options for the device. This essentially sets up a device-specific boot mode
table.
a. Set BOOTDEF.BOOTDEF0 to 0x6A for Secure Flash boot (entry address option 3). This sets Secure

Flash boot to boot table index 0.
b. Set BOOTDEF.BOOTDEF1 to 0x22 for CAN boot option 1. This sets CAN boot to boot table index 1.
c. Set BOOTDEF.BOOTDEF2 to 0x41 for SCI boot option 2. This sets CAN boot to boot table index 2.

Figure 5-13 shows the completed input fields in the On-Chip Flash tool to program this example.

Figure 5-13. Example 2: Flash Plugin Boot Configuration Programmed

Table 5-2. Two Boot Mode Select Pin Configuration
BMSP Index BOOTDEF

0 0x6A (Secure Flash Boot to address 0x90000)

1 0x22 (CAN boot 1 with alt. GPIOs)

2 0x41 (SCI boot 2 with alt. GPIOs)

3 Don't care (unused)

5.5 Writing Values in the OTP Using the Flash API Plugin

Note

Although this section is based on F280015x devices, the same flow can be applied to any C2000
device that supports custom BMSPs and boot mode tables.

Device specific information can be found in the Boot ROM chapter of the device's Technical Reference
Manual (TRM).

The custom boot configurations in Section 5.5 can also be written into DCSM OTP using the compiler’s RETAIN
and DATA_SECTION pragmas outlined in [31]. The steps below follow the example in Example 2: Two Boot
Modes Select Pins.

1. Open any of the C2000Ware examples in CCS and add the following code snippet above the main function
(it can be anywhere in the file just outside the functions). These lines program the BOOTPIN-CONFIG and
BOOTDEF-LOW registers,device respectively.

#pragma RETAIN(otp_z1_data_1)
#pragma DATA_SECTION(otp_z1_data_1,"dcsm_zsel_z1");
const long otp_z1_data_1 = 0x5AFF582A;

#pragma RETAIN(otp_z1_data_2)
#pragma DATA_SECTION(otp_z1_data_2,"dcsm_zsel_z1_2");
const long otp_z1_data_2 = 0xFF41226A;

www.ti.com FAQ

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 55

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

2. In the linker command file for the project, add the following lines defining the DCSM OTP BOOTPIN-
CONFIG and BOOTDEF-LOW memory map locations as defined in the Boot ROM Configuration Registers
section of the device-specific TRM. The addresses below are for the DCSM user OTP boot configuration
registers on F280015x devices.

MEMORY {
 PAGE 0:
 DCSM_ZSEL_Z1_P0: origin = 0x078008, length = 0x000002 // Z1-OTP-BOOTPIN-CONFIG
 DCSM_ZSEL_Z1_P1: origin = 0x07800C, length = 0x000002 // Z1-OTP-BOOTDEF-LOW
}
SECTIONS {
 dcsm_zsel_z1_1 : > DCSM_ZSEL_Z1_P0, PAGE = 0
 dcsm_zsel_z1_2 : > DCSM_ZSEL_Z1_P1, PAGE = 0
}

3. Rebuild the example and load to the target by JTAG in CCS. The program loader and Flash API plugin in
CCS handles the writing of these values into OTP locations. These values have to be selected and written
carefully as the OTP locations cannot be reprogrammed.

6 Summary
Embedded processors often require flexible programming methods when JTAG debug probes cannot be reliably
used, especially in field-deployable systems. C2000 microcontrollers address this need by providing bootloading
utilities in the Boot ROM to enable device firmware upgrades. These bootloaders allow users to load application
code from an external host into RAM using various communication interfaces, with the ability to use flash kernels
to subsequently program the on-chip flash memory. This document describes the fundamental bootloading
configurations and details how to leverage common boot modes to load application code into C2000 devices.

Summary www.ti.com

56 Getting Started with Bootloading on C2000™ Microcontrollers SPRUJH3 – APRIL 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

7 References
1. Texas Instruments, Code Composer Studio™ integrated development environment (IDE), webpage
2. Texas Instruments, UniFlash flash programming tool, webpage
3. Texas Instruments, C2000Ware for C2000 MCUs, webpage
4. Texas Instruments, [E2E] FAQ on Flash software for C2000 MCUs, webpage
5. Texas Instruments, [E2E] FAQ on C2000 CCS Flash plugin and UniFlash, webpage
6. Texas Instruments, [E2E] FAQ on Flash API usage for C2000 devices, webpage
7. Texas Instruments, C2000™ Software Controlled Firmware Update Process , application report
8. Texas Instruments, C28x Academy, Dual Code Security Module (DCSM), webpage
9. Texas Instruments, C2000™ DCSM Security Tool , application report
10. Texas Instruments, C2000 Multicore Development User Guide
11. Texas Instruments, TMS320C28x Assembly Language Tools, user's guide
12. Texas Instruments, TI Arm Clang Compiler Tools User’s Guide - Linker Description
13. Texas Instruments, Secure BOOT on C2000 Device, application report
14. Texas Instruments, Serial Flash Programming of C2000™ Microcontrollers, application note
15. Texas Instruments, Introduction to the Controller Area Network (CAN), application report
16. Texas Instruments, CAN Flash Programming of C2000 Microcontrollers, application note
17. PEAK System, PCAN-Basic API
18. Texas Instruments, Getting Started with the MCAN (CAN FD) Module, application note
19. Texas Instruments, [E2E] TMS320F28377D: 28377D USB Bootloader, webpage
20. Texas Instruments, USB Flash Programming of C2000™ Microcontrollers, application report
21. Texas Instruments, XDS100 Debug Probe, product page
22. Texas Instruments, Delfino™ TMS320F28379D controlCARD R1.3, user's guide
23. Texas Instruments, TMS320F28003xD Real-Time Microcontrollers, technical reference manual
24. Texas Instruments, TMS320F280015x Real-Time Microcontrollers, technical reference manual
25. Texas Instruments, TMS320F28P65x Real-Time Microcontrollers, technical reference manual
26. Texas Instruments, TMS320F2837xD Real-Time Microcontrollers, technical reference manual
27. Texas Instruments, TMS320F28P55x Real-Time Microcontrollers, technical reference manual
28. Texas Instruments, TMS320F2838xD Real-Time Microcontrollers With Connectivity Manager Technical

Reference Manual (SPRUII0)
29. Texas Instruments, TMS320F280015x Real-Time Microcontrollers, data sheet
30. Texas Instruments, TMS320F280039x Real-Time Microcontrollers, data sheet
31. Texas Instruments, F021 Flash API Version 2.01.01, reference guide
32. Texas Instruments, TMS320F280013x/15x Flash API Version 2.00.10.00, reference guide
33. Texas Instruments, TI Linker Command File Primer, webpage
34. Texas Instruments, TMS320C28x Optimizing C/C++ Compiler, user's guide
35. Texas Instruments, [E2E] LAUNCHXL-F2800157 CAN Flash Programming, webpage

www.ti.com References

SPRUJH3 – APRIL 2025
Submit Document Feedback

Getting Started with Bootloading on C2000™ Microcontrollers 57

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/UNIFLASH
https://www.ti.com/tool/C2000WARE
https://e2e.ti.com/support/microcontrollers/c2000-microcontrollers-group/c2000/f/c2000-microcontrollers-forum/1464964/faq-faq-on-flash-software-for-c2000-mcus
https://e2e.ti.com/support/microcontrollers/c2000-microcontrollers-group/c2000/f/c2000-microcontrollers-forum/1096194/faq-c2000-ccs-flash-plugin-and-uniflash
https://e2e.ti.com/support/microcontrollers/c2000-microcontrollers-group/c2000/f/c2000-microcontrollers-forum/951668/faq-faq-on-flash-api-usage-for-c2000-devices
https://www.ti.com/lit/an/spracn1/spracn1.pdf
https://dev.ti.com/tirex/explore/node?node=A__AVtOAkdAIE30LAyp3.tozQ__C28X-ACADEMY__1sbHxUB__LATEST
https://www.ti.com/lit/an/spracp8/spracp8.pdf
https://software-dl.ti.com/C2000/docs/C2000_Multicore_Development_User_Guide/ipc_communication.html
https://www.ti.com/lit/ug/spru513/spru513.pdf
https://software-dl.ti.com/codegen/docs/tiarmclang/compiler_tools_user_guide/compiler_manual/linker_description/index.html
https://www.ti.com/lit/spract3
https://www.ti.com/lit/an/sprabv4/sprabv4.pdf
https://www.ti.com/lit/an/sloa101/sloa101.pdf
https://www.ti.com/lit/an/sprad51/sprad51.pdf
https://www.peak-system.com/PCAN-Basic.239.0.html?L=1
https://www.ti.com/lit/an/spracu9/spracu9.pdf
https://e2e.ti.com/support/microcontrollers/c2000-microcontrollers-group/c2000/f/c2000-microcontrollers-forum/735585/tms320f28377d-28377d-usb-bootloader
https://www.ti.com/lit/an/spraco7/spraco7.pdf
https://software-dl.ti.com/ccs/esd/documents/xdsdebugprobes/emu_xds100.html
https://www.ti.com/lit/ug/sprui76/sprui76.pdf
https://www.ti.com/lit/spruiw9
https://www.ti.com/lit/ug/spruiy4/spruiy4.pdf
https://www.ti.com/lit/spruiz1
https://www.ti.com/lit/spruhm8
https://www.ti.com/lit/ug/spruj53/spruj53.pdf
https://www.ti.com/lit/spruii0
https://www.ti.com/document-viewer/tms320f2800157/datasheet
https://www.ti.com/document-viewer/TMS320F280039C/datasheet
https://www.ti.com/lit/ug/spnu501/spnu501.pdf
https://www.ti.com/lit/ug/spruj96/spruj96.pdf
https://software-dl.ti.com/ccs/esd/documents/sdto_cgt_Linker-Command-File-Primer.html
https://www.ti.com/lit/ug/spru514/spru514.pdf
https://e2e.ti.com/support/microcontrollers/c2000-microcontrollers-group/c2000/f/c2000-microcontrollers-forum/1470172/launchxl-f2800157-can-flash-programming-issues---bitrate-sleep_time-and-entryaddr-configuration---peak-pcan-usb-pro-error-status-red-led/5655558#5655558
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJH3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJH3&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Configuring the Boot Mode
	2.1 Standalone Boot
	2.1.1 Boot Mode Select Pins (BMSP)
	2.1.2 Boot Definition Table (BOOTDEF)
	2.1.3 Boot ROM OTP Configuration Registers
	2.1.4 CPU2 Boot Flow

	2.2 Emulation Boot

	3 Programming the Flash
	3.1 Flash API
	3.2 Flash Kernels

	4 Bootloading Code to Flash
	4.1 C2000 Hex Utility
	4.2 Common Boot Modes
	4.2.1 Boot to Flash
	4.2.2 SCI Boot
	4.2.3 CAN Boot
	4.2.4 CAN-FD Boot
	4.2.5 USB Boot

	5 FAQ
	5.1 Selecting the BMSP GPIOs with a Software-based Implementation
	5.2 Running a Flash Kernel from the Flash Instead of the RAM
	5.3 No Symbols Defined When Debugging Boot ROM
	5.4 Writing Values in the OTP Using the On-Chip Flash Tool
	5.5 Writing Values in the OTP Using the Flash API Plugin

	6 Summary
	7 References

