
Application Report
SPNA202–May 2014

Hercules™ TMS570LC/RM57Lx Safety Microcontrollers
Development Insights Using Debug and Trace Tools

ABSTRACT
This application report provides an overview of the technology and tools, and their applicability for the
fastest turnaround time for your embedded system.

Contents
1 Synopsis .. 2
2 Technology Overview ... 2
3 Debug and Trace Tools Overview ... 3
4 Using the Right Tools for the Job.. 5
5 Training Resources .. 12

List of Figures

1 Typical Embedded Development Cycle .. 2
2 Code Composer Studio ... 3
3 ARM Advanced Features View .. 6
4 PMU Profiling in CCS ... 7
5 Trace Setup and Configuration .. 9
6 CCS With Trace Output Viewer.. 9
7 Trace-Based Function Profiling .. 10
8 Trace Based Execution Graph ... 11
9 Trace-Based Code Coverage .. 12

1SPNA202–May 2014 Hercules™ TMS570LC/RM57Lx Safety Microcontrollers Development
Insights Using Debug and Trace ToolsSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA202

Synopsis www.ti.com

1 Synopsis
The typical embedded product development cycle includes several stages. Debugging and tuning is an
important stage of the product development cycle where scalable debugging tools are critical to
accelerating the overall product development cycle.

Figure 1. Typical Embedded Development Cycle

Efficient and bug-free software is crucial for taking full advantage of a microcontroller system. Texas
Instruments believes that insightful, efficient, and powerful debug technology is critical for its customers’
success. TI debugging technology and tools have evolved significantly to keep up with the emerging
programming trends. These scale well to various RTOS and applications by providing an inexpensive and
developer-friendly environment.

2 Technology Overview
Texas Instruments’ Hercules safety TMS570LC/RM57Lx microcontrollers are designed specifically for IEC
61508 and ISO 26262 safety critical applications and provide advanced integrated safety features while
delivering scalable performance, connectivity, and memory options. The Hercules microcontrollers have
specialized debug and tracing technology for real-time debug controls, visibility into a processor’s
execution flow, memory system, and interrupts. This section talks about key debug technology available in
Hercules microcontrollers.
• ARM® CoreSight™ Technology for ARM Cortex® Debug and Trace

– Debug execution control (for example, run, step, and halt)
– Register and memory visibility while halted
– Debug Access Port (DAP) to directly access the entire memory space of the device without

requiring the processor to enter the debug state or halt
– Hardware breakpoints and data watchpoints for addresses and range
– Performance measurement units (PMU) for sampling-based performance analysis of cycles and

cache events
– Embedded Trace Macrocell (ETM™) ARM Cortex-R trace with the following functions

• PC and cycles
• Data
• Triggering control for tracing window, address range, and start/stop conditions

• Debug and Trace Interface
– IEEE 1149.1 JTAG (5 pin) debug interface for stop mode debugging
– TI ICEPick module for scan path management of all the cores and chip level, clock, and reset

management
– Trace port for off-chip trace collection (requires an external trace receiver)

Hercules, Code Composer Studio are trademarks of Texas Instruments.
CoreSight, ETM are trademarks of ARM Limited.
ARM, Cortex are registered trademarks of ARM.
All other trademarks are the property of their respective owners.

2 Hercules™ TMS570LC/RM57Lx Safety Microcontrollers Development SPNA202–May 2014
Insights Using Debug and Trace Tools Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA202

www.ti.com Debug and Trace Tools Overview

3 Debug and Trace Tools Overview

3.1 Code Composer Studio
Code Composer Studio™ (CCS) is an Eclipse-based integrated development environment (IDE) for TI
embedded processor families. CCS comprises a suite of tools used to develop and debug embedded
applications. It includes debugger, profiler, source code editor, compilers, project build environment and
many other features. The intuitive IDE provides a single user interface taking you through each step of the
application development flow.

Figure 2. Code Composer Studio

From the Hercules debugging perspective, CCS supports the following functions:
• Debugging

– JTAG debug for ARM Cortex
– Source and assembly debugging
– Advanced register (with CP14) and memory views
– Integrated flash programmer
– Software/hardware breakpoints and watchpoints
– Profile counters/performance monitoring unit (PMU) support
– Debug code from the reset vector

• Tracing and Profiling
– ARM Cortex PC trace with code profiling and code coverage support

CCS also has rich scripting support for debugging and profiling via a set of Debug Server Scripting (DSS)
APIs. DSS APIs enable scripting through Java, JavaScript, Python, and Tcl. Trace scripting APIs are also
available for trace set up and collection to export trace output as comma separated values (CSV). The
trace output can be sent to stdout, where it can be processed by piping it to other processing scripts. More
details on the scripting APIs can also be found in the <CCS Install>\ ccsv6\ccs_base\scripting\docs
directory.

3SPNA202–May 2014 Hercules™ TMS570LC/RM57Lx Safety Microcontrollers Development
Insights Using Debug and Trace ToolsSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA202

Debug and Trace Tools Overview www.ti.com

References:

Code Composer Studio Details: http://processors.wiki.ti.com/index.php/Category:CCS

Debug Scripting: http://processors.wiki.ti.com/index.php/Debug_Server_Scripting

3.2 XDS Debug Probes and Trace Receiver
The XDS product family includes various debug probes and real-time trace receivers covering needs for
entry-level to professional users. XDS products come with various connectors suitable for most target
boards.

Table 1. XDS Debug Probes and Trace Receivers

Product Description
XDS100v2 Entry-level, low-cost JTAG debug probe (also called an emulator) for hobbyist and university applications. Supports

a USB 2.0 host interface with TI14, CTI-20, and ARM-JTAG-20 target connectors. Average download speed in the
CCS environment is around 30 KB/sec.

XDS2xx Balanced price/performance JTAG for serious users. Supports USB 2.0 (XDS200) and ENET (XDS220) host
interfaces with TI20, TI14, and ARM-JTAG-20 target connectors. The current measurement interface for power
profiling requires XDS220. Average download speed in the CCS environment is around 300 KB/sec. Also comes
with ARM Serial Wire Debug (SWD) and Serial Wire Output (SWO) for microcontrollers and for Cortex-M
microcontrollers.

XDS560v2 STM High-performance JTAG and cJTAG for professional users. USB 2.0 and ENET host interface with MIPI60, TI20,
TI14, and ARM20 target connectors. Average download speed in the CCS environment is around 600 KB/sec.
Low bandwidth system trace (STM) receiver with 4 pin, 100 MHz, and 128 MB receiver buffer.

XDS560v2 Pro Trace High performance JTAG & cJTAG for professional users. USB 2.0 and ENET host interface with MIPI60, TI20,
TI14, and ARM20 target connectors. Average download speed in the CCS environment is around 600 KB/sec.
High bandwidth dual-channel trace receiver with 22-pin, 250 MHz DDR, and 2 GB storage buffer. Supports Cortex
ETM/PTM, TI C6x DSP, and System Trace (STM) protocols.

References:

XDS100v2 Details: http://processors.wiki.ti.com/index.php/XDS100

XDS200 Details: http://processors.wiki.ti.com/index.php/XDS200

XDS560v2 Details: http://processors.wiki.ti.com/index.php/XDS560v2_System_Trace

XDS560v2 Pro Trace Details: http://processors.wiki.ti.com/index.php/XDS_Pro_Trace

Target Debug and Trace Emulation and Trace Headers Technical Reference Manual (SPRU655)Headers Guidelines:

4 Hercules™ TMS570LC/RM57Lx Safety Microcontrollers Development SPNA202–May 2014
Insights Using Debug and Trace Tools Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/Category:CCS
http://processors.wiki.ti.com/index.php/Debug_Server_Scripting
http://processors.wiki.ti.com/index.php/XDS100
http://processors.wiki.ti.com/index.php/XDS200
http://processors.wiki.ti.com/index.php/XDS560v2_System_Trace
http://processors.wiki.ti.com/index.php/XDS_Pro_Trace
http://www.ti.com/lit/pdf/SPRU655
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA202

www.ti.com Using the Right Tools for the Job

4 Using the Right Tools for the Job
This section describes when to apply specific tools and techniques to get the best results. These tools
support cross development environments across various development stages.

4.1 Boot Code and Application Debugging
System bring-up can be a complex task involving connectivity issues, boot loader troubleshooting, system
initialization sequencing, and register and memory visibility. Majority of times the complexity arises due to
constrained low-level debug accesses and restrictive tools.

Using JTAG is essential during the bring-up stage, because it enables debug visibility without any
software dependency. CCS and XDS JTAG debug probes provide register and memory visibility with or
without code running on the target. For downloading or uploading memory, the block memory read/write
feature can be very helpful during the bring-up stage. The XDS debug probe also provides the ability to
disconnect and cause the debug subsystem to power down when not in use.

In a bare-metal or RTOS development environment, CCS with an XDS JTAG debug probe provides
comprehensive debugging functions for code running in RAM and Flash. This includes support for
registers, memory, breakpoints, and watchpoints with assembly and source level debugging. The Debug
Access Port (DAP) also provides access to memory via AHB-AP and APB-AP via System View and APB
View respectively in CCS. Access to runtime memory is done via AHB-AP and user needs to select
System View to inspect application variables while the target is running.

DBGJTAG is another tool that comes with CCS for debugging issues such as JTAG scan chain problems,
the length of the JTAG test access ports (TAPs), and the reliability of the scan chain. This can be useful
when dealing with board-level JTAG connectivity issues.

The CCS General Extension Language (GEL) is a C-like expression language. It can be used to describe
various hardware setups, memory initialization, and peripheral configuration routines. GEL routines can be
invoked in the debugger interactively or automatically in response to debug events such as a connection
or halt. GEL scripts do not need to be compiled or built. GEL is a powerful tool during bring-up, as it
provides a way to program the hardware before the software is ready.

References:

CCS: http://processors.wiki.ti.com/index.php/Category:CCS_Training#Getting_Started_Guides

CCS GEL: http://processors.wiki.ti.com/index.php/GEL

Wait in Reset Support: http://processors.wiki.ti.com/index.php/Wait_in_Reset

DBGJTAG: http://processors.wiki.ti.com/index.php/Dbgjtag

5SPNA202–May 2014 Hercules™ TMS570LC/RM57Lx Safety Microcontrollers Development
Insights Using Debug and Trace ToolsSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/Category:CCS_Training#Getting_Started_Guides
http://processors.wiki.ti.com/index.php/GEL
http://processors.wiki.ti.com/index.php/Wait_in_Reset
http://processors.wiki.ti.com/index.php/Dbgjtag
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA202

Using the Right Tools for the Job www.ti.com

4.2 Performance Monitoring
Efficient usage of a device with caches can be a challenging task in the absence of the right tools
providing visibility to multiple cache levels during development. This section talks about various tools that
are at your disposal to understand cache behavior for their applications.

4.2.1 ARM Advanced Features View
The ARM Advanced Features view in CCS provides debugging controls and visibility related to MPU,
cache, and coherency controls. These controls provide a direct mechanism to control low-level hardware
features; they can be helpful during driver debugging. The controls allow you to change settings, such as
enabling and disabling of the data cache, without making changes to the kernel code. Be careful about
using these controls, as an incorrect operation may result in unexpected behavior, including a processor
crash.

Figure 3. ARM Advanced Features View

6 Hercules™ TMS570LC/RM57Lx Safety Microcontrollers Development SPNA202–May 2014
Insights Using Debug and Trace Tools Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA202

www.ti.com Using the Right Tools for the Job

4.3 ARM Performance Monitoring
ARM Performance Monitoring Unit (PMU) counters can be used for benchmarking and performance
analysis. These counters provide statistical information on CPU cycles, exceptions, cache, and other
events. CCS also provides a PMU-based profiling interface via JTAG. The general technique is as follows:
1. Stop the program where the analysis should begin.
2. Program the PMU to count the desired events and reset the counters.
3. Execute the program to the point where the analysis should end.
4. Read the PMU counters, check for overflows, and compute metrics.

Figure 4. PMU Profiling in CCS

7SPNA202–May 2014 Hercules™ TMS570LC/RM57Lx Safety Microcontrollers Development
Insights Using Debug and Trace ToolsSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA202

Using the Right Tools for the Job www.ti.com

The following list summarizes some of the key PMU events available for TMS570LC/RM57Lx
microcontroller. Information on more events is available from the CCS Cout Event dialog box.
• Clock Cycles
• Data Cache Miss
• Datac Cache Access
• Data Read Executed
• Data Write Executed
• Data Dependency Stall
• Data Cache Write Back
• Data Cache Data RAM Fatal ECC Error
• Data Cache Tag or Dirty RAM Fatal ECC Error
• External Memory Request
• Instruction Cache Miss
• Instruction Executed
• Dual Instruction Executed
• Instruction Buffer Full Stall
• Instruction Cache Tag ECC Error
• Instruction Cache Data ECC Error
• Non-Cacheable Access on AXI Bus
• Exception Taken
• Exception Return Executed
• Data Cache Tag ECC Error
• Data Cache Data ECC Error
• Change to ContextID Executed
• Software Change of PC
• B,BL and(or) BLX Immediate Executed
• Procedure Return Executed
• Unaligned Access Executed
• Branch Unpredicted (not predicted)
• LSU Busy Stall
• Cycles of Disabled FIQ
• Cycles of Disabled IRQ

4.4 Tracing Applications for Execution Visibility
Hard-to-find intermittent issues can evade developers as traditional debugging techniques can be
frustrating and time consuming. Performance measurements in a real-time environment are also
challenging, and often do not provide the needed granularity and non-intrusiveness. ARM Cortex R ETM
trace presents itself as a powerful tool for complex debug, profiling, code coverage needs. While using
ETM trace, no changes to the application are required and the trace data can be uploaded and analyzed
without halting target. The trace output includes program counters (PC), cycles, and data trace (R/W) at
full speed in a loss-less manner.

Hercules devices export the ETM trace over trace pins and the trace information can be captured via a
trace receiver such as XDS560v2 Pro Trace. Trace Analyzer in Code Composer Studio (CCS) provides a
unified interface to setup and analyze ETM trace for debugging and profiling needs. Various triggering
options for trace include Trace Always or Trace On, Trace in Range, Start/End Trace, and Trace
Variables.

8 Hercules™ TMS570LC/RM57Lx Safety Microcontrollers Development SPNA202–May 2014
Insights Using Debug and Trace Tools Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA202

www.ti.com Using the Right Tools for the Job

Figure 5. Trace Setup and Configuration

Figure 6. CCS With Trace Output Viewer

References:

Using Trace: http://processors.wiki.ti.com/images/3/36/Spruhm7.pdf

9SPNA202–May 2014 Hercules™ TMS570LC/RM57Lx Safety Microcontrollers Development Insights
Using Debug and Trace ToolsSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/images/3/36/Spruhm7.pdf
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA202

Using the Right Tools for the Job www.ti.com

4.5 Detecting Memory Corruptions and Stack Overflows
While debugging programs, you may find that a certain location in memory is being corrupted, without
knowing where it is being changed in the source code. Array overruns and memory overwrites are typical
causes of such memory corruptions. These can happen when a data variable is assigned an illegal value
or an unexpected write occurs due to a bug in some other part of the application. You can set a hardware
watchpoint at a variable or an absolute address to catch such conditions.

For stack overflow detection, watchpoints can be used to trap the causing condition. You can set a
watchpoint to watch a single address or range of addresses just below the last memory location of the
stack. If the program accesses that memory, the watchpoint will trigger, and you will know that the stack
has overflowed.

ARM Cortex ETM trace can also be used in conjunction with the watchpoints to captures PC execution
sequence. On watchpoint trigger when processor halts, trace collection also stops. The collected trace
information contains sequence of program execution until the stack corruption and provides next level of
visibility into the potential stack corruption causing events.

4.6 Tracking Exceptions and Complex Real-Time Issues
Issues such as race conditions, intermittent glitches, code runaway, and false interrupts may not be easy
to reproduce with stop mode debugging. Many times such issues are caused by spurious interrupts or bad
ISR code. Halting the application during ISR execution can result in undesired or non-reproducible
behavior.

Real-time tracing is an important tool for debugging such issues where stopping the processor is
undesired and affects application. ARM Cortex R ETM trace with XDS560v2 Pro Trace can be used to get
run-time execution visibility. The ETM program trace (PC trace) with cycle accurate tracing provides
execution sequences and associated cycles. Intermittent glitches or code runaways cause processor
exception with the program counter information that caused the exception. However, this does not tell
about the execution and events sequence leading into the exception. Trace is the fastest way of getting
such visibility in a very short amount of time with a certainty. When using trace, you can start tracing the
program with a condition to end at exception vector. The trace includes PC sequences until the exception
and information on spurious and nested interrupts to narrow down the cause of the issue.

4.7 Profiling
ARM Cortex ETM trace provides a mechanism for non-intrusive application profiling. This does not require
any software instrumentation in the code. The trace-based profiling commonly provides function-level
inclusive or exclusive profiling information.

Profiling setup can be defined for the entire program, address range, or with a defined start address and
stop address points. The profiling configuration also allows you to choose whether you want this analysis
to include TI libraries or not. The output includes inclusive and exclusive level of profiling results.

Figure 7. Trace-Based Function Profiling

10 Hercules™ TMS570LC/RM57Lx Safety Microcontrollers Development SPNA202–May 2014
Insights Using Debug and Trace Tools Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA202

www.ti.com Using the Right Tools for the Job

The ETM trace information can also be processed to provide a function execution graph from the trace
analysis view. The execution graph shows caller and callee relationship with cycle count spent in a given
call. It can be used to measure the number of cycles between operations.

Figure 8. Trace Based Execution Graph

References:

Using ARM Trace for profiling: http://processors.wiki.ti.com/images/3/36/Spruhm7.pdf

4.8 Code Coverage
The ARM Cortex ETM trace can also be leveraged for getting non-intrusive code-coverage information.
The trace-based code coverage analysis includes information on lines of code and functions that have
been executed during a program run. You can use code coverage analysis to verify that your test cases
exercise all portions of your code. Metrics for function coverage and statement (line) coverage are also
provided. Code Composer studio also enables trace based statistical code coverage by providing an
option to accumulate and merge trace collection from multiple trace collection sessions. There are four
types of code coverage information is available.
• Function Coverage
• Line Coverage
• File Coverage
• Instruction Coverage

11SPNA202–May 2014 Hercules™ TMS570LC/RM57Lx Safety Microcontrollers Development
Insights Using Debug and Trace ToolsSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/images/3/36/Spruhm7.pdf
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA202

Using the Right Tools for the Job www.ti.com

Figure 9. Trace-Based Code Coverage

4.9 Scripting
CCS Debug Server Scripting (DSS) is a set of Java APIs for debug session scripting. The CCS scripting
APIs provide support for debug and trace scripting through Java, JavaScript, Python, and TCL, and so
forth. Previously described debug and trace capabilities can be used from the scripting environment for
testing or quality checks purpose. The trace scripting APIs provide trace, profiling, and code coverage
output into command separated text files and the output can be further processed via external tools. More
details on the existing scripting APIs can also be found in a CCS installation directory <CCS Install>\
ccsv5\ccs_base\scripting.

References:

Debug Scripting: http://processors.wiki.ti.com/index.php/Debug_Server_Scripting

5 Training Resources
Additional training material — including white papers, tutorials, and videos on Code Composer Studio - is
available via TI websites and the Texas Instruments Wiki.

References:

CCStudio Training: http://processors.wiki.ti.com/index.php/Category:CCS_Training

12 Hercules™ TMS570LC/RM57Lx Safety Microcontrollers Development SPNA202–May 2014
Insights Using Debug and Trace Tools Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/Debug_Server_Scripting
http://processors.wiki.ti.com/index.php/Category:CCS_Training
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA202

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Hercules TMS570LC/RM57Lx Safety Microcontrollers Development Insights Using Debug and Trace Tools
	1 Synopsis
	2 Technology Overview
	3 Debug and Trace Tools Overview
	3.1 Code Composer Studio
	3.2 XDS Debug Probes and Trace Receiver

	4 Using the Right Tools for the Job
	4.1 Boot Code and Application Debugging
	4.2 Performance Monitoring
	4.2.1 ARM Advanced Features View

	4.3 ARM Performance Monitoring
	4.4 Tracing Applications for Execution Visibility
	4.5 Detecting Memory Corruptions and Stack Overflows
	4.6 Tracking Exceptions and Complex Real-Time Issues
	4.7 Profiling
	4.8 Code Coverage
	4.9 Scripting

	5 Training Resources

	Important Notice

