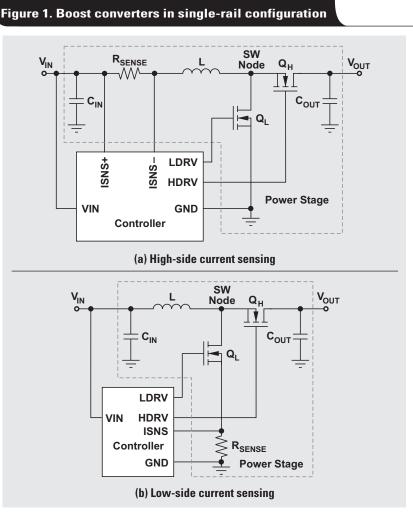
Split-rail approaches extend boostconverter input-voltage ranges

By Haifeng Fan

Systems Engineer


Introduction

Wide-input-range DC/DC controllers usually have built-in undervoltage lockout (UVLO) circuits to prevent the converters from misoperating when the input voltage is below the UVLO threshold. However, the UVLO circuit might also cause undesirable shutdown in the event of a load transient or a supercapacitor discharge in applications where input voltage is above the UVLO threshold at start-up but later may drop below this threshold. In addition, these controllers normally cannot be used in applications where the input voltage is always under the UVLO threshold. This article presents several split-rail approaches to extend boost-converter input-voltage ranges, enabling the use of these controllers with input voltage lower than their UVLO thresholds. Design examples along with test results are provided to validate these approaches.

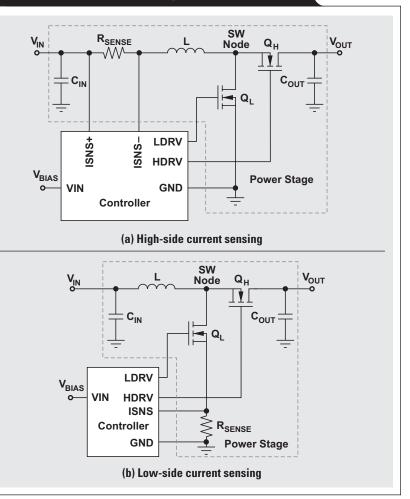
Minimum input voltage of a boost converter

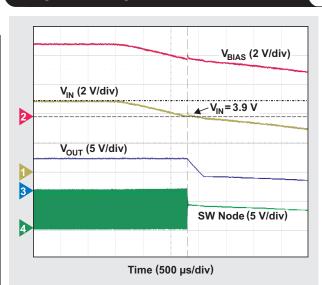
Figure 1 shows typical boost converters with a single input supply (V_{IN}) that provides the input voltage to the power stage and the bias voltage to the controller. The minimum bias voltage to the controller at the V_{IN} pin is set by the controller's input UVLO threshold. To guarantee functionality of boost converters with high-side current sensing (Figure 1a), the minimum input voltage to the power stage is defined by the

minimum common-mode voltage of the current-sense comparator. This is because the input voltage is also connected with the non-inverting input of the current-sense comparator. The minimum common-mode voltage of the currentsense comparator often is less than the controller's input UVLO threshold. For the boost converter with low-side current sensing (Figure 1b), the input voltage to the power stage is not directly connected to the current-sense

comparator. Therefore, it is not required to match the minimum common-mode voltage. Consequently, in the single-rail configuration where the input voltage to the power stage and the bias voltage to the controller are tied together, the controller's input UVLO threshold imposes a constraint on how low the input voltage to the boost power stage can go.

As shown in Figure 2, the input supply to the boost converter can be split into two rails: the power-stage input rail (V_{IN}) and the controller's bias input rail (V_{BIAS}). In the split-rail configuration, although V_{BIAS} is still required to be above the controller's UVLO threshold to turn on the controller, V_{IN} can go below the UVLO threshold. Since V_{BIAS} needs to supply only a very small amount of power, it can be generated by a charge pump or even share another voltage rail already existing in the system. As a result, the voltage range of the power rail (V_{IN}) can be extended.


This article will discuss several approaches to implementing the split-rail configuration. The TPS43061 synchronous boost controller from Texas Instruments (TI) will be used to elaborate on the split-rail concept and to validate the presented approaches. This boost controller has a high-side current-sense comparator and an internal input UVLO circuit at the bias-supply input (V_{IN}) pin.


Figure 3 shows the turn-off waveforms of the boost converter in the single-rail configuration shown in Figure 1a. The converter stops switching once $V_{\rm IN}$ falls below 3.9 V, which is the controller's UVLO turn-off threshold. The boost converter can be turned on only when $V_{\rm IN}$ rises above the UVLO turn-on threshold of 4.1 V.

Extending input-voltage range after start-up

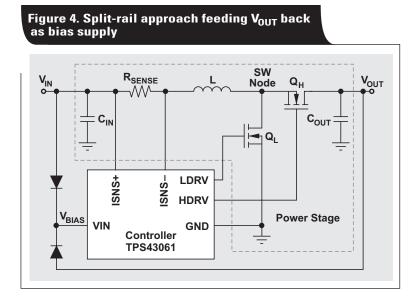

In some applications with only one input supply, the inputsupply voltage is greater than the controller's UVLO turnon threshold at start-up. However, it might fall below the input UVLO threshold afterwards, leading to undesired shutdown. For example, in power systems using a photovoltaic panel combined with a supercapacitor as an input supply, the input voltage may drop below the controller's UVLO turn-off threshold due to discharge. Another example is a power system powered by a USB power cable where the voltage drops significantly during a load transient, resulting in an unexpected system shutdown.

Figure 2. Boost converters in split-rail configuration

Figure 3. Turn-off waveforms of boost converter in single-rail configuration

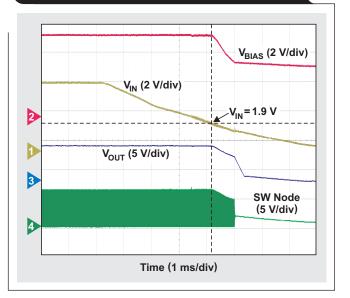
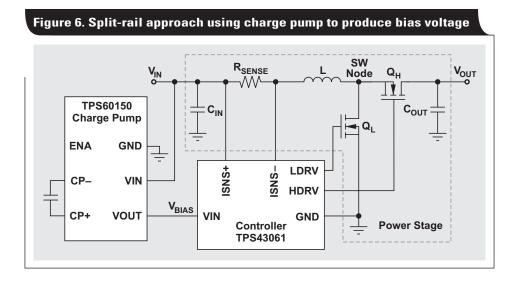

For these applications, if V_{OUT} is within the V_{BIAS} specification range, which is always higher than the UVLO turnon threshold, V_{OUT} can be fed back as the bias supply (V_{BIAS}) via a diode (Figure 4). After start-up, V_{BIAS} is clamped to V_{OUT} rather than V_{IN} and stays above the UVLO threshold even if V_{IN} drops below this threshold. The boost converter can maintain normal operation as long as V_{IN} can meet the current-sense comparator's requirement for the minimum common-mode voltage.

Figure 5 shows the turn-off waveforms of the boost converter shown in Figure 4, where V_{OUT} is set as 6 V and fed back as the bias supply. With diode's forward voltage drop neglected, the bias-supply voltage (V_{BIAS}) is clamped to V_{OUT} rather than V_{IN} when V_{OUT} is higher than V_{IN} after start-up. Hence, V_{BIAS} stays above the 3.9-V UVLO turn-off threshold to avoid the undesired turn-off when V_{IN} falls below 3.9 V. V_{OUT} stays within regulation until V_{IN} falls below the minimum common-mode voltage of the current-sense comparator, in this example 1.9 V. This means that the minimum input voltage (V_{IN}) has been extended from 3.9 V to 1.9 V after start-up.

Extending the start-up input-voltage range

Lithium-Ion (Li-Ion) batteries are widely used in smartphones, tablet PCs, and other handheld devices. The voltage of a single-cell Li-Ion battery rated at 3.6 V usually ranges from 2.7 V to 4.2 V due to discharge and charge. This is lower than the UVLO threshold of some wideinput-range boost controllers, even before start-up. For these applications, neither a single-rail scheme nor a


Figure 5. Turn-off waveforms of configuration shown in Figure 4

split-rail approach feeding $V_{\rm OUT}$ back as the bias supply works. A separate bias supply different from the battery input is needed.

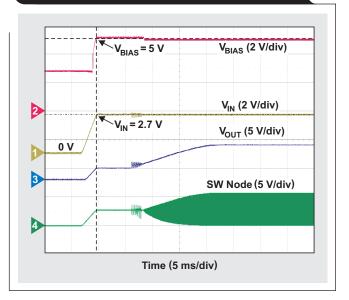
Fortunately, a bias supply needs to supply only very low power. If there is another supply rail above the UVLO turn-on threshold already available in the system, it can be connected to V_{BIAS} while connecting the power rail (V_{IN})

7

to the battery (Figure 2). If not, a charge pump can be added for a bias supply (Figure 6).

In this example, from the 2.7 V to 4.2 V of battery input, TI's TPS60150 charge pump produces a regulated 5-V supply, which is higher than the UVLO turn-on threshold of the TPS43061 controller, so it can be used as the bias supply. Using a charge pump with the split-rail approach, the boost converter can start up and operate with a single input supply that is lower than the boost controller's UVLO turn-on threshold .

Figure 7 shows the start-up waveforms of the boost converter shown in Figure 6. The converter can start up and operate with a single 2.7 V of supply since V_{BIAS} is regulated at 5 V, although V_{IN} is only 2.7 V. By using this splitrail approach, the boost converter's minimum operating input voltage is extended from 4.1 V to 2.7 V.


Conclusion

Two inputs are usually required for a boost converter to operate: the input supply to the power stage and the bias supply to the controller. The controller's UVLO threshold sets the low limit of the bias supply. It also places a constraint on the input supply to the power stage, if these two rails are connected to share one input supply. Split-rail approaches separate the power rail from the bias supply rail to eliminate the constraint on the minimum operating voltage of the power rail. This extends the input-voltage range of boost converters.

References

- 1. "Low quiescent current synchronous boost DC-DC controller with wide $\rm V_{IN}$ range," TPS43060/61 Datasheet. Available: www.ti.com/slvsbp4-aaj
- 2. "TPS60150 5V/140mA charge pump device," TPS60150 Datasheet. Available: www.ti.com/slvs888-aaj

Figure 7. Start-up waveforms of configuration shown in Figure 6

Related Web sites

Power Management: www.ti.com/power-aaj www.ti.com/tps43060-aaj www.ti.com/tps43061-aaj www.ti.com/tps60150-aaj

Subscribe to the AAJ: www.ti.com/subscribe-aaj

Internet

TI Semiconductor Product Information Center Home Page support.ti.com

TI E2E[™] Community Home Page

e2e.ti.com

Product Information Centers

Americas	Phone	+1(512) 434-1560
Brazil	Phone	0800-891-2616
Mexico	Phone	0800-670-7544
Intern	Fax et/Email	+1(972) 927-6377 support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone

European Free Call	00800-ASK-TEXAS (00800 275 83927)	
International	+49 (0) 8161 80 2121	
Russian Support	+7 (4) 95 98 10 701	

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

Fax	+(49) (0) 8161 80 2045
Internet	www.ti.com/asktexas
Direct Email	asktexas@ti.com

Japan

Phone	Domestic (toll-free number)		0120-92-3326
Fax	International		+81-3-3344-5317
	Domestic		0120-81-0036
Internet/Email	International	support.ti.co	om/sc/pic/japan.htm
	Domestic		www.tij.co.jp/pic

Asia

Phone	Toll-Free Number		
Note: Toll-free numbers may not support mobile and IP phones.			
Australia	1-800-999-084		
China	800-820-8682		
Hong Kong	800-96-5941		
India	000-800-100-8888		
Indonesia	001-803-8861-1006		
Korea	080-551-2804		
Malaysia	1-800-80-3973		
New Zealar	nd 0800-446-934		
Philippines	1-800-765-7404		
Singapore	800-886-1028		
Taiwan	0800-006800		
Thailand	001-800-886-0010		
International	+86-21-23073444		
Fax	+86-21-23073686		
Email	tiasia@ti.com or ti-china@ti.com		
Internet	support.ti.com/sc/pic/asia.htm		

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

A012014

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated