

Description

The DRV8376EVM is a integrated driver IC evaluation module for three-phase motor driver applications and provides single-chip power stage design for customers driving 4.5V to 65V brushless DC motors. Along with the hardware of the DRV8376, the TMS320F280049C microcontroller-based board has reference software that sends necessary signals to the DRV8376 to spin a 3-phase Brushless-DC motor. GUIComposer software allows the user to program settings, enable the motor to spin, and monitor the system from fault conditions.

Get Started

- 1. Order the DRV8376EVM and LAUNCHXL-F280049C
- 2. Download the comprehensive reference design files from the DRV8376EVM tool page
- 3. Refer to the DRV8376 Three-Phase Integrated FET Motor Driver data sheet or refer to E2E for questions and support

Features

- 4.5V to 65V operating voltage (70V abs max)
- High output current capability: 4.5A peak
- · AVDD and GVDD regulators
- Integrated CSAs for three-phase low-side current measurement
- Supply and fault LEDs
- C2000 (LAUNCHXL-F280049C) sensored trapezoidal firmware available

Applications

- Brushless-DC (BLDC) motor modules
- HVAC motors
- Office automation machines
- Factory automation and robotics
- Wireless antenna motor
- ATMs (Automated Teller Machines)
- Drones

DRV8376EVM

1

1 Evaluation Module Overview

1.1 Introduction

This document is designed to be used as a startup guide to the DRV8376EVM and LAUNCHXL-F280049C designs. This document is intended for the engineers involved in the design, implementation, and validation of DRV8376 and TMS320F280049C reference software.

The scope of this document is to provide the user with a guide to evaluate the DRV8376 device with a TMS320F280049C isolated board. This document covers the hardware connections required between boards and external motor and supplies. When the hardware connections are complete, the user is required to download the necessary tools and software to spin a motor.

This document is provided with the DRV8376EVM customer evaluation module (EVM) as a supplement to the DRV8376 Three-Phase Integrated FET Motor Driver data sheet. This user's guide details the hardware implementation of the EVM.

1.2 Kit Contents

- DRV8376EVM
- EVM Disclaimer Read Me

1.3 Specification

The DRV8376EVM can support voltages up to 65V and currents up to 4.5A. To prevent damage to both the IC and the EVM, confirm that these voltage and current specifications are not exceeded.

Figure 1-1. Simplified Schematic

1.4 Device Information

The DRV8376 integrates three 1/2-H bridges, has a very low RDS(ON) of 400m Ω (high-side plus low-side) to enable high power drive capability, and allows customer to drive 4.5V - 65V (70V absolute maximum) brushless-DC motors

Current is sensed using an integrated current sensing feature which eliminates the need for external sense resistors. Power management features with integrated LDO generate the necessary voltage rails for the device and can be used to power external circuits.

The DRV8376 is capable of driving a PWM frequency up to 100kHz. The control scheme is highly configurable through hardware pins or register settings ranging from motor current limiting behavior to fault response.

2 Hardware

The following section describes the EVM hardware and connections to the external supply, hall sensors, PC via USB, and motor. The major blocks of the DRV8376EVM are shown in Figure 2-1. The DRV8376EVM is designed for an input supply from 4.5V to 65V.

Figure 2-1. DRV8376EVM Major Hardware Blocks

2.1 Quick Start

The DRV8376EVM requires a power supply source, which has a recommended operating range from a 4.5V to 65V. To set up and power the EVM, follow the sequence below.

- 1. Make sure the DRV8376EVM has been configured according to the variant.
 - a. Section 2.6
 - b. Section 2.7
 - c. Section 2.8
- 2. Connect the phases of the motor to OUT A, OUT B, and OUT C of the screw terminals on the DRV8376EVM.
- 3. Do not turn on the power supply yet. Connect the motor supply to VM and power supply ground to PGND. PGND and VM locations can be found in Figure 2-1.
- 4. For sensored applications, connect the hall sensors to the appropriate locations on the 5-pin connector as shown in Figure 2-4. Make sure the hall power has been configured according to Figure 2-4.
- 5. Mate the DRV8376EVM onto the top half of the LAUNCHXL-F280049C as seen in Figure 2-2. The motor and power connectors must face the opposite direction as the micro-USB connector on the LaunchPad[™].
- 6. Power on the DRV8376EVM.
- 7. Connect a micro-USB cable from the computer into the micro-USB connector on the top of the LAUNCHXLF280049C.

2.2 LaunchXL-F280049C Setup

The DRV8376EVM must be connected to the LaunchXL-F280049C as shown in Figure 2-2. Make sure the power supply input and phase outputs of the DRV8376EVM are facing the opposite direction of the micro-USB on the LaunchXL-F280049C.

Figure 2-2. DRV8376EVM LaunchXL-F280049C Connection

WARNING

To minimize the risk of potential shock hazard and personal injury, remove all power connections and interfaces to the DRV8376EVM when not in use.

2.3 LED Indicators

The DRV8376EVM has a few LEDS on the board that indicate the status of the board.

All the LED indicators that are present on the DRV8376EVM are shown in Figure 2-3.

Figure 2-3. DRV8376EVM LED Indicators

These LEDs need to be monitored throughout the use of the DRV8376EVM. The status LEDs for VM, AVDD, and GVDD turn on once power is supplied to the board. The MCU LED turns on once the GUI or Firmware runs on the LaunchXL-F280049C while the DRV8376EVM is connected. The NFAULT status LED turns on as soon as a driver fault occurs.

2.4 Jumper Information

The DRV8376EVM has a few configurations that can be made with jumpers. Use these sections as a guide on how to make those configurations using jumpers.

Hall Sensors

Figure 2-4. DRV8376EVM Hall Configuration

The connections that need to be made to the Hall terminal block are shown in Figure 2-4. The figure also shows how to configure the hall power. For externally supplied hall power, supply the power to TP12 and make sure there is a jumper where the blue rectangle is, as seen in the figure above.

VREF

Hardware

Figure 2-5. DRV8376EVM VREF Selection Location

Figure 2-6. DRV8376EVM VREF Configuration

7

ILIMIT

Figure 2-7. DRV8376EVM ILIMIT Selection Location

Figure 2-8. DRV8376EVM ILIMIT Configuration

LaunchXL-F280049C Connector Pins

Figure 2-9. DRV8376EVM J9 Header

Table 2-1. DRV03/0EVW J9 Reduel Fill Description	Table 2-1	. DRV8376EVM J9	Header F	Pin Description
--	-----------	-----------------	----------	-----------------

J9 Pin number (DRV8376EVM Schematic)	DRV8376EVM Function	LAUNCHXL-F280049C Function	Description
20	Not used	3.3V	3.3V LaunchPad supply
19	Not used	5V	5V LaunchPad supply
18	Not used	PGA1/3/5_GND	Not used
17	AGND	GND	GND connection
16	Not used	GPIO13/SCIBRX	Not used
15	VSENVM	ADCINA5	VM Bus voltage sense
14	Not used	GPIO40/SCIBTX	Not used (HALLC internal use only)
13	13 VSENC		Phase C voltage sense
12	nSLEEP	NC	For internal use only
11	VSENB	ADCINC2	Phase B voltage sense
10	Not used	ADCINB3/VDAC	Not used
9	VSENA	ADCINB1	Phase A Voltage Sense
8	8 SCLK		SPI clock (DRV8376 SPI Variant only)
7	7 ISENA		Phase A current sense
6	nFAULT (DNP)	ADCINC4	For internal use only
5	5 ISENB		Phase B current sense
4	4 nSLEEP		Active-low output sleep pin
3	ISENC	ADCINA9	Phase C current sense
2	nFAULT	GPIO35	Active-low input fault pin
1	1 C_TAP/ILIM_DAC (populate only R32 or R33, not both)		ADC for center tap sensing or DAC for ILIM voltage reference

Figure 2-10. DRV8376EVM J8 Header

Table 2-2.	DRV8376EVM J	8 Header Pin	Description
			Description

J8 Pin Number (DRV8376EVM Schematic)	DRV8376EVM Function	LAUNCHXL-F280049C Function	Description
20	INHA/HPA	GPIO10/PWM6A	PWM used to switch Phase A highside FET
19	AGND	GND	GND connection
18	INLA/HNA	GPIO11/PWM6B	PWM used to switch Phase A lowside FET
17	nSCS	SPIASTE	SPI active-low chip select (DRV8316R only)
16	INHB/HPB	GPIO8/PWM5A	PWM used to switch Phase B highside FET
15	Not used	NC	Not used
14	INLB/HNB	GPIO9/PWM5B	PWM used to switch Phase B lowside FET
13	Not used	NC	Not used
12	INHC/HPC	GPIO4/PWM3A	PWM used to switch Phase C highside FET
11	Not used	XRSn	Not used
10	INLC/HNC	GPIO5/PWM3B	PWM used to switch Phase C lowside FET
9	SDI	SPIAPICO	SPI data input (DRV8376 SPI Variant only)
8	HALLA	GPIO58	HALL sensor A from motor
7	SDO	SPIAPOCI	SPI data output (DRV8376 SPI Variant only)
6	HALLB	GPIO30	HALL sensor B from motor
5	DRVOFF	GPIO39	Active-high output to disable gate drivers
4	HALLC	GPIO18*/XCLKOUT	HALL sensor C from motor
3	Not used	GPIO23/LED4	LED reserved on LaunchPad
2	VREF	GPIO25	For internal use only
1	MCU_LED	GPIO59	Visual feedback for LaunchPad connection

2.5 Test Points

Figure 2-11. DRV8376EVM Test Points

All the test points available on the DRV8376EVM are shown in Figure 2-11.

2.6 Hardware Variant Configuration

To use the DRV8376EVM using the hardware variant IC, use the tables and figure below to configure the device correctly. Make sure the resistors for SPI variant and MCx variant are unpopulated or DNP.

Figure 2-12. Hardware Configuration Resistors

Table 2-3. PWM and ASR/AAR Mode Configuration

MODE Type	PWM MODE	ASR and AAR Mode	MODE_SR Pin	DRV8376EVM		
Mode 1	6x Mode	ASR and AAR disabled	Connected to AGND	Populate R57 with 0 ohm resistor or short		
Mode 2	6x Mode	ASR and AAR enabled	Hi-Z	Populate R57 with >200k ohm resistor		
Mode 3	3x Mode	ASR and AAR disabled	Connected to GVDD with 47 kohm resistor	Populate R53 with 47 k ohm resistor		
Mode 4	3x Mode	ASR and AAR enabled	Connected to GVDD	Populate R53 with 0 ohm resistor or short		

Table 2-4. Slew Rate Configuration

Slew Rate	SLEW Pin	DRV8376EVM
1100V/us	Connect to AGND	Populate R60 with 0 ohm resistor or short
500V/us	Hi-Z	Populate R60 with >200k ohm resistor
250V/us	47 k ohm to GVDD	Populate R56 with 47 k ohm resistor
50V/us	Connect to GVDD	Populate R56 with 0 ohm resistor or short

Table 2-5. Gain Configuration

Gain	Gain Pin	DRV8376EVM		
0.4V/V	Connect to AGND	Populate R58 with 0 ohm resistor or short		
1V/V	Hi-Z	Populate R58 with >200k ohm resistor		
2.5V/V	47 k ohm to GVDD	Populate R54 with 47 k ohm resistor		
5V/V	Connect to GVDD	Populate R54 with 0 ohm resistor or short		

Table 2-6. OCP Configuration

OCP OCP Pin		DRV8376EVM
4.5A	Connect to AGND	Populate R59 with 0 ohm resistor or short
2A	Connect to GVDD	Populate R55 with 0 ohm resistor or short

2.7 SPI Variant Configuration

To use the DRV8376EVM using the SPI variant IC, configure the device as shown in Figure 2-13. Make sure the resistors for hardware variant and MCx variant are unpopulated or DNP.

Figure 2-13. SPI Configuration Resistors

Once the appropriate resistors have been populated, the DRV8376 IC can be configured through SPI.

2.8 MCx Variant Configuration

To use the DRV8376EVM using the MCx variant IC, use the tables and figure below to configure the device correctly. Make sure the resistors for SPI variant are unpopulated or DNP, that R17, R18, and R19 are populated with 0 ohm resistors or shorted, and R20 is populated with a 5.1k ohm resistor.

The MCx variant of the DRV8376 IC utilizes the Hardware variant resistors for configuration of MODE, GAIN_SLEW_tLOCK, DIR, and ADVANCE.

Figure	2-14.	MCx	Configuration	Resistors
--------	-------	-----	---------------	-----------

MODE Pin	Hall Configuration	Modulation	ASR and AAR Mode	DRV8376EVM
Connect to AGND	Analog Hall Input	Asynchronous	ASR and AAR Disabled	Populate R57 with 0 ohm resistor or short
22k ohm to AGND	Digital Hall Input	Asynchronous	ASR and AAR Disabled	Populate R57 with 22k ohm resistor
100k ohm to AGND	Analog Hall Input	Synchronous	ASR and AAR Disabled	Populate R57 with 100k ohm resistor
Hi-Z	Digital Hall Input	Synchronous	ASR and AAR Disabled	Populate R57 with >200k ohm resistor
100k ohm to GVDD	Analog Hall Input	Synchronous	ASR and AAR Enabled	Populate R53 with 100k ohm resistor
22k ohm to GVDD	Digital Hall Input	Synchronous	ASR and AAR Enabled	Populate R53 with 22k ohm resistor
Connect to GVDD	Digital Hall Input	Synchronous	ASR and AAR Enabled	Populate R53 with 0 ohm resistor or short

Table 2-7. MODE Pin Configuration

Table 2-8. GAIN_SLEW_tLOCK Pin Configuration

GAIN_SLEW_tLOCK Pin	GAIN	SLEW	LOCK_DET_TIME	DRV8376EVM
Connected to AGND	0.4V/A	1.1V/ns	500ms	Populate R58 with 0 ohm resistor or short
22k ohm to AGND	0.4V/A	1.1V/ns	5000ms	Populate R58 with 22k ohm resistor
100k ohm to AGND	0.4V/A	0.25V/ns	500ms	Populate R58 with 100k ohm resistor
Hi-Z	0.4V/A	0.25V/ns	5000ms	Populate R58 with >200k ohm resistor
100k ohm to GVDD	2.5V/A	1.1V/ns	500ms	Populate R54 with 100k ohm resistor
22k ohm to GVDD	2.5V/A	1.1V/ns	5000ms	Populate R54 with 22k ohm resistor
Connected to GVDD	2.5V/A	0.25V/ns	500ms	Populate R54 with 0 ohm resistor or short

Table 2-9. DIR Pin Configuration

DIR pin	DIR operation	DRV8376EVM
Connect to GND	Disable direction change feature	Populate R59 with 0 ohm resistor or short

Table 2-10. ADVANCE Pin Configuration

Advance Pin	Phase Advance Setting	DRV8376EVM	
Connected to AGND	0°	Populate R60 with 0 ohm resistor or short	
22k ohm to AGND	4°	Populate R60 with 22k ohm resistor	
100k ohm to AGND	11°	Populate R60 with 100k ohm resistor	
Hi-Z	15°	Populate R60 with >200k ohm resistor	
100k ohm to GVDD	20°	Populate R56 with 100k ohm resistor	
22k ohm to GVDD	25°	Populate R56 with 22k ohm resistor	
Connected to GVDD	30°	Populate R56 with 0 ohm resistor or short	

3 Software

3.1 DRV8376EVM GUI Software

This section details the features of the EVM GUI Software. The GUI is written in GUI Composer and is available on the development software gallery at dev.ti.com/gallery.

The GUI connects and programs the C2000 MCU on the LAUNCHXL-F280049C board when launched, assuming the board is connected and powered. Once the hardware is connected, the FAULT status and voltage monitors match the EVM. If these do not match, then remove EVM power and recheck the setup. If the fault is triggered, then press the Clear Faults button on the GUI.

To spin the motor:

- 1. Using a Google Chrome[®] browser, navigate to dev.ti.com/gallery and search for the DRV8376EVM GUI.
- 2. After loading, make sure that the GUI connects to the board and shows *Hardware Connected* in the bottom status bar and that the MCU LED is turned on.
- 3. Confirm that the GUI reports VM_Undervoltage Fault and Over-Current Fault.
- 4. Turn on the power supply at and set the current limit on the power supply.
- 5. Make sure AVDD, GVDD, and VM LEDs lights up green.
- 6. Click the *Clear Faults* button on the GUI and confirm the fault light on GUI is clear (green) and check to see the DRV8376EVM NFAULT LED is off.
- 7. Check the following items:
 - a. GUI reads back the voltage being supplied.
 - b. GUI shows no FAULTs.
 - c. FAULT LEDs is now OFF.
- 8. Toggle Output Enable to ON.
- 9. Raise the Duty Cycle (%) to desired value and the motor starts spinning.
- 10. If direction change is needed, then toggle the direction in the GUI, observe the motor slowing down to a stop, and then spinning in opposite direction.
- 11. Disable the motor by switching the Output Enable to OFF.

4 Hardware Design Files

4.1 Schematics

Figure 4-1. DRV8376EVM Schematic - Main supply, Voltage Sense & Protection, and Connectors & Interface

Figure 4-2. DRV8376EVM - IC, VREF/ILIMT, Status LEDs, and Launchpad Connections

Figure 4-3. DRV8376EVM - Miscellaneous

4.2 PCB Layouts

Figure 4-5. DRV8376EVM PCB Layer 2

Figure 4-6. DRV8376EVM PCB Layer 3

Figure 4-7. DRV8376EVM PCB Layer 4

Layer	Name	Material	Thickness	Constant	Board Layer Stack
	Top Overlay				
	Top Solder	Solder Resist	0.40mil	3.5	
1	Top Layer		4.20mil		
	Dielectric 1	FR-4	8.00mil	4.2	
2	Ground		1.40mil		
	Dielectric 2	FR-4	40.00mil	4.2	
3	Power		1.40mil		
	Dielectric 3	FR-4	8.00mil	4.2	
4	Bottom Layer		4.20mil		
	Bottom Solder	Solder Resist	0.40mil	3.5	
	Bottom Overlay				
Total	board thickness:		68.00mil		

Symbol	Count	Hole Size	Plated	Hole Type	Dril Layer Pair	Hole Tolerance
	15	7.87mil (0.200mm)	PTH	Round	Top Layer - Bottom Layer	
♦	12	8.00mil (0.203mm)	РТН	Round	Top Layer - Bottom Layer	
▼	285	12,00mil (0,305mm)	РТН	Round	Top Layer - Bottom Layer	
*	2	35.43mil (0.900mm)	РТН	Round	Top Layer -Bottom Layer	
¤	14	40.00mil (1.016mm)	РТН	Round	Top Layer - Bottom Layer	
8	55	40.16mil (1.020mm)	РТН	Round	Top Layer - Bottom Layer	
0	5	47.24mil (1.200mm)	РТН	Round	Top Layer - Bottom Layer	
0	5	49.21mil (1.250mm)	РТН	Round	Top Layer -Bottom Layer	
*	6	51.18mil (1.300mm)	РТН	Round	Top Layer -Bottom Layer	
	1	63.00mil (1.600mm)	РТН	Round	Top Layer - Bottom Layer	
	400 Total					

Figure 4-10. DRV8376EVM PCB Layer 7

4.3 Bill of Materials (BOM)

The bill of materials for DRV8376EVM is listed in Table 4-1.

Table 4-1. Bill of Ma	terials
-----------------------	---------

Designator	Quantity	Value	Description	Part Number	Manufacturer	Package Reference
!PCB1	1		Printed Circuit Board MD101		Any	
C1	1	1uF	CAP, CERM, 1µF, 16V,+/- 10%, X7R, AEC-Q200 EMK107B7105KAHT T Grade 1, 0603		Taiyo Yuden	0603
C2	1	10uF	CAP, CERM, 10uF, 63V, +/- 10%, X7R, 1210	GRM32ER71J106KA12L	MuRata	1210
C3	1	0.1uF	CAP, CERM, 0.1µF, 100V,+/- 10%, X7R, 0603	0603BB104KW101	Passive Plus	0603
C4, C5, C9	3	100nF	0.1µF ±10% 6.3V Ceramic Capacitor X7R 0603 (1608 Metric)	0.1µF ±10% 6.3V Ceramic Capacitor X7R 0603 C0603C104K9RACTU K (1608 Metric)		0603
C6, C8	2	1uF	CAP, CERM, 1uF, 6.3V, +/- 10%, X7R, 0603	CAP, CERM, 1uF, 6.3V, +/- 10%, X7R, 0603 CL10B105KQ8NNNC Sa		0603
C7	1		CAP CER 0603 1UF 10V X7R 10%	C0603C105K8RACAUTO	KEMET	0603 (1608 Metric)
C10, C11, C12,C29	4	22pF	CAP, CERM, 22pF, 50V, +/- 5%, C0G/NP0, AEC- Q200 Grade 1, 0603	CGA3E2C0G1H220J080AA	TDK	0603
C13, C14, C15,C16	4	0.1uF	CAP, CERM, 0.1µF, 50V,+/- 5%, X7R, 0603	06035C104JAT2A	AVX	0603
C17	1	100uF	CAP, AL, 100uF, 100V, +/- 20%, TH	00V, +/- 20%, TH ECA-2AM101		D10xL16mm
C18	1	1uF	CAP, CERM, 1uF, 100V, +/- 10%, X7R, 1206	C3216X7R2A105K160AA	TDK	1206
C19, C24	2	0.1uF	CAP, CERM, 0.1uF, 100V, +/- 10%, X7S, AEC- Q200 Grade 1, 0603	CGA3E3X7S2A104K080AB	TDK	0603
C20, C23	2	0.01uF	CAP, CERM, 0.01uF, 100V, +/- 10%, X7R, AEC- Q200 Grade 1, 0603	CGA3E2X7R2A103K080AA	TDK	0603
C21, C22	2	1000pF	CAP, CERM, 1000pF, 100V, +/- 10%, X7R, AEC- Q200 Grade 1, 0603	CGA3E2X7R2A102K080AA	TDK	0603
C26, C27, C28	3	1000pF	CAP, CERM, 1000pF, 16V, +/- 10%, X7R, 0603	V, +/- 10%, X7R, 0603 8.85012E+11		0603
D1, D2, D4	3	Green	LED, Green, SMD	LTST-C170KGKT	Lite-On	LED_0805
D3	1	Red	LED, Red, SMD	LTST-C170KRKT	Lite-On	Red 0805 LED
D5	1	Orange	LED, Orange, SMD	LTST-C170KFKT	Lite-On	LED_0805
D6	1	3.3V	Diode, Zener, 3.3V, 300mW, AEC-Q101, SOD-323	SZMM3Z3V3ST1G	ON Semiconductor	SOD-323
D7	1	90V	Diode, Switching, 90V, 0.1A, SOD-523F	CDSU101A	Comchip Technology	SOD-523F
FID1, FID2, FID3	3		Fiducial mark. There is nothing to buy or mount.	N/A	N/A	N/A
J1, J3, J6	3		Header, 2.54mm, 1x1, Gold, TH	TSW-101-08-G-S	Samtec	Header, 2.54mm,1x1, TH
J2, J4, J7, J13	4		Header, 2.54mm, 3x1, Tin, TH	68001-403HLF	FCI	Header, 2.54mm,3x1, TH

Table 4-1. Bill of Materials (continued)

Designator	Quantity	Value	Description	Part Number	Manufacturer	Package Reference
J8, J9	2		Receptacle, 2.54mm, 10x2, Gold, TH	SSQ-110-03-G-D	Samtec	Receptacle, 2.54mm,10x2, TH
J10	1		Terminal Block, 5.08mm, 2x1, Brass, TH	ED120/2DS	On-Shore Technology	2x1 5.08 mmTerminal Block
J11	1		Terminal Block, 5.08mm, 3x1, Brass, TH	ED120/3DS	On-Shore Technology	3x1 5.08 mmTerminal Block
J12	1		Terminal Block, 5mm, 5x1, R/A, TH	1792892	Phoenix Contact	Terminal Block,5mm, 5x1, R/A, TH
L1	1	1uH	1µH Shielded Drum Core, Wirewound Inductor 18A 3.3mOhm MaxNonstandard	HCMA1104-1R0-R	Eaton	SMD2
Q1	1	100V	Transistor, NPN, 100V, 3A, AEC-Q101, SOT-23	ZXTN25100BFHTA	Diodes Inc.	SOT-23
Q2	1	100V	MOSFET, N-CH, 100V, 50A, DQG0008A (VSON- CLIP-8)	CSD19537Q3	Texas Instruments	DQG0008A
R1, R4, R5, R9, R10, R11, R12, R22, R23, R25,R26, R32, R33	13	0	RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	ERJ-3GEY0R00V	Panasonic	0603
R2, R7, R13, R20	4	5.1k	RES, 5.1 k, 5%, 0.1 W, 0603	CRCW06035K10JNEA	Vishay-Dale	0603
R3, R14, R15,R16	4	330	RES, 330, 0.1%, 0.1 W, 0603	RG1608P-331-B-T5	Susumu Co Ltd	0603
R6, R8	2	1.0k	RES, 1.0 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	RCA06031K00JNEA	Vishay-Dale	0603
R17, R18, R19	3	0	0 Ohms Jumper Chip Resistor 0603 (1608 Metric) Metal Element	WSL060300000ZEA9	Vishay	0603
R21, R30	2	20.3k	RES, 20.3 k, 0.1%, 0.1 W, 0603	RT0603BRD0720K3L	Yageo America	0603
R27, R29, R31	3	330	RES, 330, 1%, 0.1 W, 0603	RC0603FR-07330RL	Yageo	0603
R28	1	750	RES, 750, 0.1%, 0.1 W, 0603	RG1608P-751-B-T5	Susumu Co Ltd	0603
R34, R35	2	10k	RES, 10 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060310K0JNEA	Vishay-Dale	0603
R36	1	0	RES, 0, 5%, 0.25 W, AEC-Q200 Grade 0, 1206	RCA12060000ZSEA	Vishay-Dale	1206
R37, R38, R39,R40	4	143k	RES, 143 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW0603143KFKEA	Vishay-Dale	0603
R41, R42, R43,R44	4	6.04k	RES, 6.04 k, 0.5%, 0.1 W, 0603	RT0603DRE076K04L	Yageo America	0603
R45, R46, R47,R51	4	10.0k	RES, 10.0 k, 0.1%, 0.1 W, AEC-Q200 Grade 1, 0603	TNPW060310K0BEEA	Vishay-Dale	0603
R48, R49, R52,R56, R60	5	100k	RES, 100 k, 0.1%, 0.1 W, AEC-Q200 Grade 0, 0603	ERA-3AEB104V	Panasonic	0603
R53, R54, R55,R57, R58, R59	6	47.0k	RES, 47.0 k, 0.5%, 0.15 W, AEC-Q200 Grade 0, 0603	MCT0603MD4702DP500	Vishay/Beyschlag	0603

Designator	Quantity	Value	Description	Part Number	Manufacturer	Package Reference
TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP12, TP13, TP16, TP17,TP18	12		Test Point, Miniature, Red, TH	5000	Keystone	Red Miniature Testpoint
TP8	1		Test Point, Compact, Red, TH	5005	Keystone	Red CompactTestpoint
TP9, TP10, TP11	3		1mm Uninsulated Shorting Plug, 10.16mm spacing, TH	D3082-05	Harwin	Shorting Plug,10.16mm spacing, TH
TP14, TP15	2		Test Point, Miniature, Black, TH	5001	Keystone	Black MiniatureTestpoint
U1	1		Three-Phase Integrated FET Motor Driver	DRV8376HNLGR	Texas Instruments	VQFN28
U2	1		Automotive 20ppm / degC Max, 100uA, SOT23-3 Series VoltageReference, DBZ0003A (SOT-23-3)	REF3130AQDBZRQ1	Texas Instruments	DBZ0003A
U3	1		4-Channel ESD Solution for High-Speed Differential Interface, DCK0006A(SOT-SC70-6)	TPD4S009DCKR	Texas Instruments	DCK0006A

Table 4-1. Bill of Materials (continued)

5 Additional Information

5.1 Trademarks

LaunchPad[™] is a trademark of Texas Instruments. Google Chrome[®] is a registered trademark of Google LLC. All trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated