{? TEXAS Application Report
INSTRUMENTS SPRAG49 - March 2000

MPEG-2 Video Decoder: TMS320C62x Implementation

Ngai-Man Cheung Texas Instruments Incorporated

ABSTRACT

This application report describes the implementation of the MPEG-2 video decoder on the
TMS320C62x DSP. The MPEG-2 video standard specifies the decompression and coded
representation for entertainment-quality digital video, and is widely used in different digital
video systems including DVB, DTV, DVD, DSS, etc. The decoder software implements all the
MPEG-2 main-profile-at-main-level functionality, and conforms to the eXpressDSPO
Algorithm Standard (XDAIS) to enhance reusability. This report describes different aspects
of the decoder software, including algorithm overview, coding guidelines, decoder APIs,
memory requirement, and performance.

Contents

1 INOAUCHION o et e e
1.1 AIGOMIthM OVEIVIEW oottt ettt et e e e e e

2 AIGONthm DESCHPLON ...ttt e ettt et
2.1 Interframe Coding Using Motion Compensationouuuiii i,
2.2 Transform Coding Using Discrete Cosine Transform
2.3 Variable-Length Codingiutit i e A

3 Decoder Implementation 4|
Bl FRAIUMES .ot
3.2 Decoder StrUCIUNE e e e e e e e
3.3 Coding GUIdEliNgSo
34 INEEITUPL [SSUBS .ttt e e e e e
3.5 Multichannel Implementation i e e e e e e

4 Interfacing With the Decoder
4.1 DECOOEI AP IS ..ttt
4.1.1 InpULtRAW Datao

4.1.2 Output Decoded PICtUre i e e

4.1.3 OULPUL Parameters ...

4.2 Example Framework Code e

5 RUNNING the Program ...t e e e e
5.1 BuUild Procedure
5.2 RUN e PrOgram e e e e
5.3 Testand Validation i e
6 Memory Requirements and Performance

7 R EIENCES . . .

eXpressDSP is a trademark of Texas Instruments.

{'f TEXAS
SPRA649 INSTRUMENTS

List of Figures

Figure 1. MPEG-2 Video Decoding Algorithm e
Figure 2. MPEG-2 Video Decoder SIrUCUIEt e e
Figure 3. Video Decoder Output Parametersttt
Figure 4. An Example Framework to Interface the Video Decoder oo,

List of Tables

Table 1. Memory Requirements of the Decoder i i e
Table 2. Performance of the Decoder i e

1 Introduction

This application report describes the implementation of the MPEG-2 video decoder on the
TMS320C62x DSP. The decoder software implements all the MPEG-2 main-profile-at-main-level
functionality, and conforms to the eXpressDSP Algorithm Standard (xDAIS) to enhance
reusability. In the following sections we will describe different aspects of the decoder software,
including algorithm overview, coding guidelines, decoder APIs, memory requirement, and
performance.

1.1 Algorithm Overview

The MPEG-2 video [1,2] standard specifies the decompression and coded representation for
entertainment-quality digital video. It is widely used in different digital video systems, including
DTV (digital television), DVB (Digital Video Broadcast), DSS (direct satellite system), and DVD
(digital versatile disc). The MPEG-2 video decoder plays an important role in consumer
electronics like DVD players, set-top boxes, and DSS units. Compared with the hardware
implementation, software implementation of the decoder is more flexible, easier to be customize
for different applications, and easier to upgrade with new features. Also, the programmability of
the device offers the advantage of putting multiple functions (e.g., video decoding, modem
function, and speech control interface) in the same hardware platform.

We have implemented the MPEG-2 main-profile-at-main-level video decoder, which has the
maximum input bit rate of 15 Mbps (megabit per second) and chrominance format of 4:2:0. This
is the most common format and is being used in many applications.

2 Algorithm Description

Figure 1 shows the MPEG-2 video-decoding algorithm. The MPEG-2 standard employs a
number of techniques to achieve high compression ratio while preserving good video quality.

2.1 Interframe Coding Using Motion Compensation

Motion compensation (MC) achieves compression by using the fact that within a short sequence
of pictures, the scenes are similar and many objects move only a short distance. By using these
temporal redundancies, many parts of the current picture could be predicted by the previously
decoded pictures. In MC, the picture is divided into blocks. Two-dimensional motion vectors are
computed to tell where to retrieve blocks of pixel values from the previously decoded pictures to
predict the block of pixels of the current picture. Compression is achieved by encoding the
motion vectors and prediction error instead of the block of pixels. The prediction error has less
spatial redundancy and can be compressed effectively by transform coding.

2 MPEG-2 Video Decoder: TMS320C62x Implementation

{f’ TEXAS

INSTRUMENTS SPRA649
MPEG-2 video stream
(L === |
AN
I Decode
\\ “a | headers
\ v Sequence, group of pictures,
| slice, and picture headers
\ Decode
\ macroblock |-
\ mode
\ Macroblock type,
| motion type, ...
\ Decode
\ motion
\ vectors
Look-up tables \
v Calculate
- motion vectors
~ Variable-length
- |decoding/inverse
guantization
EH DCT
coefficients
IDCT
Motion prediction
blocks @
Prediction
™~ EH errors
S Motion
A | compensation
\
\
\
| Decoded
\ H block
v
Figure 1. MPEG-2 Video Decoding Algorithm
2.2 Transform Coding Using Discrete Cosine Transform

During encoding, the discrete cosine transform (DCT) is applied to the prediction error in
interframe coded macroblock and the pixel values in intraframe coded macroblock. The picture
is divided into blocks of 8-by-8 pixels. The DCT transforms the pixel values into another block of
the same size, consisting of the horizontal and vertical spatial frequency coefficients
representing the detail of the block. While the energy of the image signal and prediction error
can be distributed randomly across a block, the energy of the DCT block is concentrated on the
low frequency. Compression is achieved by using a quantizer with quantization steps varied by
the frequency, according to psycho-visual characteristics such that quantization noise is unlikely
to be perceived. Also, many high-frequency coefficients are very small and have a value of zero
after quantization. Compression can be achieved by using a zig-zag order to gather the
coefficients of value zero, and encoding the block into a series of zero-run and level pairs with
run-length encoding.

MPEG-2 Video Decoder: TMS320C62x Implementation 3

{'? TEXAS

SPRA649 INSTRUMENTS

2.3

3.1

3.2

Variable-Length Coding

The variable-length coding (VLC) assigns each run-level pair a code word based on the
frequency of occurrence of the pair. Pairs that occur more frequently are assigned short code
words while those that occur less frequently are assigned long code words. Compression is
achieved by the fact that overall, the more frequent shorter code words dominate.

Decoder Implementation

In this section, we describe different aspects of our implementation of the video decoder.

Features
These are the features of the video decoder software:

* The whole video decoding is software-based working on the programmable DSP. There is no
hardware assistance of decoding. This ensures maximum flexibility.

* The decoder is completely MPEG-2 main-profile-at-main-level compliant. We have tested the
decoder thoroughly with the official MPEG-2 compliance test-streams and have verified that
the decoder is completely compliant with the specification. This ensures both the correctness
of the algorithm implementation and the quality of the output picture.

* The decoder could also handle MPEG-1 constrained parameters bit-streams (CPB).

e The decoder is xDAIS [3] compliant. We implemented all the xDAIS rules and most of the
guidelines. This ensures the decoder algorithm can be easily integrated into different
framework systems and environments. Please note that as XxDAIS itself may undergo some
changes, the software will be updated to reflect these changes.

* The decoder is multichannel enabled. The decoder is reentrant and can handle several
different decoding channels simultaneously (this is subject to further testing). The decoder
can be interrupted at any place other than the software pipeline code. The interrupt latency
shall be less than 10 ps at 250 MHz.

Decoder Structure

The decoder is divided into the following modules (see Figure 2):

e VLD, which includes functions to perform variable-length decoding, run-length expansion
and dequantization

e IDCT, which includes functions to perform inverse discrete cosine transform

* Motion compensation address calculation, which includes functions to calculate the
reference blocks location and to fetch the blocks into internal memory

* Motion compensation kernel, which includes functions to calculate the prediction pixels
* Miscellaneous functions to decode header information, motion vectors, etc.

* Implementation of IALG and IRTC interfaces as required in XDAIS

MPEG-2 Video Decoder: TMS320C62x Implementation

{9 TEXAS
INSTRUMENTS SPRA649

3.3

3.4

3.5

The modules are glued together with the decoder control code. The control code invokes the
functions in different modules as well as passes and receives the data.

. .

IALG IRTC

Control code

Decode headers, Motion .
: VLD IDCT compensation Motion
motion vectors, ... compensation
address kernel

calculation

Figure 2. MPEG-2 Video Decoder Structure

Coding Guidelines

The decoder program is a mixed C and TMS320C62x assembly language implementation. The
coding follows all the xDAIS rules. Some of them are:

* The decoder is reentrant.
* All the data references are fully relocatable. Also, all the decoder code is fully relocatable.
* All external definitions are prefixed with MPEG2VDEC or MPEG2VDEC _ti.

Please refer to the xDAIS document for a complete listing of coding rules.

Interrupt Issues

The decoder can be interrupted at any place other than the software pipelined loops. The
maximum interrupt latency is less than 10 ps at 250 MHz, as recommended in the xDAIS
guideline.

Multichannel Implementation

The decoder is reentrant and can be used in multichannel environment. The decoded
information of each channel is retained in the algorithm instance object, MPEG2VDEC_Handle.
Client or framework uses the decoder’s API (Application Programming Interfaces)
MPEG2VDEC _create to create the algorithm instance object for each decoding channel. After
that, the framework passes the instance object to the API MPEG2VDEC _apply to decode a
picture.

Interfacing With the Decoder

The decoder can be configured to run on its own or link to some framework systems. In the latter
case, framework can use the decoder’s APIs to interface with the decoder. In this section we will
describe the decoder APIs. Also, we will give an example framework code to illustrate the
interfacing.

MPEG-2 Video Decoder: TMS320C62x Implementation 5

SPRA649

{'f TEXAS
INSTRUMENTS

4.1 Decoder APIs
The decoder APIs include:

« MPEG2VDEC_init

Void MPEG2VDEC_init(Void);

Parameters
NULL.

Return Value
NULL.

Description
Decoder initialization. Should be the first call to the decoder.

e MPEG2VDEC create

MPEG2VDEC_Handle MPEG2VDEC _create(
const IMPEG2VDEC_Fxns *fxns,
const MPEG2VDEC_Params *prms);

Parameters
Parameter Meaning
const IMPEG2VDEC_Fxns *fxns Functions table
const MPEG2VDEC_Params *prms Creation parameter

Return Value
MPEG2VDEC algorithm instance handle.

Description
Create an algorithm instance object. Call this for every decoding channel.

* MPEG2VDEC_delete

Void MPEG2VDEC_delete(MPEG2VDEC_Handle handle);

Parameters
Parameter Meaning
MPEG2VDEC_Handle handle MPEG2VDEC algorithm instance handle

Return Value
NULL.

Description
Delete an algorithm instance object. Call this after completion of a decoding channel.

6 MPEG-2 Video Decoder: TMS320C62x Implementation

{9 TEXAS
INSTRUMENTS SPRA649

4.1.1

MPEG2VDEC_exit

Void MPEG2VDEC_exit(Void);

Parameters
NULL.

Return Value
NULL.

Description
Decoder finalization.

MPEG2VDEC_apply

Void MPEG2VDEC_apply(MPEG2VDEC_Handle handle,
Int *input[],Int *output[]);

Parameters

Parameter Meaning

MPEG2VDEC_Handle handle MPEG2VDEC algorithm instance handle.

Int *input[1] Address of the function code, functionCode. The functionCode
could be FUNC_DECODE_FRAME or FUNC_START_PARA.

Int *input[2] Starting of external input bit-stream buffer.

Int *input[3] Address of the size of the external input bit-stream bulffer.

Int *output[1] Address of the output parameter buffer.

Int *output[2] Starting of the external output frame buffer.

Others Reserve for framework specific extension.

Return Value
NULL.

Description

This applies the decoder to the input bit stream and outputs the result in the output buffer. The function code,
input[1], should be FUNC_START_PARA at the beginning of a video sequence and FUNC_DECODE_FRAME
afterward. The pass-in algorithm instance object identifies the decoding channel.

Framework should call the APl MPEG2VDEC _init to initialize the decoder. After that, framework
should call the MPEG2VDEC_create to create an algorithm instance object for each channel.
The algorithm instance object contains all the status information for each decoding channel.
Then, framework can call the MPEG2VDEC_apply to apply the decoder to the input bit stream.

Input Raw Data

Framework passes the MPEG-2 raw input data to the decoder through an input buffer starting at
input[2] when calling MPEG2VDEC _apply. The size of the input buffer is pointed by input[3]. The
input buffer is organized in a circular fashion. Framework is responsible for filling the buffer and
ensuring enough input data to feed the decoding of one picture. Framework can learn how much
input data the decoder has consumed by the variable (DECODE_OUT *) (output[1])
->next_wptr), which points to the head of the circular input buffer. The input buffer must be a
multiple of 4 bytes and aligned on a 4-byte boundary. We recommend the input buffer size to be
512 KB or more. The input buffer should reside in external memory.

MPEG-2 Video Decoder: TMS320C62x Implementation 7

{'? TEXAS

SPRA649 INSTRUMENTS

4.1.2

4.1.3

8

Output Decoded Picture

The MPEG2VDEC algorithm returns the decoded picture in the output frame buffer pointed by
output[2] at the return of MPEG2VDEC _apply. The algorithm requires keeping four output
frames, so the output frame buffer should be of size 4 x Picture_Size at the minimum, where
Picture_Size = Picture_Height x Picture_Width x 1.5. Moreover the output frame buffer has to be
aligned on a 4-byte boundary. We recommend the output buffer size to be 2440 KB, which can
handle 720x576 4:2:0 video properly.

The output picture is stored in the 4:2:0 YU12 format. When algorithm returns, the client should
check the variable (DECODE_OUT *) (output[1]) ->outputting) to see if a decoded picture is
ready, and if so the output picture could be found at the memory location (DECODE_OUT *)
(output[1]) ->outframe). The output picture is always in frame format. This is to avoid the
confusion in decoding interlaced video when the output picture can be in frame or field format
within the same sequence.

Output Parameters

The decoder returns the output parameter in output[1] at the return of MPEG2VDEC_apply. The
parameter is either the structure START_OUT at the beginning of a sequence or DECODE_OUT
afterward, as shown in Figure 3.

MPEG-2 Video Decoder: TMS320C62x Implementation

{f’ TEXAS

INSTRUMENTS SPRA649

/***/

[* Output parameter at the beginning of sequence. */

/***/

typedef struct _START_OUT {

Int fault; /* Any problem occur? */

Int Id_mpeg2; /* MPEG-2 stream? */
Int bit_rate; [* Input bit rate */

Int picture_rate; [* Output picture rate */
Int vertical_size; /* Ori. pic. dimension */

Int horizontal_size;
Int coded_picture_width; [* Coded pic. dimension */
Int coded_picture_height;
Int chroma_format;
Int chrom_width;
Int prog_seq; [* Progressive seq.? */
} START_OUT;

/***/

[* Output parameter afterward. */

/***/

typedef struct _DECODE_OUT {

Int fault; /* Any problem occur? */

Int pict_type; /* 1, P or B-pic. */

Int pict_struct;

Int next_wptr; /* Head of cir. input */

Int topfirst;

Int end_of_seq; /* End of sequence? */
Int outputting; [* Output any frame? */
SmuUns outframe; [* Starting of out pic. */

} DECODE_OUT;

Figure 3. Video Decoder Output Parameters

MPEG-2 Video Decoder: TMS320C62x Implementation 9

SPRA649

{'f TEXAS
INSTRUMENTS

4.2 Example Framework Code

10

Figure 4 shows an example framework code to illustrate the usage of the decoder’s APIs.

#define SHARE_MPEG2_RDBUF_SIZE (128 * 1024)
unsigned int share_bsbuf_storage[SHARE_MPEG2_RDBUF_SIZE];
/* 512KB input buffer. 4-bytes alignment. */

#define MAX_PICT_SIZE 0x098800
/* 610KB. Enough for 720x576 4:2:0. */
#define NO_OF_FRAME_BUF 4

unsigned char frame_all_storage[NO_OF_FRAME_BUF * MAX_PICT_SIZE];
[* Output buffer. 4-bytes alignment. */

#define MAXPARAM 5

int *in[MAXPARAM];

int *outtMAXPARAM];

int h_share_mpeg2_rdbuf_size = SHARE_MPEG2_RDBUF_SIZE;

int functionCode;

MPEG2VDEC_Handle mpeg2vdec;
[rrkkkkkkiiiidddoook Rk |
/* To do -- fill up the whole input buffer */
[x* HhkRAK x|
old_ptr = 0; /* head of circular buffer */
MPEG2VDEC _init();
mpeg2vdec = MPEG2VDEC_create(&MPEG2VDEC_TI_IMPEG2VDEC, NULL);
in[1] = &functionCode; out[1] = (int *) &out_para[0];
in[2] = (int *) &share_bsbuf_storage[0]; out[2] = (int *) &frame_all_storage[0];
in[3] = &h_share_mpeg?2_rdbuf_size;
functionCode = FUNC_START_PARA,;
MPEG2VDEC_apply(mpeg2vdec, in, out); [* decode sequence header */
while (! (decode_out-> end_of_seq)){ /* not end of sequence */
functionCode = FUNC_DECODE_FRAME;
MPEG2VDEC_apply(mpeg2vdec, in, out); /* decode one picture */
decode_out = (DECODE_OUT *)(out[1]);
if (decode_out-> outputting) {
/ * /
/* To do -- output the frame */
/* starting at location decode_out-> outframe */
/ ik wxxk|
}
/ HhARAK HhRRRER|
/* To do -- fill the input buffer between */
/* old_ptr and decode_out->next_wptr from source */
old_ptr = decode_out->next_wptr;
} I* while */
MPEG2VDEC_delete(mpeg2vdec);
MPEG2VDEC_exit();
/* End of program */

Figure 4. An Example Framework to Interface the Video Decoder

MPEG-2 Video Decoder: TMS320C62x Implementation

{9 TEXAS
INSTRUMENTS SPRA649

5

5.1

5.2

5.3

Running the Program

This section describes the procedure to build and run the video decoder.

Build Procedure
To build the code:

1. Compile and assemble individual files with
cléx —@cl.cmd
or use the Code Composer Studioll (CCS) project file Mpg2vdec.mak.

2. Create the decoder library Mpeg2vdec_ti.lib with

aréx @ar.cmd
3. Link the decoder library with the target system.

The code directories contain all the files to compile, assemble, and link the decoder. The CCS
project file Mpg2vdec.mak compiles and assembles all the source files, and links them with the
linker file Mpg2vdec.cmd to produce an example stand alone executable Mpg2vdec.out. The
executable Mpg2vdec.out can be loaded into the DSP and tested with the Windows[] GUI
interface program. The object files can also be packaged into the decoder library
Mpeg2vdec_ti.lib using the ar6x command and linked to the target system by following the
above steps.

Run the Program

To run the example executable:

1. Load and start the DSP executable Mpg2vdec.out using CCS or evm6éxIdr.

2. Start the Windows GUI interface program Mplay.exe.

3. Inthe Mplay.exe program, select File —> Open, and choose an MPEG-2 video file.

4. In the Mplay.exe program, select Control —> Play to start decoding.

If you have Microsoft[] DirectDraw[] software package on your computer, then you would be
able to see the decoded video.

Test and Validation

We have tested the decoder thoroughly with the official MPEG-2 compliance test streams and
have verified that the decoder is completely compliant with the requirements. This ensures both
the correctness of the algorithm implementation and the quality of the output picture.

Code Composer Studio is a trademark of Texas Instruments.
Windows, Microsoft, and DirectDraw are registered trademarks of Microsoft Corporation.

MPEG-2 Video Decoder: TMS320C62x Implementation 11

{'f TEXAS
SPRA649 INSTRUMENTS

6 Memory Requirements and Performance
The section reports the memory requirements and performance of the decoder.

Table 1 lists all data and program memory requirements.

Table 1. Memory Requirements of the Decoder

Internal Memory External Memory
Data Memory
Heap data memory 7552 (7.4 KB) 3022848 (2952 KB)
Stack space data memory 16384 (16 KB)
Static data memory 10616 (10.4 KB)
Total 34552 (33.8 KB) 3022848 (2952 KB)
Program Memory
Total 65504 (64 KB) 26432 (26 KB)

The external memory includes the input bit-stream buffer and the output frame buffers. They are
allocated by framework and passed to the decoder as arguments of API MPEG2VDEC_apply.

We have benchmarked the video decoder with several MPEG-2 video streams. The results are
shown in Table 2. The decoder software was benchmarked on a C6201 DSP with internal
memory configured as mapped mode (cache disabled). The performance was interpreted by the
cycle count measured in CCS. Please contact Texas Instruments for the latest performance

information.
Table 2. Performance of the Decoder
Bit-rate Numbers Performance
Test Stream Information Format (Mbps) of picture (MHz)
Public domain Mobl_080.m2v. Available 704x576 7.629 375 Av. 214
MPEG-2 stream from http://www.mpeg.org. x25fps Max. 239
DVD test stream #1 Vits_05_1.vob in Panasonic 720x480 9.346 10000 Av. 204
DVD Demonstration Disc. x30fps Max. 255
DVD test stream #2 Vts_40_1.vob in Philips 720x576 9.346 1000 Av. 190
DVD Demonstration Disc. x25fps Max. 220
MPEG-2 Bitstream gi_9.m2v in 720x480 14.305 16 Av. 261
compliance test MPEG-2 test suite. x30fps Max. 267
stream

7 References

1. ISO/IEC 11172-2, Coding of moving pictures and associated audio for digital storage media at
up to about 1.5Mbits/s, Part 2: Video (MPEG-1 video standard).

2. ISO/IEC 13818-2, Generic coding of moving pictures and associated audio information, Part 2:
Video (MPEG-2 video standard).

3. Texas Instruments, The eXpressDSP Algorithm Standard (xDAIS): Rules and Guidelines,
September 1999 (SPRU352).

12 MPEG-2 Video Decoder: TMS320C62x Implementation

http://www-s.ti.com/sc/techlit/spru352

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TIPRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright 00 2000, Texas Instruments Incorporated

	ABSTRACT
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Algorithm Overview

	2 Algorithm Description
	2.1 Interframe Coding Using Motion Compensation
	2.2 Transform Coding Using Discrete Cosine Transform
	2.3 Variable-Length Coding

	3 Decoder Implementation
	3.1 Features
	3.2 Decoder Structure
	3.3 Coding Guidelines
	3.4 Interrupt Issues
	3.5 Multichannel Implementation

	4 Interfacing With the Decoder
	4.1 Decoder APIs
	4.1.1 Input Raw Data
	4.1.2 Output Decoded Picture
	4.1.3 Output Parameters

	4.2 Example Framework Code

	5 Running the Program
	5.1 Build Procedure
	5.2 Run the Program
	5.3 Test and Validation

	6 Memory Requirements and Performance
	7 References
	IMPORTANT NOTICE

