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Introduction

Analog Applications Journal is a collection of analog application articles
designed to give readers a basic understanding of TI products and to provide
simple but practical examples for typical applications. Written not only for
design engineers but also for engineering managers, technicians, system
designers and marketing and sales personnel, the book emphasizes general
application concepts over lengthy mathematical analyses.

These applications are not intended as “how-to” instructions for specific
circuits but as examples of how devices could be used to solve specific design
requirements. Readers will find tutorial information as well as practical
engineering solutions on components from the following categories:

e Data Acquisition

e Power Management

e Interface (Data Transmission)
e Amplifiers: Audio

e Amplifiers: Op Amps

e Low-Power RF

e General Interest

Where applicable, readers will also find software routines and program
structures. Finally, Analog Applications Journal includes helpful hints and
rules of thumb to guide readers in preparing for their design.
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Power Management

Turbo-boost charger supports

CPU turbo mode

By Jinrong Qian, Product Line Manager,
and Suheng Chen, Design Engineer

Introduction

To continuously improve a CPU’s dynamic
performance for fast processing of multiple

Figure 1. Adapter and battery-charger system

complicated tasks in mobile computers, it is
essential to increase the CPU frequency with

Adapter

full utilization of the CPU’s thermal capability
in a short time period. This could cause the
total power required by the system to exceed
the power delivered from a power source like
an AC adapter, which may result in crashing
the adapter. One possible solution is to
increase the adapter’s power rating, but at a
higher cost. This article discusses the turbo-
boost charger, which allows the adapter and

~ ~ ,| System
\I/?\N\ l Load
AC
v s1 ({
Synchronous Buck
Charge Mode: >
Buck
Battery

Pack

<

battery to power the system simultaneously to
meet instantaneous and excessive power
demands from a notebook computer system
operating in CPU turbo mode.

In traditional mobile computer systems, an AC adapter
provides the power, and any power not needed by the sys-
tem is used to charge the battery. When an AC adapter is
not available, the battery provides power to the system by
turning on switch S1 (see Figure 1). The adapter can be
used to power the system and charge the battery simulta-
neously, which may require it to have a high power rating,
increasing both its size and its cost without active control.
Dynamic power management (DPM) typically is used to
accurately monitor the total power drawn from the adapter,
which gives high priority to powering the system.

Once the adapter’s power limit is reached, the DPM
control system regulates the input current (power) by
reducing the charge current, providing power directly
from the adapter to the system without power conversion
for optimum efficiency. With the heaviest system load, all
the adapter power is used to power the system without
charging the battery at all. Therefore, the main design
criterion is to make sure that the adapter’s power rating
is high enough to support peak CPU power and other
system power.

To meet the increasing demand for improved system
performance in processing complicated tasks fast with
multiple CPU cores and enhanced graphics processor
units (GPUs), Intel developed its turbo-boost technology
in the Sandy Bridge processors. This technology allows
processors to burst their power above the thermal design

Analog Applications Journal 10 2012
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power (TDP) for a short time period in the range from a
few tens of milliseconds to tens of seconds. However, an
AC adapter is designed to provide the power just above
the demand from the processors and platform at a TDP
level considering the design tolerance. When a charger
system detects that the adapter has reached its input
power rating after its charge current has been reduced to
zero through DPM, the simplest way to avoid crashing the
AC adapter is to achieve CPU throttling by reducing the
CPU frequency, which compromises system performance.
How can the CPU be operated faster at above the TDP
level for a short time period without crashing the adapter
or increasing its power rating?

Turbo-boost battery charger

When the total power required by the system load and
battery charger reaches the adapter’s power limit, DPM
starts to reduce the battery’s charge current. The battery
charger stops charging, and its charge current is reduced
to zero when the system load alone reaches the AC adapt-
er’'s power limit. As the system continues to increase its
load during the CPU turbo mode, the battery charger,
which is usually a synchronous buck converter, is idle, as
no remaining power is available to charge the battery. The
synchronous buck converter is actually a bidirectional
DC/DC converter that can operate in either buck or boost
mode, depending on the operating conditions. If the bat-
tery has enough capacity, the battery charger can operate
in boost mode to provide power to the system in addition

High-Performance Analog Products
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to the power from the AC adapter. Figure 2 i i
shows a block diagram of a turbo-boost battery Figure 2. Turbo-boost battery charger in CPU turbo mode

charger.
When and how does the battery charger

Adapter

start to transition from buck charge mode to
boost discharge mode? The system can enter
CPU turbo mode at any time, and it is usually
too late to inform the charger to initiate this
transition through an SMBus. The charger
should automatically detect which operating
mode is needed. It is also critical that the sys-
tem be designed to achieve a fast transition
from buck to boost mode and vice versa. A DC/
DC converter needs a soft-start time of a few
hundred microseconds to a few milliseconds to
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s1 J
Synchronous Buck
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_L_ !Pack
v

minimize the inrush current. The adapter

should have a strong overloading capability to

support the whole system’s peak power before the charger
transitions into boost discharge mode. Most of the AC
adapters currently available can hold their output voltage
over a few milliseconds.

Figure 3 shows an application circuit for a turbo-boost
battery charger supporting CPU turbo mode. The Ry
current-sense resistor is used to detect the AC adapter
current for the DPM function and to determine whether
the battery charger is operating in buck charge mode or
boost discharge mode. Current-sense resistor R7 is used

to sense the battery charge current programmed from the
host through the SMBus based on the battery conditions.
The total power drawn by both the charger and the sys-
tem can be monitored through the I output, which is
20 times the voltage drop across sense resistor Ry for
achieving CPU throttling, if needed. Through SMBus con-
trol registers, the battery’s boost discharge mode can be
enabled or disabled based on the battery’s state of charge
and temperature conditions. In boost discharge mode, the
circuit provides additional cycle-by-cycle current-limit
protection by monitoring the voltage drop across the

Figure 3. Application circuit for turbo-boost battery charger
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low-side MOSFET, Q4. To achi 1l

ow-siae Q 0 achieve a sma Figure 4. Waveforms between buck charge mode and boost
form factor for a notebook computer like discharge mode

Intel’s Ultrabook™, the switching frequency

can be programmed at 615, 750, or 885 kHz.
This minimizes the inductor size and the
number of output capacitors. To further
reduce the number of external components,
the charger’s controller chip fully integrates
the loop compensators for the charge current, Adapter Current (2 A/div)
the charge voltage, and the input-current reg-
ulation loops. The power-source selector
MOSFET controller is also integrated in the
charger. Furthermore, the charger system
uses all n-channel MOSFETs for cost
reduction instead of the p-channel power
MOSFETSs used in traditional charge solu-
tions. Another benefit of this turbo-boost L,
charger system is that it can be used for
either function without changing the bill of
materials. System designers can do a quick
system-performance evaluation without addi-
tional hardware-design effort.

Figure 4 shows the switching waveforms
that occur during the transition from buck
charge mode to boost discharge mode. When
the input current reaches the adapter’s maxi-

mum power limit due to a system-load i Figure 5. Efficiency of turbo-boost charger
increase, the battery charger stops charging

and the battery transitions into boost mode
to provide additional power to the system. 98 —A——
Figure 5 shows the efficiency of the turbo- ri— -* _*- -*_
boost charger. It can be seen that over 94%
efficiency is achieved for charging and dis-
charging a 3-cell or 4-cell battery pack. If the
battery is removed or the battery’s remaining
capacity is not high enough, it is necessary to
throttle the CPU to avoid the adapter crash.
Now the battery can be discharged even
when the adapter is connected. However, one
possible concern is the battery cycle life.
Since the boost discharge mode lasts from
only tens of milliseconds to tens of seconds,
the impact on battery cycle life will be mini-
mal. Battery degradation is proportional to 0
the battery-cell voltage; so the higher this
voltage is, the faster the battery will degrade
and the shorter its cycle life will be. Dis-
charging the battery in the boost discharge
mode results in a lower battery-cell voltage, reducing the
degradation of the battery and lengthening its cycle life. for upgrading to an AC adapter rated for peak system
power. The test results show that the turbo-boost charger

0A

Battery Current (2 A/div)
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Boost: Discharging

Time (10 ms/div)

‘l\‘
—&— 4-Cell, 14.4-V Boost Mode
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0.5 1 15 2 25 3 35 4 45 5 5.5
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Conclusion is a practical solution in real mobile-computer designs.
A turbo-boost charger is a simple and cost-effective way .

for a battery to supplement AC adapter power for short Related Web sites

periods when an AC adapter and battery simultaneously 'power.ti.com!

power the system. This topology supports CPU turbo mode www.tl.com/product/bq24735
while ensuring the lowest system cost without the need
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Benefits of a multiphase buck converter

By David Baba

Applications Engineering Manager

Introduction Figure 1. Two-phase buck converter
Single-phase buck controllers work well for

low-voltage converter applications with cur-
rents of up to approximately 25 A, but power V'"°T
dissipation and efficiency start to become an Q1 Gate @
issue at higher currents. One suitable approach E
is to use a multiphase buck controller. This . z:zze 1T u
article briefly discusses the benefits of using a " —
multiphase buck converter versus a single- Q2 Gate e @
phase converter and the value a multiphase I
buck converter can provide when implemented. t
Flggre 'lvshows a two-phase C}rcmt. From. ‘ Multiphase = cTo Vour
this circuit’s waveforms, shown in Figure 2, it is Controller |
clear that the phases are interleaved. Interleav- 'NOT
ing reduces ripple currents at the input and Q3 Gate @ I
output. It also reduces hot spots on a printed E =
circuit board or a particular component. In I'd mﬂsee 2 2
effect, a two-phase buck converter reduces the o ¢
RMS-current power dissipation in the FETs and Q4 Gate ﬁ
inductors by half. Interleaving also reduces \l\/:
transitional losses.
Output-filter consideration =

The output-filter requirements decrease in a
multiphase implementation due to the reduced
current in the power stage for each phase. For

a 40-A, two-phase solution, an average current
of only 20 A is delivered to each inductor.

Compared to a 40-A single-phase approach, Phase1 Phase 2

the inductance and inductor size are drastically 6

reduced because of lower average current and
lower saturation current.

Output ripple voltage

Ripple-current cancellation in the output-filter
stage results in a reduced ripple voltage across
the output capacitor compared to a single-phase
converter. This is another reason why a multi-
phase converter is preferred. Equations 1 and 2
calculate the percentage of ripple current can-
celed in each inductor.

m = D x Phases ()

Switch-Node Voltage (V)
w

and 0

1.628 1.629 1.630 1.631 1.632 1.633 1.634

IRip_norm (D)= Time (ms)

[D_ mp(D)}x[Hmp(D) _D}
Phases Phases (2)
(1-D)xD ’

Phases x
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where D is the duty cycle, Igy,

Power Management

norm 1S the nor- . . - - .
malized ripple current as a function of D, and I::fg:::tef(.:‘l,\lc(::emallzed capacitor ripple current as a function
mp is the integer of m. Figure 3 plots these

equations. For example, using two phases at
a 20% duty cycle (D) yields a 25% reduction 1

-

in ripple current. The amount of ripple volt- 0.9 - \‘\
age the capacitor must tolerate is calculated
by multiplying the ripple current by the capac- ‘g 5 \
itor’s equivalent series resistance. Clearly, both ';' 0.7 >
maximum current and voltage requirements 3 0.6 - \\
are reduced. =

Figure 4 shows the simulation results for a E 0.5 7
two-phase buck converter at a duty cycle of 8 04
25%. The inductor ripple current is 2.2 A, but E o d
the output capacitor sees only 1.5 A due to 5
ripple-current cancellation. With a duty cycle Z 0.2
of 50% and two phases, the capacitor sees no 0.1 -
ripple current at all.

0 T T T T T T T

Load-transient performance

Load-transient performance is improved due
to the reduction of energy stored in each out-

T T
0 10 20 30 40 50 60 70 80 90 100

Duty Cycle, D (%)

put inductor. The reduction in ripple voltage

as a result of current cancellation contributes

to minimal output-voltage overshoot and undershoot
because many cycles will pass before the loop responds.
The lower the ripple current is, the less the perturbation
will be.

Figure 4. Cancellation of inductor ripple current with D = 25%

Cancellation of input RMS ripple current

The input capacitors supply all the input current to the
buck converter if the input wire to the converter is induc-
tive. These capacitors should be carefully selected to satisfy
the RMS-ripple-current requirements to ensure that they

Phase 1 | Phase 2

Inductor Current (A)

Output Capacitor Current (A)

4.463  4.464  4.465

4.466 4.467 4.468  4.469
Time (ms)
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of duty cycle

0.250 —

Figure 5. Normalized input RMS ripple current as a function
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40
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T
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do not overheat. It is well understood that, for a single-
phase converter with a duty cycle of 50%, the worst-case
input RMS ripple current is typically rated at 50% of the
output current. Figure 5 and Equation 3 indicate that, for
a two-phase solution, the worst-case RMS ripple current
occurs at duty cycles of 25 and 756% and is only 256% of the
output current.

B mp(D)}>< [mp(D) +1

D} 3)
Phases Phases

IInput _norm D)= \/|:D
The value of a multiphase solution as compared to a
single-phase solution is clear. Less input capacitance can
be used to satisfy the RMS-ripple-current demands of the
buck stage.

Application example

The LM3754 high-power-density evaluation board delivers
1.2 Vat 40 A from a 12-V input supply. The board is 2 x 2
inches, and the area covered by the components is 1.4 x 1.3
inches. The switching frequency of each phase is set to
300 kHz. Table 1 provides a summary of these and other
operating conditions. The components are placed on a
4-layer board, with 1 oz. of copper on all layers. Additional
pins are included on this board for remote sensing, and a
pin is used for margining the output voltage.

Because the LM3754 evaluation board is designed to
operate in high-power-density configurations, it utilizes the
optimized input capacitors to provide the reduced RMS
ripple current that is required. The evaluation board also
has a low ripple voltage and good transient performance.
The board layout shown in the LM3754 application notel
should be followed as closely as possible. However, if this

Www.ti.com/aa
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Table 1. Operating conditions of LM3754
evaluation board

Input voltage 10.8t0 13.2V
Output voltage 1.2V+1%
Output current 40 A (max)
Switching frequency 300 kHz
Module size 2x2inches
Circuit area 1.4 x 1.3 inches
Module height 0.5inches

Air flow 200 LFM
Number of phases 2

is not possible, close attention should be paid to these
considerations. Several more layout considerations will
now be described, followed by the test results from a test
board using the LM3754. These results are presented in
Figures 6-11 on pages 12-13. They are typical of what one
can expect to achieve or even improve upon in making the
necessary modifications.

Layout considerations

High-current traces require enough copper to minimize
voltage drops and temperature rises. The general rule of
using a minimum of 7 mils per ampere was applied for the
2 oz. of copper used, and 14 mils per ampere for the inner
layers for the 1 oz. of copper used. The input capacitors of
each phase were placed as close as possible to the top
MOSFET drain and the bottom MOSFET source to ensure
minimal ground “bounce.”

10 2012 Analog Applications Journal
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Signal components connected to the IC

All small-signal components that connected to the IC were
placed as close to it as possible. Decoupling capacitors for
Vrer and V¢ were also placed as close as possible to the
IC. The signal ground (SGND) was configured to ensure a
low-impedance path from the ground of the signal compo-
nents to the ground of the IC.

SGND and PGND connections

Good layout techniques include a dedicated ground plane;
this board dedicated as much of inner-layer 2 as possible
for the ground plane. Vias and signal lines were strategi-
cally placed to avoid high-impedance points that could
pinch off wide copper areas. The power ground (PGND)
and SGND were kept separate, only connected to each
other at the ground plane (inner layer 2).

Gate drive

The designer should ensure that a differential pair of
traces is connected from the high-gate output to the top
MOSFET gate and the return, which is the switch node.
The distance between the controller and the MOSFET
should be as short as possible. The same procedure should
be followed for the LG and GND pins when the traces for
the low-side MOSFET are routed.

A differential pair of traces must also be routed from the
CSM and CS2 pins to the RC network located across the
output inductor. Notice in the layout in Reference 1 that,
in order to provide additional noise suppression, the filter
capacitor is split into two capacitors—one positioned by
the inductor and the other close to the IC. These sense
lines should not be run for long lengths in close proximity
to the switch node. If possible, they should be shielded by
using a ground plane.

Analog Applications Journal 10 2012
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Minimizing the switch node

To follow the common rules of keeping the switch-node
area as small as possible but large enough to carry high
currents, the switch node was built on multiple layers.
Because the small evaluation board essentially folds back
on itself from input to output, the switch node naturally sits
on the outer layer, and the IC sits directly underneath the
switch node. Therefore, it is essential to keep the switch
node well away from the sense lines and also from the IC.
Hence, the switch node was strategically placed facing
outwards toward the edge of the board.

Conclusion

There are a number of benefits to using multiphase buck
converters, such as higher efficiency from lower transi-
tional losses; lower output ripple voltage; better transient
performance; and lower ripple-current-rating requirements
for the input capacitor. Some examples of multiphase buck
converters that can deliver the full benefits described
herein are the LM3754, LM5119, and LM25119 families.

Reference

1. Robert Sheehan and Michael Null, “LM3753/564 evalua-
tion board,” National Semiconductor Corp., Apphcatlon
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Test results

High-Performance Analog Products

Figure 6. Efficiency plot with 12-V input
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Figure 9. Output voltage ripple
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Downslope compensation for buck
converters when the duty cycle exceeds 50%

By John Bottrill
Senior Applications Engineer

Current-mode control (CMC) in a pulse-width-
modulated (PWM) buck converter with a duty cycle
greater than 50% has the potential of going into sub-
harmonic oscillations. Lloyd H Dixon, Jr., discusses this
in detail in Reference 1. According to Dixon, the solu-
tion is to add to the current-sensing signal a ramp that
is equal to the downslope of the output inductor current.
This additional voltage needs to be added into the
required calculation in order to select the current-
sensing resistor.

A push-pull converter, a phase-shifted full-bridge
converter, or any forward converter with duty cycles
greater than 50% at the output inductor are topologies
that require this compensation. However, for demon-
stration purposes, the topology selected for this discus-
sion is one that is relatively unknown: a three-switch
forward converter. See a basic schematic of the power
section in Figure 1. This topology, though patented by
Texas Instruments (TI), is licensed to the public when a
TI control IC is used in the circuit.

This topology has several advantages, particularly
when the input-voltage range is that which is normally

Figure 1. Three-switch forward topology
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considered the telephone-battery range of 36 to 72 V.

The topology limits the maximum duty cycle to 67%,
which limits the design to a maximum duty cycle at a min-
imum input voltage of 67%. At the same time, the voltage
on the main switches when they turn off is limited to the
input voltage of the power rail. This means that low-voltage
FETs can be used with their corresponding lower Rpgon)
resistance. This topology also provides a means of recover-
ing the magnetizing energy in the power transformer and
in the primary-side leakage inductance, thereby removing
the need for wasteful snubbers.

The converter design, in most other respects, is typical
of any buck topology, with the exception that the duty
cycle must be limited to 67% to avoid transformer satura-
tion. This limit can be accomplished by selecting a control
IC where the maximum duty cycle can be programmed,
such as the UCC2807-1 (see Reference 2). Because this
controller has the required duty-cycle-limiting feature, it is
perfect for this application. Therefore, it was used in this
study along with its characteristics for the analysis.

The following analysis assumes a theoretical switching
supply with a 3.3-V output at 100 W. The supply has a
maximum peak-to-peak ripple current through the output
inductor equal to 10% of the maximum output DC load
current of 30 A, and the input voltage is expected to be
between 36 and 78 V. It is also assumed that synchronous
rectifiers with a forward voltage drop, Vi, of 0.5 V will be

Www.ti.com/aa
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used for the output. The first step is to determine the
turns ratio of the transformer. At the minimum input volt-
age, the duty cycle will be at the maximum limit (67%).
The voltage needed at the output of the transformer can
be determined by the equation

Vour +Vig _33V+05V
D - 0.67

max

=5.672 V. (D)

If 36 V across the transformer primary windings is
assumed, the turns ratio (N,) will be 6.147, so a primary
with six turns will be used. The primary is divided into two
sections of three turns each (see Figure 1). As is standard
practice, the secondary is sandwiched between the primary
sections, and Q3 is placed between the two primary sec-
tions. With the input at 78 V, the transformer output volt-
age is 12.3 V, which will yield a minimum duty cycle, D,
of about 31%. Therefore, the maximum OFF time equals

1- Dmin
fSVV ’
where fg, is the planned switching frequency of 200 kHz.
The minimum output inductance (L1 in Figure 1) to
achieve the desired peak-to-peak ripple current of 10% is
thus defined as

V + Ve )X(1-D, ;i )/ £
Loup = Vour + Vi )X (1= Dryin )/ )
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The output inductor in Equation 2 was determined to be
4.33 nH. For design purposes, 4.5 nH will be used. From
this value, the current downslope, Iy, of the output induc-
tor can be calculated:

I = VOLLJ‘T + Via 3)
oUT
The inductor’s downslope current (I,) is determined to
be 0.844 A/ps.
It can also be determined that the peak current through
the output inductor at maximum input voltage is

Tour +0.5x (Ioyp X0.1),

because the maximum peak-to-peak ripple current was
defined as being 10% of the output current, and that cur-
rent is balanced about the nominal DC output. The peak
current that results is 31.884 A.

For the minimum input voltage, it is possible to deter-
mine the differential voltage across Lgyp. From that, the
rate of change in the output inductor can be determined

Power Management

to be 0.489 A/ms. Knowing the duty cycle and frequency
permits calculation of the time that the current is increas-
ing in the output inductor, making it possible to determine
the ripple current under these conditions. Finally, the peak
current under the minimum input voltage is found to be
31.122 A. The waveforms are shown in Figure 2. These
values are almost equal, but if the downslope is added,
they change—and in a surprising way. The downslope
current that must be added to the peak current for the
maximum input voltage is

Ids X Dmin

f

SW

=1.306 A,

and the downslope current that needs to be added to the
peak current for the minimum input voltage is

M:ZEQQA
T . .

SW

See Figure 3, where the effective downslope current is
added to the currents shown in Figure 2. The result is that

Figure 2. Output inductor ripple at maximum load for Viy(min) and Vinmax)
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through Rygpi

Figure 4. Circuit used to generate the desired current
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Three-Switch
Converter
(See Figure 1)

Q2

Current
Transformer

the effective peak current for the minimum input voltage
is higher than the effective peak current for the maximum
input voltage, even though the real peaks were the reverse.
The effective maximum current, including downslope at
the minimum input voltage, has a peak of 33.9 A, which is
the value that must be used to set the current-sensing
resistor, Rs. This current, including the downslope current
translated to the primary, is 5.658 A.

The IC chosen as the controller has a typical current-trip
level of 1.0 V, but the tolerance is between 0.9 and 1.1 V.
To make certain that all units can provide the required
power, the lower limit is used, and the value of Ry is set so
that the voltage across it at 5.658 A will be 95% of the 0.9-V
minimum. This gives a 5% safety margin for transients and
sets Rq at 0.15 Q. Of course, there will be about 5 W of
power loss, which most likely would be replaced by a
current transformer. With a 100:1 transformer, Ry would
increase to 15 Q. The remaining discussion assumes that
such a transformer is used.

In reality, the downslope current (I;,) does not go
through either the current transformer or the power
transformer, but the effect needs to be accounted for and
added to the voltage on resistor Ry. To do this, a resistor
Rygpri 1s added between resistor Rg and the IC’s current-
sensing pin. At the IC’s current-sensing pin, a current ramp
is injected into the circuit. This current ramp is such that
the ramp voltage developed across resistor Rg,,; between
the IC’s current-sensing pin and resistor Ry is equivalent to
the voltage that would be developed across resistor R by
the I, translated to the primary. It is assumed that an
equivalent downslope current is flowing through resistor
R,, taking into account both the power-transformer and
the current-transformer winding ratios. For this case,

High-Performance Analog Products
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resistor Ryg, is set at 1 kQ for ease of calculation and
because it is much larger than resistor R,.
The next step is to determine the dv/dt required across

Rdspri:

v, odasXBs oy 4)
dspri = 100 - 0

From this result, the current ramp needed through the
1-kQ resistor can be determined:
Vi
gspri =Rd“ﬂ=21.1 NA/qS (5)
dspri

This current times the maximum ON time gives a peak
current of 70.7 pA.

With a programmable, maximum-duty-cycle PWM con-
troller like the UCC2807, it is relatively simple to set the
maximum duty cycle to 67% by setting the two timing
resistors to the same value, as shown in the datasheet.
Also, the specification for the part states that the valley
and peak voltages on the timing capacitor equal ¥ Vi and
% Vo, respectively. This gives a voltage-ramp amplitude
of ¥5 V. With this information, a circuit can now be
designed to generate a ramp current that can be injected
into the current-sensing circuit to provide the current
downslope to the current signal.

A circuit to generate the desired current is shown in
Figure 4. This circuit is based on the UCC2807-1 control
IC, with Vpp set at 11 V. The valley and peak voltages of
the Trig ramp are 3.667 V minimum and 7.33 V maximum,
and the time from minimum to maximum is equal to the
maximum ON time. In this circuit, R3 is equal to twice R4.
This sets the voltage at the base of Q6 equal to ¥5 V¢,
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which is the valley of the Trig voltage. As the voltage on
the Trig pin swings from the valley to the peak (%5 Vi),
the voltage across R2 goes from 0 to % Vi in a linear
manner. By choosing a value for R2 that gives a current of
70.7 nA with 3.667 V (51.8 kQ) across it and then having
the unity current mirror formed by Q5/R1 and Q7/R6, the
designer can develop and add to the current-sensing sig-
nal the needed current with the correct shape and timing
for the 1-kQ resistor.

Conclusion

The three-switch forward converter offers unique advan-
tages in energy recovery by returning the magnetizing
energy and primary-side leakage energy to the source,
preventing the need for snubbers and reducing the electro-
magnetic interference common with normal forward con-
verters. It also offers the advantage over a two-switch
forward topology of a duty cycle greater than 50%. This

article has shown an example of the calculations necessary

to determine the value of the current-sensing resistor and
the impact of the downslope necessary for stability in a
buck converter operating at a duty cycle greater than 50%.
It has also shown a method of adding in the downslope in
a converter.

Analog Applications Journal 10 2012

www.ti.com/aa

Power Management

References

For more information related to this article, you can down-
load an Acrobat® Reader® file at www.ti.com/lit/litnumber
and replace “litnumber” with the TI Lit. # for the
materials listed below.

Document Title TI Lit. #
1. Lloyd H. Dixon, Jr., “Current-mode control

of switching power supplies,” 1985 Texas

Instruments Power Supply Design Seminar ~ ______ .

(SEM400) . ... oo SLUPO75:
2. “Programmable maximum duty cycle PWM

controller,” UCC1807-x/2807-x/3807-x ~ _ _____.

Datasheet . ............................. \SLUS163,
Related Web sites

High-Performance Analog Products

17


http://www.ti.com/aaj
http://www.ti.com/lit/SLUP075
http://www.ti.com/lit/SLUS163
http://power.ti.com
http://www.ti.com/product/UCC2807-1

18

Power Management

Texas Instruments Incorporated

High-efficiency AC adapters for

USB charging

By Adnaan Lokhandwala

Product Manager

USB charging for electronic gadgets

Universal serial bus (USB) charging has become a common
means for powering electronic gadgets. The AC power
adapter/battery charger for many new consumer devices
like smartphones, tablets, and e-readers is in the 5- to 25-W
power range and presents a USB Standard-A receptacle.
The adapter output voltage of 5 V has become the preferred
choice for compatibility with PC/desktop-port charging
and communication. The current dominant interface is via
a standard (mini or Micro-B) USB cable or, in some cases,
a nonstandard connector. With battery charging gaining
consumer attention, the odd “wall wart” is transforming
into a “cool,” light, sleek, green charger. Beyond meeting
standard regulatory requirements, original equipment
manufacturers are pushing the performance envelope on
adapter efficiency and no-load power, which is also known
as vampire power. For example, leading manufacturers of
mobile-phone chargers have agreed to a five-star (<30 mW
of no-load power) charger-rating system. This makes it easy
for consumers to compare and choose the most energy-
efficient chargers.

Recently, there has been much talk about standardizing
the input to mobile phones and creating a universal charger
to charge any cell phone. In 2006, China issued a new reg-
ulation aimed at standardizing the wall charger and its
connecting cable. Similarly, the GSM Association (GSMA)
is now leading the Universal Charging Solution adapter
initiative for powering mobile phones with a micro USB
connector. The common charger is required to provide 5 V
+ 5%, a minimum of 850 mA, and <150 mW of no-load

Figure 1. Simplified flyback topology

power. It must also comply with the USB Implementers
Forum (USB-IF) Battery Charging Specification 1.1
(BC1.1).* Besides providing ease of use for consumers, the
standardized charger could potentially eliminate a multi-
tude of duplicate chargers. Additionally, AC adapters with
multiple USB outlets offer consumers the convenience of
charging multiple devices without the need for a dedicated
charger for each gadget. Chargers with higher output cur-
rent also allow the possibility of fast battery charging, a key
advantage over standard USB 2.0 ports that are limited to
500 mA. The increasing demand for these improvements,
along with the continued push towards adapter designs with
a smaller form factor, makes thermal management in this
“black box” a huge challenge for power-supply designers.

Power-supply architecture

For the power levels under consideration here, the flyback
topology shown in Figure 1 is the preferred choice today
due to its simplicity and low cost. The conduction loss on
the secondary-side Schottky-diode rectifier (Figure 1a)
becomes a limiting factor in achieving high-efficiency,
compact adapter designs. For instance, in a typical 5-V/3-A
adapter, the power loss in the diode rectifier alone at full
load can be 30 to 40% of the total system losses (neglecting
the compounding effect of secondary losses on increased
primary-side losses). Implementing a synchronous rectifier
(SR) for the output (Figure 1b) can increase the overall
efficiency of the converter and, because much less heat is
generated (fundamentally important in adapter designs),
ease system thermal management.

*USB-IF BC1.2 extends the charging-current range from 1.5 A to 5 A.
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The conceptually simple change of adding an
SR to the classic flyback topology can signifi-
cantly reduce overall system power losses. The
power level at which such a modification is
practical has been decreasing with the rapid
advancement in power MOSFET technology.
Hence, synchronous rectification is now applica-
ble to an ever-growing range of products. The
lower power dissipation of an SR allows design-
ers to take advantage of smaller components
that have less heat sinking, thus increasing

Figure 2. Simplified flyback waveforms with Schottky-
diode and SR-MOSFET output rectification
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power density while lowering assembly costs,
product size, and shipping weight.

Note that if the SR MOSFET is allowed to
switch during no-load/standby conditions, the
system power performance could be compro-
mised. The SR-MOSFET switching losses, in
addition to the quiescent power required by the
SR controller IC, can be limiting factors in achiev-
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~——— MOSFET Switch, Vpg
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ing the best possible system no-load performance.

Green output rectification: Full load

v

Time

to no load

This article will now discuss how an IC such as
the Texas Instruments (TI) UCC24610 Green
Rectifier™ controller can simplify USB charger
designs and enable high system efficiency across
the full load range. Simplified system waveforms

Figure 3. Typical CCM flyback waveforms with primary-
side synchronization

for a flyback converter with and without synchro-

nous rectification are shown in Figure 2. The P

waveforms are the results of a control scheme '
that directly senses the MOSFET drain-to-source b
voltage (Vpg). This control method is widely

o Primary-Sidé L
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adopted today instead of other implementation
choices such as primary-side synchronization or E’
synchronous control from a secondary-side cur-
rent transformer. Having the SR controller’s

turn-off threshold (Vrporg) as close as possible

° " 8Synchronizing Signal | " © " 0

(5 Vidiv)

SR Gate

to zero in this control scheme allows maximum
conduction time in the MOSFET channel.
Flyback converters can be designed to operate

(5 Vidiv) -

SR Current .

in different modes depending on the end- b
application requirements. For designs operating -
in continuous-conduction mode (CCM), the cur-

vt (10 Aldiv) et

rent in the transformer secondary does not fall to
zero before the primary-side MOSFET is turned

Time (2 ps/div)

on, which results in a period of cross-conduction.
When synchronous rectification is implemented
in such converters, it is imperative that the SR MOSFET be
turned off as soon as the primary-side switch turns on. This
prevents reverse conduction and limits additional power
losses and device stresses. Instead of waiting for the Vioyopp
threshold detection, the synchronizing function in the
Green Rectifier detects the primary-side turn-on transition
and turns off the SR MOSFET. Figure 3 illustrates how the
SR-gate turn-off transition is now controlled by a synchro-
nizing signal from the primary side and not by Vpg sensing.
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As described earlier, implementing synchronous rectifica-
tion could possibly compromise light-load efficiency and
no-load power consumption. The major contributors to
loss at light or no load are SR-MOSFET switching and SR
controller-IC bias. The Green Rectifier overcomes these
issues with (1) an automatic light-load-detection circuit
that disables gate switching of the SR MOSFET when its
conduction time falls below a certain threshold, and (2) an
EN function to put the IC in sleep mode and disable
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quiescent power loss. The light-load-detection
circuit compares the SR conduction time and the
programmed minimum ON time (MOT) for every
switching cycle. When the load decreases, the sec-
ondary conduction time becomes shorter than the
MOT, and the next SR gate pulse is disabled.
Further reduction in no-load power can be achieved
by using the EN function of the controller IC. A
simple averaging circuit on the MOSFET drain volt-
age can be used to put the IC in sleep mode at a
no-load condition that limits the IC’s bias-current
consumption to 100 pA. An additional 10 mW of
no-load power consumption can be saved with this
approach. The last gasp in improving no-load per-
formance is to add a low-current Schottky diode in
parallel with the SR MOSFET.

As an example, a USB charger with a 3-A current
rating was designed using two controller chipsets,
TI's UCC28610 and UCC24610, for a tablet-PC end
application. The reference design for this charger,
the PMP4305, can be seen at the Web site listed at
the end of this article. The UCC24610 is good for

o

! (10 A/div)

Texas Instruments Incorporated

Figure 4. Full-load waveforms from PMP4305
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applications with a 5-V flyback switch-mode power
supply and can operate within the specified USB
voltage range of 4.75 to 5.25 V. Hence, this SR
controller was biased directly from the converter
output, eliminating the need for an auxiliary wind-
ing on the main power transformer. The controller
also allowed external programming of two blanking
timers to prevent SR false triggering from Vg
ringing sensed during the turn-on and turn-off
transitions. Figure 4 shows typical power-stage
waveforms of the PMP4305 at full load. The IC con-
trol scheme was not affected by the severe ringing
on the Vpg signal at turn-on because the program-
mable MOT timer disabled the Vpyopp comparator
during this period.

A comparison of the efficiency of SR-MOSFET
versus Schottky-diode output rectification at 115-
and 230-V AC line conditions is shown in Figure 5.
Implementing synchronous rectification enables
over 80% efficiency from full load down to about
25% of full load. Additionally, for this load range,
an SR configuration can achieve a three- to five-

Efficiency (%)

Figure 5. Comparison of system efficiency with Schottky
diode versus synchronous rectifier (SR)
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point improvement in efficiency over Schottky-
diode rectification.

Conclusion

USB power charging for consumer devices is gaining trac-
tion. A universal standard for 10- to 25-W chargers with
USB outlets that power multiple devices eliminates the
need for a new wall charger with every new gadget pur-
chase. High-efficiency AC/DC converters are needed to
satisfy the push towards high-density, small-form-factor
adapters. Devices like the UCC24610 Green Rectifier can
help improve AC/DC converter efficiency and enable the
high-density USB-charger designs.
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Measuring op amp settling time by using
sample-and-hold technique

By Roger Liang, Systems Engineer,

and Xavier Ramus, System Engineer, High-Speed Amplifiers

Introduction

Modern high-speed operational amplifiers

(op amps) are designed with settling time in the
range of nanoseconds. This time is so brief that
measuring it within a reasonable error band
presents a challenging task not only on auto-
matic test equipment (ATE) but also on the
bench. In today’s op amp datasheets, settling
time is usually given as a simulated value due to
the cost and challenges associated with imple-
menting additional hardware to test it on the
bench. Traditional high-speed oscilloscopes have
only a 10-bit analog-to-digital converter, which
limits any measurement resolution to a maxi-

Vgenerator

5V
Pulse Generator R Veupply Output
e supply i_ ———————
Rgenerator . |
N ® Vour
50 Q D2 D1

Figure 1. Flat-bottom pulse generator (FBPG)

mum of 0.1%.

This article describes a new methodology that
has proven to be effective in making these measurements.
Detailed is a relatively inexpensive and simple way to mea-
sure settling time that bases accuracy and precision on the
relative speed of the waveform generator and the sample-
and-hold circuit.

Step input for the device under test

In this article, settling time refers to the time that elapses
from the application of an ideal step input to the time at
which the device under test (DUT) enters and remains
within a specified error band that is symmetrical about
the final value. An ideal step input is easily generated in
simulation, but there are no instruments that can produce
an ideal step waveform in any lab setting. Even under
ideal conditions, the output of overdamped and critically
damped instruments would take a few RC time constants
to monotonically settle to within tenths of a percent of the
final value.

For underdamped systems, a step waveform can over-
shoot the final value, and ringing may occur. In practice,
even critically damped systems have underdamped
behaviors. Generally, the faster the fall time of the step
waveform, the more overshoot and ringing one observes.
This non-ideality is then propagated into the measured
output waveform of the DUT. Fortunately, with the aid of
computer-logged records of input and output data, the
output can be normalized by lining up the two and sub-
tracting the input from the output (with the DUT in a
non-inverting unity-gain configuration).

Flat-bottom pulse generator

When the falling edge of a waveform generator is used as
the input to the DUT, a flat-bottom pulse generator (FBPG)
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can be used to clean up the low-voltage level of the gener-
ated signal. The FBPG clamps the falling voltage to ground
at the cost of a bigger overshoot. This gives test engineers
some control over trade-offs in the test setup. Similarly, a
flat-top pulse generator can be used to clean up the high-
voltage level.

Figure 1 illustrates two back-to-back high-speed Zener
diodes, each with a separate, adjustable power supply. As
a rule of thumb, the setup should be started as follows:
The Rgppry should be adjusted to obtain 5 V at the D1/D2
connection, and the Vyopepaior OUtput voltage should be
adjusted to swing between a 2-V high and a —5-V low. This
should bias the output at 2 Vpp and the low-voltage level
at 0 V. When Vi epator 18 high, D2 is turned off and D1 is
turned on. During this time, the output voltage becomes a
function of D1’s forward voltage (Vy,p1y) and of the amount
of current that flows through Ry, and D1. When the
input is low, D1 is turned off and D2 is turned on. During
this time, the output voltage swings to ground, and its slew
rate is proportional to the amount of current that flows into
the matching resistor, R3. The transient response is a func-
tion of the diode’s capacitance, reverse recovery time, and
forward recovery voltage.

Because of the diodes’ nonlinearity, it does not make
sense to derive rigorous equations to determine the DC
levels and transient response of the FBPG. Instead, the
equations can be simulated in software such as TINA-TI™
from Texas Instruments. Assuming that the pulse genera-
tor is very fast, the fall time and overshoot of the output
waveform become functions of the diodes’ speed and
recovery time, as well as of the parasitic capacitance and
inductance of the printed circuit board (PCB) on which
the FBPG is built. In other words, the designer should pick
the fastest, most robust diode and follow guidelines for
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good PCB layout when using FBPG for gener-
ating high-speed waveforms.

Sample-and-hold methodology for
measuring settling time

For the example presented here, the TI
OPAG615 (see Figure 2) was chosen to imple-
ment the sample-and-hold (S/H) functions of
settling-time measurement because of its wide-
band operational transconductance amplifier Vin
(OTA), which is optimized for low input-bias
current, and its fast and precise sampling OTA
(SOTA), which also serves as a comparator
and buffer. The analog input (V) is sampled
by the SOTA onto the capacitor (Cyop) When
the Hold-Control pin is high. The voltage on
Cyorp 1s held and reflected at the output
(Vour) when the Hold-Control pin swings

low. During sampling, the voltage on Cyqyp is
adjusted to the real-time voltage level on the

Texas Instruments Incorporated

Figure 2. Sample-and-hold (S/H) circuit

Hold Control

input. If there is a large voltage difference
between the input and Cyyp and there are
only a few nanoseconds of sampling time, then fast slew-
ing is required. During holding, the voltage on Cyqp
invariably charges/discharges due to its leakage current
and any biasing current needed for the OTA. The current-
feedback loop ensures that the SOTA slews fast enough to
capture the correct voltage level at Viy.

Figure 3 shows an example of a S/H output of a 100-kHz
sine-wave input. A waveform generator can be used to pro-
duce the input step function for the DUT and to synchro-
nize a S/H signal to that step function. A S/H circuit can be
used to capture points on the DUT’s output waveform. Any

Figure 3. Example 1-MHz S/H output of a 100-kHz sine wave

arbitrary waveform generator should work if it has a marker
output that synchronizes with the output, thus creating a
very convenient Hold-Control signal. The example test
used a Tektronix AWG610, which has a sampling time of
2.6 Gbps and a minimum marker step of 100 ps, making it
fast enough for most measurements of high-speed op amp
settling time.

Figure 4 shows how to capture points on a curve by
using a S/H circuit with the marker as the Hold-Control
signal. The designer can capture sequential points on the
curve by moving the marker position. After all the points

Figure 4. Example of AWG610 output
and marker synchronization
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have been recorded, the S/H curve can be plotted and
analyzed. Programming the waveform generator with
software like MATLAB® or LabVIEW™ makes changing

Figure 5. Test setup for measuring settling time

the marker and recording the results very simple. With Waveform DUT
the marker set in position 1, the S/H circuit tracks the Generator (OPA656) —

s s (AWG610) S/H Circuit 2 DMM 2
Viy voltage level when the marker is high and holds that : (OPA615) DUT
value when the marker is low. At position 1, the output is OSL%SS: IN OUT | Output
held at 1 V. At position 2, the output is held at 0.2 V. Hold Control Value

Figure 5 shows the test setup for measuring settling Marker |

time where the AWG610 and OPA615 were used for the Output
S/H functions. All signal lines were matched at 50 Q. The S/H Circuit 1 DMM 1
output of the waveform generator was used as the test (OPAG15) DUT
signal with two S/H circuits: One measured the input of IN ouT \'I"‘I’“t
the DUT (OPA656), and the other measured the DUT Hold Control _—
output. Digital multimeters (DMMs) were used to record
the held values.

As an example of this method, take measuring a

settling time of up to 100 ns. Assume that the waveform 3 .
generator is programmed to continually output a square Figure 6. Step waveforms of op amp’s input
wave with a duty cycle of 50% and a period of 200 ns. and output

The marker is initially set at the beginning of the falling
edge of the waveform generator’s output. The generator 120 | | |
runs continually (executes many cycles of sampling and
holding), and the S/H circuit integrates its output voltage
to a steady DC value. This value is then recorded by the
DMM, and the test engineer moves the marker to the
next position, repeating this cycle until data for 100 ns
has been recorded.

Figure 6 shows the plotted waveforms that resulted
when the test setup in Figure 5 was used. To obtain a
settling-time error waveform, the DC error was offset,
and the output was normalized to the input. The result
is shown in Figure 7.

OPA656 DUT
Input
Output
R g =100 Q
Cloaq = 1.2 pF

-
o
o

[
o

[=2]
o

Y
o

N
o

Normalized DUT Step Response (%)

Limitations and challenges

There are some limitations to the setup described here
that should be kept in mind. When in doubt, the designer 0 20 40 60 80 100 120 140 160
should always use the following equation: Time (ns)

o

I= CHOLD x dv/dt

For this equation, the size of the initial Cy;p should be Figure 7. Op amp’s normalized settling error
chosen based on three factors:

1. During the holding time, the OTA biasing current will

flow in or out of the capacitor, thus affecting the accu- g 0.2

racy of the voltage held. 5 O I \/‘\‘ o PNy
2. Since a voltage droop will occur on the capacitor due i -0.2

to the biasing current, a delta voltage should be chosen _g 0.4

based on the percentage of error within which the 'g, o

measurement should stay. g -0.6
3. Delta time is the duration for which the sampled volt- E —-0.8

age is held and should be no longer than the planned g 1.0 R| ag = 100 Q -

settling time to be measured. A Cload = 1.2 pF
For example, Cyorp should be no less than 50 pF under § 12 Output Step =2V |
the following conditions: The biasing current of the OTA Z 14 [ l
is 0.5 pA; an error of less than 0.1% of a 1-Vpp signal is to 0 20 40 60 80 100
be achieved; and the duration to be measured is 100 ns. Time (ns)
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Figure 8. Charge leakage on sampling capacitor

VIN

Hold
Control

Texas Instruments Incorporated

Other considerations

The duration of the sampling time could greatly affect the
result of the measurement. During holding, the voltage on
the sampling capacitor invariably strays from the supposed
DC value because the OTA demands a biasing current. This
voltage is then readjusted back to the expected DC value
during sampling. The DMM that is reading the output of
the S/H circuit is thus essentially taking an average value
of this triangle waveform. This phenomenon is shown in
Figure 8. To reduce this error, the holding time should be
minimized and the capacitor size maximized. It should be
kept in mind that the bigger the sampling capacitor is, the
more S/H cycles (integration time) will be needed for the
charges to integrate to a steady DC value.

Of course, increasing the sampling time
does not mitigate the leakage problem. A
minimum sampling time should be used that
still guarantees the SOTA’s holding-time delay
and ensures enough time for the sampling

capacitor’s charge/discharge while it is track- 60
ing the S/H circuit’s input. Figure 9 shows the 40
recorded values of the op amp’s settling time -
when different sampling times were used with E AL
the same holding and integration times. The = 0
results were measured against the same wave- .‘3
form taken from a 6-GHz, 10-bit oscilloscope, g -20
which showed a maximum overshoot of 2 a0
—60 mV. The measurement using a 20-ns sam- E
pling time matched that from the oscilloscope, o -60
but at the cost of applying a significant filter 2 _g0
over the result. Conversely, the measurement

using 6 ns applied a smaller filter but produced -100
a bigger overshoot, which is an artifact of the _120
measurement.

Figure 9. Settling time measured with different
sampling times

Conclusion

Numerous techniques exist for measuring settling time.
This article has introduced a simple yet accurate tech-
nique that uses a relatively fast waveform generator and a
S/H circuit. Knowing the limitations of this method, the
user should be able to adjust any measurement parameters
necessary to obtain the best results for a given settling-
time range and expected accuracy.
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