
Review of PoE two-pair/four-pair architectures
An end-to-end PoE solution typically comprises a power
source, referred to as “power sourcing equipment” (PSE),
and end equipment, referred to as the “powered device”
(PD). The PSE may be standalone or embedded in a
router or switch. Most Ethernet cable used today is
Category 5E (CAT5E) cable composed of four unshielded
twisted pairs of copper.

Figure 1 shows the possible architectures that can be
used to deliver power over CAT5E cable. The architecture
in Figure 1a delivers power to the PD from the PSE in a
single loop over two pairs of the CAT5E cable. The IEEE
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Current balancing in four-pair, high-power
PoE applications

Introduction
Power-over-Ethernet (PoE) parameters are specified by
IEEE 802.3-2005 clause 33, which defines both the allow-
able architectures and the maximum deliverable power for
a PoE system.1 The present standard mandates a two-pair
architecture allowing a maximum of 12.95 W at the end of
the cable. As end equipment becomes more complex, it
requires more power and architectures more flexible than
the IEEE standard allows. This article describes a unique
current-balancing technique that uses a four-pair architec-
ture to deliver up to 50-W to the end equipment.
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Figure 1. Two possible architectures for power delivery to the PD
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standard specifies that power may be delivered in a single
loop over either of the two pairs but not over all four pairs
simultaneously. Using two current loops over all four pairs,
the architecture in Figure 1b increases the available power
delivered to the input of the PD. The main advantage of
the four-pair architecture is the increased number of con-
ductors which decreases power loss and increases total
power to the end equipment. The main disadvantages are
the added cost and the increased complexity needed to
ensure that the current is balanced between the two
current loops.

In the four-pair architecture, both current loops feed a
single DC/DC converter. If the impedances of each loop
were identical, current balancing would be unnecessary
and each loop would provide half of the needed input cur-
rent to the DC/DC converter. However, mismatches in the
wires, connectors, and components will naturally cause
one loop to carry more current than the other. To ensure

reliability, the series components in each current loop
must be designed to handle the worst-case imbalance while
maintaining data transmission. A larger imbalance implies
an oversized (and thus more costly) design. Maximum
power delivery can be obtained by balancing the current
between the line pairs so that each path operates just
below its current limit. The following design example and
analysis show how the worst-case imbalance can be deter-
mined and minimized.

Design example with current-booster circuit
In a four-pair architecture, the detection and classification
functions of the PD must be performed on each two-pair
current loop, which necessitates the need for two PD 
controllers. In the design example that follows, two
TPS2376-H controllers are used as the PD input source to
the DC/DC power supply2 (see Figure 2). The DC/DC
power supply uses a UCC3809-2 in a single-switch flyback
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Figure 2. Design example of four-pair architecture with current-booster circuit
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topology to provide an isolated 5 V at 8 A to the load.
Table 1 shows the predetermined design specifications

used for this design example. It is assumed that an avail-
able PSE will supply a regulated voltage between 51 and
57 V that is capable of sourcing up to 800 mA for each
current loop consisting of two pairs of the CAT5E cable. A
reasonable assumption for the loop impedance of each two-
pair loop (maximum length of 100 m) is 12.5 Ω. The
CAT5E cable will connect to the PD interface and input to
the DC/DC converter that will provide an isolated 5 V at 8
A to the load. For simplicity and emphasis on the PD
interface, the DC/DC power supply is shown in Figure 2 as
a simple black box.

Assuming that the DC/DC converter is ~85% efficient,
approximately 47 W of input power is needed. Depending
on the CAT5E cable length and the PSE voltage, an input
current between 0.825 and 1.2 A is required to meet the
input-power specification.

The current limit of the TPS2376-H is listed in Table 1
because it is imperative that the current in either of the
two current loops not exceed this value during operation to
avoid unwanted shutdown. Because the minimum current
limit of the TPS2376-H is 625 mA, the current-booster 
circuitry in Figure 3 was introduced to gain the full poten-
tial of the allowable 800 mA of input current per two-pair
loop. In reality, the current is not boosted—it is merely
shunted around the TPS2376-H. Figure 3 shows how the
current-booster circuit works for one of the current loops.
As the return current into pin 5 (RTN) on the TPS2376-H
increases, the voltage drop across R15 increases, lowering
the voltage between base and emitter sufficiently to turn on
transistor Q1. Current through R15 will turn on Q1 when
VR15 > 0.7 V. This allows Q1 to conduct and shunt a portion
of the return current around the TPS2376-H. Q2 provides
protection for Q1 during short-circuit and transient condi-
tions by clamping the base of Q1 to its collector and forcing
it off. Q2 will turn on when VR19 > 0.7 V, shunting some of
the Q1 base current and eventually turning it off if the
current continues to increase. For a more detailed expla-
nation of this circuit, please see Reference 3.

MIN TYP MAX
PSE Voltage (V) 51 — 57

Impedance per Two Pairs (Ω) — 12.5 —

Input Current per Two Pairs (A) — — 0.800

VOUT (V) 4.95 5 5.05

IOUT (A) — — 8.0

DC/DC Output Power to Load (W) — — 40

DC/DC Input Power (W) — — 47

DC/DC Efficiency (%) — 85 —

DC/DC Input Current (A) 0.825 — 1.200

Current Limit (A) (TPS2376-H) 0.625 0.765 0.900
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Figure 3. Current-booster circuit for one
current loop

Table 1. Design specifications
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Modeling the four-pair architecture 
within PSPICE
To ensure that the design will current share appropriately,
it is necessary to model the four-pair architecture within a
simulation tool such as PSPICE. The key elements that need
to be modeled are the sources of impedance in series with
each current loop; i.e., the diode bridge, the CAT5E cable
resistance, and the series resistances of the TPS2376-H
pass FETs and booster circuitry. Table 2 correlates the
actual schematic in Figure 2 with the PSPICE simulation
schematic in Figure 4.

The simulation models the PSE as an ideal DC voltage
source, the DC/DC power supply as an ideal DC current
source, and the CAT5E cable and PD interface as the four
current paths. The color-coded paths in Figure 4 correspond
to those shown in Figure 2. Modeling the PSE as an ideal
voltage source and the DC/DC power supply as an ideal DC
current source are reasonable assumptions that simplify
the simulation significantly and allow the analysis to focus
on the current balancing of the CAT5E and PD circuitry.

As stated earlier, in an ideal circuit the current would be
equal in each current path because each path contains the
same components. However, imbalances do arise because
of variations in diode forward voltage drops, cable resist-
ance, and pass FET on resistances. PSPICE allows for
examination of the ideal case where matched components
are used and the current in each current loop is balanced.
The simulation is made by sweeping the current in the DC
current source, I_DCDC, and recording the current in

each of the two current loops and the power delivered to
the DC current source. The power delivered to the DC
current source represents the input power to the DC/DC
converter. (If the efficiency of the DC/DC power supply is
known, it can be multiplied by the input power to calcu-
late the actual power to the load.) Within each current
loop, it is important to make sure that the current through
the pass FET of each TPS2376-H device is less than the
625-mA current-limit threshold and that the total current
in either current loop does not exceed 800 mA.

A second variable that must be considered is the length
of the CAT5E cable. The IEEE standard allows for a
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Figure 4. Balanced PSPICE circuit for load-share simulation

ACTUAL SCHEMATIC PSPICE SIMULATION 
(Figure 2) SCHEMATIC (Figure 4)

U1 U1_RDSon 
(pass FET on resistance)

U2 U2_RDSon 
(pass FET on resistance)

D6 D6_V1, D6_V2, D6_R1, D6_R2
D13 D13_V1, D13_V2, D13_R1, D13_R2
D2 D2_V, D2_R
D9 D9_V, D9_R

CAT5E cable resistance R12, R45, R36, R78
PSE input voltage Vpse

DC/DC power supply I_DCDC
Q1, Q2, Q8, Q9, R15, R19, R32, R33 Q1, Q2, Q8, Q9, R15, R19, R32, R33

Table 2. Modeling of four-pair architecture
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maximum of 100 m of Ethernet cable between the PD and
PSE.1 Figure 5 shows the simulation results for the corner
areas of 100 m and 1 m of cable length when the model
cable resistances (R12, R45, R36, R78) are modified. All
simulations are done at the minimum PSE voltage of 51 V
because input current is highest at this condition.

The simulation results confirm that when matched, the
current loops will load share identically as Path 1 overlaps
Path 3 and Path 2 overlaps Path 4. As input power increases
above 25 W, the current-booster circuitry begins turning on
and a portion of the current in each current loop is shunted
around the TPS2376-H. The largest current handled by
either TPS2376-H device is ~465 mA when the input
power to the DC/DC power supply is 48 W and 100 m of
cable connects the PD to the PSE. The largest current in
either of the two-pair current loops is 599 mA (465 mA +
134 mA). This simulation result is acceptable because the
maximum TPS2376-H current is less than the 625-mA 
current limit and the maximum current in either of the
two-pair current loops is less than 800 mA.

Understanding sources of loop-impedance
mismatch
To ensure reliable performance, it is important to under-
stand the sources of loop-impedance mismatch so that
worst-case imbalances can be entered into the simulation
and analyzed. The simulation circuit in Figure 6 takes into
account maximum variations in diode forward voltage, 1%
resistor tolerances, and maximum pass FET on-resistance
tolerances. Also, the maximum cable length resistance 
tolerance of 3% was used in accordance with the IEEE
standard.
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(b) With 1-m cable
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The values were adjusted so that all impedance mis-
matches were in one current loop, allowing for the largest
imbalance. The four-pair architecture simulation previously
discussed was run a second time to determine the extent
of current imbalance in each current pair.

Figure 7 shows that the largest current through either of
the TPS2376-H devices is 488 mA with a 100-m cable and
498 mA with a 1-m cable. The largest current available (in
this example, Path 1 plus Path 2) is 640 mA with a 100-m
cable and 660 mA with a 1-m cable. Because the worst-
case current imbalance exceeds neither 625 mA through
the TPS2376-H nor 800 mA in one current loop, the
design remains within the original design specification.

Board-level results
To verify that the simulations are accurate, an evaluation
board was built and tested. Figure 8 shows the current in
each of the current loops when measured in an ideal lab
setting at 25°C ambient temperature. These board-level
results demonstrate a current imbalance through each
TPS2376-H of only 10 mA (2.1%) with a 100-m cable and
1 mA (0.2%) with a 1-m cable.

To emulate worst-case conditions, the evaluation board
was retested with a diode and resistor in series with the
return path of the R78 current loop (Paths 3 and 4). The
forward voltage drop of the diode (0.7 V) and an additional
0.5-Ω resistance were added to compensate for worst-case
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diode forward voltage variations and system resistance 
tolerances. This permitted a reasonable board-level test to
be conducted to measure actual current-loop imbalances.

Figure 9 shows that the largest current through either of
the TPS2376-H devices is 488 mA with a 100-m cable and
484 mA with a 1-m cable. The largest current available (in
this example, Path 1 plus Path 2) is 648 mA with a 100-m
cable and 640 mA with a 1-m cable. Because the worst-
case current imbalance exceeds neither 625 mA through
the TPS2376-H nor 800 mA in one current loop, the
design remains within the original design specification.

Conclusion
Overall, both simulation and board-level results confirm
that the current-booster circuit will meet the initial design
requirements for current balancing by keeping the return
current through each TPS2376-H under its minimum 
current limit and under the maximum current allowable in
the CAT5E Ethernet cable. The addition of the current-
booster circuit improves the current balancing between
the two current loops so that the wire, connector, and
component tolerances do not cause the design to fall out
of the design specifications.
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occurring after the date of this publication.

Trademarks: All trademarks are the property of their respective
owners.
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Data Converters dataconverter.ti.com

DSP dsp.ti.com

Interface interface.ti.com

Logic logic.ti.com

Power Management power.ti.com

Microcontrollers microcontroller.ti.com
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Audio www.ti.com/audio

Automotive www.ti.com/automotive

Broadband www.ti.com/broadband

Digital control www.ti.com/digitalcontrol

Military www.ti.com/military

Optical Networking www.ti.com/opticalnetwork

Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless
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