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Understanding the load presented by the reference 
pin of SAR ADCs is key when designing data-
acquisition systems with low harmonic distortion.

The internal circuitry connected to the reference pin of most successive-approximation-

register analog-to-digital converters (SAR ADCs) (and some wideband delta-sigma ADCs) 

consists of switched-capacitor loads. During the conversion process, a switched-capacitor 

load imposes a current demand that can cause the external system’s reference-output 

voltage to fluctuate in time. Consequently, the SAR ADC reference-pin voltage also fluctuates.

Since the amount of switched-capacitor load 

depends on the input signal to the ADC, the amount 

of voltage-reference change also depends on that 

input signal. The phenomenon of voltage-reference 

fluctuation can directly translate into degradation 

of the system’s total harmonic distortion (THD).

Excessive voltage-reference fluctuations can 

completely run the otherwise stellar performance 

of a high-performance measurement-system ADC 

into the ground. It does not matter if the application 

is a motor-drive controller, a power-quality monitor 

or a medical instrument: All of the engineering effort 

that the system architect dedicated to choosing 

the proper ADC and synthesizing the optimal 

input-driver circuitry essentially goes to waste if the 

voltage on the reference fluctuates excessively.

In this white paper, I will explain how the voltage 

reference affects the THD of an 18-bit acquisition 

system and how adequate buffer circuitry solves 

the THD degradation problem. System architects 

and board-level designers can then effectively tackle 

the challenge of creating data-acquisition systems 

capable of achieving a high signal-to-noise ratio 

(SNR) while maintaining low distortion.

Data-acquisition system

Figure 1 shows a simplified schematic of a data-

acquisition system based on a SAR ADC. The 

voltage reference provides a necessary level to 

perform conversions. The buffer circuitry may 

or may not be necessary depending on the 

characteristics of the ADC, the reference itself 

and the maximum acceptable level of harmonic 

distortion. The microcontroller provides both a 

clock and control signals to the ADC, and reads 

conversion results from the ADC 

communication bus.

Equation 1 shows the transfer function of an ideal 

SAR ADC with a true differential input range. The 

transfer function is ideal because it does not take 

into consideration offset error, gain error, nonlinearity 

or intrinsic semiconductor noise.

CodewordOUT = �loor vIN
2N

2VREF
            (1) 

where VIN is the analog input to the data 

converter, N is the data-converter resolution 

and VREF is the voltage difference between the 

data-converter reference pins.
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The floor(·) function, also known as the integral part 

function, provides the largest integer no greater than 

its argument.

The floor(·) function in Equation 1 represents 

the quantization process performed by the SAR 

ADC. Therefore, Equation 1 takes into account 

quantization error introduced by the ADC.

How ADC output errors degrade THD

Equation 2 shows the output of a data-acquisition 

system similar to the one depicted in Figure 1, but 

with a key difference from Equation 1: the inclusion 

of an error term. Note that the error term could 

be caused by nonidealities internal to the ADC, 

or by nonidealities in the voltage reference and its 

associated buffer.

It is also possible for the buffer at the input of the 

SAR ADC to cause the error term in Equation 2; 

however, in this paper I only account for the effect of 

the voltage reference and its associated circuitry. The 

assumption throughout will be that the ADC input 

buffer provides an exact replica of the input signal, 

with no added distortion and no added noise.

 

CodewordOUT = �loor vIN
2N

2VREF
+ error      (2)

where VIN is the analog input to the data 

converter, N is the data-converter resolution, 

VREF is the voltage difference between the 

data-converter reference pins, and error is 

the term that accounts for all possible code 

errors caused by the ADC or other elements 

in the system.

Regardless of the error source, not every error term 

causes harmonic distortion in an acquisition system. 

For example, if the error term is constant with 

respect to time, then the output of the acquisition 

system has only a DC offset.

Figure 2 shows what goes on in the response of 

the data-acquisition system for a DC error case. 

The transfer function of the system is shown on the 

left side of Figure 2, the time-domain signals are in 

the center, and the frequency domain plot is on the 

right side. The blue traces correspond to Equation 1 

(an ideal system with no error), and the red traces 

correspond to Equation 2 when the error term does 

not depend on time.
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Figure 1. Simplified schematic of a data-acquisition system based on a SAR ADC.
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On the frequency-domain plot, both traces line up 

exactly, and the only feature visible in the red trace is 

its DC error. The rest of the red trace is occluded by 

the blue trace.

Since the transfer function of the whole system 

remains linear, a sinusoidal input comes out as 

a sinusoidal output, but with a DC offset and 

quantization error. Consequently, there is no 

harmonic distortion associated with error terms that 

are constant with respect to time.

The transfer functions shown in Equation 2 and 

Figure 2 are those of the entire data-acquisition 

system; they include the effect of the voltage 

reference, ADC and other system components. 

See reference [1] for more about quantization error.

Error terms that are directly proportional to the input 

signal constitute another example of error terms 

that do not cause distortion on the system output. 

Equation 3 and Figure 3 show how the system 

transfer function and output change when K1 is a 

constant with respect to time.

where VIN(t) is the analog input to the data 

converter, N is the data-converter resolution, 

VREF is the voltage difference between the 

data-converter reference pins, and K1 is a 

constant with respect to time.

As Figure 3 shows, the transfer function of the 

system is also linear in the case expressed via 

Equation 3. For the transfer function in Equation 3, 

a sinusoidal input comes out of the system as 

a sinusoidal, but with a higher (or lower) peak 

amplitude and with quantization error.

In Figure 3, note the absence of significant 

signals at any frequency not corresponding to 

the fundamental input sinusoidal. In a fast Fourier 

transform (FFT) plot, the lack of signals other than 

the fundamental shows the absence of harmonic 

distortion. Consequently, there is no harmonic 

distortion associated with error terms directly 

proportional to the input signal.
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CodewordOUT = �loor vIN
2N

2VREF
+ K1vIN (t)  (3)
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Errors that are nonlinear functions of the input signal 

introduce harmonic distortion in a data-acquisition 

system. Equation 4 expresses this phenomenon.

  

where VIN(t) is the analog input to the data 

converter, N is the data-converter resolution,  

VREF is the voltage difference between the data 

converter reference pins, and f2 is a nonlinear 

function of VIN(t).

Figure 4 shows the result of an error term whose 

dependency on the input signal is nonlinear. The 

transfer function of the overall system is no longer 

linear in Figure 4; harmonic distortion is therefore 

present at the output of the data-acquisition system. 

Harmonics at 2 kHz, 3 kHz, 4 kHz and 5 kHz 

indicate harmonic distortion in the system.

Three approaches for supplying the 
ADC reference

Armed with an intuitive understanding of which 

types of error influence harmonic distortion, you can 

proceed to study the specific effects of the voltage 

reference on an acquisition system.

The analysis begins with Equation 1. An idealized 

ADC model is necessary because the objective is to 

understand the effect that voltage references (and 

their associated buffering and conditioning circuits) 

have on data-converter performance.

Using the ideal ADC model from Equation 1 

ensures that offset error, gain error, ADC nonlinearity 

or intrinsic semiconductor noise are not causing 

performance degradation.

Of course, in a real data converter with nonidealities 

and possessing internal parasitic elements plus 

intrinsic noise, all of the factors that I mentioned 

above will play a role in overall system performance. 

In this paper, however, I will consider only linear, 

noiseless ADCs.

Causes of reference-voltage fluctuations: 

internal structure of SAR ADCs

The internal circuitry connected to a SAR ADC’s 

reference and analog input pins will differ depending 

on the exact architecture of the device. Describing 

the exact topology of such internal circuitry is 

outside the scope of this paper. See references 

[2] and [3] for more details on specific charge-

redistribution schemes used in SAR ADCs.

Figure 5 shows a simplified circuit for modeling the 

behavior of the reference input pin of some SAR ADCs 

The model in Figure 5 is general and suitable for 

analyzing the performance of SAR-based systems 

because, regardless of the charge-redistribution 

architecture, one fact remains common to most 

SAR ADCs: the internal capacitor bank connected 

to the reference pin has a capacitance dependent 

on the input signal. As a result, the current sunk on 

the reference pin also depends on the input signal.
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Figure 4. Output of a system with nonlinearities.

CodewordOUT = �loor vIN
2N

2VREF
+ f2(vIN (t))  (4)
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There are two major time intervals in the operation 

of the SAR ADC: acquisition and conversion. During 

the acquisition time, all switches in Figure 5 are in 

position 1; therefore, switches S1 and S2 connect 

the sampling capacitor CI to the analog input pins 

A_IN_P and A_IN_N, while the reference capacitor 

CREF_INT is isolated from the REF_IN and REF_GND pins.

During the conversion time, all switches in 

Figure 5 are in position 2. Switches S1 and S2 

disconnect the sampling capacitor from the analog 

input pins, while S3 and S4 connect the reference 

capacitor CREF_INT to the REF_IN and REF_GND pins.

Finally, toward the end of the conversion period 

(for a short time before the beginning of the next 

acquisition period), S1, S2, S3 and S4 move to 

position 3 and reset the voltages of the sampling 

and reference capacitors to an internal bias point. 

At the beginning of the subsequent acquisition 

cycle, all switches return to position 1 and the 

process repeats.

In a theoretical acquisition system, the VREF term in 

Equation 1 (corresponding to the voltage given to 

the reference capacitor CREF_INT) would be a constant 

regardless of the input signal to the data converter. 

Appendix B discusses such an ideal system.

In a real system like the one depicted in 

Figure 6, the current demanded by the reference 

pin produces a voltage drop across the output 

impedance of the voltage reference circuitry.
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Figure 5. Simplified model of a SAR ADC.
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This drop across the output impedance of the 

reference block causes input-dependent variations 

on the voltage of the internal reference capacitor. 

Inevitably, there is a corresponding inaccuracy in the 

conversion, since it is the internal voltage on CREF_INT 

that is used for analog-to-digital conversion.

Two key questions are how severe the voltage 

drop is and how you can mitigate it. I’ll explore the 

answer to the first question in the sections “System 

without reference buffer,” “System with reference 

buffer” and “System with REF6045.”

Dispelling a common misconception

Many designers believe that if Equation 5 and 

Equation 6 express the voltage on the ADC 

reference pin (with VREF and k both constants with 

respect to time), that you can then calibrate the 

error caused by reference-voltage fluctuations just 

as if it were part of a gain error term.

 CodewordOUT = �loor vIN
2N

2V (t)REF
       (5)

where VIN is the analog input to the data  

converter, N is the data-converter resolution,  

and VREF(t) is the time-varying voltage  

applied to the data-converter reference pin.

                                                                          (6)

where VREF is the DC portion of the reference 

pin voltage, VIN is the analog input to the data 

converter, and k is a constant with respect to time.

Such a notion is false. Equation 5 and Equation 6 

can be combined and rewritten as Equation 7. It is 

a misinterpretation to think that Equation 7 can be 

factored into the right-hand side of Equation 1 plus 

a linear error term.
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Figure 7. Current demanded by the reference pin of an 18-bit SAR ADC.

= VREF + kvIN(t)V (t)REF

http://www.ti.com/product/ref6045
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CodewordOUT = �loor vIN
2N

2(V  + kvIN(t))REF
 (7)

Equation 8 re-expresses Equation 7. Appendix A 

provides a proof that Equation 7 and 

Equation 8 are equivalent. Equation 8 shows 

how ADC output code words have a nonlinear 

dependency on the input signal, even when the 

variation on the reference-pin voltage is directly 

proportional to the input signal.                     

k(vIN(t))2

+ kVREFvIN(t)
CodewordOUT = �loor vIN

2N

2 V2
REFVREF

− 2N−1
   

SPICE modeling

In order to study the effects of voltage references 

on the performance of data-acquisition systems, I 

created a SPICE model based on lab measurements 

of the current demanded by the reference pin of an 

18-bit SAR ADC.

Figure 7 shows modeled current for a differential 

analog input ramping from –4 V to 4 V when the 

18-bit ADC is running at 800 kSPS.

Note these features in Figure 7:

• The current demanded is 0 A during the acquisition phase.

• The input-voltage level is inversely related to the  

current drawn.

• The value of the peak current demanded by the ADC 

reference pin is a nonlinear function of the analog  

input signal; although the peak current decreases  

with the increasing differential input signal, this  

decrease is not perfectly linear. You will notice bumps  

in the current waveform.
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Obtaining a closed-form algebraic expression for the 

voltage on the reference terminal of a SAR ADC as a 

function of ADC input voltage (and ADC architecture) 

is outside the scope of this paper. However, the SAR 

ADC output codes will contain some distortion due 

to the relationship between the reference-pin input 

current and ADC analog-input voltage.

This output distortion would be present even if the 

relationship between reference-pin input current and 

ADC input voltage were linear (an idealized case that 

does not match the behavior of integrated 

circuits [ICs]).

Figure 7 shows that in a physical SAR ADC, the 

reference-pin input current is a nonlinear function 

of the ADC input voltage; thus, the ADC output 

codes’ distortion is further accentuated, especially 

when the voltage reference driving circuitry is not 

designed properly.

Upper-bound performance of an  
18-bit SAR ADC

Before exploring the performance of various 

reference circuits, let us review the top performance 

metric values of the ideal case, for comparison.

The top performance of an 18-bit acquisition system 

is bounded by the ideal ADC transfer function given 

in Equation 1.

Figure 8 shows a 16,384-point FFT of the output 

code words for an ideal 18-bit SAR ADC running 

at 1 MSPS with a 10-kHz, 4.347-VPK differential-

input sine wave. The nominal reference voltage is 

4.5 V and the input-signal amplitude corresponds 

to 0.3 dB below full scale. Under these conditions, 

no 18-bit data-acquisition system can yield better 

performance than that shown in Figure 8.

Appendix B shows the circuit schematic used to 

obtain the results of Figure 8.

Appendix C shows how to calculate the key 

alternating current (AC) performance metrics of a 

data-acquisition system based on its FFT.

System without reference buffer

Figure 9 shows the first circuit analyzed. It 

essentially consists of the REF5045 and those 

passive elements around it feeding directly into  

the reference pin of an 18-bit SAR ADC.
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Figure 10. Simulation results for a system without a reference buffer.

http://www.ti.com/product/ref5045
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This data converter has a linear transfer function and 

no intrinsic noise; however, the current drawn from the 

reference pin corresponds to that shown in Figure 7. 

The data converter is running at 1 MSPS and the 

input signal is a 10-kHz, 4.347-VPK sine wave.

The differential input-signal amplitude corresponds to 

0.3 dB below full scale, since the nominal reference 

voltage is 4.5 V.

Figure 10 shows the simulation results for the circuit 

in Figure 9.

The blue trace labeled VIN_diff is the 10-kHz differential 

input signal connected to the SAR ADC.

The red trace labeled I_REF_IN is the current flowing 

into the REF_IN pin of the ADC. Just as in 

Figure 7, the current demanded by the REF_IN pin 

is a nonlinear function of the differential input signal.

The black trace labeled VREF is the voltage with 

respect to ground of the REF_IN pin of the ADC; 

ideally, this voltage would be 4.5 VDC.

In reality, the voltage on the REF_IN pin is 

approximately 4.502 VDC with a 472.5-µVpp 

ripple modulated by the differential input signal 

and the sampling clock of the ADC. The output 

of the REF5045 fluctuates because of the current 

drawn by the reference pin in conjunction with the 

REF5045 output impedance, plus the effects of R11 

and C11.

A 16,384-point FFT of the ADC-acquired data better 

quantifies the effect of the ripple observed on the 

REF_IN pin. Figure 11 shows the FFT and the critical 

AC performance metrics obtained.

See Appendix C for more information on how to 

calculate the key AC performance metrics of a data-

acquisition system based on its FFT.
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Figure 11. Key AC performance metrics and FFT for a system without 
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System with reference buffer

The next circuit simulated consists of the REF5045 

and a reference buffer constructed with two 

amplifiers (THS4281 and OPA333) in a composite 

double-feedback architecture, as shown in Figure 12.

Figure 13 shows the simulation results for the circuit 

in Figure 12. The SAR data converter is, once 

again, running at 1 MSPS, and the input signal is a 

10-kHz, 4.347-VPK sine wave. The input-signal 

amplitude corresponds to 0.3 dB below full scale, 

since the nominal reference voltage is 4.5 V.

The blue trace labeled Vin_diff is the 10-kHz  

differential input signal connected to the ideal  

SAR ADC.

The red trace labeled I_REF_IN is the current flowing 

into the ADC REF_IN pin. Note that, just as Figure 7 

shows, the current demanded by the REF_IN pin is 

a nonlinear function of the differential input signal.

The black trace labeled VREF is the ADC REF_IN 

pin voltage with respect to ground. The voltage on 

the REF_IN pin consists of a 4.502-VDC level plus 

a 153.6-µVpp ripple modulated by the differential 

input signal and the sampling clock of the ADC.

When using a buffer, the voltage ripple observed on 

the ADC REF_IN pin decreases by a factor of three 

compared to the ripple observed in Figure 9’s circuit.

A 16,384-point FFT of the ADC-acquired data better 

quantifies the effect of the ripple observed on 

the REF_IN pin.
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Figure 13. Simulation results for a system with a reference buffer.
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Figure 14. Key AC performance metrics and FFT for a system with a 
reference buffer.

http://www.ti.com/product/ref5045
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Figure 15. Schematic of a data-acquisition system with the REF6045.

Figure 14 shows the FFT and the critical AC 

performance metrics obtained. Note that the system 

in Figure 12 performs better than the system in 

Figure 9. When using a buffer circuit, THD improves 

by 26.3 dB.

The system depicted in Figure 12 performs much 

better than the system shown in Figure 9 because 

the output impedance of the reference buffer  

used in Figure 12 is lower than the REF5045  

output impedance.

System with REF6045

The last circuit simulated consists of the REF6045 

and those passive elements around it feeding directly 

into the reference pin of an ideal 18-bit SAR ADC.

The REF6045 is a voltage reference with an integrated 

output driver featuring ultra-low output impedance.  

The same conditions and assumptions used in the 

previous two cases apply for the circuit used to test 

the REF6045: a SAR ADC with a linear transfer func-

tion and no intrinsic noise, sampling at 1-MSPS and 

a 10-kHz, 4.347-VPK sine-wave input.

Figure 15 shows the circuit schematic and 

Figure 16 shows the simulation results for the circuit 

based on the REF6045.

Ideal ADC with no 
VREF fluctuation

REF5045  
by itself

REF5045 with driving 
buffer

REF6045

Average reference pin voltage (V) 4.5 4.502 4.502 4.501

Peak-to-peak variation in VREF (uV) 0 472.5 153.6 76.8

SNR (dB) 109.7 109.7 109.6 109.8

THD (dB) -133.4 -92.5 -118.8 -123.7

SFDR (dB) 128 92.5 119 124.5

SINAD (dB) 109.7 92.4 109.2 109.6

Maximum quiescent current of volt-
age reference and its buffer (mA)

N/A 1 1.925 0.7

Table 1. Performance comparison.

http://www.ti.com/product/ref6045
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The blue trace labeled Vin_diff is the 10-kHz differential 

input signal connected to the ideal SAR ADC.

The red trace labeled I_REF_IN is the current flowing 

into the ADC REF_IN pin. Note that, just as Figure 7 

shows, the current demanded by the REF_IN pin is 

a nonlinear function of the differential input signal.

The black trace labeled VREF is the ADC REF_IN 

pin voltage with respect to ground. The voltage on 

the REF_IN pin consists of a 4.501-VDC level plus a 

76.8-µVpp ripple modulated by the differential input 

signal and the sampling clock of the ADC.

A 16,384-point FFT of the ADC-acquired data better 

quantifies the effect of the ripple observed on the 

REF_IN pin.

Figure 17 shows the FFT and the critical AC 

performance metrics obtained. System performance 

improves even further from the second case 

simulated (REF5045 plus buffer circuit): THD 

improves by another 4.9 dB.

The system depicted in Figure 15 performs better 

than the system in Figure 12 because the output 

impedance of the internal buffer integrated into the 

REF6045 is lower than the output impedance of the 

buffer used in Figure 12.

Performance comparison

Table 1 provides a comparison of the four 

scenarios simulated. In summary, the system that 

uses the REF6045 (Figure 15) is the one that more 

closely approaches the upper boundary of 18-

bit performance. The low output impedance of 

the REF6045’s integrated output driver is the key 

parameter enabling the system in Figure 15 to yield 

–123.7 dB of THD – which is 4.9 dB better than the 

system depicted in Figure 12 and 31.2 dB better than 

a system with no voltage-reference buffer.

SNR  = 109.8 dB
THD  =  −123.7 dB
SFDR  =  124.5 dB
SINAD  =  109.6 dB
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Figure 17. Key AC performance metrics and FFT for a system with  
the REF6045.
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Figure 16. Simulation results for a system with the REF6045.
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In the time domain, the peak-to-peak voltage 

variation of the reference input pin provides a rough 

indicator of how much distortion a suboptimal 

voltage-reference buffer produces.

Another point of comparison is the settling time of 

the voltage on the REF_IN pin. Figure 18 shows the 

settling behavior of the circuits depicted in 

Figure 12 and Figure 15.

Note that the SAR ADC does not use the VREF 

value obtained exactly at the beginning of the 

conversion period; instead, the internal processing 

delay in the ADC allows the value of VREF to start 

advancing toward settling before the ADC uses 

the voltage for the first time at the point labeled 

“Effective sampling time” in Figure 18 (which 

corresponds to the determination of the most 

significant bit in the conversion process).

Figure 18 shows that the integrated output driver in 

the REF6045 brings VREF closer to its fully settled 

value faster than the reference-buffer circuit used 

in Figure 12.
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Appendix A

Equations 9-16 are proof that Equation 7 and 

Equation 8 are equivalent.

Starting from Equation 8 (repeated here for 

convenience as Equation 9):
k(vIN(t))2

+ kVREFvIN(t)
CodewordOUT = �loor vIN

2N

2 V2
REFVREF

− 2N−1

 (9)

Taking VIN as a common factor:
k(vIN(t))
+ kVREFvIN(t)

Codeword (t)OUT = �loor vIN
2N

2 V2
REFVREF

− 2N−1{ }
  
(10)

Expanding 2N-1:
k(vIN(t))
+ kVREFvIN(t)

Codeword (t)OUT = �loor vIN
2N

2 V2
REFVREF

2
2

N
−{ } (11)

Taking 2N/2 as a common factor:
k(vIN(t))
+ kVREFvIN(t)

Codeword (t)OUT = �loor vIN
1

V2
REFVREF

2
2

N
−{ } (12)

Finding a common denominator for the terms inside 

the brackets:
VREF + k(vIN(t))−k(vIN(t))

+ kVREFvIN(t)
Codeword (t)OUT = �loor vIN V2

REF

2
2

N{ }  (13)

Performing the sum of the numerator terms inside 

the brackets:
VREF

+ kVREFvIN(t)
Codeword (t)OUT = �loor vIN V2

REF

2
2

N{ }    (14)

Taking VREF as a common factor in the denominator 

inside the brackets:

VREF
(VREF+kvIN(t))

Codeword (t)OUT = �loor vIN VREF

2
2

N{ }  (15)

Equation 7 follows by simplifying the fraction inside 

the brackets:
1

+kvIN(t)
Codeword (t)OUT = �loor vIN VREF

2
2

N{ }  
(16)

Appendix B

Ideal case: Constant reference voltage

Figure 19 shows the schematic used to simulate an 

ideal 18-bit SAR ADC, running at 1 MSPS, with a 

10-kHz, 4.347-VPK differential-input sine wave. The 

input-signal amplitude corresponds to 0.3 dB  

below full scale, since the nominal reference voltage 

used is 4.5 V. An ideal voltage source that has no 

output impedance provides the reference voltage; 

therefore, the voltage-reference pin has no ripple 

voltage, despite the current drawn during the 

conversion process.

VREF

AVDD _3p3AVDD _3p3

AVDD _3p3

I_REF_in

DVDDGPIO_1

CLK

MOSI

MISO
GND

Microcontroller

+

VS _AVDD 

No voltage drop
regardless of
reference current 

3.3

C1 590p

R3 20

SAR ADC

CS

SCLK

SDI

SDO

REF_IN REF_GND AVdd

A_IN_P

A_IN_GND

GND

SAR ADC

R1 20

+

VG _signal_src

+

}

Figure 19. System schematic with constant voltage on CREF_IN.
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The theoretical SNR expected for a full-scale signal 

in an 18-bit ADC is given by Equation 17:

SNRtheoretical = 6.02N + 1.76 = 6.02(18) + 1.76 = 110.12 dB

The SNR obtained in the four simulations hovers 

around 109.6 dB to 109.8 dB, which is roughly 

0.3 dB below the theoretical SNR; this is due to 

the fact that the input signal used for simulation 

is not a full-scale signal (4.5 VPK). Instead, the 

maximum input voltage applied is 4.347 VPK 

(0.3 dB below full scale). Selecting a test input 

signal with some headroom below full scale is a 

common practice in ADC testing in order to avoid 

possible saturation or operation in the nonlinear 

region of the data converter.

Appendix C

Calculation of SNR, THD and SINAD

This section provides a basic tutorial on how to 

calculate the critical AC performance metrics in 

data-acquisition systems. The starting point is the 

FFT of the system output for a sinusoidal input.

A comprehensive treatment of the subject is outside 

the scope of this paper. See references [4] and [5]  

for more information and numerical examples.

According to IEEE standard 1241, THD is: “For a 

pure sine-wave input of specified amplitude and 

frequency, the root-sum-of-squares (RSS) of all the 

harmonic distortion components including their 

aliases in the spectral output of the analog-to-

digital converter. Unless otherwise specified, THD 

is estimated by the RSS of the second through the 

tenth harmonics, inclusive.”

Figure 20 shows an FFT plot and Table 2 

shows the corresponding harmonic values. 

The fundamental component is circled in blue, 

harmonics 2 through 10 are circled in black and  

the DC component is circled in green.

IEEE standard 1241 explains that “THD is often 

expressed as a decibel ratio with respect to 

the root-mean-square amplitude of the output 

component at the input frequency...”

If the amplitude of each harmonic component is 

expressed in decibels with respect to the input 

carrier frequency (dBc), then the THD can be 

calculated as shown in Equation 18:

THD = 10 log10   ∑10 10i=2

Di
10

                              
  (18)
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Evaluating Equation 18 with the data from Table 2 

yields Equations 19 and Equation 20:                                                                          

                     

Equation 21 calculates the signal-to-noise-and-

distortion ratio (SINAD). For example, suppose 

Figure 21 shows the values obtained in an N-point 

FFT; suppose also that the fundamental tone lands 

at frequency f1, which corresponds to j times 

the frequency step Δf (for integer j). Equation 21 

requires the inclusion of all terms in the FFT except 

two terms: the DC term, X0, and the fundamental 

term, D1.

SINAD = −10 log10   ∑ 10i=1
i=j

−1 Xi
10

N
2

                     
   (21)

 

Equation 22 calculates the SNR. For example, 

suppose Figure 22 shows the values obtained in an 

N-point FFT; suppose also that the fundamental tone 

lands at frequency f1, which corresponds to j times 

the frequency step Δf (for integer j).  

Equation 22 requires the inclusion of all terms in 

the FFT except 11 terms: the DC term, X0; the 

fundamental term, D1; and all harmonic terms, from 

the second through the tenth.

SINAD = −10 log10   ∑ 10
i=1
i=j

−1 Xi
10

N
2

Xi= D2, D3,..., D10

(19)

(20)

THD = 10 log10 +
−101

1010 +
−95
1010 +

−107
1010 +

−111
1010 +

−104
1010 +

−115
1010 +

−117
1010

−119
1010+

−111
1010

THD = −93.21 dB

(22)

Harmonic 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Amplitude (dBc) 0 -101 -95 -107 -111 -104 -111 -115 -117 -119

Variable D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Table 2. Harmonic amplitudes.
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