
Application Note
Stack Overflow Detection on UCD3138 Devices

Xuemei Lu

ABSTRACT

It is hard to tell how much size a stack uses statically since the size varies with the code running. There are
other things that are stored in RAM as well, for example global variables. If a stack overflow happens, it modifies
the others unexpectedly, causing unpredictable problems. Therefore, it is necessary to reserve enough room for
STACK. This application note describes two processes to check if a stack overflow happens.

Table of Contents
1 Introduction...2

1.1 Check the Size for Each Stack...2
2 Check if an Overflow Happens.. 3
3 Summary... 5
4 References.. 5

List of Figures
Figure 1-1. Stack Allocation...2
Figure 2-1. Memory Peek/Poke... 3
Figure 2-2. Stack Usage Detection With Memory Peek/Poke... 4

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SLUAAP6 – SEPTEMBER 2023
Submit Document Feedback

Stack Overflow Detection on UCD3138 Devices 1

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP6&partnum=

1 Introduction

1.1 Check the Size for Each Stack
There are generally four stacks used in demo codes: user stack, IRQ stack, FIQ stack and supervisor stack.
User stack is for background routines, IRQ stack is for standard interrupt routines, FIQ stack is for fast interrupt
routines, and supervisor stack is for software interrupt (SWI) routines. Some can have undefined stack and
abort stack for exceptions, but they are rarely used in normal cases. The stacks are declared at the top of the
load.asm file. Take the following as an example to see how each stack is allocated.

SUP_STACK_TOP .equ 0x6bffc ;Supervisor mode (SWI stack) starts at top of memory
FIQ_STACK_TOP .equ 0x6be00 ;allocate 256 bytes to supervisor stack, then do FIQ stack
IRQ_STACK_TOP .equ 0x6bd00 ;allocate 256 bytes to fiq stack, then start irq stack
USER_STACK_TOP .equ 0x6bb00 ;Allocate 512 bytes to irq stack, regular stack gets rest, down
to variables
 .global _c_int00
 .global $c_int00

With those definitions, this shows that the top of user stack is at address 0x6bb00 and down to variables, IRQ
stack is allocated from address 0x6bb00 (bottom) to 0x6bd00 (top), FIQ stack is allocated from address 0x6bd00
(bottom) to 0x6be00 (top), and supervisor stack is allocated from address 0x6be00 (bottom) to 0x6bffc (top).

0x6A000

0x6BB00

Variables

0x6BD00

0x6BE00

0x6BFFC

User stack

IRQ stack

FIQ stack

Supervisor stack
High addr

Low addr

Figure 1-1. Stack Allocation

As for the bottom of user stack, check the .map file, which shows the RAM memory allocation. The .map file
is generated by CCS when building the firmware project, and shall be located in the same directory as .x0 file.
Following is an example copied from a .map file, and the text shows the variables starts from address 0x6a000
and ends at 0x6a80d. Therefore, the user stack can be down to 0x6a80e.

 name origin length used unused attr fill
---------------------- -------- --------- -------- -------- ---- --------
 FLASHVECS 00000000 00000020 00000020 00000000 R X
 PFLASH 00000020 00007f34 00003d1e 00004216 R X
 DEVICEID 00007f54 00000020 0000001f 00000001 R X
 FIXTFA 00007f74 00000004 00000000 00000004 R X
 FIXCONST 00007f78 00000080 00000000 00000080 R X
 FLASHSUM 00007ff8 00000008 00000000 00000008 R X
 ROMVECS 00020000 00000020 00000000 00000020 RWIX
 ROM 00020020 00001d5e 00000000 00001d5e RWIX
 SINE 00021d7e 00000282 00000000 00000282 RWIX
 DFLASH 00069800 00000800 00000398 00000468 R X
 RAM 0006a000 00001dd0 0000080d 000015c3 RW
 RAM_PGM_AREA 0006bdd0 00000080 00000000 00000080 RW
 STACKS 0006be50 000001b0 00000000 000001b0 RW
 LOOP_MUX 00120000 00000070 0000006c 00000004 RWIX

Introduction www.ti.com

2 Stack Overflow Detection on UCD3138 Devices SLUAAP6 – SEPTEMBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP6&partnum=

In some demo codes, there is stack allocation in the .cmd file, in the following. The stack allocation does not take
effect, stack allocation is actually done in load.asm.

STACKS (RW) : org = 0x0006BE50, len = 0x000001B0
.stack : { /* total = 400 = 0x190 */
 StackUSER = . + 184; /* USER */
 StackFIQ = _StackUSER_ + 112; /* FIQ */
 StackIRQ = _StackFIQ_ + 84; /* IRQ */
 StackABORT = _StackIRQ_ + 4; /* ABORT */
 StackUND = _StackABORT_ + 4; /* UND */
 StackSUPER = _StackUND_ + 12; /* SUPER */
 } > STACKS /* Software System stack */.

2 Check if an Overflow Happens
Stacks are part of RAM, and RAM is entirely initialized to be zeros in the load.asm. To check the usage for each
stack, one option is to read from the stack location and see if there is all-zero space from the bottom of a stack.
It is necessary to check the stacks while the code is running, and this can be done with an adapter and the
Memory Peek/Poke tool that is embedded in the UCD3xxx Device GUI.

Connect the adapter, launch UCD3xxx Device GUI, go to Debug > Memory Peek/Poke.

Figure 2-1. Memory Peek/Poke

Take user stack as an example. Read the memory from address 0x6a80e to 0x6bb00 like the following. It shows
about 60 bytes are used and 4754 bytes are still available. Of course, it is hard to capture the worst case this
way, since the stack varies from time to time during the code running. But it should give us some clues whether
an overflow could possibly happen by checking how much margin it has.

www.ti.com Check if an Overflow Happens

SLUAAP6 – SEPTEMBER 2023
Submit Document Feedback

Stack Overflow Detection on UCD3138 Devices 3

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP6&partnum=

Figure 2-2. Stack Usage Detection With Memory Peek/Poke

Another option is to add test code in the firmware to continuously check if the bottom (or near the bottom for
some margins) of the stack is non-zero. Once a non-zero detected, it shows an overflow happens, toggle an IO
for report. The benefit for this option is that it checks continuously during the code running.

Take the supervisor stack as an example, the detection code can be similar to the following, in which the
stack_mon.ptr is a pointer pointing at the bottom of supervisor stack initially. It is required to start from the
bottom.

 if (((Uint32)stack_mon.ptr == (Uint32)SUP_STACK_TOP) || (Uint32)(*(stack_mon.ptr) !
= 0))
 {
 // reached top of stack so the stack is all zeros (so stack is empty), or else
encountered the stack (as encountered a non-zero word)
 stack_sup_headroom = (int32)stack_mon.ptr - (int32)SUP_STACK_BOT;
 if (stack_sup_headroom < STACK_MON_HEADROOM_ALERT)
 {
 LoopMuxRegs.DTCIOCTRL.bit.DTC_B_GPIO_VAL = 1;
 }
 }
 else
 {
 // move onto the next address in the stack
 stack_mon.ptr++;
 }

Check if an Overflow Happens www.ti.com

4 Stack Overflow Detection on UCD3138 Devices SLUAAP6 – SEPTEMBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP6&partnum=

3 Summary
Unexpected problems can happen when stack overflow occurs. This application note describes two options for
stack overflow detection. Option 1 is done with memory peek/poke. It is easy to implement, but cannot detect the
worst case because stack usage varies with code running. Option 2 is detecting continuously and alerts once an
overflow happens.

4 References
• Texas Instruments, Fusion Digital Power Studio.

www.ti.com Summary

SLUAAP6 – SEPTEMBER 2023
Submit Document Feedback

Stack Overflow Detection on UCD3138 Devices 5

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/tool/FUSION-DIGITAL-POWER-STUDIO
https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAP6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAP6&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Check the Size for Each Stack

	2 Check if an Overflow Happens
	3 Summary
	4 References

