VICP Computation Unit Library and VICP

Scheduling Unit Library for DM6446, DM6441,
DM647, and DM648

User's Guide

I3 TEXAS
INSTRUMENTS

Literature Number: SPRUGN1C
November 2009

SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I3 TEXAS
INSTRUMENTS

Contents
1 Introduction to the VICP Computation Unit and Scheduling Unit Librariesccccooiiiiiiiinnnnne. 9
1.1 Y4 L8 e O =T T 9
1.2 2] oo 1 = o T T o] o 10
1.3 Concurrent VICP Processing and EDMAS TransSferueeiiiiiiiiiiiiiiiniie s ssananss s snansnesannes 10
14 SOftWAre INFrASIIUCIUNE . .uiuse sttt st r e n e r e nanes 12
15 e 00 = 10 0100100 13
1.6 Where to Obtain the Software COMPONENESuueiiiiiiiiei i s rr e rraara s s saanaeesaanns 13
2 VICP Computation Uit LiDrary ..ot et et e et a e e e e e e 15
21 (I o = L V= VLo 1= = T 1= 1 15
2.2 Dependencies With Other LIDrariescuiieeeiiiii i it s rsaise e s saass e s saanr s s saanneesaannneeenn 15
2.3 (0] 4110 = T T S = g oo T 11T 15
2.4 General Syntax of imxenc_<computation> FUNCHONuuiiieiiiieiiieiierire e s s sareanessannsannes 17
2.5 L= RS- L= 10 o I U o) 1o o 20
2.6 I3 12T = o @ 1 110 = 0 20
2.7 0T o LT 20
2.8 Memory SWiItching and Cacheiiueiiieiiii i e 21
2.9 (0] 0111 751] 21
2.10 Performance ESMAtONiieeiiuseiitirs st r s ra e s s e s s s s r st 22
2200 5 O - g 2o 23
2.12 Applying a VICP Command Sequence to an Entire Data Frame Using the T VICP Scheduling Unit's
I o] T 23
2.13 Applying a VICP Command Sequence to an Entire Data Frame Using DSP Codecovvvvviiieiinnennnns 24
3 VICP Scheduling Unit LiDIary ...t ettt et e e e et e e e e e e e eae e eees 25
3.1 [o] =T VA Vo I o 1= Vo (=] 11 25
3.2 Dependencies With Other LibrarieS/MOAUIESueiiueirieiiiiiii i raas 25
3.3 L LS Vo T IS =T o = g T L 26
3.4 =T 0] 1o oo = 28
3.5 [= = B O Tox = = T T 29
3.6] NG =T o (U1 =T 4= £ 29
3.7 FUNCHONS USAgE 1ttetiiisiesteainneessasnnesssanneessanneessaanneessssnnnesssssnneessesnnnessssnnneessssnnnesssnnnnesss 30
3.7.1 VICP Scheduling Unit INItIaliZAtION ..uvueirssiiseiisesieris s srss s s ssas s sassaannens 30
ST 7 A\ (o o] 11 0T g T = L=T o 1S 7= L1 o) o 30
1 Ty T A Fo To 1o o g I =t (Yo 1T o T 32
3.7.3. 1 Starting the PrOCESSING .uuiustiiteiiteriisite s e s e sas e sanreraneans 32
3.7.3.2 Waiting for COmMPIEtION ... e st r e 32
3.7.3.3 ReStarting PrOCESSING ..uueeiiiiieteisiiitteseaaneessaaneesseannessaasnnesssasnnnessssnnneesssnnnnessnn 33
3.7.4 Algorithm De-INItIaliZAtION .uviuseerseiseire s r s r e nns 33
3.7.5 IP_RUN De-INitialiZation ...coviiiiiiiiiiiiisssssssssessseeessssssiteseesssssssnssssssnnmmeeessssssessssnnnns 33
3.7.6 Multiple Threads USAQe SCENAMO ..vuiiiireeeiieiineesseianreessaanteessaanneessaanneessesnnesssssnneessnnnnes 33
3.8 [=T 01U T LT a o TN F i =TS (0T (0] 34
3.9 V0] 0] SN O o o[35
4 VICP Scheduling Unit FUNCIIONS .ottt ettt e r e e s e et e e e e e e a e e ees 37
4.1 D72 1= B I3/ 01T 37
I R 1 = {1 I 1 = = o 37
0 1 | o 38
SPRUGN1C-November 2009 Contents 3

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I TEXAS
INSTRUMENTS
www.ti.com
G T I 4= W 8 =T £ T 39
4.1.4 IP_RUN_DEDUGSIIUCT 1.ttt i i et a s aee s s e e ss s e s s s e e s s s sanan s s saannn e s anannneaannnnnes 39
4.2 T od aT=T o [T T R 1 T o0 40
AV (@3 =10 o] oXol g A U1 o To3 7o] K= PP 45
51 01003 110 45
5.2 D72 12 B I3/ 0 48
VICP Computation Unit Library’s FUNCHIONS ...uiiiiiiiiiii ittt e e e s e e e e 49
6.1 Functions That Encode Computation TASKS .uuuuseisueeiiussiisteriseisissirss s iasssinnsrissiannsrannssannsias 49
6.1.1 imXenc_alphablendeioii e aaanns 49
6.1.2 imxenc_alphablendYUV 4221ueeiiiiieiiiiii i r s s aae s saaan s s anannnes 51
6.1.3 IMXeNC_acCumMUIAte2d_aITAY O ..ueeiuseiruerrsusssnnterasnssnnsrnssanssasssantsraseasarstsinssanssrnnnens 52
6.1.4 imxenc_accumulate2d_array _SCalar 0P ...iveeeeeiiiiiiieiiiie i aaaaans 55
6.1.5 imxenc_argb2argbPlanar()coeeeiiiiiiiiii s 58
6.1.6 IMXENC_Array_CONA_WITE . .uuiuseiuseissaesssssaueerassssassssstansrassssaanssaastaanrsansssanresannssanns 60
6.1.7 imxenc_array_iNNEr_PrOOUCTeesiiieeiaaaeeessaaaan e ssaaase e s saaaaae s ssannessaaannnesaaannnessaannnes 63
L0 R T 1) = o To U =)/) 66
6.1.9 imxenc_array_Op_diStriDULEoiieiiiiii i e 69
6.1.10 IMXENC_Array _SCAIAI O weeiiiuuueesiaanneeaaaantessaaanneessaansaessaansesssaaannessaaannnssssannressssnnnes 72
6.1.11 IMXENC_AVEIAGJE2X2 +uuuuutestsnnnessausnnsssannesssaassessaasstestaasssssssasssestsssssnssssssnnsessssnnns 75
(G300 000 2 1 =T T o 11 oo 77
L 0 e T D= (ol o] 1 AN Y = Vo 1 79
LI 1 4 DT T o1 QY V= [= 81
6.1.15 IMXENC_DIKSEU2AITAY .+ euuutiuteite ittt st s r s s ta s s st s saa e e s s ssn e sanesaanness 83
L0 I ST ' D= (o o = Y = L= A 85
6.1.17 imxenc_cfa_hq_iNterpolationcuiveeeeiiiiiiiiii s rs s 88
6.1.18 imxenc_cCfa_UPSMPI_NOrZ ..oueiiiiiiiiii e e 90
6.1.19 IMXENC_Cla _UPSMIPI VO .ttt r e e e e s e e e e s saaa e e st sanne s s aannnesaaannnesaaannnes 92
6.1.20 IMXENC_COIOF_SPC_COMV ttuutusuuutssssunnnesssssnesssnnesssasnssessaanssssssasnnsssssssnsssssnnsssssnnnes 94
6.1.21 imxenc_cumulativeSUMCOIB2DILS ..ouueiieiiiiiiii i e 96
L 2 | D= ToR o 04252 oo | 98
6.1.23 IMXENC_ACEBXBIOW 4uuttttesessssssssssssssssssssssssssssssnmmmessssssmtmmmeesssssssssssssnnnmmeeessmmmemmmmms 100
6.1.24 imXencC_deinterleaVeDAtacivueeiiueiriirie i 102
6.1.25 IMXENC_FilIMEIM ..ttt e e s e e s e e e e s e aa i n e aaanns 104
LRI T 14D T 11T 106
LT A A 10 0 =T T 11 1= o o 108
6.1.28 imxenc_filter_diStriDULE ..o 111
Lo e T 14D T 11T o 113
6.1.30 IMXENC_INtErIEAVEDALA 1.uuviueeiiteiiti sttt s e 115
L0 R R 0= (o 1 o To | o 117
6.1.32 IMXENC_MAL MU 4 uutttitttettiiitisssssss s s ares s s st ssstsssssasssssssssssssnnnnsessssssssssssnns 119
6.1.33 imxenc_median_filler_FOWueiieeiiii i e 121
6.1.34 imxenc_median_filter_COluiiiiii e 123
6.1.35 IMXENC_MEAIANSX3 tttttttttitrtttsssssnssssssssssssssssssnnmeeesssstmimmmmeessssssssssnnnnnemeeeemmmmmmmmmmmns 125
6.1.36 imxenc_recursiveFilterVertIStOrIEr ..uuviuuuviurereeiaiee it r e r s raneranes 127
L0 R A 0= T o]] o - T 130
6.1.38 IMXENC_IGDUNPACK 1ttt ira e ar s s s st s e s s aaaae st sa e et ss s e s asann e s asannnessannnns 131
LT TS T 10 0 =T T (] = [132
6.1.40 IMXENC_SEt_SATUIALION . .etiiieetet it e s i iee e saaan e e s saanse s saannsesssannessaaannnssaannnnsssannnnes 134
6.1.41 IMXENC_SAVE_SAt PArAMELEIS . .ueiiiuuereisanresssantressaassnestaassnssasasnssssannnssssasnnnssssnnnes 135
6.1.42 IMXENC_restore_Sat PAramMeErS ..uuiueirstireriateraeeraats st tar e ssaarsaasstanerannsaannss 136
L 0 e T ' D= T] (=T o 137
LRI D= T] o = G 138
6.1.45 IMXENC_SODEIY 1 .uueiiieiii i e 140
Contents SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I TEXAS
INSTRUMENTS
www.ti.com
B.1.46 IMXENC_SUIMN 1 tttuuteiutssatssanesaase s aessaa s s saa s s s et e s s s e s saa e s s e s s e s s a e s s n e s s e e san e s sannasnns 142
L 0 A (= T ST U T - 144
6.1.48 imxenc_sum_abs diffciiiiiiiiiiiiiiiiiiiiiiiiiii e 146
L0 L 0 0 =T T = o = (o o] (o 148
6.1.50 IMXeNC_tablesS _[00KUPooiie i e s e e s r e a e e aanns 151
6.1.51 imXenc_table_|0OKUP2Z2D ...ciiuueeiiiiieeeissiete s sssate s ss e st sasae et ss e e s asann s s asannressannes 155
6.1.52 imxenc_3d_table_loOKUPDooueiiiiiiii i 159
6.1.53 imxenc_table_l0OKUP TNt ...t r e e s s e e s s e e s s e e s anann e ananns 161
6.1.54 imxenc_table_l0OKUP_32Diteeiiiieeiiii i s 163
6.1.55 imxenc_transparentbltc.eiiiiiiiiii 165
6.1.56 IMXENC_trANSPOSE teuuuuueiestrneesaaaneesaaaanteesaanta et saansasssaannsessaannnessaannnssssannnnesssnnnes 166
6.1.57 IMXENC_tranSPOSE _INTEIIEAVE ..uuiiiiiueeeiiiiiteeirsitresraanre s saste s ssaaessssaanessaaannssasannnes 168
6.1.58 IMXENC_YCDCIPACK .uuuuutiiteiiteiiisie s sttt r s s e st e e s s s s a s s e e san s sannannns 170
6.1.59 IMXENC_YCDCIUNPACK2 ...t ii it e s e e e s s e s s s n e e s ssanne s aannn e e aaanns 174
L I T T (= (o V24 o] 1T 177
6.2 Functions Used for Updating Input, Coef and Output Address POINtErScvvevviiiiirerrrianreerrannnness 179
(220 R 1100 o To F= L (= T] o1 11 1 179
L2 1) 0 0T F= L= 00T 1 180
6.2.3 IMXUPAAte_OULPULPIT . uu ettt et r s s e et e e s s s s s s r e et n e s e e snns 181
6.2.4 imxUpdate_alphablendocoeoiiiii i e aaanas 182
6.2.5 imxUpdate_rgbpackeeeiiiiiiiii s 183
6.2.6 imxUpdate_rgbunPaCKeiieiiiiiiiieii i 184
6.2.7 imxUpdate_transparentbltooiiiiiiiiiii e aaanns 185
6.3 Functions Used for Setting Up COEffICIENTIS ..uuiiiiiueiiiiiiiei i s s s s ssannneeas 186
LT 70t 1 G o = 2T 1= (1 o 186
6.3.2 IMX_fir_poly_SetUP_COBT . 188
L0 T8 T 11 0 "G (0] 1 22> A 50 189
6.4 Branching Inside a VICP COMMAaNd SEQUENCE .. .uiiuuriuieiiueerinterinsisssiasssansssansssassisinssanssianness 190
LS R 0= o o = 1| 190
LS 372 110" (=] g [o= 1| I = L = = Uo (o | 191
6.4.3 imxenc_call_With_pr_indoieeiieeiiii i 192
(o A 0 0 = Vo o= Y| (=] (0 193
Lo I 110 Y= T (= (1T T 1 T 193
LT L 103 =T T o] . T 1V (= 194
LS A 11 = o ToS T 195
6.5 Functions for disabling saturation, rounding, ASAP MOOEiiiiuiiiiiiiiiiiiiiii i rraianneeas 196
LR 70 R 1 V== = 196
(ST | Y/ Q== 1 Lo T o 196
B.5.3 IMX SBIAS AP ittt e 196
SPRUGN1C-November 2009 Contents 5

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I TEXAS
INSTRUMENTS
www.ti.com

List of Figures

VA (@ = =T Tod QI 1T o =T o 9
1-2. Sequential Processing Schedule (INeffiCient)eeeiiiieeiii i 10
1-3. Concurrent Processing Schedule EXampPle L......ueiieiiiiiiininieiiiisrirrnss s s i snassannesans 11
1-4. Concurrent Processing Schedule EXampPle 2.oeeiiiiiiiiiiie i rriite s ss e s saanns e s rannnaessannas 11
1-5. SOMWAIE StACK ...t tiisttiiteiisii i 12
1-6. Programming FIOW Chart iueeieests et s e s s s e ss e s s e s s e s s e ssn e s s s sann e saneaaannaans 13
2-1. Example of VICP Command Memory Filled with Multiple Command SequenCesccevviiiirerriinnnnesss 16
2-2. Layout of Input and OULPUL DALA +..uuuueeeiiiieeeiriitesrsasresssasse s ssarsse s tsaaasssssaanrsssaannrssssannsnesss 18
B I V[@ e o o ot =T 1 o TN D= T |- o 26
3-2. Depiction of DmaTferStruct’'s Members (FIgure 10)uuiveeriueirinririseiiieisesirsrisesissisisssanneraseens 32
6-1. IMXENC_aCCUMUIAIE20_ArTAY O «uuuuuueesisunnesssannnesssntesssasssessasssnsssasssnsssssssnssssasnnsessssnnnsssns 53
6-2. imxenc_accumulate2d_array_SCaAlAr_OP ..ueeieueeriursrueineeiiseriateranessiasisiss s ratssasrsiar e 56
6-3. imxenc_argb2argbPlanar()eeeiiie i 59
L S 1100 = g To Vg = |2 o0 o T = 61
T 1000 =T aTog= Vg = 0211 =Y G 0 (1o (o 64
(S ST 1000 = To Ut = /2) N 67
6-7. imxenc_array_OP_diStDULE ... uuee it 70
Lo T 1) =] T = Vg = 1] o= = o] o 73
(S TR 100 = To o] 10N =T Vo = 79
LR O I 11 0= T o] 1 QY= L = U o 81
o R 1100 =T T o] 12T =T 2 g - 83
L 2 1100 = g T o - Y = L] S 86
6-13. imxenc_cfa_fast Phase ArQUIMENT. rare s s s tra st s s s saaar e s ssaannessannnnenss 86
6-14. imxenc_cfa_hg_iNterpolationu..evieeiii i 88
6-15. IMXENC_Cfa_UPSMPI_NOIZ .. e et e e s s et r e e s s r e e s a i na e s saanneeess 91
[R ST 100 = g o ot = 0T 1] o 1]] /= o 93
Lo 10 =T T 4 O o - Vo 172
L I TR 1100 = To @ o T o T= xR 176
L S TR 1000 = O V724 o] =T o 177
L2 O . G o = U T 1= (0 o T 187
6 List of Figures SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I TEXAS

INSTRUMENTS

www.ti.com

List of Tables

3-1. Data Transfer Throughput 0N DIMBAS8ueeiiiiiiiiiiiiia et raaar e s raaaan s s aaann e s ssanneesaaanneesann 28
4-1 Input Argument Structure for IP_RUN_INIE() .eeerrinereiiiieniiiiessiiss s ssssinssssssinnssssaannnnssns 37
N 1 e 101 1 (1 o3 11] 38
G J I 4 F= N (=T 3 1 F o) 0 (U] 39
4-4. IP_RUN_DEDUQGSIIUCT SITUCTUIE .. utatiatetisitsesssiae s s iaes s sssaasee s ssaanee s ssaaaae s ssanaessaaannnsssnnnnnes 39
6-1. Organization of Two Consecutive Pixels in ARM MeMOTY ...uuiuiiiiieiiiieiienireriisissnsssareranesanns 50
6-2. Organization of Two Consecutive Pixels in DSP MEMOIYcuiiiuieiiiiiie i raaianesesaianrressaanneeess 50
6-3. Organization of Two Consecutive PiXelS iN MeMOIYuiieieiiriieeiiiii s ssairressaanneesas 58
6-4. Creation of Index for IMmXeNC_DIN_0guvuuiiieeiieiiri s nes 77
6-5. Initial Four Outputs for imxenc_tables_[00KUp FUNCLONoiiii e eee e 151
6-6. Initial Four Outputs for imxenc_tables_[00kup FUNCLONuviiiiiiiiiiii e 155
6-7. Units for output_width Depending 0N COIOMOIMALvvuiiiieiiiii i e 170
6-8. Units for input_width Depending 0N COIOMOrMALcoiiiii i e e e ranneee s 174

SPRUGN1C-November 2009 List of Tables 7

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

8

List of Tables

Copyright © 2009, Texas Instruments Incorporated

SPRUGN1C-November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I3 TEXAS
INSTRUMENTS

Introduction to the VICP Computation Unit and Scheduling
Unit Libraries

1.1 VICP Overview

Figure 1-1 illustrates the VICP, which includes the VICP’s processing and scheduling units, as well the

attached memories.

Figure 1-1. VICP

Block Diagram

EDMA3

Chapter 1

SPRUGN1C-November 2009

<

10 10 10

>

DDR/L2

EDMA/Data/Configuration Bus

11

Computation Unit

Coefficient Command
ImageB;lIf(fgerrB Memory Memory
32 kb 8 kb
VICP VICP

Scheduling Unit

VICP

The VICP computation unit is based on a SIMD architecture, capable of doing 8 multiple-and-accumulate
operations per cycle. It is the ideal compute engine for signal processing and other regular vector
processing. To ensure fast data access and instruction decoding time, it can only access its dedicated

memory: image buffers A and B, Coefficient and Command memories.

Here is a brief description of each of these memor

 Command memory: used to store VICP’s computation unit’s command sequences. A VICP command
is made of 18 to 54 bytes. In general simple computation task such as filtering, matrix multiplication
can be implemented by a single VICP command. More complex computation task are implemented by
a chain of simpler tasks, which results in a sequence of several VICP commands. A sleep command at
the end of a sequence indicates the termination of a computation chain.

ies:

SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas

Instruments Incorporated

Introduction to the VICP Computation Unit and Scheduling Unit Libraries

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Block-Based Processing www.ti.com

» Image buffers A and B: used to store data to be processed. Data residing in external memory such as
DDR or L2 must be brought by EDMAS into these buffers in order to be processed by the VICP
computation unit. After being processed, the data is sent back to L2 memory or DDR. Ping-pong buffer
scheme between image buffer A and image buffer B must be implemented for concurrent processing:
while VICP processes data in one buffer, EDMAS3 writes data from/to the other buffer. An image buffer
allows one access per cycle from the VICP. An access being defined as a read or write of up to 8
bytes or 8 16-bits word.

» Coefficient memory: this memory is larger than the image buffers and allows two simultaneous
accesses per cycle from the VICP. It can be partitioned by the algorithms into different regions to store
constants or scratch data.

Apart from the computation unit, the VICP is equipped with a scheduling unit, which is a hardware
controller whose purpose is to offload the DSP from servicing the computation unit and the EDMA3. While
both processing and scheduling units are running, the DSP can perform useful operations. The
programming of the scheduling unit is abstracted through the VICP scheduling unit’s library so no firmware
knowledge of the scheduling hardware controller is necessary.

The VICP interfaces with the external memory through the EDMAS3. The DSP can also access the VICP
memories but very slowly. The normal procedure is to have the scheduling unit control the EDMAS to
bring data into image buffers for processing.

The image buffers, command and coefficient memories are all cached by the DSP.

1.2 Block-Based Processing
Due to the size of an image buffer, the VICP computation unit can only operate on 8kb of data at a time.
To cope with this, if the data to be processed is a 2-D frame, it must be divided into 2-D blocks. To
process the entire frame, every block is transferred from external memory to image buffer, processed and
then transferred back to external memory. Blocks’ shape can be various, not necessarily square. The only
restriction is that they must fit within the 8kb of an image buffer.
1.3 Concurrent VICP Processing and EDMA3 Transfer
The block-based nature of the processing implies that EDMA3 transfers must occur as many times as
there are blocks in the frame. In order to minimize memory transfer overhead, parallelism between the
EDMAS3 and the VICP computation unit must be implemented. The VICP scheduling unit’s library takes
care of that, in addition to abstracting the firmware details of the scheduling unit.
The inefficient approach would be to run the processing sequentially with the EDMAS3 transfers on a single
image buffer as shown in Figure 1-2:
Figure 1-2. Sequential Processing Schedule (Inefficient)
A
Image buffer
Image buffer B
Image buffer A | EDMA VICP computing EDMA EDMA VICP computing EDMA
DDR—IMGBUF| Block #0 IMGBUF—DDR | DDR—IMGBUF| Block #1 IMGBUF—DDR
Block #0 Block #0 Block #1 Block #1
>
t=0 = tegmain = togmin + tvice = togmain * tvice * teamaout t
In sequential processing, the execution time for one block is t= tyynan *+ tvice + tedmaout-
If the VICP scheduling unit’s library is used, the same algorithm can execute in a concurrent manner by
making use of both image buffers A and B.
In the scenario shown in Figure 1-3, VICP processing time is greater than transfer time.
10 Introduction to the VICP Computation Unit and Scheduling Unit Libraries SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I

TEXAS

INSTRUMENTS

www.ti.com

Concurrent VICP Processing and EDMA3 Transfer

Image buffer

A

Figure 1-3. Concurrent Processing Schedule Example 1

Image buffer B

Image buffer A

EDMA VICP computing EDMA EDMA
DDR—IMGBUF Block #1 IMGBUF—DDR | DDR—IMGBUF|
Block #1 Block #1 Block #3

EDMA VICP computing EDMA EDMA VICP computing

DDR—IMGBUF | Block #0 IMGBUF—DDR| DDR—IMGBUF Block #2

Block #0 Block #0 Block #2

t

=0

t=t

edmaln

= togmain * tvice

= tedmain * tvice

+1t,

edmaOut

t

>

You can observe that the EDMA3 transfers are completely hidden behind the VICP processing, resulting
in an execution time for one block of t = t,cp. This is generally the case since VICP processing is often
more computational intensive than EDMA3 transfer. However, for a very simple algorithm, which executes
only one or two VICP commands, the EDMAS3 transfer time can exceed the processing time. In such
scenario the VICP resource is under utilized, which leaves room for extra feature to be implemented into
the processing chain without increasing the total processing time.

Figure 1-4 illustrates a case where VICP processing time is smaller than transfer time.

A Image buffer

Figure 1-4. Concurrent Processing Schedule Example 2

Image buffer B EDMA VICP EDMA EDMA
DDR—IMGBUF computing DDR—IMGBUF DDR—IMGBUF
Block #1 Block #1 Block #1 Block #2
Image buffer A | EDMA VICP EDMA EDMA VICP
DDR—IMGBUF computing IMGBUF—DDR DDR—IMGBUF computing
Block #0 Block #0 Block #0 Block #2 Block #2
t=0 t=t t=3xt +t, t

edmaln

edmaln

edmaln

edmaOut

>

This document explains how to assess whether the VICP resource is under-utilized respective to the
EDMA transfer and how to chain multiple computation tasks to improve the VICP utilization.

Between each VICP computation and transfer, there exists some small overhead, not represented on the

graphs. The source of overhead comes from triggering the VICP computation unit and the EDMA3

transfers, keeping track of block counters, updating the EDMA3 transfer parameters at each block or at
the end of the row. However, this overhead is limited and does not exceed 10% of the total processing

time.

In conclusion, the programmer can rely on the VICP scheduling unit’s library to parallelize the actual
algorithm processing with data transfers while keeping control overhead to the minimum.

SPRUGN1C-November 2009
Submit Documentation Feedback

Introduction to the VICP Computation Unit and Scheduling Unit Libraries

Copyright © 2009, Texas Instruments Incorporated

11

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Software Infrastructure www.ti.com

1.4 Software Infrastructure

Most of the programming and controlling of the VICP’s hardware components is abstracted from the
application by software libraries provided by Tl. The software stack is represented in Figure 1-5.

Figure 1-5. Software Stack

Application
Customer VICP TI VICP
Signal Signal
Processling Processing
Library Library
TIVICP TIVICP
Computation Scheduling Unit
Unit Library Library
Firmware
Hardware

As one moves from the application layer to the hardware layer, the level of firmware abstraction
decreases:

Application Layer

The application layer implements an algorithm through calls to functions belonging to TI's or a
custom’s VICP signal processing library. At this level, the user of the functions does not need to have
any knowledge of the VICP accelerator. Each function processes an entire frame. Usage of the VICP
signal processing library is documented at: http://focus.ti.com/lit/ug/sprugj3a/sprugj3a.pdf

VICP signal processing library layer

This layer implements typical signal processing/mathematical functions on the VICP. In release v3.0 of
the library, 23 functions have been implemented. Tl will continue adding new functions based on
customer’s needs. This layer makes use of both the VICP computation unit and scheduling unit
libraries to implement functions that process full data frames.

VICP computation unit library

It is a collection of functions that implement a variety of computation tasks on the VICP computation
unit: filtering, matrix arithmetic, table lookups, etc . Each computation task is designed to operate on
data residing in the VICP memories. Currently it provides more than 30 functions that the programmer
can chain together to produce customized algorithms.

VICP scheduling unit libraries layer

It provides the infrastructure necessary to apply the VICP chain of computation tasks to each block of
the frame. The VICP scheduling unit is programmed such that the DSP is offloaded during the time the
VICP chain of computation tasks is applied to each block of the frame.

The VICP computation unit and scheduling unit libraries directly access the VICP firmware. At present,
implementation details of these libraries are closed to the broad audience. Their usage will be fully
described in the present document in order to allow the creation of custom functions complementing TI' s
VICP signal processing library.

12 Introduction to the VICP Computation Unit and Scheduling Unit Libraries SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Programming Flow

1.5 Programming Flow

The programming flow chart for the VICP is depicted in Figure 1-6.

Figure 1-6. Programming Flow Chart

Using the VICP computation unit library
(functions imxenc_<computations),
implement the chain of VICP computation tasks
that will be applied to each 2-D block.

Write code that registers the algorithm with the VICP
scheduling unit library (functions IP_run):

® Pass the VICP chain of computation tasks to the
VICP scheduling unit library.

® Pass frame locations, dimensions and block
dimensions to the VICP scheduling unit library.

Two choices at this stage

® For testing:
Write a test application that executes the algorithm

on VICP and compare its output with some
reference data.

® For integration into the application:
Identify where in the application, the VICP
algorithm should be run and insert the necessary
function calls to trigger the VICP execution.

A

Build and test the algorithm or the application

1.6 Where to Obtain the Software Components

Download the VICP signal processing library at: http://focus.ti.com/docs/toolsw/folders/print/sprc831.html

It will contain all the source code and libraries that are necessary to create custom functions. After
installation, the libraries will be located in install_dir/lib/dm648 and install_dir/lib/dm6446. The source files
to implement the VICP signal processing library are located in install_dir/src/src_hw and can be used as

sample code or as a starting point for custom functions. Header files are located in
install_dir/src/src_hwl/inc.

All libraries were built using code gen tools v6.1.8 with optimization —03 enabled, without debug symbols,
and tested in applications using DSP/BIOS v5.33.

SPRUGN1C-November 2009
Submit Documentation Feedback

Introduction to the VICP Computation Unit and Scheduling Unit Libraries 13

Copyright © 2009, Texas Instruments Incorporated

http://focus.ti.com/docs/toolsw/folders/print/sprc831.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

14 Introduction to the VICP Computation Unit and Scheduling Unit Libraries SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I3 TEXAS Chapter 2
INSTRUMENTS SPRUGN1C—November 2009

VICP Computation Unit Library

The VICP computation unit library is a collection of functions that generate sequence of one or several
VICP commands. Each command describes a computation task that will be executed on the 8-MACs
VICP computation unit. The data being processed must reside locally in the VICP attached memories. The
data movement between external memory such as DDR/L2 and local memories is handled by the VICP
scheduling unit’s library and will be discussed in a separate chapter.

2.1 Library and Header Files

The library filename is imx648.lib for DM647/8 platforms or imx644x.lib for DM6441/6 platforms. The
associated header files are vicp_comp.h and vicp_support.h .

2.2 Dependencies With Other Libraries

The library requires another library dmcsl648_bios.lib or dmcsl644x_bios.lib to be linked with the
application.

2.3 Commands Encoding

VICP commands are generated at run time by functions of the VICP computation unit library. Each
function encodes/generates one or more commands associated to a particular computation task. A
function name is in the form imxenc_<computation> where the <computation> substitutes the description
of the particular task whose command is generated. For instance imxenc_filter() will encode a command
that will perform filter operation if executed by the VICP.

Commands are written into the region pointed by the command pointer which is an input argument of
imxenc_<computation>. The number of command words written by the function is returned to the
application. Each command can be made of up to 27 16-bits words and a function can generate multiple
commands. Once the VICP computation unit is started, it will decode these commands and perform the
desired computation task.

A chain of computation tasks is created by calling several imxenc_<computation> functions one after
another in order to generate a sequence of VICP commands.

The execution of a VICP command sequence results in the execution of the associated computation
tasks. A VICP command sequence usually starts with a saturation command generated by
imxenc_set_saturation(). It sets the saturation bounds of all subsequent computation commands. A VICP
command sequence always finishes with a sleep command encoded by imxenc_sleep(). Figure 2-1
illustrates the case where three sequences have been encoded into the command memory.

SPRUGN1C-November 2009 VICP Computation Unit Library 15
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Commands Encoding

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 2-1. Example of VICP Command Memory Filled with Multiple Command Sequences

iMX command
memory

set saturation

cmd1

cmd2

cmd3

sleep

set saturation

cmd4

cmd5

cmd6

sleep

set saturation

cmd7

cmd8

sleep

Each function of the library is described in Chapter 6. This chapter provides a general description of the

functions.

16

VICP Computation Unit Library

Copyright © 2009, Texas Instruments Incorporated

SPRUGN1C-November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

General Syntax of imxenc_<computation> Function

24 Ge

neral Syntax of imxenc_<computation> Function

All the imxenc_<computation> functions share a more or less similar interface:

crdl en = i nmxenc_<conput ati on>(
inputl_ptr,
input2_ptr,
out put _ptr,
i nput1_wi dt h,
i nput 1_hei ght,
i nput 2_wi dt h,
i nput 2_hei ght,
out put _wi dt h,
out put _hei ght,
conput ati on_w dt h,
conput ati on_hei ght,
input1l_type,
i nput 2_t ype,
out put _t ype,
rightshift,
operation,
cndptr,
)i

Here is a description of the input arguments:

inputl_ptr, input2_ptr, output_ptr:

The input pointers specify where the two input and output operands reside in memory. They can either
point in image buffer or coefficient memory. The symbols for the base addresses of the image buffer
and coefficient memory are IMGBUF_BASE and COEFFBUF_BASE and are defined in file
vicp_support.h. When data is in an image buffer, the programmer does not need to specify which one
(A or B) is used. The addresses ptr= (| MaBBUF_BASE + of st), ptr= (1 MGBUFA_BASE + ofst),
ptr= (1 MGBUFB_BASE + of st) are all treated equally by the imxenc_<computation> function: they all
mean that the pointed data is located at ofst bytes from the beginning of an image buffer. Indeed,
some pointer manipulation in the imxenc_<computation> function actually discards the base address
part of ptr and only retains the offset part ofst.

Consequently nowhere in the code, one needs to specify which image buffer the command sequence
is supposed to operate on. Then how can the programmer implement ping-pong buffering ? Actually
ping-pong buffering between image buffer A and B is handled by the VICP scheduling unit’s library
during the processing.

inputl_width, inputl_height, input2_width, input2_height, output_width, output_height,
computation_width, computation_height:

The width and height arguments describe the dimensions of the block of data to be processed. The
unit is in number of elements. An element can be a 8-bits byte or 16-bits word, depending on the
values of the inputl_type, input2_type, output_type arguments.

Figure 2-2 depicts the layout of both input block and output block labeled with the different arguments
passed to the imxenc_<computation> function.

SPRUGN1C-November 2009 VICP Computation Unit Library 17
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

General Syntax of imxenc_<computation> Function www.ti.com

Figure 2-2. Layout of Input and Output Data

input1_ptr (In image buffer or VICP coefficient memory)

output_ptr
(In image buffer or VICP coefficient memory)

|
| ; l

| ' compute_width l |

input1_width

input1_height

ybray 9yndwoo

output_height

ybBray eyndwods

input2_ptr (In image buffer or VICP coefficient memory)

_ o | compute_width |
3 4 41— 9 |<—>|
S 'g output_width
2 5
g 1 %
v | |
T T
+—>
! |

| compute_width |
! input2_width !

The arguments inputl_height, input2_height, output_height are actually useless most of the time since
the height of the region to be processed can by characterized with the parameter compute_height
alone. They are listed as arguments for consistency purpose. However, inputl_width, input2_with,
output_width are necessary since they characterize the stride for each category of data.

e inputl_type, input2_type:
The input types describe the types of the elements making up the input data blocks. Use these
symbols defined in vicp_comp.h as argument values:
— IMXTYPE_SHORT (signed 16 bit)
— IMXTYPE_USHORT (unsigned 16 bit)
— IMXTYPE_BYTE (signed 8 bit)
— IMXTYPE_UBYTE (unsigned 8 bit)

VICP treats IMXTYPE_SHORT and IMXTYPE_USHORT in little endian format. For example OxOE71,

0xA145 will be represented internally as the sequence of bytes 0x71, OxOE, 0x45, OxA1l with increasing
addresses.

There is no performance speed up in processing byte vs 16-bits elements. Computationally-wise, the
VICP computation unit treats both types equally. However, storage and EDMA bandwidth is halved
whenever byte type is used. For algorithms whose performance is bounded by EDMA transfers, it is
better for the VICP to process byte types whenever possible.

18 VICP Computation Unit Library SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

General Syntax of imxenc_<computation> Function

output_type can be:

— IMXOTYPE_SHORT

— IMXOTYPE_BYTE

The symbols for output_type differ from those used for input_type by one letter O. Do not try to use
IMXTYPE_<...> symbol for an output_type, it will lead to unexpected behavior during the execution of
the command. Use IMXOTYPE_<...> instead. Observe also that signed/unsigned distinction is not
needed to specify an output type. The VICP computation unit only needs to know the size of the
element in order to store it in memory under the correct format. Signed/unsigned distinction is only
needed for the input elements for computation purpose.

rightshift:

Number of bits to right shift before outputting the value. Internally the computation unit has a 32-bits
accumulator but only the 16 LSBs are written out into the memory. If inputs are IMXTYPE_SHORT or
IMXTYPE_USHORT and multiply operations are carried out then right shift may be required to obtain
the most significant bits of the output. Right shift can be up to 31bits. One advantage is that right shift
is a free operation that does not incur any cycles on the VICP computation unit, in addition to the
computation cycles. The results of the right shift is also rounded, see rounding section later.
operation:

This parameter is not available for all computation functions. When used operation can have the
following values:

— IMXOP_MPY: multiply

— IMXOP_ABDF: absolute difference

— IMXOP_ADD: addition

— IMXOP_SUB: subtraction

— IMXOP_AND: logical and

— IMXOP_OR: logical or

— IMXOP_XOR: logical XOR

— IMXOP_MIN, IMXOP_MAX: min, max.

cmdptr:

Points to the location in memory where the command words will be generated by the function. In
general it points to the command memory. The programmer can set it to point to other memory but

then the generated command sequence will have to be copied to the command memory before it is
executed.

The function returns the length in 16-bit words of the generated command sequence.

Some computation function may require pre-initializing the VICP coefficient memory with some constants.

For

instance, if the operation is filtering, the filter coefficients must be written by the application into the

coefficient memory and one of the input pointers must point to them. The application should never put
constants in an image buffer since it is used for I/O and its content is getting overwritten every data block
transferred by the EDMA3.

SPRUGNI1C

—November 2009 VICP Computation Unit Library 19

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Set Saturation Function www.ti.com

2.5

2.6

2.7

Set Saturation Function

The set saturation function generates the command that sets the saturation boundaries for all computation
commands that are subsequently encoded.

The prototype of the function is:

(I'nt16) imxenc_set_saturation(
I nt 32 sat _hi gh,
Int32 sat_hi gh_set,
Int32 sat_| ow,
Int32 sat_| ow set,
(I'nt16*)cndptr);

For each output value generated by a command, it implements:
If (output >= sat_high)
out put = sat _hi gh_set;
else if (output < sat_|ow)
out put = sat _| ow _set;
Example: Set saturation bounds between 0 and 65535:
i mxenc_set _saturation(65535, 65535, 0, 0, cmdptr);

Set saturation bounds between -128 and 127:
i mkenc_set _saturation(127, 127, -128, -128, cndptr);

NOTE: For table lookup types of operation implemented by the functions imxenc_table_lookup(),
imxenc_tables_lookup(), imxenc_table_lookup2D(), imxenc_3d_table_lookup(),
imxenc_table_lookup_int(), imxenc_table_lookup_32bit(), the saturation is applied to the
input data before the lookup. In case of lookup operation, input data represents the index of
the elements to lookup.

This saturation operation comes for free and does not add any extra cycles to the computation operation.

It is possible to disable saturation by calling the function IMX_setSat(IMX_SAT_NO). After such a call, all
subsequent functions encoded will have saturation disabled.

Sleep Command

The sleep command must be inserted at the end of a command sequence to terminate the execution of
the chain of computation tasks.

The function call is:
crmdl en = i nmxenc_sl eep(cndptr);

Rounding

When the rightshift argument of a function is non zero, rounding is performed. For instance if the output of
the computation is 15 and rightshift parameter is 2 then the result will be round((15>>2))= round(3.75)= 4.
If the output is -15 then the result after rounding will be -4 . To disable rounding, call the function
IMX_setRound(IMX_ROUND_NO). After such a call, rounding will be disabled for all subsequent functions
encoded and instead truncating will be in effect.

20

VICP Computation Unit Library SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I

www.ti.com

TEXAS
INSTRUMENTS

Memory Switching and Cache

2.8 Memory Switching and Cache

When the application chooses to generate the commands directly into the VICP command memory, the

buffer switch must be configured correctly to grant access to the DSP by calling IMGBUF_switch() as

follow: IMGBUF_switch(SELCMDBUF, CMDBUFAUTO) .

Likewise, to initialize the coefficient memory with constant values such as filter coefficients, its access

must be granted to DSP with the call: IMGBUF_switch(SELCOEFBUF, COEFBUFAUTO) .

A shortcut is to call the function to switch both buffers to DSP as follow:

| MGBUF_swi t ch(SELOMDBUF | SELCCOEFBUF, CMDBUFAUTO | COEFBUFAUTO)

See Chapter 5 for details on the IMGBUF_switch() function.

All VICP memories are cached by the DSP so after writing into the VICP coefficient and command

memories, cache write back functions must be called in order to flush the cached data into the physical

memory. If the cache is not properly flushed then there is a possibility that the VICP runs the incorrect
command sequence with incorrect data.
2.9 Constraints

The VICP computation unit design poses some constraints on the buffer and data organization:

» The width of the computation area should be strictly inferior to 2048 elements.

« The height of the computation area should be strictly inferior to 256 rows. Some functions such as
imxenc_transpose() have this constraint lifted. In this case mention is made in the function’s
documentation.

» APIs involving matrix multiplication (such as DCT) can not operate in place; input and output must be
at different locations. All other APIs may or may not work in place depending on the size of input and
output array.

SPRUGN1C-November 2009 VICP Computation Unit Library 21

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Performance Estimation www.ti.com

2.10 Performance Estimation

The amount of VICP cycles to execute a computation task generated by an imxenc_<computation>
function is given by:

amount_of work x memory_conflict_factor / speedup_factor

The amount of work and memory conflict factor are found in tables for each documented API. The amount
of work is a function of the complexity of the computation task carried out by the VICP. The memory
conflict factor is a function of the locations of the inputs and output pointers.

The speedup factor depends generally on the value of the compute_width argument passed to the API
imxenc_<computation> function. If compute_width is a multiple of 8 then the speedup factor is the
maximum value of 8. In each API description, a table listing the different speed up factors for different
values of compute_width is given.

As a rule of thumb, to obtain optimum performance, at least two of the pointers should point to the
coefficient memory. For instance, if all pointers point to image buffers then the conflict factor becomes 3
for imxenc_array_op(). If two pointers are in coefficient memory and one pointer in image buffer then the
conflict factor becomes 1.

The total execution cycles of a chain of VICP computation task can be obtained by summing up all
computation task’s execution times and adding an overhead of 30 VICP cycles for pipelining. In general
real-world benchmarks track pretty close to the theoretical estimates obtained with this method.

There is a special execution mode called ASAP (as soon as possible) mode, in which each back-to-back
computation task starts a little bit earlier than the completion of the previous task. If that mode is enabled,
the real-world benchmarks actually beat the theoretical estimates produced by the method described
above. However, in some cases, results can be wrong in ASAP mode. In particular when a computation
task needs to first process the last outputs of the previous task, the results can be wrong. In other words,
when the read direction of the computation task is opposite the write direction of the previous task, results
can be wrong.

The ASAP mode is disabled by default and can be enabled by calling the function
IMX_setASAP(IMX_ASAP_ENABLE) causing subsequent computation tasks encoded to run in ASAP
mode. It is advised to leave the ASAP mode disabled when developing VICP code. Only when the
algorithm is fully tested and if the performance needs a further boost, one can enable it.

22

VICP Computation Unit Library SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I

www.ti.com

TEXAS

INSTRUMENTS

Example

2.11

2.12

Example

This example contains several imxenc_<computation> functions to encode two sequences directly into the

VICP command memory:

#i ncl ude "vi cp_conp. h"
#i ncl ude "vicp_support.h"

/* Make sure the command and coefficient nenories
are switched to DSP before witing to them */
| MGBUF_swi t ch(SELCVDBUF| SELCOEFBUF, CVDBUFAUTQ| COEFFBUFAUTO) ;

[* ----- sequence 1 ----- */

cmd_ptr = (short *) CVDBUF_BASE;

cmd_len = inxenc_set_saturation(...., crmd_ptr);
cnd_len += inmkenc_filter(....,cmd_ptr+ cndlen);

crmd_l en += imxenc_col or_spc_conv(....,cnmd_ptr+ cndl en);
cnd_|l en += inmxenc_sleep(....,cnmd_ptr+ cndl en);

[* ----- sequence 2 ----- */

cmd_l en += inmxenc_set_saturation(...., crmd_ptr+cndl en);
cnd_|l en += inmxenc_tabl e_| ookup(...., cnd_ptr+cndl en);
cmd_len += imkenc_filter(...., cmd_ptr+cndl en);

cnd_|l en += inmxenc_sl eep(...., cnd_ptr+cndl en);

Applying a VICP Command Sequence to an Entire Data Frame Using the Tl VICP
Scheduling Unit’s Library

The recommended way to apply a VICP command sequence over a data frame is to use the VICP
scheduling unit’s library. The advantages are two folds:

» Performance advantage: the library uses a hardware scheduling unit different than the DSP to control
the VICP computation unit and trigger the EDMA3. This totally frees up the DSP.

» Easier code development and better portability: since the library abstracts the controlling of the
EDMAZ3, the scheduling and the computation units, the implementer of the algorithm just needs to
focus on designing the per-block chain of computation tasks. The library automatically transfers the
data and applies the same sequence of VICP commands to each block of the frame.

SPRUGN1C-November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

VICP Computation Unit Library

23

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Applying a VICP Command Sequence to an Entire Data Frame Using DSP Code www.ti.com

2.13 Applying a VICP Command Sequence to an Entire Data Frame Using DSP Code

In some rare cases, the programmer may want to write his/her own DSP code to control the VICP
computation unit. To achieve that, he/she first needs to know how to apply a VICP command sequence to
only a block of data in image buffer A or B. The different steps are: write input data into the desired image
buffer, configure the buffer switch crossbar to grant VICP access to the targeted image buffer, start the
VICP computation unit and wait for its completion. When one image buffer is switched to VICP, the other
buffer is automatically switched to the DSP/EDMA3 data bus. This is how ping-pong buffering can be
implemented between VICP and DSP/EDMA3.

The following C code illustrates the usage of the functions IMGBUF_switch(), IMX_start(), IMX_wait() in
order to apply VICP computation to all data blocks constituting a frame:
/* Switch command and coefficient buffers to automatic sw tching node in which the access is

automatically switched whenever VICP becones active. If VICP idle, DSP has access. */
| MGBUF_swi t ch(SELCVDBUF| SELCOEFFBUF, CMDBUFAUTQ COEFFBUFAUTO) ;

/* Call the application function that encodes the VICP commands */
encodeVI CPconmmands(cnd_ptr);

/* Switch image buffer A to DSP/ EDMA3 */
| MGBUF_swi t ch(SELI MGBUFA, | MGBUFADSP) ;

/* Fill image buffer Awith first block of data */
dspEdmaFi | | | mgA() ;

/* Wth this |oop, renmaining blocks are covered */
for (bl ockCount= 0; bl ockCount < total NunBl ocks; bl ockCount+=2) {

[KRRk ok k% VI CP processes i mage buffer A content Fokkokkkokokox |

/* Switch image buffer Ato VICP, note inmage buffer B automatically
swi tched to DSP/ EDVA3 */
| MGBUF_swi t ch(SELI MGBUFA, | MGBUFAVI CP) ;

/* Start VI CP command sequence pointed by cnd_ptr */
I MX_start(crmd_ptr);

/* In the neantine, DSP can do further processing in previous block residing
in imge buffer B, enpty inmage buffer B and then refill with new data */
if (blockCount)
dspPr ocAndEdrmaEnpt yI ngB() ;

dspProcAndEdmaFi | | | mgB() ;

/* Wait for VICP conpletion */
I M wai t () ;

[**xxxxkx%x VI CP processes inmage buffer B content — ****x*xx*x/

/* Switch inmage buffer Bto VICP, note inage buffer A
automatically switched to DSP/ EDVA3 */
| MGBUF_swi t ch(SELI MGBUFB, | MGBUFBVI CP) ;

/* Start VI CP command sequence pointed by cnd_ptr */
I M _start (cmd_ptr);

/* In the meantime, DSP can do further processing in previous block residing
in imge buffer A enpty image buffer A and then refill with new data */

dspPr ocAndEdmaEnpt yI ngA() ;

dspProcAndEdmaFi | | | mgA() ;

/* Wait for VICP conpletion */
I M wait();
}

/* flush processed data in image buffer B */
| MGBUF_swi t ch(SELI MGBUFB, | MGBUFBVI CP) ;
dspPr ocAndEdmaEnpt yI ngB() ;

24 VICP Computation Unit Library SPRUGN1C-November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I3 TEXAS Chapter 3
INSTRUMENTS SPRUGN1C—November 2009

VICP Scheduling Unit Library

The VICP scheduling unit library provides simple functions that enable an entire frame to be processed by
the chain of computation tasks previously implemented on the VICP. The same chain of computation
tasks is applied to each block of the frame.

Under the hood, the library programs the VICP scheduling unit to control the computation unit and the
EDMAS3 hardware. The major performance benefit is that the DSP is offloaded during the entire time the
frame is being processed by the VICP.

3.1 Library and Header files
The libraries are IP_run648 or IP_run644x.lib . The associated header file is vicp_sch.lib.
All the names of the functions in the library start with the prefix IP_run.

3.2 Dependencies With Other Libraries/Modules
The library requires dmcsl648_bios.lib or dmcsl644x_bios.lib be linked with the application.

The library requires that the EDMA3 LLD (low-level driver) be installed. The release was tested with the
release version 1_05_00 01, which can be downloaded at:

https://www-a.ti.com/downloads/sds support/targetcontent/psp/edma3 lld/edma3 lld 1 05/index.html.
Add the system environment variable TI_EDMA3LLD to point to
[INSTALL_DIR\edma3_lld_1_05_00\packages. Where INSTALL_DIR is the directory where the EDMA3
LLD software is installed.

SPRUGN1C-November 2009 VICP Scheduling Unit Library 25
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

https://www-a.ti.com/downloads/sds_support/targetcontent/psp/edma3_lld/edma3_lld_1_05/index.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
Usage Scenarios www.ti.com
3.3 Usage Scenarios
Figure 3-1 shows how the DSP application task, the VICP scheduling unit’s library’s functions and the
VICP computation tasks are interleaved when an algorithm is executed.
Figure 3-1. VICP Processing Diagram
Code Executing on DSP Code Executing on VICP
VICP
— ; VICP
Application Scheduling)
Task Unit Library’s jmouaticy
Functions
IP run registerAlgo()
Register the new algorithm by setting
up the EDMA3 channels and
configuring the VICP with the
sequence of commands passed as
input.
IP run start() ; ;
e While VICP is jtart the VICP scheduling unit >
processing -_— T = = =
the frame, DSP task The scheduling viee
can remain idle, unit concurrently Computation
execute a useful dspCode () executes EDMA3 Thread
function dspCode () transfers _and VICP
or switch to higher- computation
priority task. Once tasks on all the blocks
VICP sends an composing
interrrupt signal, the the data frame.
DSP can wake up or
switch to a task that
de-initializes the VICP sends completion interrupt to DSP.
algorithm. IP run_ unregisterAlgo ()
Unregister/de-initializes the algorithm.

The algorithm developer is responsible of writing a DSP task that will make calls to the VICP scheduling
library to: register the algorithm, execute the algorithm and unregister the algorithm.

Since none of the VICP scheduling unit library’s functions is re-entrant, one and only one DSP task should
make a call to the library at any given time. If that is not the case, a resource sharing method such as
semaphore must be used.

Registering an algorithm is done by calling IP_run_registerAlgo(). Input arguments to this function include
the VICP command sequence location and EDMAS3 transfer parameters.

After registration, the application calls IP_run_start() to apply the computation command sequence to
every block of the frame. The scheduling unit controls the EDMAS transfers and the VICP so the whole
frame gets processed. From now on, the term VICP computation thread is used to characterize the
execution of the VICP computation tasks on every block until the end of the frame.

26

VICP Scheduling Unit Library SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Usage Scenarios

While the VICP computation thread is executing, the DSP is free and can do other useful processing.
Once the whole frame is processed, the VICP sends an interrupt to the DSP.

In Figure 3-1, the DSP synchronizes with the VICP by way of an interrupt. This is an asynchronous type of
synchronization. Busy polling or synchronous type can also be achieved by calling IP_RUN_wait() but is
less efficient since it ties up DSP resource. Only exception for busy polling usage, is when the execution
time of dspCode() is longer than the VICP processing. In this case, IP_RUN_wait() returns immediately.

The sequence of actions depicted in Figure 3-1 could be implemented by the following pseudo C code:
I P_RUN registerAl go ()
IP_RUN start() /* start VICP conputation thread of al gorithnt/
dspCode()
IP_RUN wait() /* OKto use if dspCode() exec tinme > VICP exec tinme */
I P_RUN_unregi sterAl go ()

Another usage is that once the algorithm is registered, the associated computation thread can be
executed an infinite number of times as long as IP_RUN_resetAlgo() is called before IP_RUN _start():
I P_RUN registerAl go()

/* Execute the VICP thread indefinitely until a certain event happens */
whi | e(! st opEvent){

I P_RUN_reset Al go()

I P_RUN_start()

dspCode()

I P_RUN wai t ()
}

I P_RUN_unr egi ster Al go()

IP_RUN_resetAlgo() can accept new values for the addresses of the input and output frames as well for
the VICP command sequence location. Its cycles count is between 6,500 and 9,000 DSP cycles
depending on the number of input and output channels required by the algorithm.

Now, how is the case where the application needs to execute multiple algorithms back to back
implemented?

If the algorithms do not differ in frame dimensions and block processing sizes then IP_RUN_resetAlgo()
should be used since it has the capability of resetting the VICP command sequence location.

For other cases, the previous algorithm must be unregistered and the new algorithm registered, before the
new algorithm can be executed.

The following pseudo-code illustrates such as situation where N algorithms are ran back to back:

while (!stopEvent) {
I P_RUN registerAl go() for algo #0
IP_RUN start() for algo #0
dspCodeO()
I P_RUN_wait()for algo #0
I P_RUN_unregi sterAl go() for algo #0
I P_RUN registerAlgo () for algo #1
I P_RUN start() for algo #1
dspCodel()
I'P_RUN wait()for algo #1
| P_RUN_unregi sterAl go() for algo #1

I P_RUN registerAl go() for algo #N
IP_RUN start() for algo #N
dspCodeN()

I'P_RUN wait()for algo #N

I P_RUN_unregi sterAl go() for algo #N

}

Since each IP_RUN_registerAlgo() call can consume over 40,000 DSP cycles, it can become the
bottleneck in case the computation threads are short in execution time relative to the execution time of
IP_RUN_registerAlgo(). That could really lead to some inefficiency in processing time.

SPRUGN1C—-November 2009 VICP Scheduling Unit Library 27
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Performance www.ti.com

One should try to minimize the number of computation threads that an application must execute. The goal
of the algorithm designer should be to implement computation threads that apply as many computation
tasks as possible on every block of the frame. If that goal is kept in mind then the application will execute
long VICP computation threads just a few times instead of fragmented VICP computation threads many
times.

For instance if the application needs to execute a 5x5 filter followed by a 3x3 filter. Instead of
implementing two separate computation threads, the algorithm designer should create one computation
thread that applies both filtering on every block of the frame.

Of course sometimes, it is just not possible to merge two computation threads into one. For instance
imagine an algorithm that needs to normalize a set of values, using the maximum value as normalization
factor. This algorithm can only be implemented in two computation threads: the first computation thread
has to look for the maximum value over the entire set of values and the second thread multiplies each
value of the set with the reciprocal of the maximum value found by the first thread.

Still, the VICP scheduling unit library provides a mechanism to reduce the overhead between two
computation threads. The library actually allows having up to two algorithms registered in the system at
the same time. IP_RUN_registerAlgo() just needs to be called two times in a row. Another feature that
comes along is that if two computation threads are registered in the system, the second thread is
executed automatically after the first thread without being explicitly started with IP_RUN _start().

The pseudo-code for handling two computation threads can be as follow:

I P_RUN registerAlgo(0) /* register algo #0 */
I P_RUN registerAlgo(l) /* register algo #1 */

while (!stopEvent) {
I P_RUN_r eset Al go()
IP_RUN start() /* start threads of both algo #0 and al go #1 */
dspCodeO()
dspCodel()
IP_RUN wait() /* wait for algo #0 and al go #1 */

}

I P_RUN unRegi ster Al go(1) /* unregister algo #1 */
I P_RUN_unRegi ster Al go(0) /* unregister algo #0 */

3.4 Performance
The execution time of a VICP computation thread can be calculated by the following formula:

Tvicpﬁlh read

Where:
Ticp_tasks 1S Obtained using the method described in Section 2.10.

* Taaa vanster 1S the number of VICP cycles spent in data transfers per block. Sometimes the algorithm
requires reading the equivalent of 2 input data blocks because 2 input operands are needed (ex: array
operation). Table 3-1 gives both read and write throughput for DDR2+—IMGBUF case on DM648.
Measurements were made for a VICP at 445 Mhz and DDR at 266 Mhz. If the system being used has
a different speed ratio, the table must be adjusted accordingly. Also L2«<~IMGBUF might lead to better

= num_blocks x Max(T,c, wsks + Tdata_ranster) + 10% Overhead Q)

data throughput.
Table 3-1. Data Transfer Throughput on DM648
SRC—DEST Amount of Bytes Transferred VICP Cycles/Byte
DDR—IMGBUF 4096 0.32
IMGBUF—DDR 4096 0.48
DDR—IMGBUF 8192 0.29
IMGBUF—DDR 8192 0.43
28 VICP Scheduling Unit Library SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I

TEXAS
INSTRUMENTS

www.ti.com Data Cache Handling

3.5

3.6

Data Cache Handling

The VICP scheduling unit needs to touch some undocumented VICP memories for its internal functioning.
Since the DSP caches all VICP memories, the cache must be written back whenever a library’s function
writes into them. To make the implementation of the VICP scheduling unit library platform independent,
some cache management functions must be passed by the application.

To pass such functions, the following code must be inserted before calling IP_RUN_init():
CACHE_ | nitPrmt cachePrm

cachePrm wbCh= (CACHE_Cb) Cust om Wit eBack;
cachePrm i nvCbh= (CACHE_Cb) Cust om | nval i dat e;
cachePrm wbl nvCb= (CACHE_Cb) Cust om Wl nv;

CACHE_i ni t (&cachePrm;

Where Custom_WriteBack(), Custom_Invalidate(), Custom_Whblnv() are implemented by the application
with prototype:
voi d CACHE writeBack(CACHE Addr _t addr, CACHE Size_t size);

voi d CACHE i nval i dat e(CACHE_Addr _t addr, CACHE_Si ze_t size);
voi d CACHE wbl nv(CACHE_Addr _t addr, CACHE_ Size_t size);

If the application does not do that then the library will not function properly.

EDMAS3 Requirements
The library uses functions from the EDMA3 LLD to request, program, release EDMA3 channels.

The library requirement for EDMAS3 resources is device dependent:
* For DM648: 11 channels and 31 param entries
* For DM644x: 9 channels and 29 param entries

The library uses EDMA3 region 2 to allocate the EDMA3 resource. Configuration files provided along with
the EDMA3 LLD were customized and compiled into the libraries dmcsl648_bios.lib or dmcsl644x_bios.lib.
These files named vicp_edma3_dm648_cfg.c, vicp_edma3_dm644x_cfg.c are also provided in source at
[VICP_LIBRARY_INSTALLATION_DIR]\test\src. The modifications were for region 2 usage. The structure
vicplnstinitConfig present in the file vicp_edma3_[DEVICE_NAME]_cfg.c contains EDMA configuration for
region 2 only and reserves EDMA channels 8-11, 36-63 on DM644x and channels 7-10, 36-63 on DM648.
The algorithm integrator is free to add another configuration structure for region 1 (DSP) and change the
EDMA partition between region 1 and 2. However, region 2 should have an allocation of at least 11
channels and 31 param entries on DM648 or 9 channels and 29 param entries on DM6446 to ensure full
functionality of the VICP signal processing library’s functions. If the modified files are included in the
application project, they will override the EDMAS3 configuration set by the dmcsl648_bios.lib or
dmcsl644x_bios.lib .

The function VICP_EDMAS_init() must be called by the application before any call to the VICP scheduling
unit library. It basically configures the EDMA3 with the information provided in the configuration files. This
function is implemented in dmcsl648_bios.lib or dmcsl644x_bios.lib but its implementation is also provided
in source at [VICP_LIBRARY_INSTALLATION_DIR]\test\src\vicp_edma3_support.c . The algorithm
integrator is free to modify the file and add it to his/her application project in order to override the original
implementation.

SPRUGN1C-November 2009 VICP Scheduling Unit Library 29
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
Functions Usage www.ti.com
3.7 Functions Usage
This paragraph gives a general description of the functions used in the different phases of algorithm
registration, execution and unregistration.
3.7.1 VICP Scheduling Unit Initialization
The VICP scheduling unit is initialized by calling IP_RUN _init(). Prior to that, the application must have
called VICP_EDMAZ _init() and CACHE_init().
This function accepts a structure of type IP_RUN_InitParams as input argument. The description of the
structure is given in Section 4.1.1 but it is advised to pass the default settings defined by the global
variable IP_RUN_DEFAULT_INIT.
3.7.2 Algorithm Registration
IP_RUN_registerAlgo() must be called in order to register an algorithm implemented in form of a VICP
command sequence.
The function accepts two input arguments. The first argument is a pointer to the structure IP_run and the
second argument is the index of the computation thread (O or 1). The definition of IP_run is as follow:
typedef struct |P_run{
DmaTf er Struct *dmal n;
Ui nt16 nunDmaln ;
DnaTfer Struct *dnaCut;
U nt16 nunDmaCut ;
U nt16 nunVert Bl ocks ;
Ui nt 16 nunHor zBl ocks;
Ui nt 32 chunksi ze ;
Ui nt16 conpl nt Ena;
Ui nt 16 conpCode;
U nt16 cmdptr_ofst ;
voi d *extension ;
voi d *cust omer Ext ensi on;
} IP_run;
dmaln Pointer to array of structures DmaTferStruct used to initialize input DMA transfers
from DDR to image buffer. The size of the array should match the member
numDmaln.
numDmaln Number of input transfers. Maximum value is 4 in this release.
dmaOut Pointer to array of structures DmaTferStruct used to initialize output DMA
transfers from image buffer to DDR. The size of the array should match the
member numDmaOut.
numDmaOut Number of output transfers. Maximum value is 4 in this release.
numHorzBlocks Number of processing blocks in the horizontal direction.
numVertBlocks Number of processing blocks in the vertical direction
chunksize Ignored in the current release.
complntEna Completion interrupt enabled. If set to 1 then sequencer sends an interrupt at the
completion of the computation thread.
compCode Completion code. Code returned by IP_RUN_getCompCode() after a
computation thread finishes. Has to be non zero. In case of multi thread scenario,
this can be used by the application to find out which thread has just completed.
cmdptr_ofst Number of 16-bits words separating the beginning of the VICP command memory
and the starting point of the VICP command sequence. The VICP command
sequence is generated by calling imxenc_<computation> functions from the VICP
computation unit library.
30 VICP Scheduling Unit Library SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions Usage

extension For future extensions. Ignored for now
customerExtension For future customer extensions. Ignored for now.

The IP_run structure has two fields of type DmaTferStruct , one to describe input data transfers and one
for output. This structure is shown in detail here:

typedef struct {
Ui nt 32 ddr Addr ;
Intl6 ddrWdth ;
Intl16 reservedO ;

Int32 ddr Of st Next Bl ock ;
Int32 ddr O st Next Bl ockRow ;

Ui nt 32 i ngBuf Addr ;
Intl16 i mBuf Wdth ;

Int1l6 reservedl ;
Ui nt16 bl ockWdth ;
Ui nt 16 bl ockHei ght ;
Ui nt16 reserved2 ;
Ui nt 16 dmaChNo;

} DmaTferStruct ;

ddrAddr Starting address in DDR or L2 of the input or output data.

ddrWidth Width in bytes of the data in DDR or L2.

ddrOfstNextBlock Offset to next block, in bytes

ddrOfstNextBlockRow Offset to next row of blocks, in bytes. See Figure 3-2.

imgBufAddr Starting address in image buffer of the block transferred to/from DDR
imgBufWidth Width in bytes of the data in image buffer

blockWidth Block width in bytes

blockHeight Block height in number of pixel rows

dmaChNo Usually set it to DMAC_CHAN_ANY

Figure 3-2 shows the meaning of each of the above fields in a graphical way. In this example, the green
shaded area represents the processing area which is a subset of the 2-D data frame. The argument
ddrAddr is set to point to the upper left corner of that area. The argument ddrwidth is generally equal to
the whole frame width. The example also assumes that border pixels around a processing block are
needed. These border pixels overlap with the adjacent processing blocks. That is always the case when
the algorithm implements some FIR filtering operations. If border pixels are present then blockWidth is
larger than ddrOfstNextBlock. Otherwise they are equal. Likewise if border pixels are present then
blockHeight*ddrWidth is larger then ddrOfstNextBlockRow.

SPRUGN1C-November 2009 VICP Scheduling Unit Library 31
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions Usage www.ti.com

Figure 3-2. Depiction of DmaTferStruct’s Members (Figure 10)

blockWidth \ I
ddrAddr (—‘ D "
ddrOfstNextBlock J ‘
—) '

yBraHx00|q

ddrOfstNextBlockRow

S— I
——

ddrWidth

In case the chain of computation tasks contain N filtering operations, with filter size being H; x V, then

N-1
procBlockWidth + z (H,-1
blockWidth must be equal to i=0 , Where procBlockWidth is the width of the
processing data block (the green block in Figure 3-2) and is equal to ddrOfstNextBlock. Likewise

N-1
procBlockHeight + z V. -1
blockHeight should be i=0 .

For instance if 3x3 filter is applied followed by a 5x5 filter on 8x4 blocks, then blockWidth should be 8 + (2
+ 4) = 14 and blockHeight should be 4 + (2 + 4)= 10 . The argument ddrOfstNextBlock would be equal to
8.

3.7.3 Algorithm Execution

3.7.3.1 Starting the Processing

VICP computation threads are started by calling IP_RUN_start(). The function returns to the caller right
after starting the VICP scheduling unit, leaving it in an execution state. This frees up the DSP who can
spend its MIPS in other tasks than controlling the VICP.

3.7.3.2 Waiting for Completion

There are two ways the DSP can synchronize with the VICP after IP_RUN_start() is called:

* Busy waiting: by calling IP_RUN_wait(), the DSP waits for the completion of the computation thread.
This is of course the least efficient way of synchronization since the DSP is wasting MIPS pending for
other processors to finish. The effect can be mitigated by calling IP_RUN_wait() in a low priority task
inside a multi-task OS environment but this is not the ideal solution. One case the usage of
IP_RUN_wait() is acceptable, is when between IP_RUN_start() and IP_RUN_wait(), DSP is doing
some useful processing, whose execution time is longer than the VICP thread’s.

32 VICP Scheduling Unit Library SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

www.ti.com Functions Usage

» Use of interrupt: the most efficient synchronization method is to enable the interrupt naotification feature

of the VICP scheduling unit by setting the member compIntEna of the algorithm’s IP_run structure to 1.
This allows the VICP scheduling unit to send an interrupt to the DSP once the frame computation
ends. The DSP must implement a specific ISR to intercept the interrupt. The implementation of the ISR
is left up to the application. Usually it sets some semaphore on which another task is pending on.

3.7.3.3 Restarting Processing

If needed, the application can restart the processing as many times it wants before de-initializing the
algorithm instance. The requirement is that the application must call IP_RUN_resetAlgo() before calling
IP_RUN_start() again.

3.7.4 Algorithm De-Initialization
Once the application is done with the algorithm, it can de-initialize the instance by calling
IP_RUN_unregisterAlgo ().
3.7.5 IP_RUN De-Initialization
Call IP_RUN_delnit() to release the allocated EDMA resources by the VICP scheduling unit. The number
of channels and param entries released to the system is specified in Section 3.6. The application must
also call VICP_EDMA3_deinit() to close the EDMAS driver instance tied to region 2.
3.7.6 Multiple Threads Usage Scenario
Back to the multiple threads usage scenario described in Section 3.3:
I P_RUN registerAlgo(0) /* register algo #0 */
IP_RUN registerAlgo(l) /* register algo #1 */
while (!stopEvent) {
| P_RUN_reset Al go()
IP_RUN start() /* start threads of both algo #0 and al go #1 */
dspCode0()
dspCodel()
IP_RUN wait() /* wait for algo #0 and al go #1 */
}
I P_RUN_unRegi ster Al go(1) /* unregister algo #1 */
I P_RUN_unRegi ster Al go(0) /* unregister algo #0 */
In the example above, the busy wait synchronization scheme is used by calling IP_RUN_wait(). In a
multi-task environment, it is preferable to use the interrupt model. Besides the interrupt model allows the
VICP to send an interrupt to the DSP after each thread’'s completion whereas the IP_RUN_wait() functions
only returns once all the threads are completed. The application decides which thread whose completion
triggers an interrupt by setting the member compintEna of the structure IP_run. Once the DSP’s interrupt
service routine receives such an interrupt, it can find out which thread completed by calling the function
IP_RUN_getCompCode(). This function returns the completion code of the last thread that completed its
processing. Completion code is set by the application at algorithm initialization time through the member
compCode of the structure IP_run. If IP_RUN_getCompCode() returns 0, it means the first thread has not
yet completed.
SPRUGN1C-November 2009 VICP Scheduling Unit Library 33

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Debugging Infrastructure www.ti.com

3.8

Debugging Infrastructure

To assist in algorithm debugging, the application can implement a debug callback function that will be
called after each block is processed by the VICP computation unit. To enable this, the following two
requirements must be met:

» The pointer to the debug callback function must be passed to the VICP scheduling unit’s library by
using the function IP_RUN_setDebugCB().

e Busy waiting with IP_RUN_wait() must be used as synchronization technique instead of interrupt
method.

The debug callback function must have the IP_RUN_DebugFunc type defined in vicp_sch.h:
typedef void (*I P_RUN _DebugFunc) (1P_RUN _DebugStruct *debug, void*arg);

When the VICP scheduling unit calls this function, it passes a structure of type IP_RUNDebugStruct:

typedef struct {
Int16 bl kX;
I nt 16 bl kY;
I nt 16 nunBl ocksX;
I nt 16 nunBl ocksY,;
Int8 *imBuf Ptr;
Int8 *coefBufPtr;
} | P_RUN_DebugStruct;

This structure is first filled by the VICP scheduling unit library before being passed to the application’s
callback function. The callback function can in turn extract the desired information for further debugging.
The member blkX and blkY provide the (X,Y) indexes of the block that has just been processed by the
computation unit. The total number of X and Y blocks in the frame are provided by the member
numBlocksX and numBlocksY. Consequently, blkX runs from 0 to numBlockX-1 and blkY runs from 0 to
numBlockY-1.

The pointers imBufPtr and coefBufPtr provide means for the debug callback function to inspect the data
that has just been processed. Indeed imBufPtr points to the image buffer that contains data just processed
by the VICP. coefBufPtr points to the coefficient memory. At each block, imBufPtr toggles between the
base address of image buffer A and image buffer B. The content of the image buffer at each call is the
result of the computation commands sequence applied to the input data present in the image buffer. To
debug a computation command sequence, one can insert in the middle of the encoding sequence an
imxenc_sleep() command, recompile the code and run the algorithm in order to see results of the compute
operations up to the sleep command.

A second input parameter passed by the VICP scheduling unit library to the debug callback function is the
generic argument pointer arg. This pointer is actually passed by the application when calling
IP_RUN_setDebugCB() and provides a way to pass application specific information to the debug callback
function.

To pass the debug callback function’s pointer to the library, the application calls
IP_RUN_setDebugCB()which accepts as input parameters a pointer to the callback function and a generic
argument pointer. Subsequently, IP_RUN_wait() calls the callback function after each block processing. If
the application does not use busy waiting through IP_RUN_wait() then the debug callback function is
never called. The implementation of the debug callback can be as simple as an empty function, just to
allow putting a breakpoint in it. The breakpoint will be hit each time a block is processed and the content
of the image buffer can be checked for correctness through Code Composer’'s memory window.

Also when passing a NULL pointer to IP_RUN_setDebugCB(), the library then disables the debug callback
feature.

As one can expect, enabling the debug callback function and using busy waiting slow down the frame
processing. Hence these features should only be used when debugging the code.

34

VICP Scheduling Unit Library SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Example Code

3.9 Example Code

Since the VICP signal processing library uses the VICP scheduling unit library to implement functions
operating at frame level, its source code provides a good starting point towards a more customized library.
It can also offer some good example codes on how the VICP scheduling unit library’s functions are called.

For sample code using IP_RUN_init(), refer to the implementation of function CPIS_init() in
[VICP_LIBRARY_INSTALLATION_DIR]\ src\src_hw\imgproclib.c .

For sample code using IP_RUN_registerAlgo(), refer to the file [VICP_LIBRARY_INSTALLATION_DIR]\
src\src_hw_imgproclib.c . The functions that set the structures DmaTferStruct are
_CPIS_setDmalnTransfers() and _CPIS_setDmaOutTransfers().

SPRUGN1C—-November 2009 VICP Scheduling Unit Library 35
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

36 VICP Scheduling Unit Library SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I3 TEXAS

INSTRUMENTS

Chapter

4

SPRUGN1C-November 2009

VICP Scheduling Unit Functions

This chapter lists all the APIs provided by the VICP scheduling unit library. The declarations can be found
in file vicp_sch.h , which must be included by any source files using the library.

4.1 Data Types

The following structure types are used in the VICP scheduling unit library.

4.1.1 IP_RUN_InitParams
This structure is used as input argument to IP_RUN_init().

Table 4-1. Input Argument Structure for IP_RUN_init()

Field Data Type Input/Output Description

magicString char* Input Used by IP_RUN_init() to check for validity of input parameter
structure.
Application must set it to “IP_run”

versionMajor uintl6 Input Major number of version which the application is compatible with. For
example if version is 1.2, set versionMajor to 1.

versionMinor Uintl6 Input Minor number of version which the application is compatible with. For
example if version is 1.2, set versionMinor to 2.

staticDmaAlloc uintl6 Input Enable static allocation of EDMA3 channels and param entries.

numStaticDmaln Uintl6 Input Number of input EDMA3 channels that must be statically allocated
inside IP_RUN_init() and will be later used. If staticDmaAlloc= 0,
dynamic allocation will be used for all input channels.

numStaticDmaOut uUintl6 Input Number of output EDMA channels that must be statically allocated

inside IP_RUN_init() and will be later used. If staticDmaAlloc= 0,
dynamic allocation will be used for all output channels.

SPRUGN1C-November 2009
Submit Documentation Feedback

VICP Scheduling Unit Functions

Copyright © 2009, Texas Instruments Incorporated

37

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Data Types

13 TEXAS
INSTRUMENTS

www.ti.com

4.1.2

IP_run

This structure is used as the input argument to IP_RUN _registerAlgo() and provides information on the
location and layout of the frame data to be processed by the VICP.

Table 4-2. IP_run Structure

Field Data Type Input/Output Description

dmaln DMATferStruct * Input Pointer to an array of structures DmaTferStruct used to initialize input
DMA transfers from DDR to image buffer. The size of this array should
match the member numDmain.

numDmaln Uint16 Input Number of input transfers. Maximum value is limited by the symbol
IP_RUN_MAX_NUM_DMAIN_CHAN.

dmaOut DMATferStruct * Input Pointer to array of structures DmaTferStruct used to initialize output
DMA transfers DMA transfers from image buffer to DDR. The size of
this array should match the member numDmaOut.

numDmaOut uintl6 Input Number of output transfers. Maximum value is limited by the symbol
IP_RUN_MAX_NUM_DMAOUT_CHAN.

numHorzBlocks Uint16 Input Number of blocks in the horizontal direction

numVertBlocks Uint16 Input Number of blocks in the vertical direction

chunksize Uint16 Input Ignored

complntEna uintl6 Input Completion interrupt enabled. If set to 1 then VICP sends an interrupt
at the completion of the computation thread.

compCode uintl6 Input Completion code. Code returned by IP_RUN_getCompCode() after the
VICP computation thread finishes. Has to be non zero. In case of multi
thread scenario, this can be used by the application to find out which
thread has just completed.

cmdptr_ofst Uint16 Input Number of 16-bits words separating the beginning of the VICP
command memory and the starting point of the VICP command
sequence. The VICP command sequence is usually generated by
calling imxenc_<computation> functions from the VICP computation
unit library. The value of cmdptr_ofst should never exceed the total
number of words in the command memory. The application should
also take care not to generate a VICP command sequence beyond the
end of the command memory.

extension void * Input For future expansion

customExtension void * Input For future expansion

38

VICP Scheduling Unit Functions

SPRUGN1C-November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS
www.ti.com Data Types
4.1.3 DmaTferStruct

Members dmaln and dmaOut of the IP_run structure are of type DmaTferStruct defined in Table 4-3.

Table 4-3. DmaTferStruct Structure

Field Data Type Input/Output Description

ddrAddr Uint32 Input Starting address in DDR of the input or output data

ddrwidth uintl6 Input Width in bytes of the data in DDR

reservedO Int16 Input Not used

ddrOfstNextBlock Int32 Input Offset to next block, in bytes

ddrOfstNextBlockRow Int32 Input Offset to next row of blocks, in bytes. See Figure 3-2.

imgBufAddr Uint32 Input Starting address in image buffer of the block transferred to/from DDR.

imgBufWidth Int16 Input Width in bytes of the data in image buffer. Does not have to match
blockwidth.

reservedl Int16 Input Not used

blockwidth Uintl6 Input Block width in bytes

blockHeight uintl6 Input Block height in number of pixel rows

reserved2 Int16 Input Not used

dmaChNo Uintl6 Input Usually set it to DMAC_CHAN_ANY to get the next available channel

unless a particular EDMA3 channel is to be allocated.

4.1.4 IP_RUN_DebugStruct
This structure is passed to the debug callback function of type IP_RUN_DebugFunc .

Table 4-4. IP_RUN_DebugStruct Structure

Field Data Type Input/Output Description
blkX Int16 Input X-axis coordinate of the block just processed by the VICP
blkY Int16 Input Y-axis coordinate of the block just processed by the VICP
numBlocksX Int16 Input Total number of blocks in one row
numBlocksY Int16 Input Total number of rows of blocks
imgBufPtr Int8 * Input Pointer to the image buffer where the block of data has just been
processed
coefBufPtr Int8 * Input Pointer to coefficient memory
SPRUGN1C-November 2009 VICP Scheduling Unit Functions 39

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Scheduling Unit Functions

13 TEXAS
INSTRUMENTS

www.ti.com

4.2 Scheduling Unit Functions

Recommend you add introductory text here.

IP_RUN_init
Syntax
Arguments
Return Value

Description

Initialize the IP_RUN framework

Int32 IP_RUN_init(IP_RUN_InitParans* init);
I P_RUN_I nitParanms* init; Pointer to IP_run initialization structure
Int32 Returns 0 if success, ERROR_CHAN_ALLOC if EDMA channel allocation error.

IP_RUN_init() initializes the internal structures used by the VICP scheduling unit library
and loads specialized code and data into the scheduling unit's program and data
memories (undocumented memories). This has as effect of overwriting any previous
content in these memories.

The application can pass to IP_RUN init() the default settings defined by the global
variable IP_RUN_DEFAULT_INIT.

The member staticDmaAlloc in the initialization structure specifies whether some EDMA
channels need to be statically allocated.

If set to 0, the EDMA channel allocation will be handled dynamically: each time
IP_RUN_registerAlgo() is called, channels are allocated through the EDMA3 driver and
each time IP_RUN_unregisterAlgo()is called, these same channels are released.

If set to 1, the application must also initialize the other members numStaticDmaln and
numStaticDmaOut. These members will represent how many input or output EDMA
channels must be statically allocated by IP_RUN_init() to be used by
IP_RUN_registerAlgo().

In the default settings staticDmaAlloc is set to 1 and numStaticDmaln=
numStaticDmaOut= 4.

This call is required prior to using any other function of the VICP scheduling unit library.

40 VICP Scheduling Unit Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

IP_RUN_registerAlgo — Register an algorithm

IP_RUN_registerAlgo Register an algorithm

Syntax

Arguments

Return Value

Description

See Also

IP_RUN_start

Syntax
Arguments
Return Value

Description

See Also

Int32 IP_RUN_registerAlgo (IP_run *handle, Int32 threadld);

IP_run *handl e Pointer to IP_run structure, the member dmaChNo of the dmaln
and dmaOut structures will be modified by IP_RUN_registerAlgo
Int32 threadld Index of the thread 0 or 1

Int32 Returns 0 if success, ERROR_CHAN_ALLOC if EDMA channel allocation error

For each computation thread, IP_RUN_registerAlgo () must be called to register it into
the system.

IP_RUN_registerAlgo () also sets up and allocates the EDMA3 channels if they have not
been yet statically allocated at initialization time. It returns an error
ERROR_CHAN_ALLOC if it was unable to allocate all the EDMA channels.

The application should not free the IP_run structure after calling IP_RUN_registerAlgo()
because it will be re-used when calling IP_RUN_resetAlgo() and
IP_RUN_unregisterAlgo().

Structure IP_run

Start the VICP processing

I P_RUN start();

voi d

void

IP_RUN_start() kicks off the VICP scheduling unit.

The function returns to the caller right after starting the VICP scheduling unit. The
scheduling unit is responsible of controlling the VICP computation unit and the EDMA3
transfers in the most efficient manner so the transfers occur in parallel with the VICP
computation. This frees up the DSP who can spend its MIPS in other tasks than
controlling the VICP.

In the current version of the library, if several computation threads have been registered,
then they are executed all at once. An interrupt can be sent to the DSP at completion of
each thread if the member complintEna in structure IP_run is set. The VICP does not
wait for any acknowledgment from the DSP between computation threads, it just
executes them at once without interruption.

IP_RUN_wait()

SPRUGN1C-November 2009

VICP Scheduling Unit Functions 41

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
IP_RUN_wait — Wait for VICP completion www.ti.com
IP_RUN_wait Wait for VICP completion
Syntax Void IP_RUN wait();
Arguments voi d
Return Value void
Description By calling IP_RUN_wait(), the DSP waits for the completion of the VICP computation

threads. This is of course the least efficient way of synchronization since the DSP is
wasting MIPS pending for other processors to finish. The effect can be mitigated by
calling IP_RUN_wait() in a low priority task inside a multi-task OS environment but this is
not the ideal solution.

Once IP_RUN_wait() exits, all the threads registered will have completed. This function
does not interfere with the interrupt generation feature enabled by the member
complntEna in structure IP_run . The DSP can still call IP_RUN_wait() and receives
interrupts at completion of each thread.

See Also IP_RUN_start()

IP_RUN_isBusy Check whether VICP processing still ongoing.

Syntax Int32 I P_RUN i sBusy();

Arguments voi d

Return Value Int32 1 if busy, 0 if done

Description Return 1 if VICP still processing, 0 otherwise.
See Also IP_RUN_start()

IP_RUN_getCompCode Get completion code of the VICP thread last completed.

Syntax I nt 32 | P_RUN_get ConpCode()

Arguments voi d

Return Value Int32 Completion code value

Description For each computation thread, a completion code has been provided to the library by

setting compCode member in structure IP_run. It is this completion code that
IP_RUN_getCompcode() is returning.

See Also Structure IP_run, IP_RUN_start()

42 VICP Scheduling Unit Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

IP_RUN_resetAlgo — Reset the algorithm so it is ready to be re-executed by calling IP_RUN_start()

IP_RUN_resetAlgo Reset the algorithm so it is ready to be re-executed by calling IP_RUN_start()

Syntax

Arguments

Return Value

Description

See Also

Int32 | P_RUN_reset Al go(l P_run* handle, Int32 threadld, |Int32 resetCnd)

I P_run *handl e Handle to IP_run structure
Int32threadld Index of the thread, 0 or 1
I nt32 reset Cmd For future use

Int32 Returns O if no error

Reset internal variables of IP_RUN so the computation thread can be re-run on a new
image. The IP_run structure can be the same as the original one passed to
IP_RUN_registerAlgo (), or have the following members with modified values:

dmal n[].ddrAddr, dmaQut[].ddrAddr
cmdpt r _of st

IP_RUN_resetAlgo() allows the reconfiguration of the addresses of the input and output
frames, as well as the sequence of computation tasks by modifying the command pointer
offset.

The last feature actually allows the swapping of algorithm as long as the frame
dimensions and processing block sizes do not change.

Its cycles count is between 6,000 and 9,000 DSP cycles depending on the number of
input and output channels required by the algorithm.

Structure IP_run, IP_RUN_start()

IP_RUN_setDebugCB Set the debug callback function

Syntax

Arguments

Return Value

Description

See Also

Int32 | P_RUN_set DebugCB(| P_RUN DebugFunc debugCB, void *arg)

| P_RUN_DebugFunc debugCB Pointer to the debug function implemented by the
application. If NULL then previously set debug callback
function is disabled

void *arg Pointer to the generic argument that will be passed to the
debug function

Int32 Returns O if no error

This function is used to pass a debug callback function’s pointer to the VICP
computation unit library. The debug callback function has type IP_RUN_DebugFunc and
is called after each block processing from within IP_RUN_wait():

typedef void (*IP_RUN _DebugFunc) (1P_RUN_DebugStruct *debug, void*arg);

The implementation of the debug callback can be as simple as an empty function, just to
allow putting a breakpoint in it. The breakpoint will be hit each time a block is processed
and the content of the image buffer can be checked for correctness through Code
Composer's memory window.

See Section 3.8 for further information.

Structure IP_RUN_DebugStruct

SPRUGN1C-November 2009

VICP Scheduling Unit Functions 43

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
IP_RUN_unregisterAlgo — Unregister an algorithm www.ti.com
IP_RUN_unregisterAlgo Unregister an algorithm
Syntax Int32 | P_RUN_unregisterA go(lP_run* handle, Int32 threadld)
Arguments
IP_run *handl e Handle to IP_run structure that was used in IP_RUN_registerAlgo

Return Value

Description

See Also

IP_RUN_delnit

Syntax
Arguments

Return Value

Description

Int32 threadld Index of the computation thread 0 or 1

Int32 Returns O if no error

Calling IP_RUN_unregisterAlgo() frees up only the EDMAS3 resources that were
dynamically allocated during IP_RUN_registerAlgo(). It needs the same structure IP_run
passed to IP_RUN_registerAlgo() because it needs the dmaChNo information in dmalin
and dmaOut of that structure.

Structure IP_run, IP_RUN_registerAlgo()

Initialize the IP_RUN framework
Int32 I P_RUN delnit();
None

Int32 Returns 0 if success,
ERROR_CHAN_DEALLOC if EDMA channel de-allocation error

De-initialize IP_run by freeing all EDMA channels and param entries

44 VICP Scheduling Unit Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I3 TEXAS Chapter 5
INSTRUMENTS SPRUGN1C—November 2009

VICP Support Functions

This chapter provides the descriptions of some support functions that could be useful in the course of
developing VICP code. All functions’ interfaces and symbols are defined in vicp_support.h . The functions
themselves are provided in dmcsl648_bios.lib or dmcsl644x_bios.lib libraries.

5.1 Functions

The CACHE functions are wrapper functions and do not actually implement any cache functionality. The
implementation is provided by the application when calling CACHE_init(). Afterwards, the wrapper
functions can be invoked by the VICP Scheduling Unit library.

CACHE_init Init CACHE Wrapper Functions
Function void CACHE_ i nit (CACHE_InitPrmt *pPrm
Arguments

CACHE_| ni t Prm t Data structure which contains pointers to the actual
implementations of cache functions

Return Value None

Description The CACHE_init function is used to pass the actual implementation of data cache
functions to the wrapper functions. CACHE_init must be called before IP_RUN_init().

CACHE_writeBack Wrapper function for data cache write-back function
Function voi d CACHE writeBack(CACHE_Addr _t addr, CACHE_Size_t size)

Arguments

CACHE_Addr _t addr Buffer address
CACHE Si ze_t size Buffer size

Return Value None

Description Wrapper function that calls the corresponding function in the structure CACHE_InitPrm_t
passed to CACHE_init().

SPRUGN1C-November 2009 VICP Support Functions 45
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

CACHE_invalidate — Worapper function for data cache invalidate function. www.ti.com

CACHE_invalidate Wrapper function for data cache invalidate function.

Function

Arguments

Return Value

Description

CACHE_wblInv

Function

Arguments

Return Value

voi d CACHE_i nval i dat e(CACHE_Addr _t addr, CACHE_Si ze_t si ze)
CACHE_Addr _t addr Buffer address
CACHE_Si ze_t size Buffer size

None

Wrapper function that calls the corresponding function in the structure CACHE_InitPrm_t
passed to CACHE_init().

Wrapper function for data cache write back and invalidate function.

voi d CACHE wbl nv(CACHE_Addr _t addr, CACHE Size_t size)

CACHE_Addr _t addr Buffer address
CACHE_Si ze_t size Buffer size

None

Description Wrapper function that calls the corresponding function in the structure CACHE_InitPrm_t
passed to CACHE_init().
46 VICP Support Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

IMGBUF_switch — Switch buffers between DSP/EDMA and VICP

IMGBUF_switch

Function

Arguments

Return Value

Description

Example

Switch buffers between DSP/EDMA and VICP

U ntl6 | MGBUF_swi tch(Uint16 buffers, U ntl6 connections);

Uint16 buffers Bit flags value to select switches. Use the predefined macro
symbols defined in vicp_support.h : SELIMGBUFA, SELIMGBUFB,
SELCOEFBUF, SELCMDBUF, SELALLBUF. Any combination of
these symbols can be ORed together to produce the value buffers.

Uint 16 Bit flags value to set data path switch. Use the predefined macro

connecti ons symbols defined in vicp_support.h : IMGBUFADSP,
IMGBUFAVICP, IMGBUFBDSP, IMGBUFBVICP, COEFFBUFDSP,
COEFFBUFVICP, COEFFBUFAUTO, CMDBUFDSP,
CMDBUFVICP, CMDBUFAUTO

Any combination of these symbols can be ORed together to
produce the value connections.

Previous connections values

The function IMGBUF_switch() is used to grant access of the image buffer A, image
buffer B, coefficient memory, command memory to either DSP or VICP computation unit.
The value returned can be used to restore the switch setting later on.

A few remarks: Both coefficient and command memories have an automatic access
mode, very convenient since it allows these buffers to be automatically switched to the
VICP computation unit when it becomes active. Also when image buffer A’s access is
granted to VICP then automatically image buffer B is granted access to DSP, and vice
versa. The access switch for image buffer A or B does not need to be changed if the
VICP scheduling unit library is used. This is handled automatically by the scheduling
unit.

#i ncl ude "vicp_support.h"

/* switch coef and cnd nenories to auto node */
connecti ons= | MGBUF_swi t ch(SELCOEFBUF| SELCVDBUFF, COEFFBUFAUTQ CVDBUFAUTO) ;

/* switch image buffer A to DSP, inmage buffer B automatically switched to VICP */
| MGBUF_swi t ch(SELI MGBUFA, | MGBUFADSP) ;

/* Restore previous settings */
| MGBBUF_swi t ch(SELALLBUF, connecti ons);

SPRUGN1C-November 2009

VICP Support Functions 47

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
IMX_start — Start VICP computation unit execution www.ti.com
IMX_start Start VICP computation unit execution
Function void | M _start(Uint16 *startaddr)
Arguments

Return Value

Description

IMX_wait
Function
Arguments
Return Value

Description

5.2 Data Types

CACHE_InitPrm_t

uintl6é *startaddr Absolute address of the sequence of VICP commands to execute.
Can fall anywhere between (Int16*)CMDBUF_BASE and
(Int16*)CMDBUF_BASE + CMDBUF_SIZE

None

Start VICP computation unit execution. The IMX_start function is not needed if the VICP
scheduling unit library is used. IMX_start is needed only if custom control/scheduling
code is to be written on the DSP.

Wait for VICP computation unit to finish execution

void | M wai t()
None
None

Busy polls some register until VICP computation unit stops. The IMX_wait function is not
needed if the VICP scheduling unit library is used. IMX_wait is needed only if custom
control/scheduling code is to be written on the DSP.

Structure for CACHE_init

Members
CACHE_Cb wbChb Callback for data-cache write back function
CACHE Cb invCh Callback for data-cache invalidate function
CACHE_Cb Callback for data-cache write back and invalidate function
wbinvCb

Description This data structure is used to pass pointer of the callbacks functions that will be used by
the wrapper CACHE_writeBack(), CACHE_invalidate(), CACHE_wblInv().This structure is
passed during CACHE_init.

48 VICP Support Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I3 TEXAS Chapter 6
INSTRUMENTS SPRUGN1C—November 2009

VICP Computation Unit Library’s Functions

This chapter details all the functions making up the VICP computation unit library.

6.1 Functions That Encode Computation Tasks

These functions of the form imxenc_<computation> encode the VICP commands that correspond to a
particular mathematical or image processing task.

6.1.1 imxenc_alphablend

imxenc_alphablend Perform alphablend algorithm between 32 bpp aRGB source data and 16 bpp
RGB555 or RGB565 background data. The output is written in unpacked R,G,B

planes.
Syntax
cmdl en = i mxenc_al phabl end(
src, /* Int16*, Input to «RGB 32 bpp data */
bkg, /* Int16*, starting address of background rgb565 or rgbh555 */
tenpScrat chl, /* Intl6*, starting address of tenporary scratch buffer 1 of
si ze 2*conpute_w dt h*conput e_hei ght +4 words */
tenpScratch2, /* Intl1l6*, starting address of tenporary scratch buffer 2 of
size 1.5*conput e_wi dt h*conput e_hei ght words */
per nScr at ch, /* Int16*, starting address of permanent scratch buffer of
size 7 words in i MX coefficient nmenory */
dst, /* I nt1l6*, pointer to destination */
src_w dth, /* Intl6, src width in nunber of pixels */
src_hei ght, /* Intl6, src height/rows of in nunber of pixels */
bkg_wi dt h, /* Int16, bkg width in nunber pixels */
bkg_hei ght, /* Int16, bkg height/rows of in nunber of pixels */
dst _width, /* 1nt16, dst width/colums of in nunber of pixels */
dst _hei ght, /* 1nt16, dst height/rows of in nunber of pixels */

conmput e_w dt h, /* Int16, conputation width in nunber of pixels */
conpute_height, /* Intl1l6, conputation height in nunber of pixels */

dst_type, /* Int16, | MXOTYPE_SHORT or | MXOTYPE_BYTE */
col orformat, /* Int16, RGB565=0 or RGB555=1 */
cndptr); /* Int16*, crmdptr */
Description This function takes the source bitmap and blends it with the background bitmap into the

destination buffer. In the source bitmap, each pixel is coded on 32 bits aRGB
colorformat.

Table 6-1 and Table 6-2 describe how two consecutive pixels aOR0OGOBO, alR1G1B1
are expected to be organized in ARM or DSP memory.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 49
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

Constraints

Table 6-1. Organization of Two Consecutive Pixels in ARM Memory

Byte Address Value
0 Bo
Go
Ro
o4
B,
G,
R,

a

~N o a0 b~ 0N P

Table 6-2. Organization of Two Consecutive Pixels in DSP Memory

Word Address Value
8 msb 8 1Isb
0 Gy B,
1 [o Ro
2 G, B,
3 a, R,

The background format is 16bpp RGB565 or RGB555 as specified by the parameter
colorformat. The function actually unpacks the output and writes it into R,G,B planes.
Elements in each plane can be either 8 or 16 bits wide with only 8 significant bits since
R,G,B are in the [0...255] range. Planes are arranged sequentially in the output: if
dst_type is IMXOTYPE_SHORT then R plane occupies the first dst_width x dst_height
16-bits word, G occupies the next dst_width x dst_height 16-bits word and B occupies
the last dst_width x dst_height 16-bits word.

Three scratch buffers must be allocated in advance:

» Two temporary scratch buffers: one of size (2 x conput e_wi dt h x conput e_hei ght +
4) words and the other one of size (1.5 x conput e_wi dt h x conput e_hei ght) words.

* One permanent scratch buffer of size 7 words in VICP coefficient memory.

The temporary scratch buffers can be re-used by other VICP functions needing a
temporary scratch buffer and its content can be overwritten after the corresponding
alphablending VICP sequence is executed. Re-use of these temporary scratch buffers by
other VICP functions is highly recommended in order to optimize memory allocation in
the image buffer or coefficient buffers.

In contrast, the permanent scratch must never be altered by the application. The
imxenc_alphablend() function initializes the 7 words contained in the scratch and
imxUpdate_alphablend() update those when it is called. This permanent scratch must be
allocated in the VICP coefficient memory.

The locations, dimensions of source, background, destination bitmaps and the
background colorformat are fixed for the encoded VICP command. If the program wants
to execute the VICP commands that performs the alphablend algorithm for a different
background colorformat, it can call the function imxUpdate_alphablend() to update an
existing VICP command sequence. If any other parameters must be changed, then the
application must call imxenc_alphablend() all over again since the
imxUpdate_alphablend() only allows for changing the colorformat value.

Compute_width must be a multiple of 8.

Performance Top performance is 5.6 cycles/pixel. This top performance can be achieved if all the
scratch buffers are in VICP coefficient memory and the source, destination are in image
buffer and the background in VICP coefficient memory.

50 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.2 imxenc_alphablendYUV422I

imxenc_alphablendYUV422] Perform alphablend algorithm between 16 bpp YUV422 interleaved
foreground and 16 bpp YUV422 interleaved background data, using alpha plane.

Syntax cndl en = i nkenc_al phabl endYWv422] (
Int16 *foreground, /* point to yuv422 foreground, 2 bytes/pixel */
Int16 *background, /* point to yuv422 background, 2 bytes/pixel */
Int16 *al pha, /* point to al pha plane, 1 byte/pixel */
Int16 *out put, /* point to output, 2 bytes/pixel */
Int16 *tenpScratch, /* point to tenporary scratch of size 1.5*conpute_w dth*
conput e_hei ght bytes */
Int16 *pernScratch, /* point to permanent scratch in coefficient nenory, of
size 13*conput e_wi dt h*conput e_hei ght bytes+6 bytes */
Int16 input_width, /* width of the input in nunber of pixels */
I nt 16 out put _wi dt h, /* width of the output in nunber of pixels */
Int16 conpute_wi dth, /* conputation width in nunber of pixels */
I nt 16 conpute_height, /* conputation height in nunber of pixels */
Int16 *cmdptr); /* Pointer to command nmenory */
Description This function takes the foreground and blends it with the background into the destination
buffer. The formula used is:
output[i,j] = a[i,j] x foreground[i,j] + (1- a[i,j]) x background][i,j] (2)
Constraints compute_width must be a multiple of 4.
Performance Top performance is 2.5 cycles/pixel. This top performance can be achieved if alpha

plane and scratch buffer are in VICP coef memory and foreground, background in image

buffers.

SPRUGN1C-November 2009
Submit Documentation Feedback

VICP Computation Unit Library’s Functions 51

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

6.1.3

imxenc_accumulate2d_array_op

imxenc_accumulate2d_array_op Perform point-by-point operation (add, subtract, multiply, absolute
difference, and, or, xor, minimum, maximum) on arrays, with accumulation.

Syntax
cmdl en = i nxenc_accunul at e2d_array_op(

Int16 *inputl_ptr, /* starting address of 1st input */

Int16 *input2_ptr, /* starting address of 2nd input */

Int16 *output_ptr, /* starting address of output */

Int16 inputl_width, /* w dth/colums of 1st input */

Int 16 i nput 1_bl ock_hei ght, /* height/rows of a single block of the 1st input */

Int16 input2_width, /* w dt h/colums of 2nd input */

Int16 input2_bl ock_hei ght, /* height/rows of a single block of the 2nd input */

I nt 16 out put _wi dt h, /* width/colums of output */

I nt 16 out put _bl ock_hei ght, /* height/rows of single block of the output */

I nt 16 nunber _bl ocks, /* nunber of bl ocks */

Int16 acc_depth, /* depth of accunulate i.e nunber of repetition sets over which
accumul ation occurs */

Int16 compute_units_1, /* number of units processed in the first set of data repetitions */

Int16 conpute_units_2, /* nunber of units processed in the second set of data repetitions*/

Int16 inputl_conpute_offset_ 1, /* offset between inputl for the first set of data repetitions */

Int16 inputl_conpute_offset_2, [/* offset between inputl for the second set of data repetitions */

Int16 input2_conpute_offset_1, /* offset between input2 for the first set of data repetitions */

Int16 i nput2_conpute_offset_2, /* offset between input2 for the second set of data repetitions */

Int16 output_conmpute_offset_1, /* offset between output for the first set of data repetitions */

Int16 out put_conpute_offset_2, [/* offset between output for the second set of data repetitions */

Int16 operation

Int16 round_shift_off, /* rounding off: 1: off, 0: on */

Int16 round_shift, /* shifting parameter */

Int16 asap, /* 1: asap node, 0: non-asap node */

Int16 inputl_type, /* | MKTYPE_UBYTE, | MXTYPE_BYTE, | MXTYPE_USHORT, | MXTYPE_SHORT*/

Int16 input2_type, /* | MKTYPE_UBYTE, | MKTYPE_BYTE, | MXTYPE_USHORT, | MXTYPE_SHORT*/

Int16 out put _type, /* | MKOTYPE_BYTE, | MKOTYPE_SHORT */

Int16 *cmdptr); /* starting point of comrand sequence in nenory */

/* Int1l6, crmdlen is the nunber of words witten to cnd nenory starting at crmdptr */

Description This function performs add, subtract, multiply, absolute difference, pack bytes, and, or,
mask, mask-not, minimum, maximum, packed-bytes absolute differences between two
matrices of dimension [compute_width x compute_height]. The operation is performed
on blocks of data, each block having width equal to the width of the particular array, and
height equal to the block height.

The API allows for the operations to be repeated over sets of data within each block.
compute_units_1 is the number of first set of repetitions, and compute_units_2 is the
number of repetitions of the first repetition. So, the total number of data operation
repetitions is compute_units_1* compute_units_2. The step sizes for the two sets of data
operation repetitions is given by XXXX_compute_offset 1 and XXXX_compute_offset 2.
These step sizes are absolute displacements, and not x and y displacements. The
second data operation repetition offset is applied to the starting point of the previous
occurring first data repetition, and not the end point of the first data set repetition. The
command allows the results of the data operations repetitions to be accumulated over
one or both of the data sets.

The operations are performed along the entire width of the inputs and for each block.
Within each block, the operating region is specified by XXXX_compute_offset 1 and
XXXX_compute_offset_2. The pointers, inputl_ptr, input2_ptr, and output_ptr, specify
the first element, or upper-left corner of actual operands and output.

Each of the two inputs and output can be operated on either 16-bit (Int16) data or 8-bit
(byte) data. Rounding shifts is specified in the command, and saturation parameters
should be appropriately set in the imxenc_set_saturation command.

52 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Copyright © 2009, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Example Consider inputl and input 2 — 16x16 matrix, consisting of 4 blocks of dimension
16(W)x4(H), and output — 20(W)x16(H) matrix; that is, 4 blocks of dimension 20x4. The
goal is to perform an element-wise multiply of the first two rows of each block, and add
the resulting rows. Translating that to the functioning of this API: The multiple operation
is repeated over two pairs of elements and the result accumulated. So, there is one set
of data operation repetitions over two pairs of elements with a step size between
elements equal to the width of the array. There is no second set of data repetitions, so
the corresponding offsets will be set to 0. Also, since the output over the first set of data
repetitions is accumulated, output_compute_offsetl is also set to zero. The following
illustrates what the API call would look like and a descriptive figure is given below.
cmdl en = i nxenc_accunul at e2d_array_op(
Int16 *inputl_ptr, /* starting address of 1st input */
Int16 *input2_ptr, /* starting address of 2nd input */
Int16 *output_ptr, /* starting address of output */
16, /* w dth/colums of 1st input */
4, /* height/rows of a single block of the 1st input */
16, /* w dth/colums of 2nd input */
4, /* height/rows of a single block of the 2nd input */
20 /* w dt h/ col ums of output */
4 /* height/rows of single block of the output */
4 /* number of blocks */
1, /* depth of accunulate i.e nunber of
repetition sets over which accunul ation occurs */
2, /* nunmber of units processed in the first set of data repetitions */
1, /* number of units processed in the second set of data repetitions */
16 /* offset between inputl for the first set of data repetitions */
0 /* offset between inputl for the second set of data repetitions */
16 /* offset between input2 for the first set of data repetitions */
0 /* offset between input2 for the second set of data repetitions */
0 /* offset between output for the first set of data repetitions */
0 /* offset between output for the second set of data repetitions */
0
0, /* rounding off: 1: off, 0: on */
0, /* shifting parameter */
0, /* 1: asap node, 0: non-asap node */
| MXTYPE_SHORT,
| MXTYPE_SHORT
| MXOTYPE_SHORT,
Int16 *cmdptr)
Figure 6-1. imxenc_accumulate2d_array_op
input1_width |
::;.’7 10 11 12 13 14 15 16 17 18 19 20 21
_qé 22 23 24 25 26 27 28 29 30 31 32 33
f,l 34| 35| 36| 37| 38| 39| 40| 41| 42| 43| 44| 45 ‘ output_width
+“—»
% 46 47 48 49 50 51 52 53 54 55 56 57 o
® - 1" 13| 15| 17| 19| 21 23| 25 X
K=
\ % 33| 35| 37| 39| 41| 43| 45| 47 X
@ -CI 55| 57| 59| 61| 63| 65/ 67| 69 X
=
[%]
/ o X X x| x X X X X X
input2_WIdth @ = X X X X X X X X X
%.’7 10 11 12 13 14 15 16 17 18 19 20 21
E 22 23 24 25 26 27 28 29 30 31 32 33
I
] 34| 35| 36| 37| 38| 39| 40| 41| 42| 43 44| as
% 46 47 48 49 50 51 52 53 54 55 56 57

Constraints

» The inputl width and input2 width must be equal, and a multiple of 8. Output width
can be greater than the input widths.

» Offsets for each of the dimensions must be less than or equal to 32768.

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 53

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor / speedup_factor 3)
e amount_of work =
compute_units_1 x compute_units_2 x max(inputl_width, input2_width) x number_blocks (4)
* memory_conflict_factor:
Location of inputl Location of input2 Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 3
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 2
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 2
COEFF COEFF IMGBUF 2
COEFF COEFF COEFF 3
» speedup_factor and maximum value for compute_width:
compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048
4 4 1024
2 2 512
1@ 1 256
@ That is, compute_width is odd.
54 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Copyright © 2009, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.4 imxenc_accumulate2d_array_scalar_op

imxenc_accumulate2d_array_scalar_op Perform point-by-point operation (add, subtract, multiply,

absolute difference, and, or, xor, minimum, maximum) on arrays, with
accumulation.

Syntax
cmdl en = i nxenc_accunul at e2d_array_scal ar _op(
Int16 *inputl_ptr, /* starting address of 1st input */
Int16 *input2_ptr, /* starting address of 2nd input */
Int16 *output_ptr, /* starting address of output */
I nt16 i nput1_width, /* width/colums of 1st input */
I'nt 16 i nput 1_bl ock_hei ght, /* height/rows of a single block of the 1st input */
Int16 input2_width, /* w dth/colums of 2nd input */
I nt 16 i nput 2_bl ock_hei ght, /* height/rows of a single block of the 2nd input */
I nt 16 out put _wi dt h, /* width/colums of output */
Int16 out put _bl ock_hei ght, /* height/rows of single block of the output */
I nt 16 nunber _bl ocks, /* nunber of blocks */
I nt 16 acc_depth, /* depth of accunulate i.e nunber of
repetition sets over which accunul ation occurs */
Int16 conpute_units_1, /* nunber of units processed in the first set of data repetitions */
Int16 conpute_units_2, /* nunber of units processed in the second set of data repetitions*/
Int16 inputl_conmpute_offset_1, /* offset between inputl for the first set of data repetitions */
Int16 inputl_conpute_offset_2, /* offset between inputl for the second set of data repetitions */
Int16 input2_conpute_offset_1, /* offset between input2 for the first set of data repetitions */
Int16 input2_conpute_offset_2, [/* offset between input2 for the second set of data repetitions */
I nt 16 out put _conpute_offset_1, /* offset between output for the first set of data repetitions */
Int16 out put_conpute_offset_2, /* offset between output for the second set of data repetitions */
Int16 operation, /* 1 MXOP_MPY, | MXOP_ABDF, | MXOP_ADD, | MXOP_SUB, | MXOP_AND, | MXOP_OR,
| MXOP_XOR, | MXOP_M N, | MXOP_MAX */
I'nt16 round_shift_off, /* rounding off: 1: off O0: on */
Int16 round_shift, /* shifting parameter */
I nt16 asap, /* 1. asap node, 0: non-asap node */
Int16 inputl_type, /* | MKTYPE_UBYTE, | MXTYPE_BYTE, | MXTYPE_USHORT, | MXTYPE_SHORT*/
Int16 input2_type, /* | MKTYPE_UBYTE, | MXTYPE_BYTE, | MXTYPE_USHORT, | MXTYPE_SHORT* /
I nt 16 out put _type, /* | MKOTYPE_BYTE, | MXOTYPE_SHORT */
Int16 *cndptr); /* starting point of command sequence in nenory */

/* Int16, cndlen is the nunber of words witten to cnd nenory starting at cndptr */

Description This function performs add, subtract, multiply, absolute difference, pack bytes, and, or,
mask, mask-not, minimum, maximum, packed-bytes absolute differences between two
matrices of dimension [compute_width x compute_height]. The operation is performed
on blocks of the first input, each block having width equal to the input width, and height
equal to the block height. Operation is performed on only the first block of the second
input — this block is operated on all the blocks of the first input Hence this APl is a
“scalar” version of imxenc_accumulate2d_array_op. Apart from this “scalar” type of
operation, the API is identical in operation to imxenc_accumulate2d_array op

Example Consider inputl and input 2 — 16x16 matrix, consisting of 4 blocks of dimension

16(W)x4(H), and output — 20(W)x16(H) matrix; that is, 4 blocks of dimension 20x4. The
goal is to perform an element-wise multiply of the first two rows of each block of inputl
with the first two rows of the first block of input2, and add the resulting rows. Translating
that to the functioning of this API: The multiple operation is repeated over two pairs of
elements and the result accumulated. So, there is one set of data operation repetitions
over two pairs of elements with a step size between elements equal to the width of the
array. There is no second set of data repetitions, so the corresponding offsets will be set
to 0. Also, since the output over the first set of data repetitions is accumulated,
output_compute_offsetl is also set to zero. The following illustrates what the API call
would look like and Figure 6-2 provides an illustration.

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 55

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

cmdl en
Int16 *inputl_ptr,
Int16 *input2_ptr,
Int16 *output_ptr,

16,

4,

16,

4,

20

4

4

1,

2, /* nunber
1, /* nunber
16 /* of fset
0 /* of fset
16 /* of fset
0 /* of fset
0 /* of fset
0 /* of fset
0,

0,

0,

0,

| MXTYPE_SHORT,

| MKTYPE_SHORT

| MXOTYPE_SHORT,
Int16 *cmdptr);

i menc_accunul at e2d_array_scal ar _op(

/* starting address of 1st input */

/* starting address of 2nd input */

/* starting address of output */

/* w dth/colums of 1st input */

/* height/rows of a single block of the 1st input */
/* w dth/colums of 2nd input */

/* height/rows of a single block of the 2nd input */
/* w dth/col ums of output */

/* height/rows of single block of the output */

/* nunber of blocks */

/* depth of accumnulate i.e nunber of

repetition sets over which accunul ation occurs */
of units processed in the first set of data repetitions */
of units processed in the second set of data repetitions */

between inputl for the first set of data repetitions */
between inputl for the second set of data repetitions */
between input2 for the first set of data repetitions */
between input2 for the second set of data repetitions */
between output for the first set of data repetitions */
bet ween output for the second set of data repetitions */
/* rounding off: 1: off
0: on */

/* shifting parameter */
/* 1: asap node
0: non-asap node */

Figure 6-2. imxenc_accumulate2d_array_scalar_op

input1_width

N

A

ght

»

22

23

25

27

28

29

31

block_hei

34

35

37

39

40

41

43

44| 45

46

47

49

51

53

55

56 57

input1

input2_width

A

ght

23

25

27

29

31

block_hei

34

35

37

39

41

43

4] 45

46

47

49

51

53

55

56 57

input2

Constraints

‘ output_width ‘

21) 23| 25| «x

ght

block_hei
x
x
x
x
x
x
x
x
x

33| 35| 37| 39| 41| 43| 45| 47| «x

55| 57| 59| 61| 63| 65| 67| 69| x

The inputl width and input2 width must be equal, and a multiple of 8. Output width
can be greater than the input widths.

Offsets for each of the dimensions must be less than or equal to 32768.

56

VICP Computation Unit Library’s Functions

SPRUGN1C-November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

Performance The overhead time for this VICP API is ~ 30 cycles.

_The estimated number of VICP cycles to perform the operation (except overhead time)

IS:

amount_of_work x memory_conflict_factor / speedup_factor (5)
e amount_of work =

compute_units_1 x compute_units_2 x max(inputl_width, input2_width) x number_blocks (6)
 memory_conflict_factor:

Location of inputl Location of input2 Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 3
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 2
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 2
COEFF COEFF IMGBUF 2
COEFF COEFF COEFF 3

» speedup_factor and maximum value for compute_width:

compute_width multiple only of

speedup_factor

Maximum value of compute_width

8 8 2048
4 4 1024
2 2 512
1@ 1 256
@ That is, compute_width is odd.
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 57

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

6.1.5 imxenc_argb2argbPlanar()

imxenc_argb2argbPlanar() Unpack 32 bpp aRGB source data into alpha, R,G,B planes, in which each

element is byte wide.

Syntax cndl en = i nkenc_ar gb2ar gbPl anar (
i nput, /* Int16*, Input to *RGB 32 bpp data */
scratch, /* Intl6*, pointer to permanent scratch buffer of 2 words */
out put, /* I nt16*, pointer to output */
i nput _wi dt h, /* Int16*, input width in nunber of pixels */
i nput _hei ght, /* I nt16*, input height in nunber of pixels */
out put _wi dt h, /* Int16*, output width in nunber of pixels */
out put _hei ght, /* 1 nt16*, output height in nunmber of pixels */
conput e_wi dt h, /* Int1l6, conputation width in nunber of pixels */
conput e_hei ght, /* 1 nt16, conputation height in nunber of pixels */
endi an, /* Intl6 endianess, 0 = little endian and 1 = big endian */
cmdptr); /* Intl6*, cmdptr */
/* cmdlen is the nunber of words witten to cnd menory starting at cmdptr */
Description Table 6-3 describes how two consecutive pixels dOR0OGOBO, alR1G1B1 are expected to
be organized in ARM or DSP memory, depending on the input argument endian value.
Table 6-3. Organization of Two Consecutive Pixels in Memory
Byte Address Value When Endian =0 Value When Endian =1
0 (o} Bo
1 Ro G
2 G Ro
3 Bo (o}
4 0y B,
5 R, R,
6 G, G,
7 B, a,
Planes are arranged sequentially in the output: a plane occupies the first output_width x
output_height bytes, R plane occupies the second output_width x output_height bytes, G
occupies the next output_width x output_height bytes and B occupies the output_width x
output_height bytes.
A permanent scratch buffer of two 16-bits words must be allocated. The permanent
scratch must never be altered by the application and is usually allocated in the VICP
coefficient memory. Each element of the output planes is in byte format.
58 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Figure 6-3. imxenc_argb2argbPlanar()
output_width
I I
| 4 x input_width bytes | _)
c
g
11G6,B,00R, G,B;04R il < -
020%™ 1510 Ry 8 z
o -g ‘E.
5 g ?
2 i
ol 3 R
=] <Q
g Ed
1 v
i 4 G
r 4 x compute_width bytes ’l
T A
compute_height B
_Y
compute_width
Constraints compute_width must be a multiple of 8.
Performance Performance is between 2 and 4 cycles/pixel. Top performance can be achieved if at
least 2 of the buffers (input, scratch or output) are in VICP coefficient memory.
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 59

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS

INSTRUMENTS

www.ti.com

6.1.6 imxenc_array_cond_write

imxenc_array_cond_write Perform point-by-point conditional write of inputl.

Syntax cnmdl en = inkenc_array_cond_write(
inputl ptr, /* Intl1l6*, starting address of 1st input */
input2_ptr, /* Int16*, starting address of 2nd input */
out put _ptr, /* Intl1l6*, starting address of the output array */
i nput1_wi dth, /* Int1l6, width of 1st input */
i nput 1_hei ght, /* 1nt16, height of 1st input */
i nput 2_wi dt h, /* Int16, width of 2nd input */
i nput 2_hei ght, /* 1nt16, height of 2nd input */
out put _wi dt h, /* Int16, width of output */
out put _hei ght, /* 1 nt1l6, height of output */
conput ati on_w dt h, /* Int16, conputation width */
conputation_height, /* Intl6, conputation_height */
i nput1_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
i nput 2_t ype, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
cond_write_node, /* Intl6 (0) -> wite upon zero
(1) -> wite upon non-zero
(2) -> write upon saturation
(3) -> wite upon not saturate
*/
cndptr, /* I ntl6*, starting point of commuand sequence in menory*/
)
/* cndlen is the nunber of words witten to cnd nenory starting at cndptr */

Description This function performs a conditional write between two matrices of dimension
[compute_width x compute_height]. The output element is set equal to the inputl
element if the input2 element satisfies the condition specified by the cond_write_mode.
Actual operand size of [compute_width x compute_height] resides within [inputl_width x
inputl_height] 1st input and within [input2_width x input2_height] 2nd input. Actual
output of size [compute_width x compute_height] resides within [output_width x
output_height] of the output. The pointers, inputl_ptr, input2_ptr, and output_ptr, specify
the first element, or upper-left corner of actual operands and output.

Each of the two inputs and output can be operated on either 16-bit (Int16) data or 8-bit
(byte) data. Rounding shifts is specified in the command, and saturation parameters
should be appropriately set in the imxenc_set_saturation command.

Example Consider inputl — 16x16 matrix, input2 — 12(W)x20(H) matrix and output —
20(W)x13(H) matrix. Choose a matrix addition of 8(W)x10(H) as dimensions. The
following code illustrates what the API call would look like and Figure 6-4 provides a
visual description.
crmdl en = inxenc_array_cond_wite(

inputl ptr, /* starting address of 1st input */
input2_ptr, /* starting address of 2nd input */
out put _ptr, /* starting address of output */
12, /* width of 1st input */
4, /* height of 1st input */
10, /* width of 2nd input */
5, /* height of 2nd input */
9, /* width of output */
5, /* hei ght of output */
8, /* conputation width */
3, /* conputation height */
| MXTYPE_SHORT, /* signed |Int16/unsigned byte*/
| MXTYPE_SHORT, /* byte, Intl6 */
| MXOTYPE_SHORT, /* byte, Intl6 */
0, /* nunmber of bits to downshift before output */
0, /* wite upon zero */
cndpt r /* starting point for comand sequence in nmenory */
)
60 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

Figure 6-4. imxenc_array_cond_write

input1_width

v_

input1_height
A

compute_width

200 21

22

23

25| 26 27

28

29

30 31

34

4+——»— compute_height
Y

35

371 38 39

40

41

2| 43

44| 45

46

47

49| 50 51

53

54 55

56 57

A

input2_width

v_

input2_height

compute_width

‘«——p— compute_height
2

22

24| 25 26

28

29 30

32

34| 35 36

38

39| 40

4

44| 45| 46

48

49 50

Constraints

Performance

-
<
-
o 9
- C
Q |
< o
| =
5 3
£ £
3 0O
o o

A

output_width

compute_width

A

21

23

25

33

35

37

39

41

43

45

47

55

57

59

61

63

65

67

69

e inputl_width, input2_width, output_width >= compute_width
e inputl_height, input2_height, output_height >= compute_height
» compute_height and input_height must be < 256.

The overhead time for this VICP API is ~ 30 cycles.

The estimated number of VICP cycles to perform the operation (except overhead time)

IS:

amount_of_work x memory_conflict_factor / speedup_factor

e amount_of work =

compute_width x compute_height
* memory_conflict_factor:

Location of inputl

Location of input2

Location of output

memory_conflict_factor

IMGBUF
IMGBUF
IMGBUF
IMGBUF
COEFF
COEFF
COEFF
COEFF

IMGBUF
IMGBUF
COEFF
COEFF
IMGBUF
IMGBUF
COEFF
COEFF

IMGBUF
COEFF
IMGBUF
COEFF
IMGBUF
COEFF
IMGBUF
COEFF

W NN NDNDNDNDND W

SPRUGN1C-November 2009

Submit Documentation Feedback

VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
Functions That Encode Computation Tasks www.ti.com
e speedup_factor and maximum value for compute_width:
compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048
4 1024
2 512
1@ 1 256
® That is, compute_width is odd.
62 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.7 imxenc_array_inner_product

imxenc_array_inner_product Perform inner-product operation between a 4-D data array and a 4-D

Syntax

Description

coefficient array, producing a 2-D output array.

cmdl en = i nxenc_array_i nner_product (
i nput _ptr, /* Int1l6*, starting address of input */
coeff_ptr, /* Intl1l6*, starting address of coefficients */
out put _ptr, /* Int1l6*, starting address of output */
i nput _wi dt h, /* Int1l6, width of input array */
i nput _hei ght, /* 1nt16, height of input array */
coeff_w dth, /* Int1l6, width of coefficient array */
coef f _hei ght, /* 1nt16, height of coefficient array */
out put _wi dt h, /* Int1l6, width of output array */
out put _hei ght, /* I nt16, height of output array */
conput e_wi dt h, /* Intl6, conputed width */
conput e_hei ght, /* 1nt16, conputed height */
num t er ns_hor z, /* Int16, nunber of arrays horizontally to conbine */
numternms_vert, /* 1 nt16, nunber of arrays vertically to conbine */

input_offset_horz, /* Intl1l6, horizontal offset of input arrays in data pts */
input _offset_vert, /[/* Intl6, vertical offset of input arrays in data pts */
coeff_offset_horz, /* Intl6, horizontal offset of coeff arrays in data pts */
coeff_offset_vert, [/* Intl6, vertical offset of coeff arrays in data pts */

i nput _type, /* Intl1l6, |Intl6/byte, signed/ unsigned */

coeff_type, /* 1nt1l6, |Intl6/byte, signed/ unsigned */

out put _t ype, /* Intl6, |Intl6/byte */

round_shift, /* 1nt16, nunber of bits to downshift before output */
cndptr /* Intl1l6*, starting point of command sequence in nenory */

)

This function performs inner product between a 4-D data array and a 4-D coefficient
array, resulting in a 2-D output array. Each pair of data inner array and coefficient inner
array are multiplied point-by-point, and then these product arrays are summed together
on the outer 2 dimensions.

For the inner 2-D arrays, the actual operand size of [compute_width x compute_height]
resides within [input_width x input_height] of data input and within [coeff_width x
coeff_height] of coefficient input, and actual output of size [compute_width x
compute_height] resides within [output_width x output_height] of the output. The outer
two dimensions are indexed with horizontal and vertical offsets, and the offsets are in
data points (not the address offsets). The pointers, input_ptr, coeff_ptr, and output_ptr,
specify the first element, or upper-left corner of operands and output. For example,
logical data item input[m, n, i, j] is assumed to reside at input_ptr[m * input_offset_vert +
n * input_offset_horz + i * input_width + j]. The xxx_height parameters are included for
modularity, but are not used in any address calculation.

The outer dimensions of input and/or coefficient can optionally be used to index
overlapping sub-arrays in an input array. For example, using input_offset_horz =
input_offset_vert = 1, and num_distribute_horz = num_distribute_vert = 3 addresses a
3x3 neighborhood for each inner-array data point.

Each of the two inputs and output can be operated on either 16-bit (Int16) data or 8-bit
(byte) data. Rounding shifts is specified in the command, and saturation parameters
should be appropriately set in the imxenc_set_saturation command.

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 63

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS

INSTRUMENTS

www.ti.com

Example

input_ptr

coeff_ptr

310

Constraints

Consider data input — 2(outerH) x 3(outerW) x 4(H) x 17(H) matrix, coefficient input —
2(outerH) x 3(outerW) x 4(W) x 18(H) matrix and output — 4(H) x 24(W) matrix.
Compute 4(H) x 16(W) in the inner dimensions. The following code illustrates what the
API call would look like and Figure 6-5 provides a visual description.

crmdl en = inxenc_array_i nner_product (
i nput _ptr, /* starting address of 1st input */
coeff_ptr, /* starting address of 2nd input */
out put _ptr, /* starting address of output */
17, /* width of data input */
4, /* height of data input */
18, /* width of coefficient input */
4, /* height of coefficient input */
24, /* width of output */
4, /* hei ght of output */
16, /* conputation width */
4, /* conputation height */
3, /* outer width */
2, /* outer height */
70, /* input horizontal offset */
300, /* input vertical offset */
100, /* coefficient horizontal offset */
310, /* coefficient vertical offset */
| MXTYPE_SHORT, /* signed Int16/unsigned byte*/
| MKTYPE_SHORT, /* byte, Int16 */
| MKOTYPE_SHORT, /* byte, Int16 */
0, /* nunmber of bits to downshift before output */
crdpt r /* starting point for command sequence in nenory */

Figure 6-5. imxenc_array_inner_product

*_>---
- /

<4+—>» compute_width =16

v
100 +
output_ptr l

—>
compute_width =16

<4+—» compute_width = 16

¢ input_width, coeff_width, output_width >= compute_width.
¢ input_height, coeff_height, output_height >= compute_height.
e compute_height, compute_width, num_terms_horz, num_terms_vert <= 256.

64

VICP Computation Unit Library’s Functions

SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor / speedup_factor 9
e amount_of work =
compute_width x compute_height x num_terms_horiz x num_terms_vert (10)
 memory_conflict_factor:
Location of Location of Location of memory_conflict_factor
inputl input2 output
IMGBUF IMGBUF IMGBUF 1+ 2/ (num_terms_horiz x num_terms_vert)
IMGBUF IMGBUF COEFF 1+ 1/ (num_terms_horiz x num_terms_vert)
IMGBUF COEFF IMGBUF 1+ 1/ (num_terms_horiz x num_terms_vert)
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 1+ 1/ (num_terms_horiz x num_terms_vert)
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 1+ 1/ (num_terms_horiz x num_terms_vert)
» speedup_factor and maximum value for compute_width:
compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 65

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

6.1.8 imxenc_array_op

imxenc_array_op

Perform point-by-point operation (add, subtract, multiply, absolute difference, and,

or, Xor, minimum, maximum) on arrays.

Syntax cmdl en = i nxenc_array_op(

inputl_ptr, /* Intl6*, starting address of 1st input */
input2_ptr, /* Intl1l6*, starting address of 2nd input */
out put _ptr, /* Int1l6*, starting address of the output array */
i nput1_wi dt h, /* Int16, width of 1st input */
i nput 1_hei ght, /* 1nt16, height of 1st input */
i nput 2_wi dt h, /* Int16, width of 2nd input */
i nput 2_hei ght, /* 1 nt16, height of 2nd input */
out put _wi dt h, /* Int1l6, width of output */
out put _hei ght, /* 1nt1l6, height of output */
conput ati on_w dt h, /* 1 nt1l6, conputation width */
conputation_height, /* Intl6, conputation_height */
i nput 1_t ype, /* 1nt16, | MKTYPE_UBYTE, | MXTYPE_BYTE */

/* 1nt16, | MXTYPE_USHORT, | MXTYPE_SHORT */
i nput 2_t ype, /* 1nt16, | MKTYPE_UBYTE, | MXTYPE_BYTE */

/* 1nt16, | MXTYPE_USHORT, | MXTYPE_SHORT */
out put _t ype, /* 1nt16, | MKOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
operation, /* Int16, | MXOP_MPY, | MXOP_ABDF, | MXOP_ADD, | MXOP_SUB,

| MKOP_AND, | MXOP_OR, | MXOP_XOR,
| MKOP_M N, | MXOP_MAX */
cndptr, /* I nt1l6*, starting point of command sequence in menory*/
)i
/* cndlen is the nunber of words witten to cnd nenory starting at cndptr */

Description This function performs add, subtract, multiply, absolute difference, and, or, minimum,
maximum, between two matrices of dimension [compute_width x compute_height]. The
operation is performed on two input matrices resulting in an output matrix.

Actual operand size of [compute_width x compute_height] resides within [inputl_width x
inputl_height] of the first input and within [input2_width x input2_height] of the second
input. Actual output of size [compute_width x compute_height] resides within
[output_width x output_height] of the output. The pointers, inputl_ptr, input2_ptr, and
output_ptr, specify the first element, or upper-left corner of actual operands and output.
Each of the two inputs and output can be operated on either 16-bit (Int16) data or 8-bit
(byte) data. Rounding shifts is specified in the command, and saturation parameters
should be appropriately set in the imxenc_set_saturation command.

Example Consider inputl — 16x16 matrix, input2 — 12(W)x20(H) matrix and output —
20(W)x13(H) matrix. Choose a matrix addition of 8(W)x10(H) as dimensions. The
combination stage performs a max operation per group of 8. The following code
illustrates what the API call would look like and Figure 6-6 provides a visual description.
cndl en = inmxenc_array_op(

inputl_ptr, /* starting address of 1st input */
input2_ptr, /* starting address of 2nd input */
out put _ptr, /* starting address of output */
12, /* width of 1st input */
4, /* height of 1st input */
10, /* width of 2nd input */
5, /* height of 2nd input */
9, /* width of output */
5, /* height of output */
8, /* conmputation width */
3, /* conputation hei ght */
| MXTYPE_SHORT, /* signed | nt16/unsigned byte*/
| MKTYPE_SHORT, /* byte, Int16 */
| MKOTYPE_SHORT, /* byte, Int16 */
0, /* number of bits to downshift before output */
| MXOP_ADD, /* addition between two matrices */
cndpt r / starting point for command sequence in nmenory */
)i
66 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

te_height

input1_width

Figure 6-6. imxenc_array_op

A

input1_height

compute_width

A

v

20

23 24| 25 26| 27| 28

29

32

4«——>»— compu
ERE

35 36| 37 38| 39| 40

41

44

! '

47| 48| 49| 50 51 52

te_height

input2_width

v_

A

input2_height

compute_width

A

10

20

21

4——>»— compu

22 23 24| 25 26 27

31

32 33 34| 35 36 37

40

41

42| 43 44| 45 46| 47

50

Constraints

Performance

S»
L

-
=
-

o 9
2 <
o |
< o
| h =
5 2
g £
> 0
o ©

«—
|

output_width

A

compute_width

A

21

23

25

33

35

37

39

41

43

45

47

55

57

59

61

63

65

67

69

e inputl_width, input2_width, output_width >= compute_width
e inputl_height, input2_height, output_height >= compute_height
« compute_height and input_height must be < 256.

The estimated number of VICP cycles to perform the operation (except overhead time)

IS:

The overhead time for this VICP API is ~ 30 cycles.

amount_of_work x memory_conflict_factor / speedup_factor

* amount_of work =

compute_width x compute_height
* memory_conflict_factor:

11

(12)

Location of inputl

Location of input2

Location of output

memory_conflict_factor

IMGBU
IMGBU

F
F

IMGBUF
IMGBUF

COEFF
COEFF
COEFF
COEFF

IMGBUF
IMGBUF
COEFF
COEFF
IMGBUF
IMGBUF
COEFF
COEFF

IMGBUF
COEFF
IMGBUF
COEFF
IMGBUF
COEFF
IMGBUF
COEFF

N P P NP NDNDN®

SPRUGN1C-November 2009
Submit Documentation Feedback

VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

67

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

e speedup_factor and maximum value for compute_width:

compute_width multiple only of speedup_factor

Maximum value of compute_width

8 8
4 4
2 2
1@ 1

2048
1024
512
256

@ That is, compute_width is odd.

68

VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

SPRUGN1C-November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.9 imxenc_array_op_distribute

imxenc_array_op_distribute Perform point-by-point operation (add, subtract, multiply, absolute

difference, and, or, xor, minimum, maximum) between a 4-D data array and a 2-D
coefficient array, producing a 4-D output array.

Syntax

cmdl en = inmxenc_array_op_distribute(
i nput _ptr, /* Int1l6, starting address of input */
coeff_ptr, /* Intl6, starting address of coefficients */
out put _ptr, /* Int1l6, starting address of output */
i nput _wi dt h, /* Int1l6, width of input array */
i nput _hei ght, /* 1nt16, height of input array */
coef f_w dt h, /* Int1l6, width of coefficient array */

coef f _hei ght,
out put _wi dt h,
out put _hei ght,
conmput e_w dt h,
conput e_hei ght,

/* Int16, height of coefficient array */

/* Int16, width of output array */
/* I nt16, height of output array */
/* Int16, conputed width */
/* 1nt16, conputed height */

operati on,

/* | MXOP_ADD, | MXOP_SUB, | MXOP_NPY, | MXOP_ABDF,
/* | MKOP_AND, | MXOP_OR | MXOP_XOR, */
I* IMKOP_M N, | MXOP_MAX */

numdi stribute_horz, /* Intl6, nunber of inner arrays horizontally */
numdi stribute_vert, /* Intl6, nunber of inner arrays vertically */

i nput _offset_horz,
i nput _of fset _vert,
out put _of f set _hor z,
out put _of fset _vert,

i nput _type,
coeff_type,
out put _t ype,
round_shift,
crdpt r

)i

Description

/* Int16, horizontal offset of input arrays in data pts */
/* Int1l6, vertical offset of input arrays in data pts */

/* Int16, horizontal offset of output arrays in data pts */
/* Intl6, vertical offset of output arrays in data pts */
/* 1nt1l6, |Intl6/byte, signed/ unsigned */

/* Int16, Intl6/byte, signed/unsigned */

/* Int1l6, Intl6/byte */

/* 1nt16, nunber of bits to downshift before output */

/* Int16*, starting point of command sequence in nenory */

This function performs add, subtract, multiply, absolute difference, pack bytes, and, or,
mask, mask-not, minimum, maximum, packed-bytes absolute differences between a 4-D
data array and a 2-D coefficient array. The coefficient array is replicated and distributed
to make up the outer 2 dimensions. A 4-D output array is produced.

For the inner 2-D arrays, the actual operand size of [compute_width x compute_height]
resides within [input_width x input_height] of data input and within [coeff_width x
coeff_height] of coefficient input, and actual output of size [compute_width x
compute_height] resides within [output_width x output_height] of the output. The outer
two dimensions are indexed with horizontal and vertical offsets, and the offsets are in
data points (not the address offsets). The pointers, input_ptr, coeff _ptr, and output_ptr,
specify the first element, or upper-left corner of operands and output. For example,
logical data item input[m, n, i, j] is assumed to reside at input_ptr[m * input_offset_vert +
n * input_offset_horz + i * input_width + j]. The xxx_height parameters are included for
consistency, but are not used in any address calculation.

The outer dimensions of input can optionally be used to index overlapping sub-arrays in
an input array. For example, using input_offset_horz = input_offset _vert = 1, and
num_distribute_horz = num_distribute_vert = 3 addresses a 3x3 neighborhood for each
inner-array data point.

Each of the two inputs and output can be operated on either 16-bit (Int16) data or 8-bit
(byte) data. Rounding shifts is specified in the command, and saturation parameters
should be appropriately set in the imxenc_set_saturation command.

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 69

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
Functions That Encode Computation Tasks www.ti.com
Example Consider data input — 2(outerH) x 3(outerW) x 4(H) x 17(H) matrix, coefficient input —

4(W) x 18(H) matrix and output — 2(outerH) x 3(outerW) x 4(H) x 24(W) matrix. Chose
to have a matrix addition of 2(outerH) x 3(outerW) x 4(H) x 16(W) as dimensions. The
following code illustrates what the API call would look like and Figure 6-7 provides a

visual description.

crmdl en = inmxenc_array_op_distribute(
i nput _ptr, /* starting address of 1st input */
coeff_ptr, /* starting address of 2nd input */
out put _ptr, /* starting address of output */
17, /* width of data input */
4, /* height of data input */
18, /* width of coefficient input */
4, /* height of coefficient input */
24, /* width of output */
4, /* hei ght of output */
16, /* conputation width */
4, /* conputation height */
| MXOP_ADD, /* addition between two matrices */
3, /* outer width */
2, /* outer height */
70, /* input horizontal offset */
300, /* input vertical offset */
96, /* output horizontal offset */
320, /* output vertical offset */

| MKTYPE_SHORT, /*
| MXTYPE_SHORT, /*
| MXOTYPE_SHORT, [/ *

0, /*
cndpt r /*
)

signed I nt16/unsigned byte*/

byte, Int16 */

byte, Int16 */

nunber of bits to downshift before output */
starting point for command sequence in nmenory */

Figure 6-7. imxenc_array_op_distribute

input_ptr 70

<—> compute_width= 16

coeff_ptr

compute_width = 16

Constraints

output_ptr
\ 96
320
> +—>
>

compute_width = 16

e inputl_width, coeff_width, output_width >= compute_width
« inputl_height, coeff_height, output_height >= compute_height
e compute_height, compute_width, num_distribute_horz, num_distribute_vert <= 256

70 VICP Computation Unit Library’s Functions

SPRUGN1C-November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor / speedup_factor (13)
e amount_of work =
compute_width x compute_height x num_distribute_horz x num_distribute_vert (14)
 memory_conflict_factor:
Location of inputl Location of input2 Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 3
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 2
» speedup_factor and maximum value for compute_width:
compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 71

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

6.1.10 imxenc_array_scalar_op

imxenc_array_scalar_op Perform each point-by-common point operation (add, subtract, multiply,
absolute difference, and, or, xor, minimum, maximum) between an array an a

scalar.
Syntax cmdl en = inxenc_array_scal ar _op(
inputl_ptr, /* Intl6*, starting address of 1st input */
input2_ptr, /* Intl1l6*, starting address of 2nd input */
out put _ptr, /* Intl1l6*, starting address of the output array */
i nput1_wi dt h, /* Int1l6, width of 1st input */
i nput 1_hei ght, /* 1 nt16, height of 1st input */
i nput 2_wi dt h, /* Int1l6, width of 2nd input */
i nput 2_hei ght, /* 1 nt16, height of 2nd input */
out put _wi dt h, /* Int16, wdth of output */
out put _hei ght, /* 1 nt16, height of output */

conput ati on_w dt h, /* I nt1l6, conputation width */
conput ati on_height, /* Intl6, conputation_height */

i nput1_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
i nput 2_t ype, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _t ype, /* Int16, | MKXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
operation, /* Int16, | MXOP_MPY, | MXOP_ABDF, | MXOP_ADD, | MXOP_SUB, */

/* | MKOP_AND, | MXOP_OR, | MXOP_XOR*/
[* | MKOP_M N, | MXOP_MAX*/
cndptr, /* 1 nt16*, starting point of comand sequence in nmenory */

)
/* cmdlen is the nunber of words witten to cnd nmenory starting at cmdptr */

Description This function performs operations (add, subtract, multiply, absolute difference, pack
bytes, and, or, mask, mask-not, minimum, maximum, packed-bytes absolute differences)
between a matrix of dimension [compute_width x compute_height] and a scalar. The
scalar operand can be as large as a 2 x 2 matrix. Whatever its size, it is replicated and
tiled horizontally and vertically to the same size as the first operand before applying the
point-by-point operation.

Actual operand size of [compute_width x compute_height] resides within [inputl_width x
inputl_height] 1st input. The 2nd input is a single value, 1x2, 2x1, or 2x2 matrix pointed
by input2_ptr. Actual output of size [compute_width x compute_height] resides within
[output_width x output_height] of the output. The pointers, inputl_ptr and output_ptr,
specify the first element, or upper-left corner of actual operand and output.

Each of the two inputs and output can be operated on either 16-bit (Int16) data or 8-bit
(byte) data. Some limited signed/unsigned combinations are also supported. Rounding
shifts is specified in the command, and saturation parameters should be appropriately
set in the imxenc_set_saturation command.

Example Consider inputl — 16x16 matrix and output — 20(W)x13(H) matrix. Choose to multiply a
submatrix of size 8(W)x10(H) within inputl with a scalar. Round down by 8 bits. The
following code illustrates what the API call would look like and Figure 6-8 provides a
visual description.

72 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

cmdl en
inputl_ptr,
i nput2_ptr,
out put _ptr,
12

)

4

WoOUTORrN

MXTYPE_SHORT,
| MKTYPE_SHORT,

i mxenc_array_scal ar_op(

I MXOTYPE_SHORT,

0

| i\/b(CP_ADD
cndpt r

input1_width

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

starting address of 1st input */

starting address of 2nd input */

starting address of output */

wi dth of 1st input */

hei ght of 1st input */

wi dth of 2nd input */

hei ght of 2nd input */

wi dth of output */

hei ght of output */

conputation width */

conput ati on hei ght */

byte, Intl6 */

byte, Intl6 */

byte, Intl6 */

nunber of bits to downshift before output */
| MXOP_ADD */

starting address for the comand sequence */

Figure 6-8. imxenc_array_scalar_op

»

A

compute_width

input1_height
— compute_height
A

>

22| 23

24

25| 26| 27

28

34| 35

36

37| 38| 39

40

i
‘ |

46| 47

48

52

Constraints

Performance

w input2_height

input2_width

N
/

output_width

compute_width |

A

output_height
compute_height
A
v

21) 23| 25| «x

33| 35| 37| 39| 41| 43| 45| 47| «x

55| 57| 59| 61| 63| 65 67| 69| x

-
|

x =
x >
x o
x N
x 3
x
x
x
x

+
s

inputl_width, output_width >= compute_width
inputl_height, output_height >= compute_height
compute_width multiple of input2_width
compute_height multiple of input2_height
compute_height and input_height must be < 256.

The overhead time for this VICP API is ~ 30 cycles.
_The estimated number of VICP cycles to perform the operation (except overhead time)

IS:

amount_of_work x memory_conflict_factor / speedup_factor (15)
amount_of work =
compute_width x compute_height (16)

SPRUGN1C-November 2009

Submit Documentation Feedback

VICP Computation Unit Library’s Functions 73

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

* memory_conflict_factor if input2_height=1:

Location of inputl Location of input2 Location of output memory_conflict_factor

IMGBUF IMGBUF IMGBUF 2 + 16 / compute_width x compute_height
IMGBUF IMGBUF COEFF 1 + 8/ compute_width x compute_height
IMGBUF COEFF IMGBUF 2

IMGBUF COEFF COEFF 1

COEFF IMGBUF IMGBUF 1 + 8/ compute_width x compute_height
COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 1

COEFF COEFF COEFF 1 + 8/ compute_width x compute_height

* memory_conflict_factor if input2_height=2:

Location of inputl Location of input2 Location of output memory_conflict_factor

IMGBUF IMGBUF IMGBUF 2 + 16 / compute_width
IMGBUF IMGBUF COEFF 1 + 8/ compute_width
IMGBUF COEFF IMGBUF 2

IMGBUF COEFF COEFF 1

COEFF IMGBUF IMGBUF 1 + 8/ compute_width
COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 1

COEFF COEFF COEFF 1 + 8/ compute_width

e speedup_factor and maximum value for compute_width:

compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048

4 4 1024

2 2 512

1® 1 256

® That is, compute_width is odd.

74 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.11 imxenc_average2x2

imxenc_average2x2 This function partitions the input array into sub-blocks of 2x2 data points and

Syntax

Description

Example

Constraints

Performance

produces the sum of the 4 points in each sub-block.

cndl en = i nmkenc_aver age2x2(
i nput _ptr, /* Int1l6*, starting address of input */
out put _ptr, /* Intl6*, starting address of the output array */
i nput _wi dt h, /* Int1l6, width of input */
out put _wi dt h, /* Intl6, width of output */

conput ati on_w dt h, /* 1 nt1l6, conputation width */
conputation_height, /* Intl6, conputation_height */

i nput _t ype, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _t ype, /* Int16, | MKOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
cndptr, /* Int1l6*, starting point of comand sequence in menory */

)
/* cmdlen is the nunber of words witten to cnd nenory starting at cmdptr */

This function calculates the sum of every sub-blocks of 2x2 data points. If round_shift is
set to 2 then the average of every 2x2 data points is produced. An input array of MxN
elements produces an output array of size (M/2)x(N/2). computation_width and
computation_height correspond to the original width and height of the region of interest
in the input array that is going to be reduced.

The input_height and output_height information does not need to be passed to
imxenc_average2x2() since this information is not needed for the computation.

This function can be used for downscaling a 2-D image by a factor of 2 along each
dimension, resulting in a factor of 4 downscaling. It can be used inside a simple
implementation of image pyramid.

Consider an input array of 19x20 unsigned shorts, in which a region of interest of 16x18
elements is going to be downscaled into 8x9 elements fitting in a larger 11x10 output
array.

cndl en = i mxenc_aver age2x2(
i nput _ptr, /* starting address of input */
out put _ptr, /* starting address of output */
19, /* width of input */
11, /* width of output */
16, /* conmputation width */
18, /* conput ati on hei ght */
| MXTYPE_USHORT, /* Intl6 */
| MXOTYPE_SHORT, /* Intl6 */
2 /* divide by 4 to produce average */
cndpt r /* starting address for the comrand sequence */

* input_width, output_width/2 >= compute_width

e compute_width must be an even number

e compute_height/2 must be < 256

The overhead time for this VICP API is ~ 30 cycles.

The estimated number of VICP cycles to perform the operation (except overhead time)
is:

amount_of_work x memory_conflict_factor / speedup_factor a7)
* amount_of work =

compute_width x compute_height / 2 (18)

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 75

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

» memory_conflict_factor:

Location of inputl Location of input2 Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 3
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 2

» speedup_factor and maximum value for compute_width:

compute_width multiple only of

speedup_factor

Maximum value of compute_width

8
4
2

8
2
2

2048
512
512

76

VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

SPRUGN1C-November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

6.1.12 imxenc_bin_log

imxenc_bin_log Calculate a binary logarithm of the input data.

Syntax cndl en = inxenc_bin_| og(
Int16 *input_ptr, /* starting address of input */
I nt 16 *out put _ptr, /* starting address of output */
Int16 input_width, /* w dth/colums of 1st input */
I nt 16 i nput _hei ght, /* height/rows of 1st input */
Int16 out put_width, /* w dt h/ col ums of output */

I nt 16 out put _hei ght, /* height/rows of output */
Int16 conpute_wi dth, /* conmputation width */
I nt 16 conpute_height, /* conputation height */

Int16 out put_type, /* I ntl1l6/byte */

I nt 16 wei ghti ng, /* O=bottom wei ghted, 1=top-and-bottom weighted */
Int16 out put _of fset, /* O=output binary |og, 1=output bin log offset */
Int16 rnd_shift, /* Shifting paraneter */

Int16 *cndptr),

)
/* Int1l6, crmdlen is the nunber of word witten to cnd nmenory starting at cmdptr */

Description This function computes an approximate binary logarithm of the input data. The logarithm
can be bottom weighted or top and bottom weighted. The input is always unsigned data.
The input data is first saturated to get rid of the top 4 bits. The next six bits are detected
for the most significant bit. This produces a four-bit index, 0...6 for bottom-weighted and
0...11 for top-and-bottom weighted. Table 6-4 shows how the index is created.
Table 6-4. Creation of Index for imxenc_bin_log

Bits 11...6 Bottom-Weighted Top-and-Bottom-Weighted
000000 0 0
000001 1 1
00001F 2 2
0001FF 3 3
001FFF 4 4
01FFFF 5 5
10FFFF 6 6
110FFF 6 7
1110FF 6 8
11110F 6 9
111110 6 10
111111 6 11

After the index is computed, the fractional bits are extracted. The fractional bits (up to 11
bits) are the bits to the right of the most significant bit. The fraction bits are padded to 11
bits by left shifting and then appended to the four-bit index.

If output_offset is 0, the output is computed by right shifting by the rnd_shift parameter. If
output_offset is 1 then the output is the rnd_shift LSBs of the index and fraction bits.

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor / 8 (29)

* amount_of work =

compute_width x compute_height (20)

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 77
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

» memory_conflict_factor:

Location of inputl Location of zero Location of memory_conflict_factor
output

IMGBUF IMGBUF IMGBUF 2 + 8/ (compute_height x compute_width)
IMGBUF IMGBUF COEFF 1

IMGBUF COEFF IMGBUF 2

IMGBUF COEFF COEFF 1

COEFF IMGBUF IMGBUF 1 + 8/ (compute_height x compute_width)
COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 1

COEFF COEFF COEFF 1 + 8 /(compute_height x compute_width)

78

VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

SPRUGN1C-November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

6.1.13 imxenc_blkAverage

imxenc_blkAverage Calculate the average

Syntax cnmdl en = i mkenc_bl kAver age(
i nput _ptr, /* Int1l6*, starting address of current block */
zero_ptr, /* Int16*, points to a Int16 0 */
out put _ptr, /* Int16*, address where result will be stored */
i nput _wi dt h, /* Int1l6, input width of entire block */
conput e_wi dt h, /* Int16, width of subsection being operated on */
conmpute_height, /* Intl6, height of subsection being operated on */
shift, /* Int1l6, amount to shift for averaging */
i nput _type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
crmd_ptr, /* Int16*, starting point of command sequence in nenory */

/* cndlen is the nunber of words witten to cnd nenory starting at cndptr */

Description This function calculates the average value in an area of size
compute_width*compute_height, which is within of an area of bigger size
input_width*compute_height.

Figure 6-9. imxenc_blkAverage

input_width

compute_width |

compute_height

v

Shift must be selected using the following equation:
shift = log,(block_width x sub_height) (22)

The result will be a single number of type Int16 or byte (depends on output_type).

Example The current block is stored in data memory. The total block width is 32, and total block
height is 16. The sub-block has dimensions 16x16. The resulting shift value is 8. The
result will be stored in data memory. The VICP command would be:

crmdl en = inxenc_bl kAver age (
data_ptr,
zero_ptr,
result_ptr,
32,
16,
16,
8,
| MKXTYPE_UBYTE,
| MXTYPE_SHORT,
cmd_ptr

)i

Constraints compute_width must be multiple of 8 and inferior or equal to 2048.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 79
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

Performance The overhead time for this VICP API is ~ 30 cycles.

The estimated number of VICP cycles to perform the operation (except overhead time)
is:

amount_of_work x memory_conflict_factor / 8 (22)
e amount_of work =

compute_width x compute_height (23)
 memory_conflict_factor:
Location of inputl Location of zero Location of memory_conflict_factor
output
IMGBUF IMGBUF IMGBUF 2 + 8/ (compute_height x compute_width)
IMGBUF IMGBUF COEFF 1
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 1 + 8/ (compute_height x compute_width)
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 1 + 8 /(compute_height x compute_width)
80 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.14 imxenc_blkVariance

imxenc_blkVariance Calculates the variance of block.

Syntax

Description

Example

Constraints

cmdl en = i mxenc_bl kVari ance(
i nput _ptr, /* Int1l6*, starting address of current block */
avg_ptr, /* Int16*, points to address where average val ue of bl ock
is stored */
out put _ptr, /* Int16*, address where result will be stored */
i nput _wi dt h, /* Intl1l6, input width of entire block */
conmput e_w dt h, /* Int16, width of subsection being operated on */
conpute_height, /* Intl16, height of subsection being operated on */
i nput _type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
aver age_t ype, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
crmd_ptr, /* Int16*, starting point of command sequence in nenory */

/* cndlen is the nunber of words witten to cnd nenory starting at cndptr */

This function calculates the variance vin an area of size compute_width*compute_height,
which is within of an area of bigger size input_width*compute_height. It requires that the
average be calculated prior to calling this function. It sums the absolute differences
between each value of the area and the average value pointed by avg_ptr.

Figure 6-10. imxenc_blkVariance

input_width

compute_width |

compute_height

The current block is stored in data memory. The average value is stored at the first
location in coefficient memory. The total block width is 32, and total block height is 16.
The sub-block has dimensions 16x16. The result will be stored in data memory. The
VICP command would be:

crmdl en = i mkenc_bl kVari ance (
data_ptr,
avg_ptr,
result_ptr,
32,
16,
16,
| MKTYPE_BYTE,
| MXTYPE_SHORT,
| MXOTYPE_SHORT,
crdpt r

)

compute_width must be multiple of 8 and inferior or equal to 2048.

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 81

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor / 8 (24)
e amount_of work =

compute_width x compute_height (25)

 memory_conflict_factor:

Location of inputl Location of zero Location of memory_conflict_factor

output

IMGBUF IMGBUF IMGBUF 2 + 8/ (compute_height x compute_width)
IMGBUF IMGBUF COEFF 1

IMGBUF COEFF IMGBUF 2

IMGBUF COEFF COEFF 1

COEFF IMGBUF IMGBUF 1 + 8/ (compute_height x compute_width)
COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 1

COEFF COEFF COEFF 1 + 8 /(compute_height x compute_width)

e speedup_factor and maximum value for compute_width:

compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048

4 4 1024

2 2 512

1 1 256

® That is, compute_width is odd.

82 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

6.1.15 imxenc_blkSeq2Array

imxenc_blkSeq2Array Reorganize a sequence of NxN blocks into an array (almost complementary
function to imxenc_y2blkseq())

Syntax cndl en = i nxenc_bl kSeq2Array(
data_ptr, /* Intl6*, starting address of data */
coeff_ptr, /* Intl6*, starting address of coefficient */
out put _ptr, /* Intl6*, starting address of the output */
i nput _bl ksi ze, /* Int16, input size of the square bl ocks */
conpute_bl ksize, /* Int1l6, conmpute size of the square bl ocks */
out put _wi dt h, /* Int1l6, width of the output array */
out put _hei ght, /* 1 nt16, height of the output array */
no_bl ks_x, /* 1nt16, Nunber of processed input blocks horizontally */
no_bl ks_y, /* 1 nt16, Nunber of processed input blocks vertically */
i nput _type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
coeff_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
cndptr /* 1ntl1l6*, starting point of command sequence in nenory */

)i
/* cmdlen is the nunber of words witten to cnd menory starting at cmdptr */

Description This function reorganizes the data from a block sequential fashion into an array:

Figure 6-11. imxenc_blkSeq2Array

1
x
1| 2 5
K=
2 3| 4 é%’
I
— H
3 v 3
i< output_width ﬁ
4

The gray blocks at the input side are square blocks of size compute_blksize x
compute_blksize and the plain blocks surrounding them are of size input_blksize x
input_blksize.

At output side, the gray area is the effective output array whose width is
no_blks x*compute_blks_size and height is no_blks_y*compute_blks_size.

Normally, only the data is reorganized and the values are not changed, so the Int16
word pointed by coeff_ptr contains 1, and round_shift = 0. Otherwise, during the
reorganization, each element of the output array is scaled by (*coeff_ptr / 2*round_shift).

This function behaves as the inverse of imxenc_y2blkseq() if
input_blksize=compute_blksize=8.

For backward compatibility with old APl imxenc_blkseq2y(), a macro is provided in
vicp_comp.h.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 83
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS

INSTRUMENTS

www.ti.com

Example Mapping a 8x(8x8) block into 16x16 block.
crdl en = i nmxenc_bl kSeq2Array(
data_ptr, /* point to input data array */
coeff_ptr, /* point to scalar scaling factor */
out put _ptr, /* point to output array */
8, /* input block */
8, /* conputation bl ock */
16, /* width of output data array */
16, /* height of output data array */
2, /* Number of processed input blocks horizontally */
2, /* Number of processed input blocks vertically */
| MXTYPE_SHORT
| MXTYPE_SHORT
| MXOTYPE_SHORT
0, /* nunmber of bits to downshift */
cndptr /* starting point for command sequence in nmenory */
)i
Performance The overhead time for this VICP API is ~ 30 cycles. The estimated number of cycles to

perform the operation (except overhead time) is:

amount_of_work x memory_conflict_factor / speedup_factor
e amount_of work =

compute_blksize x compute_blksize x no_blks_x x no_blks_y
* memory_conflict_factor:

(26)

(27)

Location of data

Location of coeff Location of output memory_conflict_factor

IMGBUF

IMGBUF
IMGBUF
IMGBUF
COEFF

COEFF
COEFF
COEFF

IMGBUF IMGBUF (2 + 8/ (no_blks_x x no_blks_y x
compute_blksize x compute_blksize))

IMGBUF COEFF 1

COEFF IMGBUF 2

COEFF COEFF 1

IMGBUF IMGBUF (1 + 8/ (no_blks_x x no_blks_y x
compute_blksize x compute_blksize))

IMGBUF COEFF 1

COEFF IMGBUF 1

COEFF COEFF (1 + 8 /(no_blks_x x no_blks_y x

compute_blksize x compute_blksize))

» speedup_factor and maximum value for compute_width:

compute_width multiple only of

speedup_factor

Maximum value of compute_width

8
4

2
1™

8 2048
4 1024
2 512
1 256

™ That is, compute_width is odd.

84 VICP Computation Unit Library’s Functions

SPRUGN1C-November 2009

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

6.1.16 imxenc_cfa fast

imxenc_cfa_fast Perform fast CFA interpolation using 3x3 bilinear filter

Syntax
cmdl en = i mkenc_cfa_fast(
i nput _p, /* Intl6*, starting address of 1st input */
out putr_p, /* Intl6*, starting address of the output array,red */
out put g_p, /* Intl1l6*, starting address of the output array,green */
out put b_p, /* Intl6*, starting address of the output array, blue */
scratch_ptr, /* Intl6*, starting address of scratch buffer of size */
/* (conpute_wi dth+2) * conpute_height el ements of type output_type */
coeff_ptr, /* Int1l6*, Points to 4 values [coef_r, coef_g, coef_g, coef_b] of
/* type | MKTYPE_SHORT */
zero_ptr, /* Int1l6*, Point to a zero value of type | MKTYPE _SHORT */
i nput _wi dt h, /* Intl6, width of the input array */

i nput _hei ght, /* 1ntl16, height of the input array */
out put _wi dt h, /* Int16, width of the output array */
out put _height, /* Intl1l6, height of the output array */
conpute_wi dth /* 1nt1l6, conputation width */

conput e_hei ght, /* Intl1l6, conputation height */

i nput _t ype, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _t ype, /* Int16, | MKOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1 nt16, nunber of bits to downshift before output, recommended to be 1 */
phase, /* Phase of the Bayer pattern */
cndpt r /* 1Intl1l6*, starting point of comand sequence in nmenory */

)i
/* cmdlen is the nunber of words witten to cnd nmenory starting at cmdptr */

Description This function performs an interpolation of a CFA image into a full-resolution RGB-image.
The CFA-pattern is assumed to be a Bayer pattern. The output is composed of three
planes, r, g, b of dimensions output_width x output_height elements. Each planer, g, b
is scaled by coef r, coef g, coef g, respectively. Typically coef r = coef g= coef b=1
but in case luminance value needs to be obtained, the following values can be used:
coef _r=0.2126"°"st coef g= 0.7152"u-st ' coef b= 0.0722"undshif,

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 85
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

Figure 6-12. imxenc_cfa_fast

Bayer RGE ——® Bayer RGE ——® Demosaic —— RGE ————® RGR

Fed colar plane

‘
Baver RGE pattern o Green color plane
’

Blue color plane

The meaning of the phase argument is illustrated in Figure 6-13.

Figure 6-13. imxenc_cfa_fast phase Argument

cbl B|cH B| |B |cb| B [Gb
R|Gr| R|Gr Grl R|Gr| R
Gh| B |Gb| B B |Gb| B |Gb
R|Gr| R|Gr Grl R|Gr| R

phase 0 phase 1

R|GrlR|Gr] |Gr|R |Gr|R
Gb| B |Gb| B B |Gb| B |Gb
R]Gr] R |Gr Grl R|Gr|R
Gbl B|Gb| B B |Gb| B |Gb

phase 2 phase 3

86 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

Constraints

e compute_width must be a multiple of 8.

* input_width >= compute_width + 2, output_width >= compute_width

* input_height >= compute_ height + 2, output_ height >= compute_ height

e To prevent write after read (WAR) hazards, input data should not be overwritten by
output unless all computations involving that input location are completed.

» compute_height and input_height must be < 256

The current implementation only supports input_width = compute_width + 2, input_height
= compute_height + 2, output_width = compute_width, output_height = input_height.

Performance Performance is around 3 cycles per input pixels for input and scratch in image buffer,
output and coefficients in coefficient memory.
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 87

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com
6.1.17 imxenc_cfa_hqg_interpolation
imxenc_cfa_hq_interpolation Perform high-quality CFA interpolation
Syntax cmdl en = inmxenc_cfa_hqg_interpolation(

i nput _p, /* Int16*, starting address of 1st input */

coeff_p, /* Int16*, starting address of 2nd input */

out putr_p, /* Intl6*, starting address of the output array,red */

out put g_p, /* Int16*, starting address of the output array,green */

out put b_p, /* Intl1l6*, starting address of the output array, blue */

i nput _wi dt h, /* Int1l6, width of the input array */

i nput _hei ght, /* Int16, height of the input array */

coeff_w dth, /* Intl6, width of the filter kernel */

coef f_hei ght, /* Int16, height of the filter kernel */

out put _wi dt h, /* Int16, width of the output array */

out put _hei ght, /* Int16, height of the output array */

conmput e_w dt h, /* Int16, conputation width */

conpute_height, /* Intl1l6, conputation height */

i nput _type, /* Int16, | MXTYPE_UBYTE, | MXTYPE_BYTE */

/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
coeff _type, /* Int16, | MXTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */

out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */

round_shift, /* Int16, nunber of bits to downshift before output */

crdpt r /* Int16*, starting point of command sequence in nenory */

);

/* cndlen is the nunber of words witten to cnd nenory starting at cndptr *

Description This function performs an interpolation of a CFA image into a full-resolution RGB-image.
The CFA-pattern is assumed to be a Bayer pattern.

Figure 6-14. imxenc_cfa_hq_interpolation
Bayer RGBE —® Bayer RGE —@ Demosaic —W RGE ————@ RGR

Red calar plane

Green color

B aver RGE pattern

A Blue color plane

The coefficients used in the filtering must be setup by calls to imx_cfa_hq_setup().

88 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

Example

Constraints

Performance

gshift=9;
phase= 0;
VI CP_CFA_HQ 5x5_COEFS, phase,

imk_cfa_hq_setup(coeff_ptr, qShift);

cndl en = inxenc_set_saturation(255, 255, 0, 0, cndptr);
cmdl en += i mxenc_cfa_hqg_interpolation(in,
coeff_ptr,
rgb_p[0],
rgb_p[1],
rgb_p[2],
i nW dt h,
i nHei ght ,
5,
5,
out W dt h,
out Hei ght,
dat aW dt h,
dat aHei ght,
| MXTYPE_SHORT,
| MXOTYPE_SHORT,
gshi ft,
cmdptr + cndl en);

| MXTYPE_SHORT,

» compute_width must be a multiple of 8.

e input_width >= compute_width + coeff_width — 1, output_width >= compute_width

e input_height >= compute_ height + coeff height — 1, output_ height >= compute_
height

» To prevent write after read (WAR) hazards, input data should not be overwritten by
output unless all computations involving that input location are completed.

* compute_height and input_height must be < 256

The estimated number of cycles to perform the operation (except overhead time) is:

amount_of_work x memory_conflict_factor / speedup_factor (28)
« amount_of work=
3 x coeff_width x coeff_height x compute_width x compute_height (29)

* memory_conflict_factor:

Location of data Location of coeff Location of output memory_conflict_factor

IMGBUF IMGBUF IMGBUF 2 + 1/ (coeff_width x coeff_height)
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 1+ 1/ (coeff_width x coeff_height)
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 1+ 1/ (coeff_width x coeff_height)
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 1+ 1/ (coeff_width x coeff_height)

e speedup_factor and maximum value for compute_width:

compute_width multiple only of speedup_factor Maximum value of compute_width

8 8 2048
4 4 1024
2 2 512
1® 1 256

® That is, compute_width is odd.

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 89

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

6.1.18 imxenc_cfa _upsmpl_horz

imxenc_cfa_upsmpl_horz Perform horizontal upsampling of CFA data

Syntax

Description

Example

cmdl en = inxenc_cfa_upsnpl _horz(
i nput _ptr, /* Int16*, starting address of input */
coeff_ptr, /* Intl1l6*, starting address of coefficients */
out put _ptr, /* Int16*, starting address of output */
i nput _wi dt h, /* Int16, width of input array */
i nput _hei ght, /* Int16, height of input array */
out put _wi dt h, /* Int1l6, width of output array */
out put _hei ght, /* Int16, height of output array */
conput e_wi dt h, /* 1nt1l6, conputed width */
conmpute_height, /* Intl6, conputed height */
upsnpl _hor z, /* 1nt16, nunber of arrays horizontally to conbine */
i nput _type, /* Int16, Intl6/byte, signed/unsigned */
coeff_type, /* 1nt1l6, |Intl6/byte, signed/ unsigned */
out put _type, /* Intl6, Intl6/byte */
round_shift, /* 1nt16, nunber of bits to downshift before output */
cmdptr); /* Int16*, starting point of command sequence in nenory */

This function performs horizontal upsampling of CFA data. It upsamples by any
multiple-of-4 integer factor. Input/output are assumed to be in CFA pattern. The 4
phases (even/odd pixel on even/odd row) are processed independently and using the
same set of filter coefficients. The CFA pattern can be any color pattern as long as it's
organized in 2x2 tiling. Simple 2-tap bilinear interpolation is assumed.

The function takes (compute_width + 2) x compute_height of input data, and upsamples
into (compute_width * upsmpl_horz) x compute_height output. Wider input/output arrays
can be specified to skip over garbage data. Since CFA pattern is assumed,
compute_width and compute_height must each be a multiple of 2. The extra two
columns of input are needed to provide anchors so that the program always upsamples
by interpolating between two input points.

Coefficient array is organized output-phase-first, and input-tap on the outer dimension.
Normally linear interpolation is used, and thus the following coefficients can be used,
where U = horizontal upsampling factor, and L is the number of bits coefficients are
guantized to:

coeff[i] = 2AL*(UW-i)/U,

coeff[U+ i] = 2°L*i/U, i =0..U1

The input array and the coefficient array can each be signed or unsigned, 16-bit (Int16)
or 8-bit (byte) per element. The output array can be either 16-bit or 8-bit per element.

Consider data input = 6 (wide) x 4 (tall), and the goal to upsample 4x horizontally to
obtain 16 (wide) x 4 (tall). Further assume that the input array resides in a 2-D array of 8
elements in width. The following code illustrates the coefficient array and the API call.
Figure 6-15 provides a visual description.

Int16 coeff _ptr[1 ={4, 3, 2, 1, 0, 1, 2, 3}; [* U4, L=2 */

cmdl en = i nkenc_cfa_upsnpl _hor z(
i nput _ptr, /* starting address of 1st input */
coeff_ptr, /* starting address of 2nd input */
out put _ptr, /* starting address of output */
8, /* width of data input */
4, /* height of data input */

16, /*
, /*
, I*
, /*
, I*
| MKTYPE_SHORT, /*
| MKTYPE_SHORT, /*
| MXOTYPE_SHORT, /*
2, /*
crdpt r /*

A DDA

)

wi dth of output */

hei ght of output */

conputation width */

conput ati on hei ght */

upsanpling factor */

si gned | nt16/unsi gned byte*/

byte, Intl6 */

byte, Int16 */

nunmber of bits to downshift before output */
starting point for command sequence in nenory */

90 VICP Computation Unit Library’s Functions

SPRUGN1C-November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Figure 6-15. imxenc_cfa_upsmpl_horz
6 Horizontal 16
upsampling
4x

Constraints
e compute_width, compute_height are multiples of 2
e input_width >= compute_width + 2
* output_width >= compute_width * upsmpl_horz
* input_height, output_height >= compute_height
» compute_height, compute_width, upsmpl_horz <= 256

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor / speedup_factor (30)

e amount_of work =

compute_width x compute_height x upsmpl_horz x 2 (31)
e speedup_factor = 8

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 91
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com
6.1.19 imxenc_cfa_upsmpl_vert
imxenc_cfa_upsmpl_vert Perform vertical upsampling of CFA data
Syntax cmdl en = inmkenc_cfa_upsnpl _vert (

i nput _ptr, /* Int1l6*, starting address of input */

coeff_ptr, /* Int16*, starting address of coefficients */

out put _ptr, /* Intl1l6*, starting address of output */

i nput _wi dt h, /* Int1l6, width of input array */

i nput _hei ght, /* 1nt1l6, height of input array */

out put _wi dt h, /* Int16, width of output array */

out put _hei ght, /* Int16, height of output array */

conmput e_w dt h, /* Int16, conputed width */

conpute_height, /* Intl16, conputed hei ght */

upsnpl _vert, /* Int16, nunber of arrays horizontally to conbine */

i nput _type, /* 1nt1l6, |Intl6/byte, signed/ unsigned */

coeff_type, /* Int16, Intl6/byte, signed/unsigned */

out put _t ype, /* Intl1l6, Intl6/byte */

round_shift, /* Int16, nunber of bits to downshift before output */

cndpt r /* Intl1l6*, starting point of comand sequence in nmenory */

)

Description This function performs vertical upsampling of CFA data. It upsamples by any integer

factor. Input/output are assumed to be in CFA pattern. The 4 phases (even/odd pixel on
even/odd row) are processed independently and using the same set of filter coefficients.
The CFA pattern can be any color pattern as long as it's organized in 2x2 tiling. Simple

2-tap bilinear interpolation is assumed.

The function takes compute_width x (compute_height + 2) of input data, and upsamples
into compute_width x (upsmpl_vert * compute_height) output. Wider input/output arrays
can be specified to skip over garbage data. Since CFA pattern is assumed,
compute_width and compute_height must each be a multiple of 2. In addition,
compute_width must be a multiple of 8 to work with the parallelism of VICP. The extra
two rows are needed to provide anchors so that the program always upsamples by
interpolating between two input points.

Coefficient array is organized input-tap-first, and output-phase on the outer dimension.
Normally linear interpolation is used, and thus the following coefficients can be used,
where U = vertical upsampling factor, and L is the number of bits coefficients are
guantized to:

coeff[2*i] = 2AL*(W-i)/U,

coef f[2*i +1] = 2~L*i/ U, i =0..U1

The input array and the coefficient array can each be signed or unsigned, 16-bit (Int16)
or 8-bit (byte) per element. The output array can be either 16-bit or 8-bit per element.
Rounding shift (normally set to L) is specified in the command, and saturation
parameters should be appropriately set in the imxenc_set_saturation command.

Example Consider data input = 8 (wide) x 6 (tall), and the goal to upsample 4x vertically to obtain
8 (wide) x 16 (tall). Further assume that the input array resides in a 2-D array of 16
elements in width. The following code illustrates the coefficient array and the API call.
Figure 6-16 provides a visual description.

92 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Int16 coeff_ptr[] = {4, 3, 2, 1, 0, 1, 2, 3}; [* U=4, L=2 */
cmdl en = i nkenc_cfa_upsnpl _vert (
i nput _ptr, /* starting address of 1st input */
coeff_ptr, /* starting address of 2nd input */
out put _ptr, /* starting address of output */
16, /* width of data input */
6, /* height of data input */
8, /* w dth of output */
16, /* height of output */
8, /* conmputation width */
4, /* conputation height */
4, /* upsanpling factor */

| MXTYPE_SHORT, /* signed | nt16/unsigned byte*/

| MTYPE_SHORT, /* byte, Int16 */

| MXOTYPE_SHORT, /* byte, Int16 */

2, /* nunmber of bits to downshift before output */
crdpt r /* starting point for command sequence in nenory */

Figure 6-16. imxenc_cfa_upsmpl_vert

Vertical
upsampling 16
4x

Constraints
» compute_width is a multiple of 8, compute_height is a multiple of 2
* input_width, output_width >= compute_width
e input_height >= compute_height + 2
e output_height >= compute_height x upsmpl_vert
» compute_height, compute_width, upsmpl_vert <= 256

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor / speedup_factor (32)

e amount_of work =
compute_width x compute_height x upsmpl_vert x 2 (33)
» speedup_factor = 8

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 93
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

6.1.20 imxenc_color_spc_conv

imxenc_color_spc_conv Perform color space conversion on array

Syntax cmdl en = i mkenc_col or _spc_conv(

i nput _ptr, /* Intl6*, starting address of 1st input */
coeff_ptr, /* Int16*, starting address of 2nd input */
out put _ptr, /* Intl1l6*, starting address of the output array */
i nput _wi dt h, /* Int1l6, width of the input array */
i nput _hei ght, /* 1nt16, height of the input array */
i nput _dept h, /* Int16, depth of the input array */
out put _wi dt h, /* Int1l6, width of the output array */
out put _hei ght, /* Int16, height of the output array */
out put _dept h, /* 1nt16, nunber of output color planes */
conmput e_w dt h, /* Int16, nunber of pixels processed horizontally */
conput e_hei ght, /* 1 nt16, nunber of pixels processed vertically */
i nput _step_col or, /* Int16, offset between input colors */
i nput _step_row, /* Int1l6, offset between input rows */
out put _step_color, /* Intl6, offset between output colors */
out put _step_row, /* Int16, offset between output rows */
i nput _type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
coeff_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
crdpt r /* Int16*, starting point of command sequence in nenory */
)
/* cmdlen is the nunber of words witten to cnd nmenory starting at cmdptr */

Description This function performs matrix multiplication for color space conversion. Logically, input is
a 3-D array, of input_width x input_height x input_depth. Output is also a 3-D array, of
output_width x output_height x output_depth. Coefficient matrix is output_depth (height)
X input_depth (width). compute_width x compute_height pixels are processed. There is
flexibility in input/output storage organization. Input/output data can be stored
row-interleaved or completely color-separate. This is controlled by * step_color and
*_step_row parameters. For example, with input color row-interleaved, set
input_step_color = input_width, input_step_row = input_width * input_depth, and with
input color separate, this results in input_step_color = input_height * input_width,
input_step_row = input_width.

Coefficients are stored in transposed, or column-first, format.

Example Consider 16x16 block color space conversion, from RGB to YUV (3x3). Input
row-interleaved and output color-separate. All data are Intl6 (coefficients 12-bit). Round
down by 10 bits before output.
cndl en = i mxenc_col or _spc_conv(

i nput _ptr, /* point to input data */
coeff_ptr, /* point to coef array */
out put _ptr, /* point to output array */
16, /* width of input */
16, /* height of input */
3, /* nunber of input color planes */
16, /* wdth of output */
16, /* hei ght of output */
3, /* number of output col or planes */
16, /* nunmber of pixels processed horizontally */
16, /* number of pixels processed vertically */
16, /* offset between input colors */
48, /* of fset between input rows */
256, /* of fset between output colors */
16, /* offset between output rows */
I MXTYPE_SHORT, /* byte, Intl6 */
| MXTYPE_SHORT, /* byte, Intl6 */
| MKOTYPE_SHORT, /* byte, Intl1l6 */
10, /* nunmber of bits to downshift before output */
cndptr /* starting point for command sequence in nmenory */
)i
94 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

Constraints

Performance

input_width, output_width >= compute_width
input_height, output_height >= compute_height
output_depth must be between 1 and 3. When there are more then 3 output planes,
user needs to break it up into multiple function calls.
compute_height and input_height must be < 256

The overhead time for this VICP API is ~ 30 cycles.

The estimated number of cycles to perform the operation (except overhead time) is:

amount_of_work x memory_conflict_factor / speedup_factor (34)
* amount_of work =
compute_width x compute_height x input_depth x output_depth (35)
* memory_conflict_factor:
Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 2+1/3
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 1+1/3
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 1+1/3
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 1+1/3
» speedup_factor and maximum value for compute_width:
compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048
4 4 1024
2 2 512
10 1 256
® That is, compute_width is odd.
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 95

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

6.1.21 imxenc_cumulativeSumCol32bits

imxenc_cumulativeSumCol32bits Produce cumulative sum over each column of the input array. Can
be used for integral image computation.

Syntax

cmdl en = i nkenc_cunul ati veSuntol 32bi t s(
i nput Lsb_ptr, /* Intl6*, starting address of input's 8 or 16 |east significant bits */
i nput Msb_ptr, /* Int16*, starting address of input's 8 or 16 nost significant bits, */

/* can be 0 */

out put Lsb_ptr, /* Intl6*, starting address of output's 16 |east significant */
out put Msb_ptr, /* Intl6*, starting address of output's 16 nost significant */
initial Lsb_ptr, /* Intl6*, starting address of initial values' 16 LSBs, can be 0 */
initial Msb_ptr, /* Int1l6*, starting address of initial values' 16 MSBs, can be 0 */

scratchCoef Ptr_ptr, /* Intl6*, starting address of scratch buffer in coef nenory */
/* of size 1 + conpute_wi dth 16-bits words */

conput e_wi dt h, /* Int1l6, width of the input and output arrays */
conput e_hei ght, /* 1nt16, height of the input and output arrays */
i nput _t ype, /* Int16, | MXTYPE_UBYTE, | MXTYPE_USHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
cndptr /* Intl1l6*, starting point of command sequence in nenory */
)
Description This function cumulatively sums each column of the input array and writes each partial

sum into the output array. Values up to 32 bits are supported by the function, which
accepts pointers to least significant bits or most significant bits arrays.

Mathematically the operation can be expressed as follow: if we let Xx[i, j] be the input
array and y[i,j] the output array where i is the column index and j the row index, then for
a given column C, each term y[C, j] is computed using the previous term y[C, j-1] and
the present input x[C, j] as shown in Equation 36:

yIC, jI=X[C,]l +VIC,j-1] , forj>0 (36)

For j= 0, the function can either accept a 1-D array of initial values if initialLsb_ptr# 0 as
in Equation 37 or treat all the initial values as zeros if initiaLsb_ptr= 0 as in Equation 38:

y[C, 0]= x[C, 0] + initial[C] , for j =0 and if initialLsb_ptr# O (37)
y[C, 0]= x[C, 0], for j =0 and if initialLsb_ptr= 0 (38)

The generated output values are always 32 bits unsigned integer, which are rearranged
into two arrays of size compute_width x compute_height unsigned shorts. One array
contains the 16 LSBs and the other array contains the 16 MSBs.

Likewise the initial values are always 32 bits unsigned integers as they are very likely to
come from an execution of the function on a previous array.

The input array however can be made of either, 8 bits, 16 bits or 32 bits unsigned
integer.

» For 8-bits unsigned integers, set inputLsb_ptr to point to unsigned bytes and
inputMsb_ptr= 0.

» For 16-bits unsigned integers, set inputLsb_ptr to point to unsigned shorts and
inputMsb_ptr= 0.

» For 32-bits unsigned integers, set inputLsb_ptr to point to the 16 LSBs and
inputMsb_ptr point to the 16 MSBs

This function can be used to implement integral image computation in two stages. In the
first stage, use imxenc_cumulativeCol32bits() to generate the cumulative sum over each
column of the input. In the second stage, apply imxenc_cumulativeCol32bits() again, but
to the transposed result of the first stage. The results must be transposed back again to
match the original dimensions of the frame.

Constraints compute_height must be < 256.

96 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of cycles to perform the operation (except overhead time) is:
amount_of_work x memory_conflict_factor / speedup_factor (39)
e amount_of work =
4 x compute_width x compute_height (40)
« memory_conflict_factor:
Location of input and initial Location of output values memory_conflict_factor
values
IMGBUF IMGBUF 3
IMGBUF COEFF 3/2
COEFF IMGBUF 3/2
COEFF COEFF 2
» speedup_factor and maximum value for compute_width:
compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048
4 4 1024
2 2 512
100 1 256
(9 That is, compute_width is odd.
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 97

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
Functions That Encode Computation Tasks www.ti.com
6.1.22 imxenc_dct8x8col
imxenc_dct8x8col 1-D Column DCT on 8x8 blocks of data with 8x8 coefficient matrix
Syntax cndl en = i nkenc_dct 8x8col (
i nput _ptr, /* Intl6*, starting address of 1st input */
coeff_ptr, /* Int16*, starting address of 2nd input */
out put _ptr, /* Intl1l6*, starting address of the output array */
i nput _wi dt h, /* Int1l6, width of the input array */
i nput _hei ght, /* 1nt16, height of the input array */
out put _wi dt h, /* Int16, width of the output array */
out put _height, /* Intl16, height of the output array */
cal c_Hbl ks, /* 1 nt16, nunber of horizontal blocks */
cal c_Wbl ks, /* 1nt16, nunber of vertical blocks */
i nput _t ype, /* Int16, | MXTYPE UBYTE, | MXTYPE BYTE */
/* Int16, | MXTYPE_USHORT, | MXTYPE_SHORT */
coeff _type, /* Int16, | MXTYPE UBYTE, | MXTYPE BYTE */
/* Int16, | MXTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
crdpt r /* Int16*, starting point of command sequence in nenory */
)
/* cmdlen is the nunber of words witten to cnd nmenory starting at cmdptr */
Description This function performs the 1-D column DCT on an 8x8 data blocks with the DCT
coefficients stored in another 8x8 coefficient matrix.
The 1-D column DCT on the 8x8 data blocks is performed with the first point on the 8x8
data block corresponding to the starting address of the image. The input_width and
input_height parameters are only used as a guideline to prevent writing the computed
DCT into the original image area.
The data array is stored row-by-row, input_width data points per row. Coefficients are
stored in transposed form when view as an 8-by-8 matrix. See Section 6.1.23 for details
on imxenc_dct8x8row.
Example Consider a 1-D column DCT on 8x8 data blocks within an image of 20x20. Number of

Constraints

horizontal blocks and vertical blocks are 2 each. Output is written to a 16x16 memory.
This is second dimension transform, round down by 14 bits.

crmdl en = i mxenc_dct 8x8col (
i nput _ptr, /* starting address of the input matrix */
coeff_ptr, /* starting address of the coefficient matrix */
out put _ptr, /* starting address of the output matrix */
20, /* width of the input */
20, /* height of the input */
16, /* width of the output */
16, /* height of the output */
2, /* nunber of horizontal blocks */
2 /* nunber of vertical blocks */

| MXTYPE_SHORT, /* byte, Intl6 */

| MXTYPE_SHORT, /* byte, Intl6 */

| MKOTYPE_SHORT, /* byte, Intl16 */

14, /* nunber of bits to downshift before output */
crdpt r /* starting point for command sequence in nenory */

* input_width should be greater than or equal to 8 x calc_Hblks

e input_height should be greater than or equal to 8 x calc_Vblks

e calc_Hblks < 256

» calc_Vblks < 256

» Image data should be arranged in a regular fashion

» DCT coefficients can be either transposed or regular. See discussion above.

98 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of cycles to perform the operation (except overhead time) is:
amount_of_work x memory_conflict_factor (42)
e amount_of work =
64 x calc_Hblks x calc_Vblks (42)
« memory_conflict_factor:
Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 2+1/8
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 1+1/8
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 1+1/8
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 1+1/8
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 99

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com
6.1.23 imxenc_dct8x8row
imxenc_dct8x8row 1-D row DCT on 8x8 blocks of data with 8x8 coefficient matrix
Syntax cndl en = i nkenc_dct 8x8row (

i nput _ptr, /* Intl6*, starting address of 1st input */

coeff_ptr, /* Int16*, starting address of 2nd input */

out put _ptr, /* Intl1l6*, starting address of the output array */

i nput _wi dt h, /* Int1l6, width of the input array */

i nput _hei ght, /* 1nt16, height of the input array */

out put _wi dt h, /* Int16, width of the output array */

out put _height, /* Intl16, height of the output array */

cal c_Hbl ks, /* 1 nt16, nunber of horizontal blocks */

cal c_Wbl ks, /* 1nt16, nunber of vertical blocks */

i nput _type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */

/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
coeff_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */

out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */

round_shift, /* 1nt16, nunber of bits to downshift before output */

crdpt r /* Int16*, starting point of command sequence in nenory */

)
/* cmdlen is the nunber of words witten to cnd nmenory starting at cmdptr */

Description This function performs the 1-D row DCT on an 8x8 data blocks with the DCT coefficients
stored in another 8x8 coefficient matrix.

The 1-D column DCT on the 8x8 data blocks is performed with the first point on the 8x8
data block corresponding to the starting address of the image. The input_width and
input_height parameters are only used as a guideline to prevent writing the computed
DCT into the original image area.

The input data are stored row by row (regular C array format), with input_width data
points per row. Coefficients are stored in transposed format when viewed as an 8-by-8
matrix. The transform can be expressed mathematically as:

7 .
X(m) = C(2m) 5 x(i)cos((ZI +1)mn

7
)=X C(m,i)x(i)
i=0 i=0

(43)
The coefficient array contains C(0,0), C(1,0),..., C(7,0), C(0,1), C(1,1), ..., C(7, 7) scaled
up by a two's power. Programmer has control over the precision and dynamic range of
the intermediate result (in between row and column transforms) via the round_shift
parameter.

Example Consider a 1-D row DCT on 8x8 data blocks within an image of 20x20. Number of
horizontal blocks and vertical blocks are 2 each. Output is written to a 16x16 memory.
This is first dimension transform, round down by 8 bits.

cmdl en = i nkenc_dct 8x8r owm
i nput _ptr, /* starting address of the input matrix */
coeff_ptr, /* starting address of the coefficient matrix */
out put _ptr, /* starting address of the output matrix */
20, /* width of the input */
20, /* height of the input */
16, /* width of the output */
16, /* height of the output */
2, /* nunmber of horizontal blocks */
2 /* nunber of vertical blocks */

| ’MXTYPE_SH(RT, /* byte, Intlé */
| MKXTYPE_SHORT, /* byte, Intl6 */
| MKOTYPE_SHORT, /* signed |nt16/unsigned byte */

8 /* nunmber of bits to downshift before output */
cndpt r /* starting point for command sequence in menory */
)i
100 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

Constraints

Performance

input_width should be greater than or equal to 8 x calc_Hblks
input_height should be greater than or equal to 8 x calc_Vblks
calc_Hblks < 256
calc_Vblks < 256

The overhead time for this VICP API is ~ 30 cycles.

The estimated number of cycles to perform the operation (except overhead time) is:

amount_of_work x memory_conflict_factor (44)
» amount_of work =
64 x calc_Hblks x calc_Vblks (45)
* memory_conflict_factor:
Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 2+1/8
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 1+1/8
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 1+1/8
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 1+1/8
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 101

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

6.1.24 imxenc_deinterleaveData

imxenc_deinterleaveData Deinterleave data contained in one input arrays into two output arrays.
Optionally scalar operation can be applied to the interleaved outputs, without any
added performance loss.

Syntax
cmdl en = i nkenc_dei nterl eaveDat a(
i nput _ptr, /* Int16*, starting address of input */
scalarl_ptr, /* Int16*, pointer to scalar used for operation with first output */
scal ar2_ptr, /* Int1l6*, pointer to scalar used for operation with second output */
outputl_ptr, /* Int16*, starting address of the first deinterleaved output array */
out put2_ptr, /* Int1l6*, starting address of the second deinterleaved output array */
i nput _wi dt h, /* Int1l6, width of input in nunmber of elements */
out put 1_wi dt h, /* Int1l6, width of first deinterleaved output array in nunber of elenents */
out put 2_wi dt h, /* Int16, width of second deinterleaved output array in nunber of el enments*/

conputation_w dth, /* Intl6, conputation width */
conput ati on_hei ght, /* Intl16, conputation_height */

i nput _type, /* Int16, | MKTYPE_UBYTE, | MXTYPE BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
round_shift, /* Int16, nunber of bits to downshift before output */
operation, /* Int16, operation | MXOP_MPY, | MXOP_ABDF, | MXOP_ADD, | MXOP_SUB,

| MXOP_AND, | MXOP_OR, | MXOP_XOR,
| MKOP_M N, | MXOP_MAX */
cndptr, /* Intl1l6*, starting point of command sequence in nmenory */

)
/* Intl6, crmdlen is the nunber of word witten to cnd nenory starting at cndptr */

Description This function first deinterleaves the input array into two output arrays and then performs
a point-to-point scalar operation between each data point of outputl, output2 arrays and
scalarl, scalar?2 values. The parameter outputl_ptr points to the output array that will
contain elements from the input array that have even indexes and the parameter
output2_ptr points to the output array that will contain elements from the input array that
have odd indexes.

outputl[0]= scalar1*input[0], outputl[1]= scalarl*input[2], etc and output2[0]=
scalar2*input[1], output2[1]= scalar2*input[3], etc.

Example To deinterleave an input array of 16 x 8 bytes into two arrays of 8 x 8 bytes:

*scalarl_ptr= *scalar2_ptr=0; /* operation will be set to | MKOP_ADD so we set the scalars to 0
as we don't want any value to be changed */

cndl en = i nxenc_dei nterl eaveDat a(
i nput _ptr, /* Int1l6*, starting address of input */
scalarl_ptr, /* Intl6*, pointer to scalar used for operation with first output */
scalar2_ptr, /* Intl6*, pointer to scalar used for operation with second output */
outputl_ptr, /* Intl6*, starting address of the first deinterleaved output array */
output2_ptr, /* Intl6*, starting address of the second deinterleaved output array */

16, /* Int1l6, width of input in nunber of elenments */

8, /* Int16, width of first deinterl eaved output array in nunber of elements */
8, /* Int16, width of second deinterleaved output array in nunber of elements*/
16, /* 1 ntl1l6, conputation width */

8, /* 1 nt1l6, conputation_height */

| MKTYPE_BYTE, /* Intl16, | MXTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */

0, /* 1nt16, nunber of bits to downshift before output */
| MXOP_ADD, /* Int16, operation | MXOP_MPY, | MXOP_ABDF, | MXOP_ADD, | MXOP_SUB,
| MXOP_AND, | MXOP_OR, | MXOP_XOR, | MKOP_M N, | MXOP_MAX */
cndptr, /* Intl1l6*, starting point of comand sequence in nmenory */
)i
102 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

Constraints
* input_width >= compute_width
e outputl_width >= compute_width/2 and output2_width >= compute_width/2
e compute_height must be < 256

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor / speedup_factor (46)

» amount_of work =

compute_width x compute_height 47)

 memory_conflict_factor:

Location of input Location of Location of memory_conflict_factor
outputl output2

IMGBUF IMGBUF IMGBUF

COEFF IMGBUF IMGBUF

IMGBUF IMGBUF COEFF 15

COEFF IMGBUF COEFF

IMGBUF COEFF IMGBUF 15

COEFF COEFF IMGBUF

IMGBUF COEFF COEFF

COEFF COEFF COEFF

e speedup_factor and maximum value for compute_width:

compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 1024
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 103

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

6.1.25 imxenc_fillMem

imxenc_fillMem

Syntax

Description

Example

Constraints

Fill memory with one value

cmdl en = inmkenc_fill Mem (
val , /* Intl1l6*, starting address of constant value */
coef, /* Int16*, starting address of coefficient value */
out put _ptr, /* Intl1l6*, starting address of the output array */
byt eOr st /* Int16, offset of byte */

out put _wi dt h, /* Int1l6, width of the output array */
out put _height, /* Intl6, height of the output array */

nbHst eps, /* 1nt16, nunber of horizontal steps */
nbVst eps, /* Int16, nunber of vertical steps */
hSt epSi ze, /* Int16, size of horizontal steps */
vSt epSi ze, /* Intl6, size of vertical steps */
val _type, /* Int16, | MXTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
coef _type, /* Int16, | MXTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* Int16, nunber of bits to downshift before output */
operati on, /* 1nt16, | MXOP_MPY, | MXOP_ABDF, | MXOP_ADD, | MXOP_SUB */

/* | MXOP_AND, | MXOP_OR, | MXOP_XOR, */
/* IMKOP_M N, | MXOP_MAX */
crdpt r /* Int16*, starting point of command sequence in nenory */

)

/* cmdlen is the nunber of words witten to cnd nmenory starting at cmdptr */

Fill memory pointed by output_ptr with the result of the binary operation between the
value pointed by the val pointer and the value pointed by the coef pointer.

To fill the memory with the constant value pointed by val pointer, put 0 at the location
pointed by coef pointer and use the operation IMXOP_ADD.

Current implementation ignores hStepSize and vStepSize so nbHsteps and nbVsteps
can be interpreted as computation width and computation height.

The byte_ofst is also ignored by the current implementation.

Consider output — 20(W)x13(H) matrix and the goal to fill a subregion of size
8(W)x10(H) with the value pointed by val_ptr. The following code illustrates what the API

call would look like.
cmdl en = inxenc_fill Men(

val _ptr,
coeff_ptr,

out put _ptr,

20,

13,

8,

10,

0,0,0,0,

| MXTYPE_SHORT,
| MKXTYPE_SHORT,
| MXOTYPE_SHORT,
0,

| MXOP_ADD,
cndptr

/*
/*
/*

pointer to val, fill value */

pointer to coeff */

starting address of output */

no byte offset */

out put_width */

out put _hei ght */

conputation width */

conput ati on hei ght */

i gnored */

signed I nt16/unsigned byte*/

byte, Intl6 */

byte, Intl6 */

nunber of bits to downshift before output */
addition */

starting point for comuand sequence in nenory */

output_width >= nbHsteps
output_height >= nbVsteps
nbVsteps must be <256

When operation is IMXOP_SADBY (packed-bytes absolute difference), val_type and
coeff_type must be IMXTYPE_USHORT.

104 VICP Computation Unit Library’s Functions

SPRUGN1C-November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Performance The overhead time for this VICP API is ~ 30 cycles.

_The estimated number of VICP cycles to perform the operation (except overhead time)

IS:

amount_of_work x memory_conflict_factor / speedup_factor (48)
e amount_of work =

nbHsteps x nbVsteps
 memory_conflict_factor:

(49)

Location of inputl Location of input2 Location of

memory_conflict_factor

output

IMGBUF IMGBUF IMGBUF 2 + (16 / compute_width x compute_height)
IMGBUF IMGBUF COEFF 1 + (8 / compute_width x compute_height)
IMGBUF COEFF IMGBUF 2

IMGBUF COEFF COEFF 1

COEFF IMGBUF IMGBUF 1 + (8 / compute_width x compute_height)
COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 1

COEFF COEFF COEFF 1 + (8 / compute_width x compute_height)

e speedup_factor and maximum value for compute_width:

compute_width multiple only of

speedup_factor

Maximum value of compute_width

8
4

2
1y

8

4
2
1

2048
1024
512
256

D That is, compute_width is odd.

SPRUGN1C-November 2009
Submit Documentation Feedback

VICP Computation Unit Library’s Functions 105

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com
6.1.26 imxenc_filter
imxenc_filter Perform 2-D FIR filtering, 1-D column and row FIR filtering
Syntax cndlen = inkenc_filter (

i nput _ptr, /* Intl6*, starting address of 1st input */

coeff_ptr, /* Int16*, starting address of 2nd input */

out put _ptr, /* Intl1l6*, starting address of the output array */

i nput _wi dt h, /* Int1l6, width of the input array */

i nput _hei ght, /* 1nt16, height of the input array */

coeff_w dth, /* Intl6, width of the filter kernel */

coef f_hei ght, /* Int16, height of the filter kernel */

out put _wi dt h, /* Int16, width of the output array */

out put _hei ght, /* 1nt16, height of the output array */

conput e_w dth /* Int16, conputation width */

conpute_height, /* Intl1l6, conputation height */

dnsnpl _hor z, /* Int16, horizontal downsanpling factor: 1, 2, 4 or 8 */

dnsnpl _vert, /* Intl1l6, vertical downsanpling factor, any value */

i nput _type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */

/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
coeff_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */

out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */

round_shift, /* 1nt16, nunber of bits to downshift before output */

crdpt r /* Int16*, starting point of command sequence in nenory */

)

/* cmdlen is the nunber of words witten to cnd nmenory starting at cmdptr */

Description This function can perform one of the following FIR filtering operations on a block of data:
o 2-D filtering
e 1-D row filtering
e 1-D column filtering

The result is in an output block of dimension [compute_width x compute_height]. Some
horizontal and vertical downsampling factors are supported.

Kernel size is [coeff_width x coeff _height].

For the case of 1-D row filtering, set coeff_height to 1, and for 1-D column filtering, set
coeff_width to 1. It is assumed that the input block of data is appropriately zero-filled
and/or history-managed at appropriate places. Width of input accessed for this operation
is (compute_width + coeff_width — 1), and height of input accessed is (compute_height +
coeff_height — 1).

The filtering is performed by using correlation instead of convolution operation. 2-D

correlation is related to 2-D convolution by a 180 degrees rotation of the coefficient
matrix. The mathematical formula would be:

output(i,j)= > > input(i + k,j+1)* coeff(k,I)
i,jk,l (50)

106 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

Example Consider an input block of 20(W) x 12(H), output block of 20(W) x 8(H), coefficient block
of 5(W) x 3(H) and n_cols x n_rows = 16x8, round down by 10 bits before output.
cmdl en = inxenc_filter(

i nput _ptr, /* starting address of input array */

coeff_ptr, /* starting address of coefficient array */

out put _ptr, /* starting address of output array */
, /* width of input block */

12, /* height of input block */

5, /* width of filter kernel */

3, /* height of filter kernel */

20, /* w dth of output block */

8, /* height of output block */

16, /* conmputation width */

8, /* conputation height */

1, /* horizontal downsanpling */

1 /* vertical downsanpling */

Constraints

| MKTYPE_SHORT, /*
| MKTYPE_SHORT, /*
| MKOTYPE_SHORT, /*

10
cndpt r

byte, Intl6 */

byte, Int16 */

byte, Intl6 */

nunber of bits to downshift before output */
starting point for comand sequence in nmenory */

compute_width must be a multiple of 8
input_width = compute_width + coeff_width — 1, output_width = compute_width
input_height = compute_ height + coeff_ height — 1, output_ height = compute_

height

To prevent write after read (WAR) hazards, input data should not be overwritten by
output unless all computations involving that input location are complete.

dnsmpl_horz can only be 1, 2, 4, or 8 (dnsampl_vert can be any positive integer)
compute_height and input_height must be < 256

Performance The overhead time for this VICP API is ~ 30 cycles.

The estimated number of VICP cycles to perform the operation (except overhead time)
is:

amount_of_work x memory_conflict_factor / speedup_factor

amount_of work =

coeff_width x coeff_height x dnsmpl_horz x compute_width x compute_height

memory_conflict_factor:

Location of data Location of coeff Location of memory_conflict_factor
output

IMGBUF IMGBUF IMGBUF 2 + 1/ (coeff_width x coeff_height)
IMGBUF IMGBUF COEFF 2

IMGBUF COEFF IMGBUF 1 + 1/ (coeff_width x coeff_height)
IMGBUF COEFF COEFF 1

COEFF IMGBUF IMGBUF 1 + 1/ (coeff_width x coeff_height)
COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 1

COEFF COEFF COEFF 1 + 1/ (coeff_width x coeff_height)

speedup_factor and maximum value for compute_width x dnsmpl_horz:

compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048

4 4 1024

2 2 512

102 1 256

(2 That is, compute_width is odd.

SPRUGN1C-November 2009

Submit Documentation Feedback

VICP Computation Unit Library’s Functions 107

Copyright © 2009, Texas Instruments Incorporated

(51)

(52)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

6.1.27 imxenc_filter_op
imxenc_filter_op Generic 2-D filtering using +, -, | - |, min, max, and logical operators
Syntax cndl en = inxenc_filter_op(
i nput _ptr, /* Int16*, starting address of 1st input */
coeff_ptr, /* Intl1l6*, starting address of 2nd input */
out put _ptr, /* Int16*, starting address of the output array */
i nput _wi dt h, /* Int1l6, width of the input array */
i nput _hei ght, /* Int16, height of the input array */
num coeff_horz, /* Intl6, nunber of horizontal coefficients */
num coeff_vert, [/* Intl6, nunber of vertical coefficients */
coeff_w dt h, /* Intl6, width of the array containing the coefficients */
out put _wi dt h, /* Int16, width of the output array */
out put _hei ght, /* 1nt16, height of the output array */
conput e_w dth /* Int16, conputation width */
conpute_height, /* Intl1l6, conputation height */
dnsnpl _hor z, /* Int16, horizontal downsanpling factor */
dnsnpl _vert, /* Intl1l6, vertical downsanpling factor */
i nput _type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
coeff_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
operati on, /* Int16, | MXKOP_MPY, | MXOP_ABDF, | MXOP_ADD, |MXOP_SUB, */
/* | MXOP_AND, | MXOP_OR, | MXOP_XOR, */
/* IMKOP_M N, | MXOP_MAX */
round_shift, /* Int16, nunber of bits to downshift before output */
cndpt r /* Int1l6*, starting point of comand sequence in nmenory */
)
/* cndlen is the nunber of words witten to cnd nmenory starting at cndptr *
Description Similar to imxenc_filter() except:
» The 2-D coefficient matrix of size num_coeff_horz x num_coeff_vert can be
embedded in a bigger array of width coeff_width
* In typical filtering, the operation between the input and the coefficient is performed as
a product and the accumulation is performed as an addition. In this particular filtering
operation, the input/coefficient operation and accumulation can change upon the
value of input parameter operation:
Operation Operation Between Input a and Operation for Accumulation
Parameter Coefficient b
IMXOP_MPY axc +
IMXOP_ABDF la- b +
IMXOP_ADD a+b +
IMXOP_SUB a-b +
IMXOP_AND a&b |
IMXOP_OR alb |
IMXOP_XOR a™b n
IMXOP_MIN min(a,b) min
IMXOP_MAX mac(a,b) max
108 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

Example

Constraints

Performance

Calculate sum of absolute difference between a matching block and a reference array,
for different positions. The position of the matching block is incremented by 1 data point
from left to right. The reference array is of size 66x5 and the matching block of size 3x3.
The matching block is matched 64 times against the reference array horizontally from left
to right. So the output fits in an array of 64x1 elements. This function should be:

crmdl en = inmkenc_filter_op(
i nput _ptr, /* starting address of input array */
coeff_ptr, /* starting address of matching bl ock */
out put _ptr, /* starting address of output array */
66, /* width of input array */
5, /* height of input array */
3, /* width of matching bl ock */
3, /* hei ght of matching block */
3, /* matching block's stride */
64, /* w dth of output block */
1, /* height of output block */
64, /* conmputation width */
1, /* conputation height */
1, /* horizontal downsanpling */
1 /* vertical downsanpling */

| MXTYPE_SHORT, /* byte, Intl6 */

I MXTYPE_SHORT, /* byte, Intl6 */

| MKOTYPE_SHORT, /* byte, Int16 */

| MXOP_ABSDI FF, /* operation */

0 /* nunber of bits to downshift before output */
crdpt r /* starting point for command sequence in nenory */

e compute_width must be a multiple of 8

* input_width = compute_width + num_coeff_horz — 1, output_width = compute_width

e input_height = compute_ height + num_coeff vert — 1

» To prevent write after read (WAR) hazards, input data should not be overwritten by
output unless all computations involving that input location are completed

» dnsmpl_horz can only be 1, 2, or 4 (dnsampl_vert can be any positive integer)

e compute_height must be < 256

The overhead time for this VICP APl is ~ 30 cycles.

The estimated number of cycles to perform the operation (except overhead time) is:

amount_of_work x memory_conflict_factor / speedup_factor (53)
e amount_of work =

coeff_width x coeff_height x dnsmpl_horz x compute_width x compute_height (54)
 memory_conflict_factor:
Location of Location of Location of memory_conflict_factor
input_ptr coeff_ptr output_ptr
IMGBUF IMGBUF IMGBUF 2 + 1/ (coeff_width x coeff_height)
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 1 + 1/ (coeff_width x coeff_height)
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 1 + 1/ (coeff_width x coeff_height)
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 1 + 1/ (coeff_width x coeff_height)

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 109

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

» speedup_factor and maximum value for compute_width x dnsmpl_horz:

compute_width multiple only of speedup_factor

Maximum value of compute_width

8 8
4 4
2 2
169 1

2048
1024
512
256

3 That is, compute_width is odd.

110

VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

SPRUGN1C-November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.28 imxenc_filter_distribute

imxenc_filter_distribute Perform filtering on
4-D output array.

Syntax cndl en = inkenc_filter_di
i nput _ptr, /*
coeff_ptr, /*
out put _ptr, /*
i nput _wi dt h, /*
i nput _hei ght, /*
coeff_w dth, /*
coef f _hei ght, /*
out put _wi dt h, /*
out put _hei ght, /*
conput e_wi dt h, /*
conput e_hei ght, /*
dnsnpl _hor z, /*
dnsnpl _vert, /*
num bl ks_x, /*
num bl ks_y, /*
i nput _of fset _x, /*

i nput _of fset _y, /*
out put_offset_x, [/*
out put _offset_y, /*

a 4-D data array with a 2-D coefficient array, producing a

stribute(

Int16, starting address of input */

Int16, starting address of coefficients */

Int16, starting address of output */

Int16, width of input array */

Int16, height of input array */

Int16, width of coefficient array */

Int16, height of coefficient array */

Int16, width of output array */

Int16, height of output array */

Int16, conputed width */

Int16, conputed height */

Int16, horizontal downsanple factor: 1, 2, 4, or 8 */
Int16, vertical downsanple factor */

I nt 16, Nunber of horizontal blocks */

Int16, Nunmber of vertical blocks */

Int16, O fset between horizontal blocks */

Int16, O fset between vertical blocks */

Int16, O fset between horizontal output blocks */
Int16, O fset between vertical output blocks */

i nput _type, /* Intl1l6, |Intl6/byte, signed/ unsigned */
coeff_type, /* 1nt1l6, |Intl6/byte, signed/ unsigned */
out put _t ype, /* Intl6, Intl6/byte */
round_shift, /* 1nt16, nunber of bits to downshift before output */
cndptr /* Intl1l6*, starting point of command sequence in nenory */
)i
Description This function performs filtering on multiple, regularly-spaced, 2D arrays of data.

For the inner 2-D arrays, the actual operand size of [compute_width x compute_height]

resides within [input_width
coeff_height] of coefficient

X input_height] of data input and within [coeff_width x
input, and actual output of size [compute_width x

compute_height] resides within [output_width x output_height] of the output. The outer
two dimensions are indexed with horizontal and vertical offsets, and the offsets are in
data points (not the address offsets). The pointers, input_ptr, coeff_ptr, and output_ptr,
specify the first element, or upper-left corner of operands and output. For example,
logical data item input[m, n, i, j] is assumed to reside at input_ptr[m * input_offset_vert +
n * input_offset_horz + i * input_width + j]. The xxx_height parameters are included for
modularity, but are not used in any address calculation.

The outer dimensions of input can optionally be used to index overlapping sub-arrays in
an input array. For example, using input_offset_horz = input_offset_vert = 1, and
num_distribute_horz = num_distribute_vert = 3 addresses a 3x3 neighborhood for each

inner-array data point.

Each of the two inputs and output can be operated on either 16-bit (Int16) data or 8-bit
(byte) data. Rounding shifts is specified in the command, and saturation parameters
should be appropriately set in the imxenc_set_saturation command.

SPRUGN1C-November 2009
Submit Documentation Feedback

VICP Computation Unit Library’s Functions 111

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

Example

Constraints

Consider data input — 2(outerH) x 3(outerW) x 4(H) x 17(H) matrix, coefficient input —
2(W) x 2(H) matrix and output — 2(outerH) x 3(outerW) x 3(H) x 16(W) matrix. The
following illustrates what the API call would look like and a descriptive figure is given
below.

cmdl en = inxenc_filter_distribute(
i nput _ptr, /* starting address of 1st input */
coeff_ptr, /* starting address of 2nd input */
out put _ptr, /* starting address of output */
17, /* width of data input */
4, /* height of data input */
2, /* width of coefficient input */
2, /* height of coefficient input */
16, /* width of output */
3, /* hei ght of output */
16, /* conmputation width */

3, /* conputation height */

1, /* horizontal downsanple factor */
1, /* vertical downsanple factor */
3, /* outer width */

2, /* outer height */

70, /* input horizontal offset */
300, /* input vertical offset */
96, /* output horizontal offset */
320 /* output vertical offset */

| MXTYPE_SHORT, /* signed | nt16/unsigned byte*/

| MXTYPE_SHORT, /* byte, Intl6 */

| MKOTYPE_SHORT, /* byte, Int16 */

0, /* nunmber of bits to downshift before output */
cndpt r /* starting point for comand sequence in nmenory */

* input_width, coeff_width, output_width = compute_width
* input_height, coeff_height, output_height = compute_height
e compute_height, compute_width, num_distribute_horz, num_distribute_vert < 256.

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of cycles to perform the operation (except overhead time) is:
amount_of_work x memory_conflict_factor / speedup_factor (55)
» amount_of work =
compute_width x compute_height x num_distribute_horz x num_distribute_vert (56)
» memory_conflict_factor:
Location of inputl Location of input2 Location of memory_conflict_factor
output
IMGBUF IMGBUF IMGBUF 2 + 1/ (coeff_width x coeff_height)
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 1 + 1/ (coeff_width x coeff_height)
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 1 + 1/ (coeff_width x coeff_height)
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 1 + 1/ (coeff_width x coeff_height)
e speedup_factor and maximum value for compute_width:
compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048
112 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.29 imxenc_filter

imxenc_filter_ds

Syntax

Description

Constraints

_ds

Perform 2-D FIR filtering, 1-D column and row FIR filtering with heavy
downsampling and wide filtering kernel

cmdl en = inxenc_filter_ds(
Int16 *input_ptr, /* starting address of input */
Int16 *coeff _ptr, /* starting address of coefficients */
Int16 *output_ptr, /* starting address of output */
Intl6 *tenp_ptr, /* starting address of tenp buffer */
I nt 16 i nput _wi dt h, /* width/colums of input */
Int16 input_hei ght, /* height/rows of input */
I nt 16 coeff_width, /* width/colums of coefficients */
Int16 coeff_height, /* height/rows of coefficients */
I nt 16 out put _wi dt h, /* width/colums of output */
I nt16 out put _hei ght, /* height/rows of output */
Int16 conpute_wi dth, /* conput ed out put nunber of colums */
Int16 compute_height, /* conputed output nunber of rows */
I nt 16 dnsnpl _horz, /* horizontal downsanpling factor */
Int16 dnsnpl _vert, /* vertical downsanpling factor */
I nt 16 i nput _type, /* Int16/ byte, signed/unsigned */
Int16 coeff_type, /* 1 nt16/byte, signed/unsigned */
I nt 16 out put _type, /* Int16/ byte */
Int16 round_shift, /* shifting parameter */

Int16 *cndptr)

/* cmdlen is the nunber of words witten to cnd nenory starting at cmdptr */

This function can perform one of the following FIR filtering operations on a block of data:
o 2-D filtering

* 1-D row filtering

* 1-D column filtering

The result is in an output block of dimension [compute_width x compute_height].
Horizontal and vertical downsampling is supported. Contrary to imxenc_filter(), this
function requires that the coeff_width be multiple of 8. Hence zero padding may be

required for narrow coefficient kernel. Due to this requirement, it is only worth using this
function if the horizontal downsample is heavy. Otherwise use imxenc_filter().

The filtering is performed by using correlation instead of convolution operation. 2-D
correlation is related to 2-D convolution by a 180 degrees rotation of the coefficient
matrix.

« coeff_width must be a multiple of 8; zero-padding can be used to meet the
requirement

e input_width = compute_width + coeff_width — 1, output_width = compute_width
* input_height = compute_ height + coeff_ height — 1, output_ height = compute__
height

» To prevent write after read (WAR) hazards, input data should not be overwritten by
output unless all computations involving that input location are completed

e compute_height and input_height must be < 256

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 113

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of cycles to perform the operation (except overhead time) is:
amount_of_work x memory_conflict_factor / speedup_factor (57)
e amount_of work =

coeff_width x coeff_height x compute_width x compute_height +
compute_height x compute_width (58)

* memory_conflict_factor:

Location of data Location of coeff Location of memory_conflict_factor
output

IMGBUF IMGBUF IMGBUF 2 + 1/ (coeff_width x coeff_height)
IMGBUF IMGBUF COEFF 2

IMGBUF COEFF IMGBUF 1 + 1/ (coeff_width x coeff_height)
IMGBUF COEFF COEFF 1

COEFF IMGBUF IMGBUF 1 + 1/ (coeff_width x coeff_height)
COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 1

COEFF COEFF COEFF 1 + 1/ (coeff_width x coeff_height)

» speedup_factor and maximum value for coeff_width:

coeff_width multiple only of speedup_factor Maximum value of compute_width x
dnsmpl_horz

8 8 2048

4 4 1024

2 2 512

109 1 256

(4 That is, compute_width is odd.

114 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

I

TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.30

imxenc_inter

leaveData

imxenc_interleaveData Interleave data contained in two input arrays. Optionally scalar operation can
be applied to the inputs before interleaving.

Syntax

cndl

[* 1

en
inputl_ptr,

i nput2_ptr,
scalarl_ptr,

scal ar2_ptr,

out put _ptr,

i nput 1_wi dt h,

i nput 2_wi dt h,

out put _wi dt h,
conput ati on_wi dt h,
conput ati on_hei ght,
i nput _type,

round_shift,
operation,

cndptr,
)i

nt 16,

Description

Example

i mkenc_i nterl eaveDat a(

/* Intl6*, starting address of first input */
/* Intl1l6*, starting address of second input */
/* Int16*, pointer to scalar used for operation with first input */
/* Int1l6*, pointer to scalar used for operation with second input */
/* Intl1l6*, starting address of the output array */
/* Int1l6, width of 1st input in nunber of elenents */
/* Intl6, width of 2nd input in nunber of elenents */
/* Int1l6, width of output in nunmber of elenents */
/* 1nt1l6, conputation width */
/* 1 nt16, conputation_height */
/* Int16, type of inputl, scalarl, input2, scalar2 */
/* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
/* 1nt16, nunber of bits to downshift before output */
/* Int16, operation | MXOP_MPY, | MXOP_ABDF, | MXOP_ADD, | MXOP_SUB,
| MXOP_AND, | MXOP_OR, | MXOP_XOR,
| MKOP_M N, | MXOP_MAX */
/* Int1l6*, starting point of comand sequence in nmenory */

This function

cndlen is the nunber of word witten to cnd nmenory starting at crmdptr */

first performs a point-to-point scalar operation between each data point of

inputl, input2 arrays and scalarl, scalar2 values. Afterwards it writes out the results in
an interleaved fashion, with output[0]= scalarlxinput1[0], output[1]= scalar2xinput2[0],
output[2]= scalarlxinputl[1], output[3]= scalar2xinput2[1], If no scalar operation is
desired, set operation to IMXOP_ADD and scalarl= scalar2= 0 . Since the output is
written in an interleaved fashion, one row of the output is at least twice the number of
elements computed per input row.

This function

can be used to interleave three planes of Y, U, V data into YUV422

interleaved format and has better performance than imxenc_YChCrPack() if the input

type is byte.

To produce YUV422 interleaved format from of a 16x16 block of Y, 8x16 block of U and
V, first call imxenc_interleaveData() to produce VU interleaved:

crdl en= i mxenc_i nterl eaveDat a(i nputV_ptr,

scal ar2_ptr,

inputU ptr, scalarl_ptr,

outputVvU ptr, 8, 8, 16, 8, 16, | MXTYPE BYTE, 0, | MXOP_ADD, cndptr);

Then call again to interleave VU with Y in order to produce YUV422 interleaved:

cndl en+= i nxenc_i nterl eaveDat a(i nput VU ptr,
out put YUV422_ptr,

cndl en) ;

inputY_ptr,
| MKTYPE_BYTE, O,

scalarl_ptr, scalar2_ptr,

16, 16, 32, 16, 16, | MKOP_ADD, cndptr +

SPRUGN1C-November 2009
Submit Documentation Feedback

VICP Computation Unit Library’s Functions 115

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

Constraints

e inputl_width, input2_width = compute_ width
e output_width = 2 x compute_width
e compute_height must be < 256

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of cycles to perform the operation (except overhead time) is:
amount_of_work x memory_conflict_factor / speedup_factor (59)
e amount_of work = Equation 60, where S=2 for short input type or 1 for byte input
type:
S x compute_width x compute_height (60)
 memory_conflict_factor:
Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 2
IMGBUF IMGBUF COEFF 1
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 1
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 1
» speedup_factor and maximum value for compute_width:
compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048
4 4 1024
2 2 512
109 1 256
(9 That is, compute_width is odd.
116 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Copyright © 2009, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

6.1.31 imxenc_fir_poly_col

imxenc_fir_poly_col 1D polyphase filtering along columns, including sampling by rational factors

(up/down)
Syntax cndlen = inxenc_fir_poly_col (
i nput _ptr, /* Intl6*, starting address of 1st input */
coeff_ptr, /* Int16*, starting address of 2nd input */
out put _ptr, /* Int1l6*, starting address of the output array */
i nput _wi dt h, /* Int1l6, width of the input array */
i nput _hei ght, /* 1nt16, height of the input array */
coeff _taps, /* 1nt16, nunber of filter coefficients */
out put _wi dt h, /* Int1l6, width of the output array */

out put _hei ght, /* Int16, height of the output array */
conput e_wi dt h /* 1 nt1l6, conputation width */
conpute_height, /* Intl1l6, conputation height */

snpl _nom /* 1nt16, Nominator of rational sanpling factor
(upsanpling) */
snpl _denom /* 1nt16, Denom nator of rational sanpling factor
(downsanpling) */
i nput _t ype, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
coeff_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _t ype, /* Int16, | MKOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
cndpt r /* Int16*, starting point of comand sequence in menory */

)
/* cmdlen is the nunber of words witten to cnd nenory starting at cmdptr */

Description This function performs filtering of a block of data along the columns (vertical filtering).
For filtering a polyphase filter structure is employed to provide sampling by rational
factors (N/M). Almost all sampling ratios are supported, limitations are coming from
memory restrictions and output restrictions (see constraints). Filtering including sampling
results in an output block of dimension [compute_width x compute_height]. The filter
coefficients must be set up in a particular way => imx_fir_poly_setup_coeff().

It is assumed that the input block of data is appropriately zero-filled and/or
history-managed at appropriate places.

Height of input accessed is smpl_nom x (compute_height/smpl_denom -1) +
smpl_denom + coeff_taps / smpl_nom .

Example Consider an input block of 20(W) x 12(H), output block of 20(W) x 8(H), A 5-tap FIR filter
is used, subsampling ratio is %, and n_cols x n_rows = 16x8 elements are computes
(after sampling), which are rounded down by 10 bits before output.

cmdl en = inmxenc_fir_poly_col (
i nput _ptr, /* starting address of input array */
coeff_ptr, /* starting address of coefficient array */
out put _ptr, /* starting address of output array */
20, /* width of input block */
13, /* height of input block */
5, /* taps of filter kernel */
20, /* w dth of output block */
9, /* height of output block */
16, /* conmputation width */
9, /* conputati on hei ght */
3, /* nom nator (upsanpling) */
4 /* denom nator (downsanpling) */

I MKTYPE_SHORT, /* byte, Int16 */
| MKTYPE_SHORT, /* byte, Int16 */
| MKOTYPE_SHORT, /* byte, Int16 */

10 /* nunmber of bits to downshift before output */
cndptr /* starting point for command sequence in nmenory */
)i
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 117

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

Constraints

* input_width = compute_ width

* input_height = smpl_nom x (compute_height / smpl_denom -1) + smpl_denom +
coeff_taps / smpl_nom

e output_width = compute_width

e output_ height = compute_ height

» compute_height must be multiple of smpl_nom

» To prevent write after read (WAR) hazards, input data should not be overwritten by
output unless all computations involving that input location are completed

» compute_height and input_height must be < 256

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of cycles to perform the operation (except overhead time) is:
amount_of_work x memory_conflict_factor / speedup_factor (61)
e amount_of work =
(smpl_denom + coeff_taps / smpl_nom) x compute_width x compute_height (62)
 memory_conflict_factor, where
a = (smpl_nom x smpl_denom + coeff_taps) / smpl_nom:
Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 1+2xa)la
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF l+a)/a
IMGBUF COEFF COEFF l+a)/a
COEFF IMGBUF IMGBUF 1+a)/a
COEFF IMGBUF COEFF (1+a)/a
COEFF COEFF IMGBUF 2
COEFF COEFF COEFF 1+2xa)la
» speedup_factor and maximum value for compute_width:
compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048
4 4 1024
2 2 512
108 1 256
(8 That is, compute_width is odd.
118 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Copyright © 2009, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

6.1.32 imxenc_mat_mul

imxenc_mat_mul Computes the product of two matrices, A and B, using normal matrix
multiplication.

Syntax cndl en = i nkenc_mat _nul (
inputl_ptr, /* Intl6*, starting address of 1st input */
input2_ptr, /* Intl1l6*, starting address of 2nd input */
out put _ptr, /* Int1l6*, starting address of the output array */

i nput1_wi dt h, /* Int16, width of 1st input */
inputl_height, /* Intl16, height of 1st input */
i nput 2_wi dt h, /* Int16, width of 2nd input */
input2_height, /* Intl16, height of 2nd input */
out put _wi dt h, /* Int1l6, width of output */

out put _height, /* Intl1l6, height of output */

mat 1_wi dt h, /* Int16, Matrix 1 width */
mat 1_hei ght, /* Int1l6, Matrix 1 height */
mat 2_wi dt h, /* Int16, Matrix 2 width */
mat 2_hei ght, /* Int1l6, Matrix 2 height */
i nput1_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
i nput 2_t ype, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MKXOTYPE_BYTE, | MXOTYPE_SHORT, | MXOTYPE_LONG */
round_shift, /* 1 nt16, nunber of bits to downshift before output */
cndptr, /* Intl1l6*, starting point of command sequence in nenory */

)

/* cmdlen is the nunber of words witten to cnd menory starting at cmdptr */

Description This function multiplies two matrices, using normal matrix multiplication.

Width of 1st matrix (matl_width) should be equal to the height of the 2nd matrix
(mat2_height). [matl_width x matl_height] 1st matrix is multiplied with [mat2_width x
mat2_height] 2nd matrix to yield result matrix [mat2_width x matl_height]. The matrices
can be blocks in a larger input block, thus inputl_width and inputl_height do not have to
be the same as matl_width and matl_height. Similarly, input2_width and input2_height
do not have to be the same as mat2_width and mat2_height. The constraints are that
inputl_height >= matl_height, input2_height >= mat2_height, inputl_width >=

matl_ width, and input2_width >= mat2_width.

The output type can be set to IMXOTYPE_LONG to output 32-bit results. When this
mode is enabled, output_ptr must be 128-bit aligned and output_width must be a

multiple of 4. The saturation should also be disabled with a call to
IMX_setSat(IMX_SAT_OFF), if you want to get the full 32-bit range.

Constraints
* matl_width == mat2_height
e inputl_width = matl_width, input2_width = mat2_width
e inputl_height = matl_height, input2_height = mat2_height
* output_width Zmat2_width, output_height = matl_height
* mat2_width must be a multiple of 8 (humber of MACS)
» compute_height and input_height must be < 256.

* If output_type== IMXOTYPE_LONG, then output_width must be a multiple of 4 and
output_ptr must be 128-bits aligned.

Performance The overhead time for this VICP API is ~ 30 cycles.

The estimated number of cycles to perform the operation (except overhead time) is:

amount_of_work x memory_conflict_factor / speedup_factor (63)
e amount_of work =
matl_height x matl_width x mat2_width (64)
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 119

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

» memory_conflict_factor:

Location of inputl Location of input2 Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 2 + 1/ mat2_height
IMGBUF IMGBUF COEFF 2

IMGBUF COEFF IMGBUF 1 + 1/ mat2_height
IMGBUF COEFF COEFF 1

COEFF IMGBUF IMGBUF 1 + 1/ mat2_height
COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 1

COEFF COEFF COEFF 1 + 1/ mat2_height

» speedup_factor and maximum value for compute_width:

compute_width multiple only of

speedup_factor

Maximum value of compute_width

8
4

2
1 @n

8

4
2
1

2048
1024
512
256

(7 That is, compute_width is odd.

120

VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

SPRUGN1C-November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.33

imxenc_median_filter_row

imxenc_median_filter_ row Perform a 1-D median filter (3 or 5 tap) along the rows of an input matrix.

Syntax

Description

Example

Constraints

Performance

cmdl en = inmxenc_nedian_filter_row
Int16 *input_ptr, /* starting address of input */
I nt 16 *out put _ptr, /* starting address of output */
Int16 input_width, /* height of input array */
I nt 16 i nput _hei ght, /* width of input array */
Int16 out put_width, /* height of output array */

I nt 16 out put _hei ght, /* width of output array */
Int16 conpute_wi dth, /* height of conmpute bl ock */
Int 16 conpute_height, /* width of conpute block */

Int16 nedi an_si ze, /* 3 or 5-tap nedian filter */
I nt 16 i nput _type, /* Int16/ byte */
Int16 out put_type, /* I ntl1l6/byte */

Int16 *cndptr);

This function performs a median filtering operation along the rows of an input matrix. The
size of the median filter can be 3-tap or 5-tap. At each output location, the median of the
values in a window of size three or five (depending on filter size) is written to the output.
Like other filtering operations, a border of one pixel for a 3-tap filter and a border of two
pixels for a 5-tap filter must be present on the input data to obtain the correct output
size.

A block of compute_width x compute_height is computed using the median filter and
written to the output buffer. The output buffer can be larger the compute window.

Consider data input — 8(H) x 18(W) matrix and output — 24(H) x 8(W) matrix. The goal
is compute 8(H) x 16(W) with a 3-tap median filter. The following code illustrates what
the API call would look like.

crmdl en = inmxenc_nedi an_filter_row

i nput _ptr, /* starting address of input */
out put _ptr, /* starting address of output */
18, /* width of input array */

8, /* height of input array */

24, /* width of output array */

8, /* height of output array */

16, /* width of conpute block */

8 /* height of conpute block */

IM(TYPE_SHO?T, /* input data type - Intl6/byte */
| MKOTYPE_SHORT /* output data type - Intl16/byte */
cmdptr);

e output_width = compute_width

e input_width = compute_width + 2 (3-tap filter), input_width = compute_width + 4
(5-tap filter)

* input_height, output_height = compute_height

The overhead time for this VICP API is ~ 30 cycles.

The estimated number of cycles to perform the operation (except overhead time) is:

amount_of_work x memory_conflict_factor / speedup_factor (65)
e amount_of work =

compute_width x compute_height

(66)

SPRUGN1C-November 2009
Submit Documentation Feedback

VICP Computation Unit Library’s Functions 121

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

» memory_conflict_factor:

Location of inputl Location of input2 Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 2
IMGBUF IMGBUF COEFF 1
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 1
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 1

» speedup_factor:

If compute_width is multiple of 8, speedup_factor = 8
If compute_width is multiple of 4, speedup_factor = 4
— If compute_width is multiple of 2, speedup_factor = 2
Else, speedup_factor = 1.

compute_width multiple only of

speedup_factor

Maximum value of
compute_width

8
4

2
1 (18

= N b~

2048
1024
512
256

(9 That is, compute_width is odd.

122

VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

SPRUGN1C-November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.34 imxenc_median_filter_col

imxenc_median_filter_col Perform a 1-D median filter (3 or 5 tap) along the columns of an input

Syntax

Description

Example

Constraints

Performance

matrix.

cndl en = inmxenc_nedian_filter_col (
Int16 *input_ptr, /* starting address of input */
Int16 *output_ptr, /* starting address of output */
Int16 input_width, /* height of input array */
I nt 16 i nput _hei ght, /* width of input array */
Int16 out put_width, /* height of output array */
I nt16 out put _hei ght, /* width of output array */

Int16 conpute_wi dth, /* height of compute bl ock */
Int16 conpute_height, /* width of conpute block */

Int16 nedi an_si ze, /* 3 or 5-tap nedian filter */
I nt 16 i nput _type, /* Int16/ byte */
Int16 out put_type, /* I nt1l6/byte */

Int16 *cmdptr);

This function performs a median filtering operation along the columns of an input matrix.
The size of the median filter can be 3-tap or 5-tap. At each output location, the median of
the values in a vertical window of size three or five (depending on filter size) is written to
the output. Like other filtering operations, a border of one pixel for a 3-tap filter and a
border of two pixels for a 5-tap filter must be present on the input data to obtain the
correct output size.

A block of compute_width x compute_height is computed using the median filter and
written to the output buffer. The output buffer can be larger the compute window.

Input data can be byte or Int16, signed or unsigned. Output data can be byte or Int16.

Consider data input — 10(H) x 16(W) matrix and output — 24(H) x 8(W) matrix. The goal
is to compute 8(H) x 16(W) with a 3-tap median filter. The following code illustrates what
the API call would look like.

cmdl en = inkenc_nedi an_filter_col (

i nput _ptr, /* starting address of input */
out put _ptr, /* starting address of output */
16, /* width of input array */

10, /* height of input array */

24, /* width of output array */

8, /* height of output array */

16, /* width of conpute block */

8 /* height of compute bl ock */

I MKTYPE_SHORT, /* input data type - Int16/byte */
| MKOTYPE_SHORT, /* output data type - Intl16/byte */
cndptr);

* input_width, output_width = compute_width

» output_height = compute_height

* input_height = compute_height + 2 (3-tap filter)

e input_height = compute_height + 4 (5-tap filter)

The overhead time for this VICP API is ~ 30 cycles.

The estimated number of cycles to perform the operation (except overhead time) is:

amount_of_work x memory_conflict_factor / speedup_factor (67)
» amount_of work =

compute_width x compute_height (68)

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 123

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

» memory_conflict_factor:

Location of inputl

Location of input2

Location of output

memory_conflict_factor

IMGBUF
IMGBUF
IMGBUF
IMGBUF
COEFF
COEFF
COEFF
COEFF

IMGBUF
IMGBUF
COEFF
COEFF
IMGBUF
IMGBUF
COEFF
COEFF

IMGBUF
COEFF
IMGBUF
COEFF
IMGBUF
COEFF
IMGBUF
COEFF

I N = I N

» speedup_factor and maximum value of compute_width:

compute_width multiple only of

speedup_factor

Maximum value of compute_width

8
4

2
1 (9

8

4
2
1

2048
1024
512
256

19 That is, compute_width is odd.

124

VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

SPRUGN1C-November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

6.1.35 imxenc_median3x3

imxenc_median3x3 This function performs median filtering around a 3x3 neighborhood of each data
point passed as input

Syntax cndl en = i mkenc_nedi an3x3(

i nput _ptr, /* Int1l6*, starting address of input */

out put _ptr, /* Intl6*, starting address of the output array */

scratchl_ptr, /* Int1l6*, starting address of scratchl of size */
/* 3*(conpute_wi dt h*conput e_hei ght) el enents */

scratch2_ptr, /* Int1l6*, starting address of scratch2 of size */
/* 3*(conpute_w dt h*(conput e_hei ght +1)) el ements */

i nput _wi dt h, /* Int1l6, width of input */

out put _wi dt h, /* Int1l6, width of output */

conput ati on_w dt h, /* 1 nt16, conputation width */
conputation_height, /* Intl6, conputation_height */

i nput _t ype, /* Int16, | MXTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
cndptr, /* Intl6*, starting point of commuand sequence in nmenory*/

)i
/* cmdlen is the nunber of words witten to cnd menory starting at cmdptr */
Description Perform median filtering around a 3x3 neighborhood of each data point passed as input.

If input[i,j] is the input array and outpult[i,j] is the output array with i indexing the row and j
indexing the column, then:

for (i,j) € [0, compute_height + 2 -1] x [0, compute_width + 2 -1]: output[i,j]J= median(input[i,],
input[i, j+1], inputi, j+2], inputfi+1, j], input[i+1, j+1], input[i+1, j+2], input[i+2, j], input[i+2, j+1],
inputfi+2, j+2]) (69)

In other words, each output][i,j] is the median of the 3x3 neighborhood around input[i+1,
j+1].

input_ptr must point to an array of at least (compute_width+2) x (compute_height+2)
elements; otherwise, the output points on the boundary will not be correct.

For better performance, scratchl ptr should be in a different memory than input_ptr and
scratch2_ptr should be in a different memory than scratchl_ptr.

The transform can be in-place by setting input_ptr= output_ptr .

Example Consider an input array of 33x17 unsigned shorts, in which 3x3 median filtering is going
to be applied to a region of interest of 32x16 elements.
crdl en = i mkenc_nedi an3x3(

i nput _ptr, /* starting address of input */
out put _ptr, /* starting address of output */
scratchl_ptr, /* pointer to scratchl buffer */
scratch2_ptr, /* pointer to scratch2 buffer */
33, /* width of input */

32, /* width of output */

32, /* conmputation width */

16, /* conputation height */

| MKTYPE_USHORT, /* Int16 */
| MKOTYPE_SHORT, /* Int16 */
cndpt r /* starting address for the comrand sequence */

Constraints
e input_width = compute_width + 2
* Number of input rows must be = compute_height + 2
» compute_height must be < 254

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 125
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles per point to perform the operation (except
overhead time) is:
VICP_cycles_per_point / speedup_factor (70)
* VICP_cycles_per_point:
Location of input Location of Location of Location of output VICP cycles/point
scratchl scratch2
IMGBUF COEFF IMGBUF IMGBUF 20.5
IMGBUF COEFF IMGBUF COEFF 20.5
COEFF COEFF IMGBUF IMGBUF 18.6
COEFF COEFF IMGBUF COEFF 18.6
e speedup_factor and maximum value for compute_width:
compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048
4 4 1024
2 2 512
1 1 256
126 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Copyright © 2009, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

6.1.36 imxenc_recursiveFilterVertlstOrder

imxenc_recursiveFilterVertlstOrder Apply 1st order recursive filter (IIR) on 2-D data

Syntax cmdl en = inmkenc_recursiveFilterVert1st O der(

Int16 verticalDir, /* 0: top to bottom 1: bottomto top */

Int16 *input_ptr, /* Point to input data's top row */

Ui nt 16 al phaval, /* al pha val ue */

I nt 16 *out put _ptr, /* Point to output data, nust be in sanme physical */
/* memory as input_ptr */

Int1l6 *initial _ptr, /* Point to conpute_width initial values */
/* must be in same physical nenory as input_ptr */

Int16 *scratchPtr, /* Point to scratch buffer of size */

/* 2 16-bit words in image buffer or coef nenory */
Ui nt 16 conput e_wi dt h, /* Nunber of horizontal elenents in the 2-D bl ock */
/* to be processed */
Ui nt 16 conpute_height, /* Nunber of vertical elenents in the 2-D bl ock */
/* to be processed */

Ui nt16 input_type, /* | MKTYPE_UBYTE, | MXTYPE_BYTE */

/* | MKTYPE_USHORT, | MXTYPE_SHORT */
Uint16 rnd_shift, /* Shifting paraneter */
Int16 *cmdptr) /* Starting point of command sequence */

/* Int1l6, cmdlen is the nunber of words witten to cnd nenory starting at cndptr.
I f conpute_width <104, cndlen = 26 + 28*(conput e_hei ght-1) ot herwi se
cmdlen = 26 + 32 */

Description This function applies 1% order recursive filtering on a 2-D data set. The propagation
direction verticalDir can be set to: top to bottom or bottom to top.

Mathematically the operation can be expressed as follow: if x[i, j] is the input array and
y[i,j] is the output array, where i is the column index and j the row index, then for a given
column C, each term y[C, j] is computed using the previous term y[C, j-1] and the
present input X[C, j]:

yIC,jl= (1-a)xX[C,j+axy[C,j-1],forj>0 (71)
For top to bottom propagation, j would index the rows in downward fashion, meaning j=0
would represent the top row and j=1, the row just below it. For bottom to top

propagation, j would index the rows in upward fashion, meaning j=0 would represent the
bottom row and j=1, the row just above it.

To calculate the terms of the first row j=0, since previous values belonging to the
previous row are not available, initial values pointed by initial_ptr are used.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 127
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

Example

Constraints

/* The exanpl e code below initializes the different input argument
of the recursive filter function */

/1 top to bottomfiltering

verticalDir= 0 ;

/1 2-D data set is nade of 320x10 bytes

bl ockW dt h= 320;

bl ockhei ght = 10;

i nput Type= | MXTYPE_UBYTE;

/1 Set input pointer to inmage buffer A base address
input _ptr= (Int16*)| MGBUF_A_BASE;

/1 Here, initial values coincides with 1st row
initial _ptr=input_ptr;

/1 Transformis in-place

out put _ptr= input_ptr;

/'l scratchCoefPtr is set base address of coefficient nenory
scrat chCoef Ptr= (I nt16*) | MXCOEFFBUF_BASE;

/1 Set al pha Val ue and qsShift
al phaVal ue= 32;
gshift=7;

/1 Set saturation
cmdl en= i nxenc_set _saturation(127, 127, -128, -128, cmdptr);

/'l Encode recursive filtering conmand sequence
crmdl en += i mxenc_recursiveFilterVert1lst O der(
verticalDr,

i nput _ptr,

al phaVval ue,

out put _ptr,
initial _ptr,
scratchPtr,

bl ockW dt h,

bl ockHei ght,

i nput Type,

gshi ft,

cmdptr + cndl en);

e input_ptr, initial_ptr, output_ptr must reside in the same physical memory, either in
the image buffer or VICP coefficient memory.

www.ti.com

If verticalDir= 0, the number of bytes separating initial_ptr and the first row pointed by
input_ptr must not exceed 4095 bytes. To ensure this constraint is always met, place
the initial values right before the input data set.

If verticalDir= 1, the number of bytes separating initial_ptr and the last row pointed by
input_ptr + compute_width*(compute_height-1) must not exceed 4095 bytes. To
ensure this constraint is always met, place the initial values right after the input data
set.

scratchPtr must point to an area in VICP coef memory or image buffer for which two
16-bits words are reserved as scratch memory.

The number of 16-bits words generated in the VICP command memory depends on
the compute_width and compute_height dimensions and is equal to 26 +
(compute_height-1)x28 if compute_width < 104. Otherwise it is equal to 26 + 32
words. So make sure that there is enough space left in the VICP command memory
before encoding the sequence or reduce the vertical dimension of the 2-D block to
process.

128 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Tips

» The filtering can operate in-place so output_ptr= input_ptr is allowed.

» For filtering along horizontal direction, where the computation propagates
column-wise, first transpose the input data using imxenc_transpose(), then call
imxenc_recursiveFilterVertlstOrder() and finally transpose back.

Performance The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor / speedup_factor (72)

e amount_of work =
2 xcompute_width x compute_height (73)

» memory_conflict_factor:

Location of input_ptr, initial_ptr, Location of scratch_ptr memory_conflict_factor
output_ptr

IMGBUF IMGBUF 5/2

IMGBUF COEFF 312

COEFF IMGBUF 1

COEFF COEFF 32

e speedup_factor and maximum value for compute_width:

compute_width multiple only of speedup_factor Maximum value of compute_width
8 8 2048

4 4 1024

2 2 512

1¢9 1 256

@9 That is, compute_width is odd.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 129

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com
6.1.37 imxenc_rgbpack
imxenc_rgbpack Pack R,G,B separated planes into 16 bpp RGB555 or RGB565 data
Syntax cndl en = i nkenc_r gbpack(

i nput, /* Intl6 **, array of pointers to R G B planes. */

tenpScr at ch, /* Int16* tenporary scratch 2*conpute_w dt h*conput e_hei ght

wor ds*/
per nScr at ch, /* I nt16* permanent scratch buffer of size 5 words, in VICP
coef mem */

out put, /* Int16* pointer to output buffer */

i nput _wi dt h, /* Int1l6 width of input in nunber of pixels/elements */

i nput _hei ght, /* Int16 height/rows of in nunber of pixels */

out put _wi dt h, /* Int16 wi dth/colums of output in nunber of pixels*/

out put _hei ght, /* Int16 height/rows of output in nunber of pixels */

conput e_wi dt h, /* Int1l6 conmputation width in nunber of pixels*/

conmpute_height, /* Intl6 conputation height in nunber of pixels*/

i nput _type, /* input can be | MKTYPE_UBYTE or | MXTYPE_USHORT */

col orformat, /* output colorformat RGB565=0 or RGB555=1 */

cndpt r /* Intl1l6*, starting point of comand sequence in nmenory */

)
/* Int16, cndlen is the nunber of word witten to cnd nenory starting at cndptr*/

Description This function takes each of the 8-bit R,G,B planes of a bitmap image and pack the

Constraints

components together. Each element in the input R,G,B, planes are either 16-bits or 8
bits wide as indicated by the input_type parameter. In the case they are 16-bits wide, the
8 most significant bits are always zero since R,G,B values are comprised in the [0-255]
range. The output format is 16 bit per pixel and is either RGB555 or RGB565. The first
pixel in the output is made of the first R,G,B values of the input planes, the second is
pixel in the output is made of the second R,G,B value of the input planes, etc.

Two types of scratch memory must be allocated in advance: a temporary scratch
memory of size ‘2*compute_width*compute_height’ words and a permanent scratch
buffer of size 5 words. The temporary scratch buffer can be re-used by other VICP
functions needing a temporary scratch buffer and its content can be overwritten after the
corresponding rgbpack VICP sequence is executed. Re-use of this temporary scratch
buffer by other VICP functions is highly recommended in order to optimize memory
allocation in the image buffer or coefficient buffers. In the other hand, the permanent
scratch must never be altered by the application. The imxenc_rgbpack() function
initializes the 5 words contained in the scratch and imxUpdate_rgbpack() update those
when it is called. This permanent scratch must be allocated in the VICP coefficient
memory.

The locations, dimensions of input and output bitmaps and the color format are fixed for
the encoded VICP command. If the program wants to execute the VICP commands that
performs the rgbpack algorithm for a different colorformat, it can call the function
imxUpdate_rgbpack() to update an existing VICP command sequence. If any other
parameters must be changed, then the application must call imxenc_rgbpack() all over
again since the imxUpdate_rgbpack() only allows for changing the color format.

compute_width must be a multiple of 8.

Performance Performance is between 1.125 and 1.77 cycles/pixel.
The best performance can be achieved if all the scratch buffers are in VICP coefficient
memory, the input in image buffer and the output in VICP coefficient memory.

130 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.38 imxenc_rgbu

imxenc_rgbunpack

Syntax

Description

Constraints

Performance

npack

Unpack 16 bpp RGB555 or RGB565 data into R,G,B separated planes

cmdl en = i mxenc_r gbunpack(
i nput, /* Intl1l6*, pointer to RGB555 or RGB565 packed data */
per nScr at ch, /* Int16*, 4-words permanent scratch buffer, in VICP coef
mem */

out put, /* Int16**, array of pointers to R G B unpacked output */
i nput _wi dt h, /* 1nt16, w dth/colums of input in nunber pixels */

i nput _hei ght, /* Int16, height/rows of input in nunber of pixels */

out put _wi dt h, /* 1nt16, w dth/colums of output in nunber of pixels*/
out put _hei ght, /* Int16, height/rows of output in nunber of pixels */

conput e_wi dt h, /* 1nt1l6, conputation width in nunber of pixels*/
conpute_height, /* Intl6, conputation height in nunber of pixels*/

out put _t ype, /* 1nt16, | MKOTYPE_BYTE or | MXOTYPE_SHORT */
col orformat, /* Int16, color format of the input, RGB565=0 or RGB555=1 */
cndpt r /* Intl1l6*, starting point of comand sequence in nmenory */

)

/* Int16, cndlen is the nunber of words witten to cnd nenory starting at cndptr*

This function takes 16 bits-per-pixel RGB format RGB555 or RGB565 as input and
unpacks it into 3 color planes: R,G,B. The elements of the output color planes can be
either 16-bits or 8-bits wide depending on the value of output_type. In both cases, only 8
bits are used to encode the R,G,B values which are in the [0, 255] range.

The 4 words permanent scratch must never be altered by the application. The
imxenc_rgbunpack() function initializes the 4 words contained in the scratch and
imxUpdate_rgbunpack() update those when it is called. This permanent scratch must be
allocated in the VICP coefficient memory.

The locations, dimensions of input and output bitmaps and the color format are fixed for
the encoded VICP command. If the program wants to execute the VICP commands that
performs the rgbunpack algorithm for a different colorformat, it can call the function
imxUpdate_rgbunpack() to update an existing VICP command sequence. If any other
parameters must be changed, then the application must call imxenc_rgbunpack() all over
again since the imxUpdate_rgbunpack() only allows for changing the color format.

compute_width must be a multiple of 8.

Performance is around 1.14 cycles/pixel.

The best performance can be achieved if the scratch buffer is in VICP coefficient
memory, the input and output in image buffer.

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 131

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

6.1.39 imxenc_rotate

imxenc_rotate

Rotation of a data matrix by 90, 180, or 270 degrees.

Int16*, starting address of input array */

Int16*, starting address of scaling coefficient */
Int16*, starting address of the output array */
Int16, width of the input array */

I nt16,
I nt 16,

hei ght of the input array */
wi dth of the output array */

Int16, height of the output array */

I nt 16, conputation width */

Int16, conputation height */

Int16, | MXTYPE_UBYTE, | MXTYPE_BYTE */

I nt16, | MXTYPE_USHORT, | MXTYPE_SHORT */

Int16, | MXTYPE_UBYTE, | MXTYPE_BYTE */

I nt16, | MXTYPE_USHORT, | MXTYPE_SHORT */

I nt16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */

Int16, Rotation angle 90, 180, or 270 */

I nt 16, nunber of bits to downshift before output */

Int16*, starting point of command sequence in nenory */

crmdl en is the nunber of words witten to cnd nenory starting at cndptr*/

This function rotates a submatrix of size compute_width x compute_height of the input

data matrix (size input_width x input_height), and writes the rotated submatrix into the
output matrix of size output_width x output_height, aligned to the top left corner.

Each input data point can be scaled by the scaling factor defined in coef_ptr, and being
rounded and saturated prior to write out. Number of down shifts is specified in the
command, and saturation bounds can be specified by calling the imxenc_set_saturation

Input and output are each selectable to be byte or Int16 type.

Syntax cndl en = i nmkenc_r ot at e(
i nput _ptr; /*
coeff_ptr, /*
out put _ptr, /*
i nput _wi dt h, /*
i nput _hei ght, /*
out put _wi dt h, /*
out put _hei ght, /*
conput e_w dth /*
conput e_hei ght, /*
i nput _type, /*

/*
coeff_type, /*
/*

out put _type, /*
angl e, /*
round_shift, /*
cndpt r /*

)

/* 1nt16,

Description
function.
Example

of size 8x16.

cndl en = i mxenc_rotat e(
data_ptr,
coef _ptr,
out put _ptr,
11,
8,
16,
12,
6,
| MXTYPE_SHORT,
| MXTYPE_SHORT,
| MXOTYPE_SHORT,
90,
0,
cndpt r

Constraints

Rotating a 12x6 block out of an array of size 18x11 bu 90 degree and write into an array

point to input data array */
point to scaling coefficient */
point to output array */

wi dth of input data array */
hei ght of input data array */
wi dth of output data array */

hei ght of output data array */

conputation width */

conput ati on hei ght */

input signed Int16 */

coeff signed Intl6 */

out put signed Intl1l6 */

rotation by 90 degrees */

nunber of bits to downshift */

starting point for comand sequence in nmenory */

* Rotation by 90 / 270 degrees:
— output_width = compute_height = input_height
— output_height = compute_width = input_width

* Operand types are IMXTYPE_UBYTE (unsigned byte), IMXTYPE_SHORT,
IMXTYPE_USHORT (unsigned Int16).

e output_type can only be IMXOTYPE_SHORT
e compute_width, compute_height and input_height must be <= 256.

132 VICP Computation Unit Library’s Functions

SPRUGN1C-November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of cycles to perform the operation (except overhead time) is:
amount_of_work x memory_conflict_factor (74)
e amount_of work =
compute_width x compute_height (75)
« memory_conflict_factor:
Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 3
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 2
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 133

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

6.1.40 imxenc_set_saturation

imxenc_set_saturation Set saturation parameters

Syntax

Description

cmdl en = inxenc_set_saturation(
sat _hi gh, /* 1 nt32 saturation upper bound conpare val ue */
sat _high_set, /* Int32 value set if >= sat_high */
sat _| ow, /* 1 nt32 saturation | ower bound conpare val ue */
sat _| ow_set, /* Int32 value set if < sat_|low */
cndpt r /* Int1l6*, starting point of comand sequence in nmenory */

)

/* Int16, cndlen is the nunber of word witten to cnd nenory starting at cndptr*/

This function sets saturation upper and lower bounds for subsequent VICP computation.
sat_high_set and sat_low_set must both fall at the same time within the signed range S=
[-32768, 32767] or within the unsigned range U= [0, 65535]. For instance
sat_high_set=65535 and sat_low_set= -32768 would be an illegal combination since one
falls in the range S and the other one falls in the range U. Generally if the command
sequence that follows imxenc_set_saturation() contains computation commands that
involve the input type IMXTYPE_SHORT then the range S should be used.

For normal saturation, sat_high = sat_high_set = upper bound, and sat_low =
sat_low_set = lower bound

This API must be called at the beginning of each commands sequence encoding since
the saturation values are lost each time the imxenc_sleep opcode is encountered.

134 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

6.1.41 imxenc_save_sat_parameters

imxenc_save_sat_parameters Save saturation parameters previously set by imxenc_set_saturation()

Syntax i nkenc_save_sat _par anet ers(| MX_Sat ParansStruct *i nxsat par ans);

Arguments
imxsatparams IMX_SatParamsStruct* Pointer to structure that will hold the values of the
saturation parameters passed to
imxenc_set_saturation(), the last time it was called.

The structure IMX_SatParamsStruct is defined as follow:

typedef struct | MX_Sat Parans{
Int16 sat_unsigned;
I nt 16 sat _high;
Int16 sat_hi gh_set;
Int16 sat _| ow,
Int16 sat_| ow set;
} I MX_Sat ParansStruct;

Description This function is useful in the case of function A calling imxenc_set_saturation() and a
function B. Function B calls imxenc_set_saturation() and sets its own saturation
parameters but needs to restore the saturation parameters set by function A before
returning. To achieve that, function B calls imxenc_save_sat_parameters() before calling
imxenc_set_saturation() and calls imxenc_restore_sat_parameters() before returning.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 135
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
Functions That Encode Computation Tasks www.ti.com
6.1.42 imxenc_restore_sat_parameters
imxenc_restore_sat_parameters Restore saturation parameters saved by
imxenc_save_sat_parameters()
Syntax
cmdl en = i nxenc_restore_sat_parameters(| MX_Sat ParansStruct *inxsatparans, Int1l6 * cnd_ptr);
Arguments
imxsatparams IMX_SatParamsStruct* Pointer to structure that will hold the values of the
saturation parameters.
cmd_ptr Int16* Pointer to location in memory where the set saturation
command is generated.
cmdlen Int16 Number of words generated
The structure IMX_SatParamsStruct is defined as follow:
typedef struct | MX_Sat Parans{
Int16 sat_unsigned;
Int16 sat_hi gh;
Int16 sat_hi gh_set;
Int16 sat_| ow,
Int16 sat_| ow set;
} | MX_Sat ParansStruct;
Description The behavior of the function is equivalent to calling imxenc_set_saturation() with input
arguments equal to the different members of IMX_SatParamsStruct. This function is
useful in the case of function A calling imxenc_set_saturation() and a function B.
Function B calls imxenc_set_saturation() and sets its own saturation parameters but
needs to restore the saturation parameters set by function A before returning. To
achieve that, function B calls imxenc_save_sat parameters() before calling
imxenc_set_saturation() and calls imxenc_restore_sat_parameters() before returning.
136 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

6.1.43 imxenc_sleep

imxenc_sleep Puts VICP to sleep

Syntax cndl en = i mkenc_sl eep(
cndpt r /* Int1l6*, starting point of comand sequence in nmenory */
)

/* Int16, cndlen is the nunber of word witten to cnd nenory starting at cndptr */

Description Write the sleep command into the command sequence. The VICP module will stop the
execution of the commands sequence when this particular command is reached.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 137

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com
6.1.44 imxenc_sobelx
imxenc_sobelx Perform the Sobel filtering in horizontal (x) direction
Syntax
crdl en = i nmxenc_sobel x(

i nput _ptr, /* Int1l6*, starting address of 1st input */

coeff_ptr, /* Int16*, starting address of coefficients, reserve 3 16-bits words */

tenmp_ptr, /* Intl6*, starting address of the tenporary storage array of size */

/* conmpute_wi dth x (conpute_hei ght+2) 16-bits words*/

out put _ptr, /* Int16*, starting address of the output array */

i nput _wi dt h, /* Int1l6, width of the input array */

i nput _hei ght, /* 1nt16, height of the input array */

out put _wi dt h, /* Int1l6, width of the output array */

out put _hei ght, /* 1nt16, height of the output array */

conput e_wi dt h /* 1 nt1l6, conputation width */

conpute_height, /* Intl6, conputation height */

i nput _t ype, /* 1nt16, | MXTYPE_UBYTE, | MXTYPE_BYTE */

/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */

out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */

round_shift, /* 1nt16, nunber of bits to downshift before output (3 is recommended) */

cndpt r /* Int1l6*, starting point of command sequence in menory */
/* Intl6, crmdlen is the nunber of word witten to cnd nenory starting at cndptr */
Description This function calculates the horizontal gradient approximation on a block of data. The

result is in the output block of dimension [compute_width x compute_height]. Kernel size
is [3 x 3] and has the following coefficients:
10-1
coeff = 20-2
10-1

Width of input accessed for this operation is (compute_width + 2), and height of input
accessed is (compute_height + 2). If both input and output data have the same bit-width,
the recommended value for round_shift is 3, because the absolute sum of filter
coefficients is 8. Choosing the value of 3 guarantees that saturation will not occur, while
rounding is minimal.

coeff_ptr needs to point to three free 16-bits words in coefficient memory. The function
will initialize these locations with the separable sobel filter coefficients. Do not share the
region pointed by this coeff_ptr with another imxenc_<computation> function such as
imxenc_sobely(). If you do share, then the coefficients set by imxenc_sobelx() are at risk
to be overwritten by the other imxenc_<computation> function.

Example Consider an input block of 20(W) x 12(H), output block of 20(W) x 8(H), and the
computed block size of 16(W) x 8(H), round down by 3 bits before output.
crdl en= i mxenc_sobel x(

i nput _ptr, /* starting address of input array */

coeff_ptr, /* starting address of coefficient array */
temp_ptr, /* starting address of tenporary storage array */
out put _ptr, /* starting address of output array */

20, /* width of input block */

12, /* height of input block */

20, /* w dth of output block */

8, /* hei ght of output block */

16, /* conmputation width */

8 /* conputation height */

I MKTYPE_SHORT, /* byte, short */
| MKOTYPE_SHORT, /* byte, short */

3 /* nunmber of bits to downshift before output */
cndptr /* starting point for command sequence in nmenory */
)i
138 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

Constraints

Performance

compute_width must be a multiple of 8.
input_width = compute_width + 2, output_width = compute_width
input_height = compute_height + 2, output_height = compute_height

To prevent write after read (WAR) hazards, input data should not be overwritten by

output unless all computations involving that input location are completed.
coeff_ptr must point to three free 16-bits words located in coefficient memory.
compute_height and input_height must be < 256

The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)

IS:
amount_of_work x memory_conflict_factor / speedup_factor (76)

e amount_of work =
4 x compute_width x compute_height 77)

« memory_conflict_factor:

Location of Location of temp Location of memory_conflict_factor

input_ptr output

IMGBUF IMGBUF IMGBUF 8/3

IMGBUF IMGBUF COEFF 716

IMGBUF COEFF IMGBUF 1

IMGBUF COEFF COEFF 716

COEFF IMGBUF IMGBUF 716

COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 716

COEFF COEFF COEFF 4/3

» speedup_factor and maximum value for compute_width:

compute_width x dnsmpl_horz speedup_factor Maximum value of compute_width

multiple only of

8 8 2048

4 4 1024

2 2 512

1® 1 256

@ That is, compute_width is odd.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 139

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com
6.1.45 imxenc_sobely
imxenc_sobely Perform the Sobel filtering in vertical (y) direction
Syntax
crdl en = i nmxenc_sobel y(

i nput _ptr, /* Int1l6*, starting address of 1st input */

coeff_ptr, /* Int16*, starting address of coefficients, reserve 3 16-bits words */

tenmp_ptr, /* Intl6*, starting address of the tenporary storage array of size */

/* conmpute_wi dth x (conpute_hei ght+2) 16-bits words*/

out put _ptr, /* Int16*, starting address of the output array */

i nput _wi dt h, /* Int1l6, width of the input array */

i nput _hei ght, /* 1nt16, height of the input array */

out put _wi dt h, /* Int1l6, width of the output array */

out put _hei ght, /* 1nt16, height of the output array */

conput e_wi dt h /* 1 nt1l6, conputation width */

conpute_height, /* Intl6, conputation height */

i nput _t ype, /* 1nt16, | MXTYPE_UBYTE, | MXTYPE_BYTE */

/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */

out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */

round_shift, /* 1nt16, nunber of bits to downshift before output (3 is recommended) */

cndpt r /* Int1l6*, starting point of command sequence in menory */
/* Intl6, crmdlen is the nunber of word witten to cnd nenory starting at cndptr */
Description This function calculates the vertical gradient approximation on a block of data. The result

is in the output block of dimension [compute_width x compute_height]. Kernel size is [3
x 3] and has the following coefficients:
121

coeff = 00O
-1-2-1

Width of input accessed for this operation is (compute_width + 2), and height of input
accessed is (compute_height + 2). If both input and output data have the same bit-width,
the recommended value for round_shift is 3, because the absolute sum of filter
coefficients is 8. Choosing the value of 3 guarantees that saturation will not occur, while
rounding is minimal.

coeff_ptr needs to point to three free 16-bits words in coefficient memory. The function
will initialize these locations with the separable sobel filter coefficients. Do not share the
region pointed by this coeff_ptr with another imxenc_<computation> function such as
imxenc_sobelx(). If you do share, then the coefficients set by imxenc_sobely() are at risk
to be overwritten by the other imxenc_<computation> function.

Example Consider an input block of 20(W) x 12(H), output block of 20(W) x 8(H), and the
computed block size of 16(W) x 8(H), round down by 3 bits before output.
cmdl en= i nxenc_sobel y(

i nput _ptr, /* starting address of input array */

coeff_ptr, /* starting address of coefficient array */
temp_ptr, /* starting address of tenporary storage array */
out put _ptr, /* starting address of output array */

20, /* width of input block */

12, /* height of input block */

20, /* w dth of output block */

8, /* hei ght of output block */

16, /* conmputation width */

8 /* conputation height */

I MKTYPE_SHORT, /* byte, short */
| MKOTYPE_SHORT, /* byte, short */

3 /* nunmber of bits to downshift before output */
cndpt r / starting point for command sequence in nmenory */
)i
140 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

Constraints

Performance

compute_width must be a multiple of 8.
input_width = compute_width + 2, output_width = compute_width
input_height = compute_height + 2, output_height = compute_height

To prevent write after read (WAR) hazards, input data should not be overwritten by

output unless all computations involving that input location are completed.
coeff_ptr must point to three free 16-bits words located in coefficient memory.
compute_height and input_height must be < 256

The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)

IS:
amount_of_work x memory_conflict_factor / speedup_factor (78)

+ amount_of_work =
4 x compute_width x compute_height (79)

« memory_conflict_factor:

Location of Location of temp Location of memory_conflict_factor

input_ptr output

IMGBUF IMGBUF IMGBUF 8/3

IMGBUF IMGBUF COEFF 716

IMGBUF COEFF IMGBUF 1

IMGBUF COEFF COEFF 716

COEFF IMGBUF IMGBUF 716

COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 716

COEFF COEFF COEFF 4/3

» speedup_factor and maximum value for compute_width:

compute_width x dnsmpl_horz speedup_factor Maximum value of compute_width

multiple only of

8 8 2048

4 4 1024

2 2 512

1@ 1 256

@ That is, compute_width is odd.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 141

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com
6.1.46 imxenc_sum
imxenc_sum Perform summation of an array
Syntax cndl en = i mkenc_sun{(

i nput _ptr; /* Intl6*, starting address of input array */

scal er_ptr, /* Int16*, starting address of scaling coefficient */

out put _ptr, /* Intl1l6*, starting address of the output array */

i nput _wi dt h, /* Int1l6, width of the input array */

i nput _hei ght, /* 1nt16, height of the input array */

conput e_w dth /* Int16, conputation width */

conpute_height, /* Intl1l6, conputation height */

i nput _type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */

/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
scal er _type, /* Intl6, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */

out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */

round_shift, /* 1nt16, nunber of bits to downshift before output */

sum node, /* Int16, Nunber of sum per cycles. Ignored here */

cndpt r /* Intl1l6*, starting point of comand sequence in nmenory */

)
/* Int16, cndlen is the nunber of words witten to cnd nenory starting at cndptr*/
Description This function sums up the elements of a scalar times a matrix of size [compute_width x

compute_height]. Sum_mode is ignored. The resulting sum is written to the location
pointed to by output_ptr.

Example Consider summing up an input matrix of size 16x16. one_ptr points to a Int16 1.
crmdl en = i nxenc_sun(
i nput _ptr, /* starting address of input array */
one_ptr, /* address of a scaler, normally containing 1%/
tenp, /* address of output */
16, /* width of input array */
16, /* height of input array */
16, /* conputation height */
16, /* conmputation width */

| MKTYPE_SHORT, /* byte, Int16 */
| MKTYPE_SHORT, /* byte, Int16 */
| MKOTYPE_SHORT, /* byte, Int16 */

0, /* nunber of bits to downshift, should be 0*/
0 /[* 0 */
cndpt r /* starting point for command sequence in menory */

Constraints
* input_width = compute_width
* input_height = compute_height
» compute_height and input_height must be < 256

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor / speedup_factor (80)

» amount_of work =

compute_width x compute_height (81)

142 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks

* memory_conflict_factor:

Location of Location of Location of memory_conflict_factor

input_ptr scaler_ptr output_ptr

IMGBUF IMGBUF IMGBUF 2 + 16 / compute_width x compute_height
IMGBUF IMGBUF COEFF 1 + 8/ compute_width x compute_height
IMGBUF COEFF IMGBUF 2

IMGBUF COEFF COEFF 1

COEFF IMGBUF IMGBUF 1 + 8/ compute_width x compute_height
COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 1

COEFF COEFF COEFF 1 + 8/ compute_width x compute_height
» speedup_factor and maximum value for compute_width:

compute_width multiple only of speedup_factor Maximum value of compute_width

8 8 2048

4 4 1024

2 2 512

1® 1 256
® That is, compute_width is odd.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 143

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

6.1.47 imxenc_sum_cfa

imxenc_sum_cfa Perform summation of an array where a partial sum is obtained for each element
of a 2x2 tile (CFA pattern)

Syntax cndl en = i nxenc_sum cf a(
i nput _ptr; /* Int1l6*, starting address of input array */
scal er_ptr, /* Intl6*, starting address of scaling coefficient */
out put _ptr, /* Int1l6*, starting address of the output array */
i nput _wi dt h, /* Int1l6, width of the input array */
i nput _hei ght, /* 1nt16, height of the input array */

conpute_wi dth /* 1 nt1l6, conputation width */
conpute_height, /* Intl1l6, conputation height */

i nput _t ype, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
scal er _type, /* 1nt16, | MXTYPE UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
cndptr /* Intl1l6*, starting point of command sequence in nenory */

)i
/* Int1l6, cmdlen is the nunber of words witten to cnd nmenory starting at cndptr*/

Description The input matrix is composed of 2x2 tiles. The four elements of each tile are 4
independent CFA components. Imxenc_sum_cfa sums each of those components
independently across the input matrix, producing 4 partial sums in the output. The order
of appearance in the output is:

1. 1st output: sum of the top left component of the tiles

2. 2nd output: sum of the top right component of the tiles

3. 3rd output: sum of the bottom left component of the tiles
4. 4th output: sum of the bottom right component of the tiles

Example Consider summing up an input matrix of size 16x16. one_ptr points to a Int16 1.
sum_mode = 8 is used to produce 8 partial sums into a temp array. Host DSP then adds
up the 4 partial sums.

crmdl en = i mkenc_sum cf a(
i nput _ptr, /* starting address of input array */
one_ptr, /* address of a scaler, normally containing 1%/
tenp, /* address of output */
16, /* width of input array */
16, /* height of input array */
16, /* conputation height */
16, /* conmputation width */

| MXTYPE_SHORT, /* byte, Intl6 */

| MXTYPE_SHORT, /* byte, Intl6 */

| MKOTYPE_SHORT, /* byte, Int16 */

0, /* nunber of bits to downshift, should be 0*/

crdpt r /* starting point for command sequence in nenory */

Constraints
e compute_width must be multiple of 2 and < 512
e compute_height and input_height must be < 512
e input_width = compute_width
* input_height = compute_height

Performance The overhead time for this VICP API is ~ 30 cycles.

The estimated number of cycles to perform the operation (except overhead time) is:

amount_of_work x memory_conflict_factor / speedup_factor (82)
e amount_of work =

compute_width x compute_height (83)

144 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

» memory_conflict_factor:

Location of data Location of coeff Location of memory_conflict_factor

output
IMGBUF IMGBUF IMGBUF 2 + 16 / compute_width x compute_height
IMGBUF IMGBUF COEFF 1 + 8/ compute_width x compute_height
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 1 + 8/ compute_width x compute_height
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 1 + 8/ compute_width x compute_height

e speedup_factor and maximum value for compute_width:

compute_width multiple only of

speedup_factor

Maximum value of compute_width

2

2

512

SPRUGN1C-November 2009
Submit Documentation Feedback

VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

145

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
Functions That Encode Computation Tasks www.ti.com
6.1.48 imxenc_sum_abs_diff
imxenc_sum_abs_diff Perform sum of absolute differences on 2-D arrays
Syntax cndl en = i mkenc_sum abs_di ff(
target _ptr; /* Int1l6*, starting address of target array */
ref_ptr, /* Int16*, starting address of reference array */
out put _ptr, /* Intl1l6*, starting address of the output array */
intermptr, /* Not used, for backward conpatibility */
zero_ptr, /* Not used, for backward compatibility */
bl ock_wi dt h, /* Int16, width of matching bl ock */
bl ock_hei ght, /* 1nt16, height of matching block */
target _width, /* Int1l6, width of the target array */
target _height, /* Int16, height of the target array */
ref_width /* Int1l6, width of the reference array */
ref _hei ght, /* 1nt16, height of the reference array */
st ep_horz, /* Int16, horizontal step between matches */
step_vert, /* Intl6, vertical step between natches */
nst eps_hor z, /* Int16, nunber of steps horizontally */
nst eps_vert, /* 1 nt16, nunber of steps vertically */
target _type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
ref _type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
crdpt r /* Int16*, starting point of command sequence in nenory */
)
/* Int1l6, crmdlen is the nunber of words witten to cnd nenory starting at cndptr*/
Description This function takes a target 2-D array, target_width x target_height, and matches it
against MULTIPLE 2-D windows each of block_width x block_height, inside a 2-D
reference array of ref_width x ref_height. Sums of absolute differences are computed.
Matches are done nsteps_horz x nsteps_vert times, each time stepping to the right by
step_horz points until reaching nsteps_horz steps, then recalibrating to the first column
and stepping down by step_vert points.
nsteps_horz x nsteps_vert output elements are written to output array of outp_width x
outp_height.
Target, reference, and output array elements are each selectable to be byte or Int16
type.
Example Consider 16x16 block matching, between a 16x16 Int16 target and a 32x32 byte
reference, for 2x2 steps with step size of 8x8. Integer output, no rounding down.
crmdl en = sum abs_di ff(
target _ptr, /* point to target array */
ref_ptr, /* point to reference array */
out put _ptr, /* point to output array */
intermptr, /* Not used, for backward conpatibility */
zero_ptr, /* Not used, for backward conmpatibility */
16, /* width of matching bl ock */
16, /* hei ght of matching block */
16, /* width of target array */
16, /* height of target array */
32, /* width of reference array */
32, /* height of reference array */
8, /* horizontal offset between matches */
8, /* vertical offset between matches */
2, /* nunber of steps horizontally */
2, /* nunmber of steps vertically */
| MXTYPE_SHORT, /* target signed Intl16/unsigned byte */
| MXTYPE_UBYTE, /* ref signed Intl6/unsigned byte */
| MKOTYPE_SHORT, /* output signed |Int16/unsigned byte */
0, /* nunber of bits to downshift before output */
crdpt r /* starting point for command sequence in nenory */
)
146 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Fu

nctions That Encode Computation Tasks

Constraints

Performance

block_width must be a multiple of 4 or multiple of 8 (optimum performance)
target_width = block_width, target_height = block_height

ref_width = block_width + ((nsteps_horz - 1) x step_horz)

ref_height = block _height + ((nsteps_vert - 1) x step_vert)

output_width = nsteps_horz, outp_height = nsteps_vert

ref_height and block_height must be < 256

The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)

IS:
amount_of_work x memory_conflict_factor / speedup_factor (84)
e amount_of work =
block_width x block_height x nsteps_horz x nsteps_vert (85)
* memory_conflict_factor:
Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 3
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 2

speedup_factor and maximum value for block width:

block_width multiple only of speedup_factor Maximum value of block_width
8 8 2048
4 4 1024
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 147

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

6.1.49 imxenc_table_lookup

imxenc_table_lookup Generic table lookup operation.

Syntax cnmdl en = inmxenc_tabl e_| ookup(
inputl ptr; /* Intl1l6*, starting address of input array */
input2_ptr, /* Int16*, starting address of table |ookup, 128-bits
al i gned */
out put _ptr, /* Int16*, starting address of the output array */
conpute_elenments, /* Intl6, nunber of elenents to | ookup*/
i nput _t ype, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
tabl e_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
thread, /* Intl6, 1, 2, 4 */
cndpt r /* Intl1l6*, starting point of comand sequence in nmenory */

)

/* Int16, cndlen is the nunber of words witten to cnd nenory starting at cndptr*/

Description The input array contains the indexes of the output elements in the lookup table. This API
will simply fetch the corresponding elements in the lookup table and write them in the
output array. It is possible to perform thread=1, 2 or 4 independent lookups per clock
cycle. Here is the layout of the input array and table array for different values of thread:

Thread=1:

There is a single table in the lookup table array and all elements of the input array

are indexes in this unique table.
Thread=2:

There are two tables interleaved in the lookup table array. If the tables are called T,
and T,, then the memory layout of the lookup table array pointed by table base must

look like the following:

If table_type=IMXTYPE_UBYTE or IMXTYPE_BYTE

table_base[]={
P A A

t]_ 9 tl 10 t]_ 11
t2 9 t2 10 tz 11
}

(AT A A A
t]_ 12 t]_ 13 tl 14 t]_ 15 t]_ 16

12 13 14 15 16
b t L t b

If table_type=IMXTYPE_USHORT or IMXTYPE_SHORT

table_base[]={
t,r o2t
t,t 2 ot
> ot

t,°> % ot

t, 4
t, 4

t, 8

where t, ¥ is the kth element of table T, and t, ¥ is the kth element of table T,.

The input array contains indexes into the lookup tables, arranged in a cyclic manner:
Input_tab[1={; % L2 1,3 L4 15 LS L7, ..}

where 1, ¥ is an index of an element in T, and 1, ¥ is an index of an element of table

T,.

148 VICP Computation Unit Library’s Functions

SPRUGN1C-November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

Thread=4:

There are four tables interleaved in the lookup table array. If the tables are called T,
T,, T3, and T,, then the memory layout of the lookup table array pointed by
table_base must look like the following:

If table_type=IMXTYPE_UBYTE or IMXTYPE_BYTE

table_base[]={

where t, ¥ is the kth element of table T,, t, “ is the kth element of table T,, t, ¥ is the
kth element of table T,, and t, is the kth element of table T,.

If table_type=IMXTYPE_USHORT or IMXTYPE_SHORT
table_base[]={

The input array contains indexes into the lookup tables, arranged in a cyclic manner:
Input_tab[1={l; %, 1,2 133 1,4 1,5, 1,5 157, ...}
where |, ¥ is an index of an element in T,, I, “is an index of an element of table T,,

and I, X is an index of an element of table T, and I, ¥ is an index of an element of
table T,.

The function imx_formatTLU() can be used to generate the array table_base[] for all
these multi-thread use cases.

The input array and the lookup table cannot both be in an image buffer.

Each input data point is rounded and saturated prior to lookup. Number of down shifts is
specified in the command, and saturation bounds can be specified by calling the
imxenc_set_saturation function.

Negative indexing is permitted when the input data array’s elements are signed. In this
case, the lookup table’s base address points to the element whose index is 0.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 149
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
Functions That Encode Computation Tasks www.ti.com
Example Single table lookup on 512 entries.
crmdl en = i nxenc_t abl e_I ookup(

data_ptr, /* point to input data array */

t abl e_base, /* point to | ookup table */

out put _ptr, /* point to output array */

512, /* width of input data array

| MXTYPE_USHORT,

| MXTYPE_SHORT,

| MXKOTYPE_SHORT, /* output |ntl6/byte */

0, /* nunmber of bits to downshift input before | ookup */

1, /* single table */

cndptr /* starting point for command sequence in nenory */

Constraints
e The input data array and lookup table cannot both be in an image buffer (A or B).
* The lookup table must be 128-bits aligned.

Performance The overhead time for this VICP API is ~ 30 cycles.

The estimated number of VICP cycles to perform the operation (except overhead time)
is:

amount_of_work x memory_conflict_factor / speedup_factor (86)
e amount_of work = compute_elements
« memory_conflict_factor:

Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 2

» speedup_factor:

thread speedup_factor
4 4
2 2
1 1
150 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.50 imxenc_tables_lookup

imxenc_tables_lookup Generic table lookup operation, allowing multiple lookups per input.

Syntax cmdl en = inxenc_tabl es_| ookup(
inputl ptr, /* Intl6*, starting address of input array */
input2_ptr, /* Int16*, starting address of table |ookup, 128-bits
al i gned*/
out put _ptr, /* Int16*, starting address of the output array */
nurPer Lookup, /* 1 nt16, nunber of input points per |ookup cycle,
12o0r 4%
conput ePoi nt s, /* Intl1l6, total nunmber of input points per table */
i nput _type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
tabl e_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
nuniThr eadsPer Table, /* Int16, 1, 2, 4 */
nunirabl es, /* Int16, nunber of tables */
dat a_of f set, /* Int16, offset between input sets */
tabl e_of fset, /* Int1l6, offset between tables */
out _of f set, /* Int16, offset between output sets */
cndpt r /* Intl6*, starting point of commuand sequence in menory*/
)
/* Int16, cndlen is the nunber of words witten to cnd nenory starting at cndptr*/
Description The difference between the function imxenc_table_lookup() is that each input element
pointed by inputl_ptr can produce up to 4 outputs, as specified by the input argument
numPerLookup.
Table 6-5 summarizes what the first four outputs would look like for different
combinations of numPerLookup and numThreadsPerTable input arguments. Highlighted
in bold are the most useful use cases.
Table 6-5. Initial Four Outputs for imxenc_tables_lookup Function
numPer numThreads Output
Lookup Per Table
1 1 output[0]=T1[input[0]], output[1]=T1[input[1]], output[2]=T1[input[2]], output[3]=T1[input[3]]
2 1 output[0]=T1[input[0]], output[1]=T1[input[2]], output[2]=T1[input[4]], output[3]=T1[input[6]]
4 1 output[0]=T1[input[0]], output[1]=T1[input[4]], output[2]=T1[input[8]], output[3]=T1[input[12]]
1 2 output[0]=T1[input[0]], output[1]=T2[input[0]], output[2]=T1[input[1]], output[3]=T2[input[1]]
2 2 output[0]=T1[input[0]], output[1]=T2[input[1]], output[2]=T1[input[2]], output[3]=T2[input[3]]
4 2 output[0]=T1[input[0]], output[1]=T2[input[2]], output[2]=T1[input[4]], output[3]=T2[input[6]]
1 4 output[0]=T1[input[0]], output[1]=T2[input[0]], output[2]=T3[input[0]], output[3]=T4[input[0]]
2 4 output[0]=T1[input[0]], output[1]=T2[input[0]], output[2]=T3[input[1]], output[3]=T4[input[1]]
4 4 output[0]=T1[input[0]], output[1]=T2[input[1]], output[2]=T3[input[2]], output[3]=T4[input[3]]

Also the function is able to iterate the lookup process several times over the same input
data set but with different tables if numTables > 1.

Here is the layout of the input array and table array for different values of
numThreadsPerTable:
Thread=1:

There is a single table in the lookup table array and all elements of the input array
are indexes in this unique table.

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 151

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

Thread=2:

There are two tables interleaved in the lookup table array. If the tables are called T,
and T,, then the memory layout of the lookup table array pointed by table base must
look like the following:

If table_type=IMXTYPE_UBYTE or IMXTYPE_BYTE
table_base[]={

/R I T R /I T T
tzl t22 t23 t24 tzs t26 t27 t28
t]_ 9 tl 10 t]_ 11 t]_ 12 t]_ 13 tl 14 t]_ 15 t]_ 16
tz 9 tz 10 t2 11 t2 12 tz 13 t2 14 t2 15 t2 16
}

If table_type=IMXTYPE_USHORT or IMXTYPE_SHORT
table_base[]={
t,r 4?4 ot
t,t 2 ot ot
[P L A

t,°> ¢ t7 8

where t, ¥ is the kth element of table T, and t, ¥ is the kth element of table T,.
The input array contains indexes into the lookup tables, arranged in a cyclic manner:
Input_tab[1={l,; %, L3 1,3 L4 15 LS 17,)
where 1, ¥ is an index of an element in T, and I, ¥ is an index of an element of table
T,.
Thread=4:

There are four tables interleaved in the lookup table array. If the tables are called T,,
T,, T4, and T,, then the memory layout of the lookup table array pointed by
table_base must look like the following:

If table_type=IMXTYPE_UBYTE or IMXTYPE_BYTE
table_base[]={

PET L AE A
Lt 2 ot ot
[AEEE AL A
(P A A A

where t, ¥ is the kth element of table T,, t, ¥ is the kth element of table T,, t, ¥ is the
kth element of table T,, and t, ¥ is the kth element of table T,.

152 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

Example

Constraints

Performance

If table_type=IMXTYPE_USHORT or IMXTYPE_SHORT

table_base[]={

ot 2
' ot,?2
t,t o2
}

The input array contains indexes into the lookup tables, arranged in a cyclic manner:
Input_tab[1={l; %, 1,2 133 1,4 1,5 1,5 157, ...}

The function imx_formatTLU() can be used to generate the array table_base[] for all

these multi-thread use cases.

The input array and the lookup table cannot both be in an image buffer.

Each input data point is rounded and saturated prior to lookup. Number of down
shifts is specified in the command, and saturation bounds can be specified by calling
the imxenc_set_saturation function.

Negative indexing is permitted when the input data array’s elements are signed. In
this case, the lookup table’s base address points to the element whose index is 0.

Single table lookup on 512 entries.

cndl en = inxenc_tabl es_| ookup(
data_ptr, /* point to input data array */
t abl e_base, /* point to | ookup table */
out put _ptr, /* point to output array */
512, /* width of input data array
| MXTYPE_USHORT,
| MXTYPE_SHORT,
| MKOTYPE_SHORT, /* output Intl6/byte */
0, /* nunmber of bits to downshift input before | ookup */
1, /* single table */
cndpt r /* starting point for comand sequence in nmenory */

The input data array and lookup table cannot both be in an image buffer (A or B).
The lookup table must be 128-bits aligned.

The overhead time for this VICP API is ~ 30 cycles.

_The estimated number of VICP cycles to perform the operation (except overhead time)

IS:
amount_of_work x memory_conflict_factor / speedup_factor (87)
» amount_of work = compute_elements
» memory_conflict_factor:
Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 2

SPRUGN1C-November 2009
Submit Documentation Feedback

VICP Computation Unit Library’s Functions 153

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

e speedup_factor:

thread speedup_factor
4 4
2 2
1 1
154 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.51 imxenc_table_lookup2D

imxenc_table_lookup2D Generic table lookup operation.

Syntax

Description

cmdl en = inxenc_tabl es_| ookup(
inputl ptr, /* Intl6*, starting address of input array */
input2_ptr, /* Int16*, starting address of table |ookup
128-bits aligned */
out put _ptr, /* Int16*, starting address of the output array */
nurPer Lookup, /* 1nt16, nunber of input points per |ookup cycle
12o0r 4%

conput ePoi nt s, /* Intl1l6, total nunmber of input points per table */
i nput _t ype, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */

/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
tabl e_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */

/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
nuniThr eadsPer Table, /* Int16, 1, 2, 4 */
nunirabl es, /* Int16, nunber of tables */
dat a_of f set, /* Int16, offset between input sets */
tabl e_of fset, /* Int1l6, offset between tables */
out _of f set, /* Int16, offset between output sets */
cndpt r /* Intl6*, starting point of commuand sequence in menory*/

)

/* Int16, cndlen is the nunber of words witten to cnd nenory starting at cndptr*/

The difference between the function imxenc_table_lookup() is that each input element
pointed by inputl_ptr can produce up to 4 outputs, as specified by the input argument
numPerLookup.

Table 6-6 summarizes what the first four outputs would look like for different
combinations of numPerLookup and numThreadsPerTable input arguments. Highlighted
in bold are the most useful use cases.

Table 6-6. Initial Four Outputs for imxenc_tables_lookup Function

numPer
Lookup

numThreads Output

Per Table

[y

1

output[0]=T1[input[0]], output[1]=T1[input[1]], output[2]=T1[input[2]], output[3]=T1[input[3]]

output[0]=T1[input[0]], output[1]=T1[input[2]], output[2]=T1[input[4]], output[3]=T1[input[6]]

output[0]=T1[input[0]], output[1]=T1[input[4]], output[2]=T1[input[8]], output[3]=T1[input[12]]

output[0]=T1[input[0]], output[1]=T2[input[0]], output[2]=T1[input[1]], output[3]=T2[input[1]]

output[0]=T1[input[0]], output[1]=T2[input[1]], output[2]=T1[input[2]], output[3]=T2[input[3]]

output[0]=T1[input[0]], output[1]=T2[input[2]], output[2]=T1[input[4]], output[3]=T2[input[6]]

output[0]=T1[input[0]], output[1]=T2[input[0]], output[2]=T3[input[0]], output[3]=T4[input[0]]

output[0]=T1[input[0]], output[1]=T2[input[0]], output[2]=T3[input[1]], output[3]=T4[input[1]]

AN INRERP[DDN

AR IDININIDNPRFP|P

output[0]=T1[input[0]], output[1]=T2[input[1]], output[2]=T3[input[2]], output[3]=T4[input[3]]

Also the function is able to iterate the lookup process several times over the same input
data set but with different tables if numTables > 1.

Here is the layout of the input array and table array for different values of
numThreadsPerTable:
Thread=1:

There is a single table in the lookup table array and all elements of the input array
are indexes in this unique table.

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 155

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

Thread=2:

There are two tables interleaved in the lookup table array. If the tables are called T,
and T,, then the memory layout of the lookup table array pointed by table base must
look like the following:

If table_type=IMXTYPE_UBYTE or IMXTYPE_BYTE
table_base[]={

/R I T R /I T T
tzl t22 t23 t24 tzs t26 t27 t28
t]_ 9 tl 10 t]_ 11 t]_ 12 t]_ 13 tl 14 t]_ 15 t]_ 16
tz 9 tz 10 t2 11 t2 12 tz 13 t2 14 t2 15 t2 16
}

If table_type=IMXTYPE_USHORT or IMXTYPE_SHORT
table_base[]={
t,r 4?4 ot
t,t 2 ot ot
[P L A

t,°> ¢ t7 8

where t, ¥ is the kth element of table T, and t, ¥ is the kth element of table T,.
The input array contains indexes into the lookup tables, arranged in a cyclic manner:
Input_tab[1={l,; %, L3 1,3 L4 15 LS 17,)
where 1, ¥ is an index of an element in T, and I, ¥ is an index of an element of table
T,.
Thread=4:

There are four tables interleaved in the lookup table array. If the tables are called T,,
T,, T4, and T,, then the memory layout of the lookup table array pointed by
table_base must look like the following:

If table_type=IMXTYPE_UBYTE or IMXTYPE_BYTE
table_base[]={

PET L AE A
Lt 2 ot ot
[AEEE AL A
(P A A A

where t, ¥ is the kth element of table T,, t, ¥ is the kth element of table T,, t, ¥ is the
kth element of table T,, and t, ¥ is the kth element of table T,.

156 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

If table_type=IMXTYPE_USHORT or IMXTYPE_SHORT

table_base[]={

ot 2
' ot,?2
t,t o2
}

The input array contains indexes into the lookup tables, arranged in a cyclic manner:
Input_tab[1={l, %, L2 133 1,4 1,°% L% 1,7, ...}
where 1, ¥ is an index of an element in T,, I, ¥ is an index of an element of table T,,

and |; ¥ is an index of an element of table T, and I, X is an index of an element of
table T,.

The function imx_formatTLU() can be used to generate the table lookups pointed to
by input2_ptr for all these multi-thread use cases.

Input array and the lookup table cannot both be in an image buffer.

Each input data point is rounded and saturated prior to lookup. Number of down
shifts is specified in the command, and saturation bounds can be specified by calling
the imxenc_set_saturation function.

Negative indexing is permitted when the input data array’s elements are signed. In
this case, the lookup table’s base address points to the element whose index is 0.

Example Single table lookup on 512 entries.
voi d i nxenc_t abl e_| ookup(
data_ptr, /* point to input data array */
t abl e_base, /* point to | ookup table */
out put _ptr, /* point to output array */
512, /* width of input data array
| MXTYPE_USHORT,
| MXTYPE_SHORT,
| MXKOTYPE_SHORT, /* output |ntl6/byte */
0, /* nunmber of bits to downshift input before | ookup */
1, /* single table */
cndpt r / starting point for command sequence in nmenory */

Constraints

Performance

The input data array and lookup table cannot both be in an image buffer (A or B).
The lookup table must be 128-bits aligned.

The overhead time for this VICP API is ~ 30 cycles.

The estimated number of VICP cycles to perform the operation (except overhead time)

is:
amount_of_work x memory_conflict_factor / speedup_factor (88)
e amount_of work = compute_elements
« memory_conflict_factor:
Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 2

SPRUGN1C-November 2009
Submit Documentation Feedback

VICP Computation Unit Library’s Functions 157

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

» speedup_factor:

thread speedup_factor
4 4
2 2
1 1
158 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.52 imxenc_3d_t

able_lookup

imxenc_3d_table_lookup Perform atetrahedral interpolation using a 3D table lookup for a 9x9x9 table

Syntax

Description

Example

or a 17x17x17 table. Lookup is performed on a 2D array of input data, with the
three inputs interleaved.

cmdl en = i nxenc_3d_t abl e_| ookup(
Int16 *input_ptr, /* starting address of input */
Int16 *table_ptr, /* starting address of table */
Int16 *output_ptr, /* starting address of output */
Int16 input_width, /* height of input array */
Int16 input_hei ght, /* width of input array */
Int16 table_size, /* 9/17, 9x9x9 table or 17x17x17 table */
Int16 out put_wi dth, /* height of output array */

I nt16 out put _hei ght, /* width of output array */
Int16 conpute_wi dth, /* height of compute bl ock */
Int16 conpute_height, /* width of conpute block */

Int16 input_type, /* unsigned |Int16/unsigned byte */
Int16 table_type, /* Int16/unsigned Int1l6 */

Int16 out put_type, /* I nt1l6/byte */

Int16 round_shift, /* shifting paranmeter (0..8) */

Int16 *cndptr
)i

This function performs a tetrahedral interpolation on a 2D array of data organized such
that the three inputs are interleaved. The tetrahedral interpolation is performed using a
9x9x9 lookup table or a 17x17x17 lookup table.

Input data can be byte or Intl16, but is always unsigned. Further, input data should be
saturated correctly such that after shifting the input data by round_shift, the data is
clipped to the range [0..8] for a 9x9x9 table and [0..16] for a 17x17x17 table. Input data
is arranged in triples such that input_width refers to the number of triples in a row of the
data buffer. The actual row width is three times larger. Since the output data is also
presented in sets of three, the output_width also refers to the number of triples in each
row and the actual buffer width is three times larger. Compute_width tells the function
how many output triples to calculate.

The output buffer of size 3*output_width x output_height and the input buffer of size
3*input_width x input_height should be larger than the compute block of size
3*compute_width x compute_height.

The parameter table_size determines the size of the table. If table_size = 9, the lookup
table is a 9x9x9 table (729 32-bit elements). If table_size = 17, the lookup table is a
17x17x17 table (4913 32-bit elements). Each 32-bit element contains three packed
values; bits 21-31 give the first color, bits 10-20 give the second color and bits 0-9 give
the third color. If the table contains signed data, the MSB of each packed element is the
sign bit. Table type must be IMXTYPE_SHORT or IMXTYPE_USHORT.

Consider data input — 8(H) x 16(W) x 3 matrix, lookup table 9x9x9 x 32-bit elements,
and output — 24(H) x 8(W) x 3 matrix. Compute 8(H) x 16(W) x 3 outputs. The following
illustrates what the API call would look like.

cmdl en = i mxenc_3d_t abl e_| ookup(
i nput _ptr, /* starting address of input */
table_ptr, /* starting address of table */
out put _ptr, /* starting address of output */
16, /* height of input array */
8, /* width of input array */
9, [* 9/17, 9x9x9 table or 17x17x17 table */
24, /* height of output array */
8, /* width of output array */
16, /* height of conpute bl ock */
8 /* width of conpute block */

| MXTYPE_SHORT, /* unsigned Int16/unsigned byte */
| MXTYPE_SHORT, /* 1 nt16/unsigned Int1l6 */

| MKOTYPE_SHORT, /* Int16/byte */

0, /* shifting parameter (0..8) */
cndptr);

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 159

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

Constraints
e input_width, output_width = compute_width
» input_height, output_height = compute_height
» table_size = 9 or table_size = 17

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor (89)

» amount_of work =

compute_width x compute_height x 3 (90)
 memory_conflict_factor:
Location of inputl Location of input2 Location of output memory_conflict_factor
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 2
160 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.53 imxenc_table_lookup_int

imxenc_table_lookup_int Perform a 2D table lookup with interpolation. Lookup is performed on a 2D

Syntax

Description

array of input data. Input data that lie between two points in the lookup table are
computed using a linear interpolation between these two points.

cmdl en = inmxenc_tabl e_| ookup_int (
Int16 *input_ptr, /* starting address of input */
Int16 *table_ptr, /* starting address of table */
Int16 *output_ptr, /* starting address of output */
Int16 input_width, /* height of input array */
Int16 input_hei ght, /* width of input array */
Int16 out put_width, /* height of output array */

I nt16 out put _hei ght, /* width of output array */
I nt 16 conput e_wi dt h, /* height of conpute block */
Int16 conmpute_height, /* width of compute block */

I nt16 input_type, /* Int16/ byte */

Int16 table_type, /* I nt1l6/byte */

I nt 16 out put _type, /* Int16/ byte */

Int16 round_shift, /* shifting paranmeter (0..8) */

Int16 thread, /* single thread, two-thread, or four-thread (1, 2, 4) */

Int16 *cndptr
)

This function performs a table lookup with interpolation on the input data. After shifting
the input data by round_shift bits, the integer part and the fractional part of the number is
computed using:

ip = (input >> round_shift)
fp = input — ip

The fractional part is used to interpolate between two points in the lookup table,
table_ptr[ip] and table_ptr[ip+1]. The interpolation is a linear interpolation, so the final
output value is computed using:

output = (1 — fp / (2*round_shift)) x table_ptr[ip] + (fp / (2*round_shift)) x table_ptr[ip+1]
output = output >> round_shift

The bit shift operation applied to the input data is always truncation. The shift operation
performed on the output data is rounding. The amount of round_shift is constrained to be
less than or equal to 8.

Input data and table data can be byte or 16-bits word, signed or unsigned. The output
data can be byte or 16-bits word.

An output block of compute_width x compute_height is computed inside the output
buffer of size output_width x output_height. Thus, both output_width and input_width
should be greater than or equal to compute_width. Also, output_height and input_height
should be greater than or equal to compute_height.

Tables need to be aligned on 128-bit boundaries.

Multi-threaded table lookup allows VICP to perform parallel lookup operations. For this
operation, the lookup table needs to be organized in a certain manner. Also, the tables
are interleaved within the table storage buffer. For multi-threaded lookup, each cycle of
this interleaved table is 128-bit aligned. So for 16-bit table data in two-thread mode, the
table is stored as:

t0[0] tO[1] tO[2] t0[3] t1[0] tl[1] tl[2] t1[3] tO[4] tO[5] to[6] tO[7] tl[4] (5] ti[6] ti[7]

After eight 16-bit table values (128 bits), the cycle repeats. For four-thread lookup, only
two-values from each table are in each cycle. This also gives 128-bit alignment, since
two values are taken from four threads. For 8-bit data and two-thread mode, 8 values
from each table are in each cycle. For four-thread mode with 8-bit data, 4 values from
each table are in each cycle. Each of these cases gives 128-bit alignment for each cycle
of the interleaved tables.

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 161

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

Example

Constraints

Performance

Consider data input — 8(H) x 16(W) matrix, lookup table contains Int16 elements, and
output — 24(H) x 8(W) matrix. Compute 8(H) x 16(W). The following illustrates what the

API call would look like.

cmdl en = inxenc_tabl e_l ookup_int (

i nput _ptr, /* starting address of input */
table_ptr, /* starting address of table */
out put _ptr, /* starting address of output */
16, /* height of input array */

8, /* width of input array */

24, /* height of output array */

8, /* width of output array */

16, /* height of compute bl ock */

8 /* width of conpute block */

I MKTYPE_SHORT, /* Int16/byte */
| MKTYPE_SHORT, /* Int16/byte */
| MKOTYPE_SHORT, /* Int16/byte */

4, /* shifting paranmeter (0..8) */
2, /* 2-thread | ookup (can be 1, 2, or
cndptr);

* input_width, output_width = compute_width

* input_height, output_height = compute_height
» round_shift is between 0 and 8
 threadcanbe 1, 2,0or4

4)*/

» table data must be aligned on 128-bit boundary in memory (i.e. 4 LSB of address are

0).
The overhead time for this VICP API is ~ 30 cycles.

The estimated number of VICP cycles to perform the operation (except overhead time)

is:

amount_of_work x memory_conflict_factor / speedup_factor
e amount_of work =

compute_width x compute_height
* memory_conflict_factor:

(91)

(92)

Location of inputl Location of input2 Location of output memory_conflict_factor
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 2

e speedup_factor = thread

162 VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

SPRUGN1C-November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.54 imxenc_table_lookup_32bit

imxenc_table_lookup_32bit Perform a 2D table lookup with 32-bit table data.

Syntax

Description

Example

t0[0]

cmdl en = inmxenc_tabl e_| ookup_32bit (

Int16 *input_ptr, /* starting address of input */
Int16 *table_ptr, /* starting address of table */
Int16 *output_ptr, /* starting address of output */
I nt 16 i nput _wi dt h, /* height of input array */
Int16 input_hei ght, /* width of input array */

I nt 16 out put _wi dt h, /* height of output array */

I nt 16 out put _hei ght, /* width of output array */
I nt 16 conput e_wi dt h, /* height of conpute block */
Int16 conmpute_height, /* width of conpute block */

I nt 16 i nput _type, /* Int16/ byte */
Int16 round_shift, /* shifting paranmeter (0..8) */
Int16 thread, /* single thread, two-thread, or four-thread (1, 2, 4) */

Int16 *cndptr
)

This function performs a table lookup for a table with 32-bit data. The table index is
formed by shifting the input data by round_shift bits and rounding the result. This index is
used to retrieve the 32-bit data from the lookup table.

A block of compute_width x compute_height is taken from the input block and generates
an output block of compute_width x compute_height in the output buffer. Input data can
be IMXTYPE_BYTE or IMXTYPE_SHORT. Table data is forced to be
IMXTYPE_USHORT and output data is forced to be IMXOTYPE_SHORT.

Table data must be aligned on 128-bit boundaries. The table contains 32-bit data (two
16-bit unsigned shorts).

Multi-threaded lookup can also be performed to reduce computation time. In this case,
the tables must be arranged in a certain manner. The tables are interleaved. Each cycle
of the table must be aligned on a 128-bit boundary. For two-thread lookup, two 32-bit
values from each table are in each cycle. The table arrangement for this case is:

t0[1] t1[0] t1[1] t0[2] t0[3] t1[2] t1[3]

Each cycle contains four 32-bit values to ensure 128-bit alignment. For four-thread
lookup, each of the four tables has one 32-bit value in each cycle. This also ensures
128-hit alignment.

Consider data input — 8(H) x 16(W), lookup table contains 32-bit elements, and output
— 24(H) x 8(W) matrix. Compute 8(H) x 16(W) outputs. The following illustrates what the
API call would look like.

cndl en = i nxenc_tabl e_l ookup_32bi t(
i nput _ptr, /* starting address of input */
table_ptr, /* starting address of table */
out put _ptr, /* starting address of output */
16, /* height of input array */
8, /* width of input array */
24, /* height of output array */
8, /* width of output array */
16, /* height of conmpute block */
8, /* width of conpute block */
| MKTYPE_SHORT, /* unsigned |nt16/unsigned byte */
4, /* shifting parameter (0..8) */
2, /* 2-thread | ookup (can be 1, 2, or 4)*/
cndptr)

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 163

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

Constraints
e input_width, output_width = compute_width
» input_height, output_height = compute_height
» round_shift is between 0 and 8
» threadcanbel, 2,0or4
» table data must be aligned on 128-bit boundary in memory (i.e. 4 LSB of address are

0).
Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor / speedup_factor (93)

e amount_of work =

compute_width x compute_height (94)

* memory_conflict_factor:

Location of inputl Location of input2 Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 3

IMGBUF IMGBUF COEFF 2

IMGBUF COEFF IMGBUF 2

IMGBUF COEFF COEFF 1

COEFF IMGBUF IMGBUF 2

COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 1

COEFF COEFF COEFF 2

e speedup_factor = thread

164 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

6.1.55 imxenc_transparentblt

imxenc_transparentblt 16 bits per pixel transparent blts

Syntax
crmdl en = i nxenc_transparentblt(
src, /* 1 nt16*, source bitmap with transparent color. 16 bpp */
bkg, /* Int16*, background bitmap. 16 bpp */
t enpScr at ch, /* Int16*, tenporary nenory of size 2*conpute_w dt h*conpute_hei ght words */
per ncr at ch, /* 1 nt16*, permanent nmenory of size 2 words, nust be in i MX coef nem */
dest, /* Int16*, destination bitmap. Can be equal to bkg */
src_w dth, /* Int1l6, src width */
src_hei ght, /* 1nt1l6, src height */
bkg_wi t h, /* Int16, background width */
bkg_hei ght, /* 1 nt16, background hei ght */
dest _wi dt h, /* I nt1l6, destination width */
dest _hei ght, /* Int16, destination height */

conput e_wi dt h, /* 1nt1l6, conpute width */

conpute_height, /* Intl16, conpute height */

transparentclr, /* Intl6, Value of transparent color */

cndptr /* Int1l6*, starting point of command sequence in nmenory */

)
/* Int1l6, crmdlen is the nunber of words witten to cnd nenory starting at crmdptr */

Description This function takes the source bitmap and makes one of the colors in the bitmap
transparent, then blts it to the background so that the background can be seen through
the bitmap's transparent color. The dest pointer can point to the same location as the
bkg pointer. In this case the background bitmap gets overwritten after execution of the
encoded VICP command.

Two types of scratch memory must be allocated in: a temporary scratch memory of size
2*compute_width*compute_height words and a permanent scratch buffer of size 2
words. The temporary scratch buffer can be re-used by other VICP functions needing a
temporary scratch buffer and its content can be overwritten after the corresponding
transparentblt VICP sequence is executed. Re-use of this temporary scratch buffer by
other VICP functions is highly recommended in order to optimize memory allocation in
the image buffer or coefficient buffers. In the other hand, the permanent scratch must
never be altered by the application. The imxenc_transparentblt() function initializes the 2
words contained in the scratch and imxUpdate_transparentblt() update those when it is
called. This permanent scratch must be allocated in the VICP coefficient memory.

The bitmaps involved are 16 bits per pixel bitmaps, which are usually RGB55 or
RGB565. The value of transparentclr specifies which color in the bitmap is treated as the
transparent color.

Be aware that the locations, dimensions of source, background, destination bitmaps and
the transparent color are fixed for the encoded VICP command. If the program wants to
execute the VICP commands that performs the transparentblt algorithm for a different
transparent color, it can call the function imxUpdate_transparentblt() to update an
existing VICP command sequence. If any other parameters must be changed, then the
application must call imxenc_transparentblt() all over again with the new parameters
since the imxUpdate_transparentblt() only allows for changing the transparent color

value.
Constraints compute_width must be a multiple of 8.
Performance Top performance is between 1.375 and 1.6 cycles/pixel, each pixel being a 16-bits word.

This top performance can be achieved if all the scratch buffers are in VICP coefficient
memory and the source, destination, background buffers are not in the same memories.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 165
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
Functions That Encode Computation Tasks www.ti.com
6.1.56 imxenc_transpose
imxenc_transpose Transposes a data matrix
Syntax cmdl en = inmkenc_transpose(
i nput _ptr; /* Intl6*, starting address of input array */
coeff_ptr, /* Int16*, starting address of scaling coefficient */
out put _ptr, /* Intl1l6*, starting address of the output array */
i nput _wi dt h, /* Int1l6, width of the input array */
i nput _hei ght, /* 1nt16, height of the input array */
out put _wi dt h, /* Int16, width of the output array */
out put _hei ght, /* 1nt16, height of the output array */
conput e_w dth /* Int16, conputation width */
conpute_height, /* Intl1l6, conputation height */
i nput _t ype, /* Int16, | MXTYPE UBYTE, | MXTYPE BYTE */
/* Int16, | MXTYPE_USHORT, | MXTYPE_SHORT */
coeff _type, /* Int16, | MXTYPE UBYTE, | MXTYPE BYTE */
/* Int16, | MXTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
crdpt r /* Int16*, starting point of command sequence in nenory */
)
/* Int1l6, crmdlen is the nunber of words witten to cnd nenory starting at cndptr*/
Description This function transposes a submatrix of size compute_width x compute_height of the
input data matrix (size input_width x input_height), and writes the transposed submatrix
into the output matrix of size output_width x output_height, aligned to the top left corner.
Each input data point can be scaled by the scaling factor defined in coef_ptr, and being
rounded and saturated prior to write out. Number of down shifts is specified in the
command, and saturation bounds can be specified by calling the imxenc_set_saturation
function.
Input and output are each selectable to be byte or short type.
Example 12x10 block transpose out of an array of size 16x16

Constraints

cmdl en = i nxenc_transpose(
data_ptr, /* point to input data array */
coef _ptr, /* point to scaling coefficient */
out put _ptr, /* point to output array */
16, /* width of input data array */
16, /* height of input data array */
16, /* width of output data array */
16, /* height of output data array */
12, /* conmputation width */
10, /* conputation height */

| MXTYPE_SHORT

| MXTYPE_USHORT

| MXOTYPE_SHORT

0 /* nunber of bits to downshift */

cndpt r /* starting point for comand sequence in nmenory */

e input_width, output_width = compute_width
* input_height, output_height = compute_height

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor (95)
e amount_of work =
compute_width x compute_height (96)
166 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
» memory_conflict_factor:
Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 3
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 2
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 167

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

6.1.57 imxenc_transpose_interleave

imxenc_transpose_interleave Transposes a data matrix with the option to read or write data in an
interleaved fashion

Syntax cmdl en = inxenc_transpose_interl eave(
i nput _ptr; /* Int1l6*, starting address of input array */
coeff_ptr, /* Intl6*, starting address of scaling coefficient */
out put _ptr, /* Int1l6*, starting address of the output array */
i nput _wi dt h, /* Int1l6, width of the input array */
i nput _hei ght, /* 1nt16, height of the input array */
i nput _step_x, /* Int16, horizontal step between each input data point */
i nput _step_y, /* 1nt1l6, vertical step between each input data point */

out put _wi dt h, /* Int1l6, width of the output array */

out put _height, /* Intl1l6, height of the output array */

output_step_x, [/* Intl6, horizontal step between each output data point */

output_step_y, [/* Intl6, vertical step between each output data point */

conpute_wi dth /* Int1l6, conputation width or nunber of data elenents to
transpose horizontally */

conpute_height, /* Intl1l6, conputation height or nunber of data elenents to
transpose vertically */

i nput _t ype, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
coeff_type, /* 1nt16, | MXTYPE UBYTE, | MXTYPE_BYTE */
/* 1nt16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _type, /* Int16, | MXOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1 nt16, nunber of bits to downshift before output */
cndptr /* Intl1l6*, starting point of command sequence in nenory */

)i
/* Int1l6, cmdlen is the nunber of word witten to cnd nmenory starting at cndptr*/

Description This function extracts a submatrix of size compute_width*compute_height from the input
data matrix (size input_width x input_height), and writes the transposed submatrix into
the output matrix of size output_width x output_height in an interleaved fashion dictated
by output_step x and output_step_y. The extraction of compute_width x compute_height
data points from the input matrix is also performed in an interleaved fashion using the
parameters input_step_x and input_step_y .

Each input data point can be scaled by the scaling factor defined in coef_ptr, and being
rounded and saturated prior to write out. Number of down shifts is specified in the
command, and saturation bounds can be specified by calling the imxenc_set_saturation
function.

Input and output are each selectable to be byte or short type.

Example 6x10 block transpose out of an array of size 16x16, with horizontal interleaving enabled
at the input
crdl en= i nxenc_transpose_interl eave(
data_ptr, /* point to input data array */
coef _ptr, /* point to scaling coefficient */
out put _ptr, /* point to output array */
16, /* width of input data array */
16, /* height of input data array */
2, /* Extract every other points in the sane row */
1, /* Extract every row */
6, /* width of output data array */
10, /* height of output data array */
1, /* No horizontal interleaving at the output */
1, /* No vertical interleaving at the output */
6, /* conmputation width */
10, /* conputation hei ght */
| MXTYPE_SHORT,

I MXTYPE_USHORT,
I MKOTYPE_SHORT,

0 /* nunmber of bits to downshift */
cndptr /* starting point for command sequence in nmenory */
)
168 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions That Encode Computation Tasks

Constraints
e input_width, output_width = compute_width
» input_height, output_height = compute_height

Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor (97)
e amount_of work =
compute_width x compute_height (98)
 memory_conflict_factor:
Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 3
IMGBUF IMGBUF COEFF 2
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF 2
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF 2
SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 169

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

6.1.58 imxenc_YCbCrPack

imxenc_YCbCrPack Packing YcbCr color data stored in separate components into either a YCbCr422
or a YCbCr444 packed format pixel array.

Syntax cndl en = i mkenc_YChCr Pack(
i nput _ptr; /* Intl6**, Starting address of the input array;
pointer to an array with the addresses of the 3 col or
conponents */

coeff_ptr, /* Intl6*, starting address of scaling coefficient */
out put _ptr, /* Int1l6*, starting address of the output array */
i nput _wi dt h, /* Int1l6, width of the input array */

i nput _hei ght, /* 1nt16, height of the input array */
out put _wi dt h, /* Int1l6, width of the output array */
out put _height, /* Intl1l6, height of the output array */

calc_width /* 1nt1l6, conputation width */
cal c_hei ght, /* 1 nt16, conputation height */
col or space, /* Intl6, Color format of the input & output data: */

[* 0:444->422, 1:422->422, 2:420->422 */
[* 3:422%->422, 4: 444->444, 5:422->444, 6:420->444 *|/
[* 7:422%->444 *|
/* If nost significant bit is set */
/* then each output col or conmponent occupies 16 bits */
/* instead of 8 bits */
/* If bit 14 is set */
/* then each input conponent occupies 8 bits */
/* instead of 16 bits */
round_shift, /* 1nt16, nunber of bits to downshift before output */
cndpt r /* Int1l6*, starting point of comand sequence in menory */

)

/* Intl6, cndlen is the nunber of words witten to cnd nenory starting at cndptr*/

Description This function packs the components of a color image into a single image. The output
image can be in 422 format or 444 format, while the input can be in 444, 422, 420 format
or a modified 422 format with vertical downsampling of the chroma samples instead of
the more common horizontal downsampling (422* in the table below). For 422 output,
the pixels are composed as: YCb YCr YCb YCr and for 444 output, the pixels are
composed as: YCb CrY CbCr YCb CrY etc. Each output component is assumed to be 8
bits or 16 bits depending on the value of the most significant bit of the parameter
colorformat. The size of each of the input elements is either 8 bits or 16 bits.

The routines takes a submatrix of size compute_width x compute_height of the input
data matrix (size input_width x input_height), and writes the submatrix into the output
matrix of size output_width x output_height, aligned to the top left corner. It is assumed
that the size of the color components is scaled according to the color format.

The meaning of output_width can be different depending on the colorformat parameter.
Table 6-7 summarizes the different units of output_width:
Table 6-7. Units for output_width Depending on colorformat

colorformat In format—out Size of Input Size of Each output_width unit
format Element Output Color
Component

0x0000 444422 16 bits 8 bits 16 bits

0x0001 422422 16 bits 8 bits 16 bits

0x0002 420—422 16 bits 8 bits 16 bits

0x0003 422*—422 16 bits 8 bits 16 bits

0x0004 444444 16 bits 8 bits 8 bits

0x0005 422444 16 bits 8 bits 8 bits

0x0006 420—444 16 bits 8 bits 8 bits

0x0007 422*—444 16 bits 8 bits 8 bits

0x4000 444422 8 bits 8 bits 16 bits

0x4001 422422 8 bits 8 bits 16 bits

170 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Table 6-7. Units for output_width Depending on colorformat (continued)
colorformat In format—out Size of Input Size of Each output_width unit
format Element Output Color
Component
0x4002 420422 8 bits 8 bits 16 bits
0x4003 422% 422 8 bits 8 bits 16 bits
0x4004 444444 8 bits 8 bits 8 bits
0x4005 422444 8 bits 8 bits 8 bits
0x4006 420444 8 bits 8 bits 8 bits
0x4007 422% 444 8 bits 8 bits 8 bits
0x8000 444422 16 bits 16 bits 32 bits
0x8001 422422 16 bits 16 bits 32 bits
0x8002 420422 16 bits 16 bits 32 bits
0x8003 422% 422 16 bits 16 bits 32 bits
0x8004 444444 16 bits 16 bits 16 bits
0x8005 422444 16 bits 16 bits 16 bits
0x8006 420444 16 bits 16 bits 16 bits
0x8007 422% 444 16 bits 16 bits 16 bits
0xC000 444422 8 bits 16 bits 32 bits
0xC001 422422 8 bits 16 bits 32 bits
0xC002 420422 8 bits 16 bits 32 bits
0xC003 422% 422 8 bits 16 bits 32 bits
0xC004 444444 8 bits 16 bits 16 bits
0xC005 422444 8 bits 16 bits 16 bits
0xC006 420444 8 bits 16 bits 16 bits
0xC007 422% 444 8 bits 16 bits 16 bits
Each input data point can be scaled by the scaling factor defined in coef_ptr, and being
rounded and saturated prior to write out. Number of down shifts is specified in the
command, and saturation bounds can be specified by calling the imxenc_set_saturation
function.

Example 1 Packing from 422 to 422 a 8x8 block of pixels out of an array of size 16x16 pixels and
write to an array of size 18x6. The input color format is 422, which means that there will
be one Cb and Cr value for each two Y values; so if the Y array is of size 16x16, then
each of the Cb and Cr arrays will be 8x16. The output will be 8 rows of 8 words each.
Int16 *arrayCol [3]={Y_ptr, Uptr, V_ptr};

crmdl en = i nmxenc_YcbCr Pack(
arrayCol , /* point to color conponents */
coef _ptr, /* point to scaling coefficient */
out put _ptr, /* point to output array */
16, /* width of input data array */
16, /* height of input data array */
8, /* width of output data array */
8, /* height of output data array */
8, /* conmputation width */
8, /* conput ati on hei ght */
1, |* 422 -> 422 color format */
0, /* nunber of bits to downshift */
cndptr /* starting point for the cnd sequence in nmenory */
)
SPRUGN1C—-November 2009 VICP Computation Unit Library’s Functions 171

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

Example 2

Constraints

Figure 6-17. imxenc_YChCrPack

16
A
16
8 +—>
v 8
A
Cb 8 Output
16
4
v
A
Cr 8
16
4
v
+—>
8

Packing from 422 to 444 a 8x8 block out of an array of size 16x16 and write to an array
of size 12x8. The input color format is 422, which means the data array for Cb, Cr is
each of size 8x16. The output size of each color component is 8 bits.

crdl en = i mxenc_YchCr Pack(

arrayCol , /* point to col or conponents */
coef _ptr, /* point to scaling coefficient */
out put _ptr, /* point to output array */

16, /* width of input data array */
16, /* height of input data array */
3*8, /* width of output data array */
8, /* height of output data array */
8, /* conputation width */

8, /* conputation hei ght */

5, [* 422 -> 444 color format */

0, /* nunmber of bits to downshift */
cndptr /* starting point for the cnd sequence in nenory */

« If the input color format is 422 or 420 the size of the input color signal is assumed to
be only half (quarter) of the size of the luminance signal Y.

» compute_height and input_height must be < 256
e compute_width must be < 512.
e compute_width must be even.

Performance The overhead time for this VICP API is ~ 135 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor / speedup_factor (99)
e amount_of work =
compute_width x compute_height (100)
172 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks

* memory_conflict_factor:

Location of data Location of coeff Location of output memory_conflict_factor
IMGBUF IMGBUF IMGBUF 3

IMGBUF IMGBUF COEFF 2

IMGBUF COEFF IMGBUF 2

IMGBUF COEFF COEFF 1

COEFF IMGBUF IMGBUF 2

COEFF IMGBUF COEFF 1

COEFF COEFF IMGBUF 1

COEFF COEFF COEFF 2

» speedup_factor and maximum value for compute_width:

compute_width multiple only of speedup_factor Maximum value of compute_width

8 8 1024

4 4 512

2 2 256

1@ 1 128

@ That is, compute_width is odd.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 173

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions That Encode Computation Tasks www.ti.com

6.1.59 imxenc_YCbCrUnpack?2

imxenc_YCbCrUnpack2 Unpack YCbCr 4:2:2 or 4:4:4 composite video data and store as separate
component arrays in one of 4:4:4, 4:2:2, or 4:2:0 formats. Complementary function
of imxenc_YCbCrPack().

Syntax cmdl en = i mkenc_YCbCr Unpack2(
i nput _ptr; /* Intl6*, starting address of input array */
coeff_ptr, /* Intl1l6*, starting address of scaling coefficient */
out put _ptr, /* Intl6**, Starting address of the output array;

pointer to an array with the addresses of the 3
col or conponents */

i nput _wi dth, /* Int1l6, width of the input array */

i nput _hei ght, /* 1nt16, height of the input array */

out put _wi dt h, /* Int16, width of the output array */

out put _hei ght, /* 1 nt16, height of the output array */

calc_wi dth /* Int16, conputation width */

cal c_hei ght, /* 1 nt16, conputation height */

col or space, /* Int1l6, Color format of the input & output data:

[* 0:422->444, 1:422->422, 2:422->420 */
[* 3:444->444, 4:444->422, 5:444->420, 6:422->420 */
/* |If nost significant bit is set */
/* then each input col or conponent spans 16 bits */
/* instead of 8 bits */
out put Y_type, /* Int1l6, type of the unpacked Y conponents */
/* | MKOTYPE_BYTE, | MXOTYPE_SHORT */
out put CbCr _type, /* Intl1l6, type of the unpacked chrom nance */
/* conponents */
/* | MKOTYPE_BYTE, | MXOTYPE_SHORT */

round_shift, /* 1 nt16, nunber of bits to downshift before output*/
cndptr /* Int1l6*, starting point of comand sequence in
menmory */

)s

/* Intl6, crmdlen is the nunber of words witten to cnd nenory starting at cndptr*/

Description This function unpacks a single YcbCr 4:2:2 or 4:4:4 composite video data array into 3

separate component arrays. The pixels of input array are composed as: YCb YCr YCb
YCr for 4:2:2 format or YCb CrY CbrCr YCb for 4:4:4 format. Each input component is
assumed to be 8-bit wide or 16 bits, depending on the value of the most significant bit of
parameter colorformat. The output data format can be either 4:4:4, 4:2:2, or 4:2:0. In the
output, Y block is followed by Cb block and then Cr block. The output Y components are
stored as type outputY_type and the output chrominance components are stored as type
outputCbCr_type.

The routines takes a sub-array of size compute_width x compute_height of the input
data array (size input_width x input_height). The sub-array is reorganized into the
corresponding sub-array of an output array of size output_width x output_height for Y
component. The Y array is followed by the subsequent output arrays of output_width x
output_height for Cb and Cr components for 4:4:4 and 4:2:2 formats, or the subsequent
arrays of output_width x output_height/2 in case of 4:2:0 format.

The meaning of input_width can be different depending on the parameter colorformat.
Table 6-8 summarizes the different units of input_width:
Table 6-8. Units for input_width Depending on colorformat

colorformat In format—Out Size of Each Input input_width Unit Input Pixel Format
format Color Component
0x0 422444 8 bits 16 bits YCbYCr
0ox1 422422 8 bits 16 bits YCbYCr
0x2 422420 8 bits 16 bits YCbYCr
0x3 444444 8 bits 8 bits YCb CrY CbrCr
YCb
0x4 444422 8 bits 8 bits YCb CrY CbrCr
YCb
174 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
www.ti.com Functions That Encode Computation Tasks
Table 6-8. Units for input_width Depending on colorformat (continued)
colorformat In format—Out Size of Each Input input_width Unit Input Pixel Format
format Color Component

0x5 444—420 8 bits 8 bits YCb CrY CbrCr
YCb

0x6 422*—420 8 bits 16 bits CbYCrY

0x8000 422444 16 bits 32 bits YCbYCr

0x8001 422422 16 bits 32 bits YCbYCr

0x8002 422420 16 bits 32 bits YCbYCr

0x8003 444444 16 bits 16 bits YCb CrY CbrCr
YCb

0x8004 444422 16 bits 16 bits YCb CrY CbrCr
YCb

0x8005 444420 16 bits 16 bits YCb CrY CbrCr
YCb

Each input data point can be scaled by the scaling factor defined in coef ptr, and being

rounded and saturated prior to write out. Number of down shifts is specified in the

command, and saturation bounds can be specified by calling the imxenc_set_saturation

function.

For compatibility with earlier versions of the VICP library, the function

imxenc_YCbCrUnpack() is provided as a macro wrapper. This function calls

imxenc_YChbCrUnpack2() with the input variables ‘outputY_type” and “outputUV_type”

set to IMXOTYPE_SHORT.

Example Unpacking a 14x12 block out of an array of size 16x16 and write to an array of size
16x12. The input colorformat is 422 and the output color format is 420 which means the
output data array for Cb, Cr is of size 10x11.

Int16 *arrayCol [3]={Y_ptr, Uptr, V_ptr};

crdl en = i mkenc_YchCr Unpack?2(

data_ptr, /* point to input data array */
coef _ptr, /* point to scaling coefficient */
arrayCol , /* point to output array */
16, /* width of input data array */
16, /* height of input data array */
16, /* width of output data array */
12, /* height of output data array */
14, /* conputation width */
12, /* conputation hei ght */
2, /* 420 color format */
| MXOTYPE_SHORT,
| MXOTYPE_SHORT,
0, /* nunmber of bits to downshift (*coef_ptr = 1) */
cndptr /* starting point for the cnd sequence in nenory */

)

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 175

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions That Encode Computation Tasks

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 6-18. imxenc_YCbhCrUnpack2

Input

16

¢ —r

A A

»
»

A

14

12
16

Constraints

Output

16

—>

<
<

L

14

A

12

» If the color format is 422 (or 420), the output chrominance data are assumed to be
half (or quarter) of the size of the luminance signal Y. The user has to properly set up
the starting address of the output chrominance data using *output_ptr][].

e Input must be of type SHORT.
« compute_height and input_height must be < 256.
e compute_width must be multiple of 4 and < 512.

Performance The overhead time for this VICP API is ~ 135 cycles.

The estimated number of VICP cycles to perform the operation (except overhead time)

IS:

amount_of_work x memory_conflict_factor / 4

e amount_of work =

(101)

compute_width x compute_height + (compute_width + 1) x compute_height / (vs x hs) (202)

The vs and hs parameters have the following values:

— YUV444: hs=1 and vs=1

— YUVA422: hs=2 and vs=1

— YUV420: hs=2 and vs=2
* memory_conflict_factor:

Location of data

Location of coeff

Location of output

memory_conflict_factor

IMGBUF
IMGBUF
IMGBUF
IMGBUF
COEFF
COEFF
COEFF
COEFF

IMGBUF
IMGBUF
COEFF
COEFF
IMGBUF
IMGBUF
COEFF
COEFF

IMGBUF
COEFF
IMGBUF
COEFF
IMGBUF
COEFF
IMGBUF
COEFF

N P P NP NN ®

176

VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

SPRUGN1C-November 2009

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions That Encode Computation Tasks

6.1.60

imxenc_y2blkseq2

imxenc_y2blkseq2 Reorganize a NxM 2D matrix into a (N*M/8)x8 matrix (or storing data in 8x8 block

Syntax

Description

Example

Constraints

sequentially)

cmdl en = i nxenc_y2bl kseq2(

i nput _ptr; /* Intl6*, starting address of input array */
coeff_ptr, /* Intl1l6*, starting address of scaling coefficient */
out put _ptr, /* Intl6*, starting address of the output array */

i nput _wi dt h, /* Int1l6, width of the input array */
input _height, /* Intl6, height of the input array */

no_bl ks_x, /* Int1l6, width in nunber of 8x8 blks */
no_bl ks_y, /* Int16, height in nunber of 8x8 blks */
i nput _t ype, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */
/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
coeff_type, /* Int16, | MKTYPE_UBYTE, | MXTYPE_BYTE */

/* Int16, | MKTYPE_USHORT, | MXTYPE_SHORT */
out put _t ype, /* Int16, | MKOTYPE_BYTE, | MXOTYPE_SHORT */
round_shift, /* 1nt16, nunber of bits to downshift before output */
cndpt r /* Int16*, starting point of command sequence in menory */

)

/* Intl6, cndlen is the nunber of words witten to cnd nenory starting at cndptr*/

This function reorganizes the data into a block sequential fashion.

Figure 6-19. imxenc_y2blkseq2

1

2
314 3
4

Note: input’s and output’s data types are IMXTYPE_SHORT.

Normally, only the data is reorganized and the quantities do not change, so the Int16
word pointed by coeff_ptr contains 1, and round_shift = 0. Otherwise, during the
reorganization, each element of the output array is scaled by (*coeff_ptr / 2*round_shift).

For compatibility with earlier versions of the VICP library, the function imxenc_y2blkseq()
is provided as a macro wrapper. This function calls imxenc_ y2blkseq2() with the input
variables input_type and coeff_type set to IMXTYPE_SHORT and output_type set to
IMXOTYPE_SHORT.

Mapping a 16x16 block into a 8x64 block.
cmdl en = i nxenc_y2bl kseq2(

data_ptr, /* point to input data array */

coeff_ptr, /* point to scalar scaling factor */

out put _ptr, /* point to output array */

16, /* width of input data array */

16, /* height of input data array */

2, /* Number of processed input blocks horizontally */
2, /* Number of processed input blocks vertically */
| MXTYPE_SHORT,

| MXTYPE_SHORT,

| MXOTYPE_SHORT,

0, /* nunber of bits to downshift */

cndpt r /* starting point for comand sequence in nmenory */

)i
no_blk_x and no_blks_y < 256

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 177

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
Functions That Encode Computation Tasks www.ti.com
Performance The overhead time for this VICP API is ~ 30 cycles.
The estimated number of VICP cycles to perform the operation (except overhead time)
is:
amount_of_work x memory_conflict_factor (103)
e amount_of work =
8 x no_blks_x x no_hlks_y (104)

 memory_conflict_factor:

Location of input Location of coeff Location of output memory_conflict_factor

IMGBUF IMGBUF IMGBUF (2+1/ (no_blks_x x no_blks_y x 8))
IMGBUF IMGBUF COEFF 1
IMGBUF COEFF IMGBUF 2
IMGBUF COEFF COEFF 1
COEFF IMGBUF IMGBUF (1+1/ (no_blks_x x no_blks_y x 8))
COEFF IMGBUF COEFF 1
COEFF COEFF IMGBUF 1
COEFF COEFF COEFF (1+1/ (no_blks_x x no_blks_y x 8))
178 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Functions Used for Updating Input, Coef and Output Address Pointers

6.2 Functions Used for Updating Input, Coef and Output Address Pointers

These functions are used to modify specific parameters of existing VICP sequences instead of
re-encoding whole imxenc_<computation> functions.

6.2.1 imxUpdate_inputPtr

imxUpdate_inputPtr Update the pointer to input data of an VICP opcode sequence previously
generated by imxenc_<computation>

Syntax voi d inmxUpdate_inputPtr(
data_init, /* Intl6*, new pointer to input data */
hi ghbyt e, /* Int16*, Not used, for backward conpatibility */
cndPt r /* 1Intl1l6*, starting point of comand sequence in nmenory */

)

Description cmdPtr must point into the VICP memory to the first word of the opcode sequence
corresponding to the imxenc_<computation> whose pointer to input data needs to be
changed.

data_init is in DSP memory map and points to image buffers or VICP memory.
highbyte is not used by the function

This function cannot be used to update the pointer of a sequence generated by the
following APls:

» imxenc_cfa_hg_interpolation

* imxenc_ycbcrpack

* imxenc_ycbcrunpack

* imxenc_alphablend

e imxenc_alphablendYUV422|

e imxenc_blkAverage

» imxenc_blkVariance

* imxenc_color_spc_conv

* imxenc_median3x3

* imxenc_pack422

e imxenc_recursiveFilterVertlstOrder

* imxenc_rgbpack

» imxenc_rgbunpack

* imxenc_sum_abs_diff

* imxenc_sum_array_op

* imxenc_transparentblt

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

179

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Functions Used for Updating Input, Coef and Output Address Pointers

13 TEXAS
INSTRUMENTS

www.ti.com

6.2.2 imxUpdate_coefPtr

imxUpdate_coefPtr Update the pointer to coefficients data or second input data of a VICP opcode
sequence previously generated by imxenc_<computation>

Syntax voi d i mkUpdate_coef Ptr(
ptr_init, /* Intl6*, new pointer to coefficients data */
hi ghbyte, /* Int16*, Not used, for backward conpatibility */
cndpt r

)

Description

/* Int16*, starting point of comand sequence in menory */

cmdPtr must point into the VICP memory to the first word of the opcode sequence

corresponding to the imxenc_<computation> whose pointer to coef or second input data
needs to be changed.

ptr_init is in DSP memory map and points to image buffers or VICP memory.

highbyte is not used by the function

This function cannot be used to update the pointer of a sequence generated by the

following APIs:

» imxenc_cfa_hqg_interpolation
* imxenc_ycbcrpack

* imxenc_ycbcrunpack

e imxenc_alphablend

e imxenc_alphablendYUV422|
» imxenc_blkAverage

» imxenc_blkVariance

* imxenc_color_spc_conv

* imxenc_median3x3

e imxenc_pack422

e imxenc_recursiveFilterVertlstOrder
» imxenc_rgbpack

* imxenc_rgbunpack

e imxenc_sum_abs_diff

e imxenc_sum_array_op

e imxenc_transparentblt

180 VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

SPRUGN1C-November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions Used for Updating Input, Coef and Output Address Pointers

6.2.3

imxUpdate_outputPtr

imxUpdate_outputPtr Update the pointer to output data of an VICP opcode sequence previously

generated by imxenc_<computation>

Syntax

Description

i mxUpdat e_out put Pt r (

outPtr, /* 1ntl6*,
hi ghbyte, /* Int16*, Not used,
cndPt r /* 1ntl6*,

)

new poi nter to output data */
for backward conmpatibility */
starting point of command sequence in menory */

cmdPtr must point into the VICP memory to the first word of the opcode sequence

corresponding to the imxenc_<computation> whose pointer to output data needs to be
changed.

outPtr is in DSP memory map and points to image buffers or VICP memory.

highbyte is not used by the function

This function cannot be used to update the pointer of a sequence generated by the

following APIs:

imxenc_cfa_hq_interpolation
imxenc_ycbcrpack
imxenc_ycbcrunpack
imxenc_alphablend
imxenc_alphablendYUV422|
imxenc_blkAverage
imxenc_blkVariance
imxenc_color_spc_conv
imxenc_median3x3
imxenc_pack422
imxenc_recursiveFilterVertlstOrder
imxenc_rgbpack
imxenc_rgbunpack
imxenc_sum_abs_diff
imxenc_sum_array_op
imxenc_transparentblt

SPRUGN1C-November 2009
Submit Documentation Feedback

VICP Computation Unit Library’s Functions

Copyright © 2009, Texas Instruments Incorporated

181

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions Used for Updating Input, Coef and Output Address Pointers www.ti.com

6.2.4 imxUpdate_alphablend

imxUpdate_alphablend Update the colorformat (RGB555 or RGB565) value used in an alphablend

Syntax

Description

Important Note

VICP opcode sequence previously generated by imxenc_alphablend().

i mxUpdat e_al phabl end(
perntcratch, /* Intl6* pointer to the 7 words in VICP coef mem for permanent
scratch */
colorformat, /* Intl6 new value of input colorformat, RGB565=0 or RGB555=1 */
cndptr /* Intl6* cmdptr */
)i

This function will update the permanent scratch buffer so that the same alphablend VICP
sequence can blend a source bitmap with a background bitmap that has a different
colorformat than the one originally used when calling imxenc_alphablend().

permScratch must be the same pointer passed to the imxenc_alphablend() function that
encoded the VICP command sequence pointer by cmdptr.

Since this function needs to update the VICP command memory and also the permanent
scratch memory originally initialized by imxenc_alphablend(), it will automatically switch
VICP coefficient buffers and the VICP command buffer to DSP access when it is
executed. The buffer switch is also automatically restored to its previous value upon exit
of the function. That means this function must be called when VICP is not executing.

182 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

www.ti.com

Functions Used for Updating Input, Coef and Output Address Pointers

6.2.5 imxUpdate_rgbpack

mxUpdate_rgbpack Update the colorformat (RGB555 or RGB565) value used in a rgbpack VICP

Syntax

Description

Important Note

opcode sequence previously generated by imxenc_rgbpack().

i mxUpdat e_r gbpack(
perntcratch, /* Int16* pointer to the 5 words in VICP coef mem for pernanent
scratch */
colorformat /* Intl1l6 new val ue of output colorformat, RGB565=0 or RGB555=1 */

)

This function will update the permanent scratch buffer so that the same rgbpack VICP
sequence can pack R,G,B planes into a different colorformat than the one originally used
when calling imxenc_rgbpack().

permScratch must be the same pointer passed to the imxenc_rgbpack() function that
encoded the VICP command sequence pointer by cmdptr.

Since this function needs to update the permanent scratch memory originally initialized
by imxenc_rgbpack(), it will automatically switch VICP coefficient buffers to DSP access
when it is executed. The buffer switch is also automatically restored to its previous value
upon exit of the function. That means this function must be called when VICP is not
executing.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 183
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions Used for Updating Input, Coef and Output Address Pointers www.ti.com

6.2.6 imxUpdate_rgbunpack

imxUpdate_rgbunpack Update the colorformat (RGB555 or RGB565) value used in a rgbunpack VICP

Syntax

Description

Important Note

opcode sequence previously generated by imxenc_rgbunpack().

i mxUpdat e_r gbunpack(
perntcratch, /* Intl6* pointer to the 4 words in VICP coef mem for permanent
scratch */
colorformat, /* Intl6 new value of input colorformat, RGB565=0 or RGB555=1 */
cndptr /* Intl6* cmdptr */
)i

This function will update the permanent scratch buffer so that the same rgbunpack VICP
sequence can unpack 16 bpp RGB data from a different colorformat than the one
originally used when calling imxenc_rgbunpack().

permScratch must be the same pointer passed to the imxenc_rgbunpack() function that
encoded the VICP command sequence pointer by cmdptr.

Since this function needs to update the VICP command memory and also the permanent
scratch memory originally initialized by imxenc_rgbunpack(), it will automatically switch
VICP coefficient buffers and the VICP command buffer to DSP access when it is
executed. The buffer switch is also automatically restored to its previous value upon exit
of the function. That means this function must be called when VICP is not executing.

184 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions Used for Updating Input, Coef and Output Address Pointers

6.2.7 imxUpdate_transparentblt

imxUpdate_transparentblt Update the transparent color value used in a transparentblt VICP opcode

Syntax

Description

Important Note

sequence previously generated by imxenc_transparentblt().

i mxUpdat e_transparentbl t (

per ncr at ch, /* I nt16* pointer to the permscratch buffer */
transparentclr, /* Intl16 new value for transparent color */
cndpt r /* short* cmdptr */

)

This function will update the VICP command sequence corresponding to a transparentblt
algorithm so that a transparent color value different than the one that was originally used
for encoding the sequence is used next time the sequence is run.

cmdPtr must point into the VICP command memory to the first word of the opcode
sequence corresponding to the imxenc_transparentblt() whose transparent color value
needs to be changed.

permScratch must be the same pointer passed to the imxenc_transparentblt() function
that encoded the VICP command sequence pointer by cmdptr.

Since this function needs to update the VICP command memory and also the permanent
scratch memory originally initialized by imxenc_transparentblt(), it will automatically
switch VICP coefficient buffers and the VICP command buffer to DSP access when it is
executed. The buffer switch is also automatically restored to its previous value upon exit
of the function. That means this function must be called when VICP is not executing.

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 185

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions Used for Setting Up Coefficients www.ti.com

6.3 Functions Used for Setting Up Coefficients

These functions are used to initialize the VICP coefficient memory with coefficients that need to be
arranged in a certain format.

6.3.1 imx_cfa_hq_setup

imx_cfa _hq_setup Set up coefficient array for high-quality CFA data filtering

Syntax Int16 length= imx_cfa_hqg_setup (Intl16 *coeff _ptr,
Int16 filterldentifier,
Int16 phase,
Int16 qShift);
Parameters
coeff_ptr Int16* Pointer to target coefficient array
filterldentifier Int16 Identifier to filter used. Currently only
VICP_CFA_HQ_5x5_COEFS supported.
phase Int16 Which color at upper-left corner of input
gShift Int16 gShift parameter
length Int16 Number of 16-bit words written
Description This routine produces the filter coefficients that are required by
imxenc_cfa_hq_interpolation(). To select which filter to use, set the argument
filterIndentifier. Currently only 5x5 filter supported by selecting
VICP_CFA_HQ_5x5 COEFS.
The argument gShift is the same as the one passed to imxenc_cfa_hq_interpolation().
Generally 9 is a good value to pass.
The number of 16-bits words written into memory location pointed by coeff ptr is:
3 x 4 x coeff_width x coeff_height
The meaning of the phase argument is illustrated in Figure 6-20:
186 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Functions Used for Setting Up Coefficients

Figure 6-20. imx_cfa_hq_setup

cbl B|GH B| |[B |Gb| B [Gb
R|]Gr| R |Gr Grl] R|Gr| R
cbl B|GH B| [B |Gb| B |Gb

R|Gr] R|Gr Grl R|Gr| R

phase 0 phase 1

R|GrlR|Gr] |Gr|[R |Gr|R
Gb| B |Gb| B B |Gb| B |Gb
R|Gr| R |Gr Gr| R|Gr|R
Gb| B|Gb| B B |Gb| B |Gb

phase 2 phase 3

SPRUGN1C-November 2009

Submit Documentation Feedback

VICP Computation Unit Library’s Functions 187

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Functions Used for Setting Up Coefficients www.ti.com

6.3.2 imx_fir_poly_setup_coeff

imx_fir_poly_setup_coeff Function to setup the coefficients of a 1D filter kernel for polyphase filtering

with imxenc_fir_poly_col()

Syntax length = inx_fir_poly_setup_coeff (
Intl16 *src_p, Intl6 *dst_p,
Int16 taps
Int16 snpl_nom |Int1l6 snpl_denom;
Parameters
src_p Int16* Starting address of filter coefficients
dst p Int16* Destination address for polyphase filter coefficients
taps Int16 Number of filter coefficients
smpl_nom Int16 Nominator of rational sampling factor (upsampling)
smpl_denom Int16 Denominator of rational sampling factor
(downsampling)
length Int16 Number of coefficients written into memory starting at
dst p
Description This function arranges the coefficients of a 1D FIR filter in a suitable way for the
polyphase filter function imxenc_fir_poly col(). The ordering and organization depends
on the sampling ratios.
The number of coefficients written is:
smpl_nom x (smpl_denom + floor(taps / smpl_nom)) (106)
The filter should be symmetric since imxenc_fir_poly _col() uses a correlation-based
approach to perform filtering.
188 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS

www.ti.com

Functions Used for Setting Up Coefficients

6.3.3 imx_formatTLU

imx_formatTLU

Syntax

Parameters

Description

Format two lookup tables into one destination table to be used for dual table
lookup.

bytes_generated = inx_format TLU (Ui nt16 nunTables, U ntl1l6 **tablePtrArray,
Ui nt16 *dst, U ntl6 nunEl enfTabl e, Uint1l6 tabl eType);

numTables Uintl6 1,2,0or4

tablePtrArray Uint16* Point to an array of pointers. Each pointer pointing to
a lookup table.

dst Uint16* Point to location where the formatted table is written.

numElemTable Uintl6 Number of elements in each table

tableType Uint16 IMXTYPE_SHORT, IMXTYPE_BYTE

This function is used to prepare lookup tables that will be used in the context of
imxenc_table_lookup(). This latest function can perform two or four lookups per cycle. In
the case of two lookups per cycle, two consecutive data points can initiate lookup
operations from two distinct tables. But to enable that, the two tables must be
merged/reformatted into one table by imx_formatTLU(). It is the merged table that is
passed to imxenc_table_lookup().

When numTables=2 or 4, tablePtrArray[0] is set to the first table, tablePtrArray[1] is set
to the second table, and so forth. In the context of speeding up a uniform table lookup,
tablePtrArray[0], tablePtrArray[1], etc. can be set to point to the same table.

If numTables is set to 1, it will merely copy the table pointed by tablePtrArra[0] into dst.
The function returns the number of bytes generated.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 189
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Branching Inside a VICP Command Sequence www.ti.com

6.4 Branching Inside a VICP Command Sequence

The VICP computation unit provides some branching commands that could be useful for saving command
memoary.

6.4.1 imxenc_call

imxenc_call Inserts a CALL SINGLE command into the VICP command sequence.

Syntax length = inxenc_call(Intl6 * address,
Intl16 * cnd_ptr);

Parameters

address Int16* Pointer to the command to branch to in the VICP
command memory.

cmd_ptr Int16* Current command pointer where the CALL SINGLE
command should be inserted.

Description Inserts a CALL SINGLE command into the VICP program sequence. The CALL SINGLE
command jumps to the point in the VICP program pointed to by address. The VICP then
executes until a computation command is found. After executing this command, control
is passed back to the point in the main program following the CALL SINGLE command.

190 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Branching Inside a VICP Command Sequence

6.4.2 imxenc_call _d

imxenc_call_dataaddr Calls a single command subroutine along with data pointers modification.

ataaddr

Syntax

Parameters

Description

I ength = i nxenc_cal | _dat aaddr (I nt16

cmdaddr
iaddr
caddr
oaddr

iaddr_highbyte

caddr_highbyte

oaddr_highbyte

cmd_ptr

Int16*

Int16*

Int16*

Int16*

Int16

Int16

Int16

Int16*

Int16
Int1l6
Int16
Int1l6
Int16
Int1l6
Int16

*

*

*

*

cndaddr ,
i addr,
caddr,
oaddr

i addr _hi ghbyt e,
caddr _hi ghbyt e,
oaddr _hi ghbyt e,

cnd_ptr);

A pointer to the start of the subroutine in the VICP
command memory.

Data pointer to substitute into the subroutine
command.

Coefficient or second input pointer to substitute into
the subroutine command.

Output pointer to substitute into the subroutine
command.

If BYTE addressing is used, this is used to address
the odd addresses. Set to 0 if SHORT addressing is
used in the subroutine command.

If BYTE addressing is used, this is used to address
the odd addresses. Set to 0 if SHORT addressing is
used in the subroutine command.

If BYTE addressing is used, this is used to address
the odd addresses. Set to 0 if SHORT addressing is
used in the subroutine command.

Current command pointer where the CALL command
should be inserted.

Calls a single command subroutine along with data pointer modification. A single
command subroutine executes a single computation command before returning control
to the command following the CALL command. Data pointer modification allows a VICP
computation unit to run the same subroutine multiple times using different data pointers.

The computation command in the subroutine can use SHORT addressing or BYTE

addressing. If BYTE addressing is used, then the XXXX_highbyte parameters are used
to access the odd bytes. Set to zero to access the even bytes and set to one to access
the odd bytes. If SHORT addressing is used, the XXXX_highbyte parameters should be

set to zero.

SPRUGN1C-November 2009

Submit Documentation Feedback

VICP Computation Unit Library’s Functions 191

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

Branching Inside a VICP Command Sequence www.ti.com

6.4.3 imxenc_call_with_ptr_ind

imxenc_call_with_ptr_ind Calls a single command subroutine along with data pointer modification.
The data pointers are read from the location passed into the function.

Syntax length = Int16 inmkenc_call_with_ptr_ind(
Int16 *cndaddr,
Int16 *iaddr,
Int16 *caddr,
I nt 16 *oaddr,
I nt16 i addr_hi ghbyte,
I nt16 caddr_hi ghbyte,
I nt 16 oaddr _hi ghbyt e,
Int16 *cnd_ptr);

Parameters

cmdaddr Int16 A pointer to the start of the subroutine in the VICP
command memory.

iaddr Int16* Pointer to a location containing the data pointer to
substitute into the subroutine command.

caddr Int16* Pointer to a location containing the coefficient or 2nd
input pointer to substitute into the subroutine
command.

oaddr Int16* Pointer to a location containing the output pointer to
substitute into the subroutine command.

iaddr_highbyte Int16 Set to 0.

caddr_highbyte Int16 Setto 0.

oaddr_highbyte Int16 Set to 0.

cmd_ptr Int16* Current command pointer where the CALL command
should be inserted.

Description Calls a single command subroutine along with data pointer modification. A single
command subroutine executes a single computation command before returning control
to the command following the CALL command. Data pointer modification allows the
VICP computation unit to run the same subroutine multiple times using different data
pointers. In this case, the pointers used are read from the location passed into this
function. A VICP command sequence can modify the pointers in data memory and call
the subroutine multiple times for each set of pointers.

The XXXX_highbyte parameters must be set to zero because the pointers must be
aligned on 16-bit boundaries.

192 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com

Branching Inside a VICP Command Sequence

6.4.4 imxenc_call_till return

imxenc_call_till_retu

Syntax

Parameters

Description

rn Inserts a CALL UNTIL RETURN command into the VICP program sequence.

length = inxenc_call _till_return(lntl6 * address,
Intl16 * cnd_ptr);

address Int16* Pointer to the command to branch to in the VICP
command memory.
cmd_ptr Int16* Current command pointer where the CALL command

should be inserted.

Inserts a CALL UNTIL RETURN command into the VICP program sequence. The CALL
command jumps to the point in the VICP program pointed to by address. The VICP then
executes until a RETURN command is found. After finding the RETURN command,
control is passed back to the point in the command sequence following the CALL
instruction.

6.4.5 imxenc_return_cmd

imxenc_return_cmd

Syntax

Parameters

Description

Inserts a RETURN command into the VICP program sequence.

length = inxenc_return_cnd(Intl6 * cnd_ptr);

cmd_ptr Int16* Current command pointer where the CALL command
should be inserted.

Inserts a RETURN command into the VICP command sequence. This is needed at the
end of a multiple-command subroutine. When the VICP executes a RETURN command,
control is passed back to the point in the command sequence following a previous CALL
UNTIL RETURN command. A RETURN command executed without a previous CALL
command leads to unpredictable behavior.

SPRUGN1C-November 2009

VICP Computation Unit Library’s Functions 193

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

Branching Inside a VICP Command Sequence

13 TEXAS
INSTRUMENTS

www.ti.com

6.4.6 imxenc_cmdwrite

imxenc_cmdwrite Write a block of data into command memory.

Syntax length = Int16 inkenc_cndwite(

I nt 16 *cndaddr,
Int16 *data,
Int16 num

Int16 *cnd_ptr);

Parameters
cmdaddr Int16* A pointer to the start of the block in the VICP
command memory to overwrite.
data Int16* Pointer to the source block of data to write.
num Int16 Number of 16-bit words to write into command
memory. Writes (hum + 1) words.
cmd_ptr Int16* Current command pointer where the CALL command
should be inserted.
Description Writes a block of data from data memory (image buffer or coefficient memory) into

command memory. This command can be used to modify VICP commands as they are
running. An example use of this functionality can be to replace a CALL command with a
NOP to implement some level of conditional programming.

If the command block being written is immediately after the CMDWRITE instruction, then
cmd_p must be aligned to a 32-bits boundary by adding NOP commmands as follow:

if (((cmd_p)

('short*) | MKCVMDBUF_BASE) &1) {

cnd_p+= i nxenc_nop(cnd_p);

}

194 VICP Computation Unit Library’s Functions

SPRUGN1C-November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS
INSTRUMENTS

www.ti.com Branching Inside a VICP Command Sequence

6.4.7 imxenc_nop

imxenc_nop Inserts a NOP into the VICP command sequence.
Syntax length = Int16 i nxenc_nop(
Int16 *cmd_ptr);
Parameters
cmd_ptr Int16* Current command pointer where the command should
be inserted.

Description Inserts a NOP into the VICP command sequence.

SPRUGN1C-November 2009 VICP Computation Unit Library’s Functions 195

Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

13 TEXAS

INSTRUMENTS
Functions for disabling saturation, rounding, ASAP mode www.ti.com
6.5 Functions for disabling saturation, rounding, ASAP mode
6.5.1 IMX_setSat
IMX_setSat Enable or disable saturation for subsequent computation functions encoded.

Syntax Int16 | MX_set Sat (
Intl16 state, /* Can be | MX_SAT_YES to enable or | MKX_SAT _NO to disable */

Returns ol d val ue.

Description To enable saturation use:
ol dSat = | MX_set Sat (| MX_SAT_YES) ;

To disable saturation use:
ol dSat = | MX_set Sat (| MX_SAT_NO) ;

Saturation is enabled by default on power up.

6.5.2 IMX_setRound

IMX_setRound Enable or disable rounding for subsequent computation functions encoded, which
have non zero rightshift.

Syntax Int16 | MX_set Round(
Int16 state, /* Can be | M(_ROUMD_YES to enable or | MK_ROUND NO to disable */

Returns ol d val ue.

Description To enable rounding use:
ol dSat = | MX_set Round(| MX_ROUND_YES) ;

To disable rounding (equivalent of truncating the result or floor()):
ol dSat = | MX_set Round(| MX_ROUND_NO) ;

Rounding is enabled by default on power up.

6.5.3 IMX_setASAP

IMX_setASAP Enable or disable ASAP mode for subsequent computation functions encoded.

Syntax Int16 | MX_set ASAP(
Int 16 ASAPnode, /* Can be | MX_ASAP_ENABLE to enable or
| MK_ASAP_DI SABLE to disable */

Returns ol d val ue.

Description See Section 2.10 for explanations on ASAP mode.

To enable rounding use:
ol dSat = | MX_set ASAP(| MX_ASAP_ENABLE) ;

To disable rounding use:
ol dSat = | MX_set ASAP(| MX_ASAP_DI SABLE) ;

196 VICP Computation Unit Library’s Functions SPRUGN1C-November 2009
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUGN1C

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers pmplifier.ti.com Audio [vww.1r.com/audid

Data Converters Automotive [vww Tr.com/automofiv
DLP® Products [vww .dIp.comn] Broadband [pww i.com/broadband
DSP Fspicom Digital Control [pww ir-com/digitalcontrol
Clocks and Timers [yww Ti.com/cloc Medical [pww Ti.com/medical
Interface [nferfacedico Military [pww ir-com/military
Logic [oaicTiconi Optical Networking [xww Ti.com/opficalnetwor
Power Mgmt powerfr.com Security vww Tr.com/securt
Microcontrollers nicrocontroller.fi.conj Telephony lvww.tr.com/telephony
RFID [wWwiiirfid-co Video & Imaging [pww i-com/vided

RF/IF and ZigBee® Solutions | {r.com/prl Wireless [vww fi.com/wirelesy

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	Table of Contents
	1 Introduction to the VICP Computation Unit and Scheduling Unit Libraries
	1.1 VICP Overview
	1.2 Block-Based Processing
	1.3 Concurrent VICP Processing and EDMA3 Transfer
	1.4 Software Infrastructure
	1.5 Programming Flow
	1.6 Where to Obtain the Software Components

	2 VICP Computation Unit Library
	2.1 Library and Header Files
	2.2 Dependencies With Other Libraries
	2.3 Commands Encoding
	2.4 General Syntax of imxenc_<computation> Function
	2.5 Set Saturation Function
	2.6 Sleep Command
	2.7 Rounding
	2.8 Memory Switching and Cache
	2.9 Constraints
	2.10 Performance Estimation
	2.11 Example
	2.12 Applying a VICP Command Sequence to an Entire Data Frame Using the TI VICP Scheduling Unit’s Library
	2.13 Applying a VICP Command Sequence to an Entire Data Frame Using DSP Code

	3 VICP Scheduling Unit Library
	3.1 Library and Header files
	3.2 Dependencies With Other Libraries/Modules
	3.3 Usage Scenarios
	3.4 Performance
	3.5 Data Cache Handling
	3.6 EDMA3 Requirements
	3.7 Functions Usage
	3.7.1 VICP Scheduling Unit Initialization
	3.7.2 Algorithm Registration
	3.7.3 Algorithm Execution
	3.7.3.1 Starting the Processing
	3.7.3.2 Waiting for Completion
	3.7.3.3 Restarting Processing

	3.7.4 Algorithm De-Initialization
	3.7.5 IP_RUN De-Initialization
	3.7.6 Multiple Threads Usage Scenario

	3.8 Debugging Infrastructure
	3.9 Example Code

	4 VICP Scheduling Unit Functions
	4.1 Data Types
	4.1.1 IP_RUN_InitParams
	4.1.2 IP_run
	4.1.3 DmaTferStruct
	4.1.4 IP_RUN_DebugStruct

	4.2 Scheduling Unit Functions

	5 VICP Support Functions
	5.1 Functions
	5.2 Data Types

	6 VICP Computation Unit Library’s Functions
	6.1 Functions That Encode Computation Tasks
	6.1.1 imxenc_alphablend
	6.1.2 imxenc_alphablendYUV422I
	6.1.3 imxenc_accumulate2d_array_op
	6.1.4 imxenc_accumulate2d_array_scalar_op
	6.1.5 imxenc_argb2argbPlanar()
	6.1.6 imxenc_array_cond_write
	6.1.7 imxenc_array_inner_product
	6.1.8 imxenc_array_op
	6.1.9 imxenc_array_op_distribute
	6.1.10 imxenc_array_scalar_op
	6.1.11 imxenc_average2x2
	6.1.12 imxenc_bin_log
	6.1.13 imxenc_blkAverage
	6.1.14 imxenc_blkVariance
	6.1.15 imxenc_blkSeq2Array
	6.1.16 imxenc_cfa_fast
	6.1.17 imxenc_cfa_hq_interpolation
	6.1.18 imxenc_cfa_upsmpl_horz
	6.1.19 imxenc_cfa_upsmpl_vert
	6.1.20 imxenc_color_spc_conv
	6.1.21 imxenc_cumulativeSumCol32bits
	6.1.22 imxenc_dct8x8col
	6.1.23 imxenc_dct8x8row
	6.1.24 imxenc_deinterleaveData
	6.1.25 imxenc_fillMem
	6.1.26 imxenc_filter
	6.1.27 imxenc_filter_op
	6.1.28 imxenc_filter_distribute
	6.1.29 imxenc_filter_ds
	6.1.30 imxenc_interleaveData
	6.1.31 imxenc_fir_poly_col
	6.1.32 imxenc_mat_mul
	6.1.33 imxenc_median_filter_row
	6.1.34 imxenc_median_filter_col
	6.1.35 imxenc_median3x3
	6.1.36 imxenc_recursiveFilterVert1stOrder
	6.1.37 imxenc_rgbpack
	6.1.38 imxenc_rgbunpack
	6.1.39 imxenc_rotate
	6.1.40 imxenc_set_saturation
	6.1.41 imxenc_save_sat_parameters
	6.1.42 imxenc_restore_sat_parameters
	6.1.43 imxenc_sleep
	6.1.44 imxenc_sobelx
	6.1.45 imxenc_sobely
	6.1.46 imxenc_sum
	6.1.47 imxenc_sum_cfa
	6.1.48 imxenc_sum_abs_diff
	6.1.49 imxenc_table_lookup
	6.1.50 imxenc_tables_lookup
	6.1.51 imxenc_table_lookup2D
	6.1.52 imxenc_3d_table_lookup
	6.1.53 imxenc_table_lookup_int
	6.1.54 imxenc_table_lookup_32bit
	6.1.55 imxenc_transparentblt
	6.1.56 imxenc_transpose
	6.1.57 imxenc_transpose_interleave
	6.1.58 imxenc_YCbCrPack
	6.1.59 imxenc_YCbCrUnpack2
	6.1.60 imxenc_y2blkseq2

	6.2 Functions Used for Updating Input, Coef and Output Address Pointers
	6.2.1 imxUpdate_inputPtr
	6.2.2 imxUpdate_coefPtr
	6.2.3 imxUpdate_outputPtr
	6.2.4 imxUpdate_alphablend
	6.2.5 imxUpdate_rgbpack
	6.2.6 imxUpdate_rgbunpack
	6.2.7 imxUpdate_transparentblt

	6.3 Functions Used for Setting Up Coefficients
	6.3.1 imx_cfa_hq_setup
	6.3.2 imx_fir_poly_setup_coeff
	6.3.3 imx_formatTLU

	6.4 Branching Inside a VICP Command Sequence
	6.4.1 imxenc_call
	6.4.2 imxenc_call_dataaddr
	6.4.3 imxenc_call_with_ptr_ind
	6.4.4 imxenc_call_till_return
	6.4.5 imxenc_return_cmd
	6.4.6 imxenc_cmdwrite
	6.4.7 imxenc_nop

	6.5 Functions for disabling saturation, rounding, ASAP mode
	6.5.1 IMX_setSat
	6.5.2 IMX_setRound
	6.5.3 IMX_setASAP

