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Transformer structures that achieve low EMI 
with low- and high-side rectifiers

Introduction
Many adapter and charger designs limit the value of the 
Y-capacitor in the electromagnetic-interference (EMI) 
filter to limit the leakage current, which in turn improves 
the sensitivity and performance of touchscreens. Using a 
smaller Y-capacitor value typically forces the use of larger 
and higher-loss common-mode (CM) filter chokes in the 
EMI filter, which adds cost, size and weight to the adapter 
and reduces its efficiency.

A high-frequency gallium-nitride (GaN) based active-
clamp flyback adapter design using TI’s UCC28782 
controller achieves low CM EMI and complies with EMI 
standards even when using a small-value Y-capacitor. This 
article reviews this design’s internal transformer structure 
and its contribution to CM EMI. Analysis also covers how 
the design should be changed for a low-side rectifier 
versus a high-side rectifier. Finally, EMI test results are 
shown for a low-side rectifier design with an appropriate 
transformer structure.

Sources and causes of CM EMI
CM EMI takes the form of high-frequency current flowing 
between the AC line (L and N) terminals and earth. A 

combination of the AC line feed cables and power-supply 
output cables transmit CM EMI signals generated by a 
power supply. To avoid interference with nearby radio 
communications, the CM noise amplitude must be attenu-
ated to meet the required EMI standard limits.

As illustrated in Figure 1, CM currents can flow directly 
from the power-supply circuit to earth through the para-
sitic capacitance associated with each switched node. CM 
currents also flow from primary to secondary via parasitic 
capacitance between transformer windings. CM perfor-
mance is very dependent on printed circuit board layout 
and mechanical construction, as well as the internal 
construction of the transformer.

Mitigating CM EMI
There are three main ways to suppress CM noise:

•	 Shield the CM noise generators.

•	 Arrange the power circuit so that it is balanced for low 
CM noise, particularly the transformer.

•	 Add enough filtering to limit the CM noise.

There are two possible arrangements of the transform-
er’s internal winding layers that are balanced for low CM 
noise. One arrangement uses a high-side synchronous 
rectifier (SR) and the other method uses a low-side SR.
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Figure 1. CM noise current paths
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Transformer structure and its impact on CM EMI
Figure 2 is a cross-section of a typical interleaved flyback 
transformer. Figure 3 shows how this transformer would 
be connected in-circuit to an active-clamp flyback power 
stage for both a low- and high-side SR. Figure 3 also shows 
the induced voltage at both ends of each winding layer. 
The only significant difference is the polarity of the 
voltage across the secondary winding—for the high-side 
SR, it’s in phase with the primary voltage, and for the low-
side SR, it’s out of phase.

Designers often use SR field-effect transistors (FETs) 
instead of diodes to achieve better efficiency for the recti-
fier. Placing the SR FET on the low side offers ease of use 
with simplified driving and sensing, but does come with 
the trade-off of higher CM noise caused by the polarity 
inversion of the secondary winding voltage.

Figure 2. Typical interleaved flyback transformer 
with no shielding or CM noise mitigation
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Figure 3. Connection of active-clamp-flyback 
circuit to the transformer and winding voltages

VBULK

CCLMP

QCLMP

QMAIN

VAUX
DAUX

DSEC

VOUT

(a) When using low-side SR

DSEC

VBULK

CCLMP

QCLMP

QMAIN

VAUX
DAUX

VOUT

(b) When using high-side SR

http://www.ti.com/adj


Texas Instruments	 3	 ADJ 4Q 2020

PowerAnalog Design Journal

Figure 4 shows simplified transformer structures by 
replacing each winding layer with a rectangular block that 
has voltage equal to the average of the voltage across the 
layer’s width. Also shown is the parasitic capacitance 
between each layer and the voltages across each capacitor. 
In the case of the low-side SR, the secondary voltage 
swings in the opposite direction versus the primary layers, 
having a net additive effect on the CM voltage between 
the primary and secondary layers.

The high-side SR has an advantage because all voltages 
have the same polarities, which provides some degree of 
net cancellation by reducing the net primary-to-secondary 
CM voltage. The degree of natural CM cancellation with 
the high-side SR depends on the relative voltage on the 
primary and secondary layers, the number of winding 
layers, and the arrangement of those layers.

Transformer CM EMI mitigation for low- versus 
high-side SRs
Reducing the net CM voltage as close as possible to zero 
requires a slight modification of the transformer struc-
tures, as shown in Figure 5a. The secondary winding is 
sandwiched between two auxiliary layers for shielding and 
CM balance. The outer primary-referenced auxiliary bias 

Figure 4. Simplified active-clamp flyback transformer structure and CM voltages
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Figure 5. Improved active-clamp flyback transformer with internal shielding and CM balance

winding (shown in red) is moved inside, in between one of 
the primary-to-secondary interfaces. The auxiliary bias 
layer has the same number of turns as the secondary 
layer, but is typically wound with thinner wire because its 
required current rating is much lower. Winding the auxil-
iary layer with several parallel strands of thinner wire 
completely fills the layer, enabling the auxiliary layer to 
act as a shield and preventing any CM noise from coupling 
from the outer primary layer to the secondary layer.

For the high-side SR, positioning an identical auxiliary 
layer in between the other primary-to-secondary layer 
interface—this is a dummy CM balance winding—is again 
meant to shield CM noise from the main primary winding. 
But since the CM balance winding has the same number of 
turns as the secondary layer and the auxiliary bias layers, 
CM balance is achieved for the secondary layer. The 
secondary layer is effectively shielded by two auxiliary 
layers, one on either side, and with exactly the same 
voltage induced on all three layers. Since all three layers 
have the same induced voltage, there is close to zero CM 
current flowing into the secondary layer. This structure 
should deliver very low CM EMI and require a smaller 
external CM filter size.
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The simplified cross-section in Figure 5b shows the 
equivalent layers as capacitor plates, with the average 
voltage on each plate. Also shown is how CM current 
flowing from each auxiliary layer to the secondary layer is 
approximately zero, since both sides of each parasitic 
capacitance have the same voltage.

The low-side SR uses the same structure. In this case, 
however, since the auxiliary and secondary layers have 
opposite polarities, the net CM signal is additive. The 
auxiliary CM balance layer that is positioned in between 
the other primary-to-secondary interface is again wound 
with multiple parallel strands to fill the layer for shielding. 
But the auxiliary CM balance layer requires more turns in 
order to cancel the effect of CM current flow between the 
auxiliary bias layer and the secondary layer.

Equation 1 demonstrates how to calculate the nominal 
ideal number of turns in the cancellation layer. The 
secondary-layer polarity inversion is included in the equa-
tion, and the final result clearly shows the additive effect. 
In this case, with a 5T secondary layer and a 5T auxiliary 
bias layer, the cancellation layer requires 15T. This is 
considerably higher than the 5T cancellation layer 
required for the high-side SR case. In practice, the auxil-
iary cancellation layer usually requires more turns than 

the ideal value predicted by Equation 1, and some iteration 
is often required find the optimum value.
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Designers can adopt many other structures, beyond 
what is shared in Figure 5, to achieve a similar CM balance 
for other applications. The final structure will depend on 
constraints like cost (since the cancellation layers add to 
the transformer’s manufacturing cost), leakage inductance 
(extra layers in between the primary-to-secondary layers 
increase leakage inductance), the transformer’s parasitic 
capacitance and the repeatability of the solution in high-
volume manufacturing.

EMI test results
Figures 6 and 7 show conducted EMI results taken on the 
final design for the low-side SR. Note that the result 
remains under European Norm (EN) 55032 Class B limits 
with good margin. The inherently low CM EMI from the 
balanced transformer structure enables the use of a small 
value Y-capacitor for the CM EMI filter—only 330 pF—yet 
still meets EN 55032 Class B EMI limits with margin. The 
high-side SR can achieve a similar result, again due to the 
CM-balanced transformer structure.

Figure 6. Final conducted EMI result for a low-side SR at a 65-W load for 115 VAC
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Final Result for 115 VAC
Frequency 

(MHz)
QuasiPeak 

(dBµV)
Average 
(dBµV)

Limit 
(dBµV)

Margin 
(dB)

Meas. Time 
(ms)

Bandwidth 
(kHz) Line Filter

Correction 
(dB)

0.17 47.47 --- 64.73 17.26 1000 9 L1 ON 19
0.19 --- 32.93 54.11 21.18 1000 9 L1 ON 19
0.38 --- 27.43 48.19 20.76 1000 9 L1 ON 19
0.78 39.58 --- 56.00 16.42 1000 9 L1 ON 19
1.35 --- 20.66 46.00 25.34 1000 9 L1 ON 19
1.36 37.30 --- 56.00 18.70 1000 9 L1 ON 19
4.84 --- 21.36 46.00 24.64 1000 9 L1 ON 19
4.84 36.53 --- 56.00 19.47 1000 9 L1 ON 19
9.67 --- 29.57 50.00 20.43 1000 9 L1 ON 19
9.88 42.95 --- 60.00 17.05 1000 9 L1 ON 19
19.02 54.23 --- 60.00 5.77 1000 9 L1 ON 20
19.35 --- 45.70 50.00 4.30 1000 9 L1 ON 20
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A high-line input voltage (230 VAC) is typically the EMI 
bottleneck, given the lack of “free” frequency dithering as 
a result of a reduced bulk capacitor voltage ripple and the 
consequent reduction in switching frequency variation 
over the AC half cycle. The UCC28782’s built-in frequency 
dithering at high line helps reduce EMI and increase the 
margin of passing, further supporting the flexibility to use 
a low-value Y-capacitor. As Figures 6 and 7 indicate, both 
the high and low lines achieve similar pass margins.

Conclusion
A flyback transformer’s structure does affect CM EMI. For 
the best CM EMI cancellation, the transformer’s structure 
must be adjusted according to the location of the rectifier. 
Studying how the rectifier location impacts CM EMI 
generation reveals how the transformer structure must 
change to reduce CM EMI for both cases. The fundamen-
tally lower CM noise signal for a high-side SR enables the 
use of a simpler structure inside the transformer 
compared to a design using a low-side SR.

The inherently low CM EMI performance of this flyback 
transformer structure enables designers to use a small-
value Y-capacitor in the EMI filter. This is a big benefit for 
touchscreen applications, which require low leakage 
current in order to improve their resolution and sensitivity.

Figure 7. Final conducted EMI result for a low-side SR at a 65-W load for 230 VAC
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Final Result for 230 VAC
Frequency 

(MHz)
QuasiPeak 

(dBµV)
Average 
(dBµV)

Limit 
(dBµV)

Margin 
(dB)

Meas. Time 
(ms)

Bandwidth 
(kHz) Line Filter

Correction 
(dB)

0.23 39.63 --- 62.58 22.95 1000 9 L1 ON 19
0.23 --- 38.45 52.58 14.13 1000 9 L1 ON 19
0.48 --- 38.36 46.40 8.04 1000 9 L1 ON 19
0.48 39.64 --- 56.29 16.65 1000 9 L1 ON 19
1.47 33.80 --- 56.00 22.20 1000 9 L1 ON 19
1.47 --- 30.25 46.00 15.75 1000 9 L1 ON 19
4.67 --- 28.26 46.00 17.74 1000 9 L1 ON 19
4.74 31.78 --- 56.00 24.22 1000 9 L1 ON 19
9.33 --- 34.93 50.00 15.07 1000 9 L1 ON 19
10.32 40.01 --- 60.00 19.99 1000 9 L1 ON 19
18.36 --- 45.13 50.00 4.87 1000 9 L1 ON 20
18.56 50.97 --- 60.00 9.03 1000 9 L1 ON 20
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