User's Guide # TPS565201 Buck Converter Evaluation Module User's Guide #### **ABSTRACT** This user's guide contains information for the TPS565201 as well as support documentation for the TPS565201EVM-858 evaluation module. Included are the performance specifications, schematic, and the bill of materials of the TPS565201EVM-858. #### **Table of Contents** | 1 Introduction | 2 | |---|-----| | 2 Performance Specification Summary | | | 3 Modifications | | | 3.1 Output Voltage Setpoint | | | 4 Test Setup and Results | | | 4.1 Input/Output Connections | | | 4.2 Start-Up Procedure | | | 4.3 Efficiency | | | 4.4 Load Regulation | | | 4.5 Line Regulation | | | 4.6 Load Transient Response | | | 4.7 Output Voltage Ripple | 8 | | 4.8 Input Voltage Ripple | | | 4.9 Start-Up | | | 4.10 Shut-Down | | | 5 Board Layout | | | 5.1 Layout | | | 6 Schematic, Bill of Materials, and Reference | | | 6.1 Schematic | | | 6.2 Bill of Materials | | | 6.3 Reference | | | 7 Revision History | 4.5 | #### **Trademarks** D-CAP2[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners. Introduction www.ti.com #### 1 Introduction The TPS565201 is a single, adaptive on-time, D-CAP2™ mode, synchronous buck converter requiring a very low external component count. The D-CAP2 control circuit is optimized for low-ESR output capacitors such as POSCAP, SP-CAP, or ceramic types and features fast transient response with no external compensation. The switching frequency is internally set at a nominal 550 kHz and enters plus skip mode in light load conditions. The high-side and low-side switching MOSFETs are incorporated inside the TPS565201 package along with the gate-drive circuitry. The low drain-to-source on resistance of the MOSFETs allows the TPS565201 to achieve high efficiencies and helps keep the junction temperature low at high output currents. The TPS565201 dc/dc synchronous converter is designed to provide up to a 5-A output from an input voltage source of 4.5 V to 17 V. The output voltage range is from 0.760 V to 7 V. Rated input voltage and output current ranges for the evaluation module are given in Table 1-1. The TPS565201EVM-858 evaluation module (EVM) is a single, synchronous buck converter providing 1.05 V at 5 A from 4.5-V to 17-V input. This user's guide describes the TPS565201EVM-858 performance. **Table 1-1. Input Voltage and Output Current Summary** | EVM | Input Voltage (V _{IN}) Range | Output Current (I _{OUT}) Range | |------------------|--|--| | TPS565201EVM-858 | 4.5 V to 17 V | 0 A to 5 A | # **2 Performance Specification Summary** A summary of the TPS565201EVM-858 performance specifications is provided in Table 2-1. Specifications are given for an input voltage of 12 V and an output voltage of 1.05 V, unless otherwise noted. The ambient temperature is 25°C for all measurement, unless otherwise noted. Table 2-1. TPS565201EVM-858 Performance Specifications Summary | | Specifications | Test Conditions | MIN | TYP | MAX | Unit | |-----------------|-----------------------|---|-----|------|-----|---------| | V _{IN} | Input voltage | | 4.5 | 12 | 17 | V | | | Output voltage | | | 1.05 | | V | | CH1 | Operating frequency | V _{IN} = 12 V, I _{OUT} = 5 A | | 550 | | kHz | | | Output current range | | 0 | | 5 | Α | | | Overcurrent limit | V _{IN} = 12 V, L _{OUT} = 2.2 μH | | 6.8 | | Α | | | Output ripple voltage | V _{IN} = 12 V, I _{OUT} = 5 A | | 10 | | mV_PP | Modifications www.ti.com #### 3 Modifications These evaluation modules are designed to provide access to the features of the TPS565201. Some modifications can be made to this module. ## 3.1 Output Voltage Setpoint To change the output voltage of the EVMs, it is necessary to change the value of resistor R1. Changing the value of R1 can change the output voltage above 0.760 V. The value of R1 for a specific output voltage can be calculated using Equation 1. $$R1 = \frac{R2 \times (V_{OUT} - 0.760 \text{ V})}{0.760 \text{ V}}$$ (1) Table 3-1 lists the R5 values for some common output voltages. Note that the values given in Table 3-1 are standard values and not the exact value calculated using Table 3-1. Table 3-1. TPS565201EVM-858 Output Voltages | Output Voltage
(V) | R1
(kΩ) | R2
(kΩ) | L1
(μH) | | | C5 + C6 +C7
(μF) | | |-----------------------|------------|------------|------------|-----|-----|---------------------|--| | (-) | (, | | MIN | TYP | MAX | (/ | | | 1.0 | 3.09 | 10.0 | 1.5 | 2.2 | 4.7 | 20 - 68 | | | 1.05 | 3.74 | 10.0 | 1.5 | 2.2 | 4.7 | 20 - 68 | | | 1.2 | 5.76 | 10.0 | 1.5 | 2.2 | 4.7 | 20 - 68 | | | 1.5 | 9.53 | 10.0 | 1.5 | 2.2 | 4.7 | 20 - 68 | | | 1.8 | 13.7 | 10.0 | 1.5 | 2.2 | 4.7 | 20 - 68 | | | 2.5 | 22.6 | 10.0 | 2.2 | 2.2 | 4.7 | 20 - 68 | | | 3.3 | 33.2 | 10.0 | 2.2 | 2.2 | 4.7 | 20 - 68 | | | 5.0 | 54.9 | 10.0 | 3.3 | 3.3 | 4.7 | 20 - 68 | | | 6.5 | 75.0 | 10.0 | 3.3 | 3.3 | 4.7 | 20 - 68 | | www.ti.com Test Setup and Results ## 4 Test Setup and Results This section describes how to properly connect, set up, and use the TPS565201EVM-858. The section also includes test results typical for the evaluation modules and efficiency, output load regulation, output line regulation, load transient response, output voltage ripple, input voltage ripple, start-up, and switching frequency. #### 4.1 Input/Output Connections The TPS565201EVM-858 is provided with input/output connectors and test points as shown in Table 4-1. A power supply capable of supplying 5 A must be connected to J1 through a pair of 20-AWG wires. The load must be connected to J2 through a pair of 20-AWG wires. The maximum load current capability is 5 A. Wire lengths must be minimized to reduce losses in the wires. Test point TP1 provides a place to monitor the V_{IN} input voltages with TP2 providing a convenient ground reference. TP6 is used to monitor the output voltage with TP7 as the ground reference. | Reference
Designator | Function | |-------------------------|--| | J1 | V _{IN} (see Table 1-1 for V _{IN} range) | | J2 | V _{OUT} , 1.05 V at 5-A maximum | | JP1 | EN control. Shunt EN to GND to disable, shunt EN to V _{IN} to enable. | | TP1 | V _{IN} positive monitor point | | TP2 | GND monitor test point | | TP3 | EN test point | | TP4 | Switch node test point | | TP5 | Test point for loop response measurements | | TP6 | V _{OUT} positive monitor point | | TP7 | GND monitor test point | | TP8 | GND monitor test point | Table 4-1. Connection and Test Points # 4.2 Start-Up Procedure - 1. Ensure that the jumper at JP1 (Enable control) pins 1 and 2 are covered to shunt EN to GND, disabling the output. - 2. Apply appropriate input voltage to VIN (J1-1) and GND (J1-2). - 3. Move the jumper at JP1 (Enable control) from pins 1 and 2 (EN and GND), to pins 2 and 3 (EN and V_{IN}) enabling the output. #### 4.3 Efficiency Figure 4-1 shows the efficiency for the TPS565201EVM-858 at an ambient temperature of 25°C. Figure 4-1. Efficiency Test Setup and Results www.ti.c Figure 4-2 shows the efficiency at light loads for the TPS565201EVM-858 at an ambient temperature of 25°C. Figure 4-2. Light Load Efficiency ## 4.4 Load Regulation The load regulation for the TPS565201EVM-858 is shown in Figure 4-3. Figure 4-3. Load Regulation www.ti.com Test Setup and Results #### 4.5 Line Regulation The line regulation for the TPS565201EVM-858 is shown in Figure 4-4. Figure 4-4. Line Regulation ## 4.6 Load Transient Response The TPS565201EVM-858 response to load transient is shown in Figure 4-5. The current steps and slew rates are indicated in the figures. Total peak-to-peak voltage variation is as shown. Figure 4-5. Load Transient Response, 1.25 A to 3.75 A Test Setup and Results www.ti.com ## 4.7 Output Voltage Ripple The TPS565201EVM-858 output voltage ripple is shown in Figure 4-6, Figure 4-7, and Figure 4-8. The output currents are as indicated. Figure 4-6. Output Voltage Ripple, I_{OUT} = 5 A Figure 4-7. Output Voltage Ripple, $I_{OUT} = 2.5 A$ Figure 4-8. TPS565201 Output Voltage Ripple, no Load # 4.8 Input Voltage Ripple The TPS565201EVM-858 input voltage ripple is shown in Figure 4-9. The output current is as indicated. Figure 4-9. Input Voltage Ripple ## 4.9 Start-Up The TPS565201EVM-858 start-up waveform relative to V_{IN} is shown in Figure 4-10. Load = 1 Ω resistive. The TPS565201EVM-858 start-up waveform relative to enable (EN) is shown in Figure 4-11. Load = 1 Ω resistive. Figure 4-10. Start-Up Relative to VIN Figure 4-11. Start-Up Relative to EN Test Setup and Results www.ti.com #### 4.10 Shut-Down The TPS565201EVM-858 shut-down waveform relative to V_{IN} is shown in Figure 4-12. Load = 1 Ω resistive. The TPS565201EVM-858 shut-down waveform relative to EN is shown in Figure 4-13. Load = 1 Ω resistive. Figure 4-12. Shut-Down Relative to $V_{\rm IN}$ Figure 4-13. Shut-Down Relative to EN www.ti.com Board Layout #### 5 Board Layout This section provides a description of the TPS565201EVM-858, board layout, and layer illustrations. #### 5.1 Layout The board layout for the TPS565201EVM-858 is shown in Figure 5-1, Figure 5-2, and Figure 5-3. The top layer contains the main power traces for VIN, VOUT, and ground. Also on the top layer are connections for the pins of the TPS565201 and a large area filled with ground. Most of the signal traces are also located on the top side. The input decoupling capacitors, C1, C2, and C3 are located as close to the IC as possible. The input and output connectors, test points, and all of the components are located on the top side. The bottom layer is a ground plane along with the switching node copper fill, signal ground copper fill and the feed back trace from the point of regulation to the top of the resistor divider network. Figure 5-1. Top Assembly Figure 5-2. Top Layer Board Layout INSTRU Figure 5-3. Bottom Layer # 6 Schematic, Bill of Materials, and Reference ## 6.1 Schematic Figure 6-1 is the schematic for the TPS565201EVM-858. Figure 6-1. TPS565201EVM-858 Schematic Diagram #### 6.2 Bill of Materials Table 6-1 displays the TPS565201EVM-858 bill of materials. #### Table 6-1. Bill of Materials⁽¹⁾ | Designator | Qty | Value | Description | Package Reference | Part Number | Manufacturer | Alternate Part Number | Alternate
Manufacturer | |----------------------------|-----|-------|---|-------------------------------|--------------------|-----------------------------|-----------------------|---------------------------| | !PCB1 | 1 | | Printed Circuit Board | | PWR858A | Any | - | - | | C1, C4 | 2 | 0.1uF | CAP, CERM, 0.1uF, 25V, ±10%, X5R, 0603 | 0603 | GRM188R61E104KA01D | Murata | | | | C2, C3 | 2 | 10uF | CAP, CERM, 10 μF, 25 V,± 10%, X5R, 1206 | 1206 | GRM31CR61E106KA12L | Murata | | | | C5, C6 | 2 | 22uF | CAP, CERM, 22 μF, 10 V,± 10%, X7R, 1206 | 1206 | GRM31CR71A226KE15L | Murata | | | | J1, J2 | 2 | | Terminal Block, 3.5mm Pitch, 2x1, TH | 7.0x8.2x6.5mm | ED555/2DS | On-Shore Technology | | | | JP1 | 1 | | Header, 100mil, 3x1, Tin, TH | Header, 3 PIN, 100mil,
Tin | PEC03SAAN | Sullins Connector Solutions | | | | L1 | 1 | 2.2uH | Inductor, Shielded Drum Core, Superflux, 2.2 µH, 9 A, 0.0115 ohm, SMD | WE-HC4 | 744311220 | Wurth Elektronik eiSos | | | | LBL1 | 1 | | Thermal Transfer Printable Labels, 1.250" W x 0.250" H - 10,000 per roll | PCB Label 1.25"H x 0.250"W | THT-13-457-10 | Brady | | | | R1 | 1 | 3.74k | RES, 3.74k ohm, 1%, 0.1W, 0603 | 0603 | CRCW06033K74FKEA | Vishay-Dale | | | | R2, R4 | 2 | 10.0k | RES, 10.0k ohm, 1%, 0.1W, 0603 | 0603 | CRCW060310K0FKEA | Vishay-Dale | | | | R3, R5 | 2 | 0 | RES, 0 ohm, 5%, 0.1W, 0603 | 0603 | ERJ-3GEY0R00V | Panasonic | | | | SH-JP1 | 1 | 1x2 | Shunt, 100mil, Gold plated, Black | Shunt | 969102-0000-DA | 3M | SNT-100-BK-G | Samtec | | TP1, TP3, TP4,
TP5, TP6 | 5 | | Test Point, Miniature, Red, TH | Red Miniature Testpoint | 5000 | Keystone | | | | TP2, TP7, TP8 | 3 | | Test Point, Miniature, Black, TH | Black Miniature Testpoint | 5001 | Keystone | | | | U1 | 1 | | 4.5V to 17 V Input, 5-A Synchronous Step-Down Voltage
Regulator, DDC0006A (SOT-23-T-6) | DDC0006A | TPS565201DDCR | Texas Instruments | TPS565201DDCT | Texas Instruments | | C7 | 0 | 22uF | CAP, CERM, 22 μF, 10 V,± 10%, X7R, 1206 | 1206 | GRM31CR71A226KE15L | Murata | | | | C8 | 0 | 10pF | CAP, CERM, 10 pF, 100 V, ± 5%, C0G/NP0, 0603 | 0603 | GRM1885C2A100JA01D | Murata | | | | FID1, FID2,
FID3 | 0 | | Fiducial mark. There is nothing to buy or mount. | Fiducial | N/A | N/A | | | ⁽¹⁾ Unless otherwise noted in the Alternate Part Number or Alternate Manufacturer columns, all parts may be substituted with equivalents. #### 6.3 Reference 1. TPS565201 4.5 V to 17 V Input, 5-A Synchronous Step-Down Voltage Regulator in SOT-23 data sheet (SLVSE71) # **7 Revision History** NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | Changes from Revision * (August 2017) to Revision A (June 2021) | | | | | | |---|--|---|--|--|--| | • | Updated the numbering format for tables, figures, and cross-references throughout the document | 2 | | | | | | Updated user's guide title | | | | | | | 5 | | | | | #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated