
 Application Report
 SLUA758 – October 2015

1

UCD3138 – Responding to Multiple PMBus Slave
Addresses

Jack Tan, Ian Bower High Voltage Power Solution

ABSTRACT

The use of digital power controllers is becoming mainstream in isolated power supplies for
achieving higher system integration, enabling advanced control methods, and
implementing real-time metrology and communication. The Power Management Bus
(PMBus) is a commonly used protocol which supports communication between power
converters, host processors and other related peripherals in a digital power-management
ecosystem. The UCD3138 family of digital controllers feature a flexible and powerful
PMBus interface integrated in the device for this purpose. While the controller is designed
to respond to a single PMBus address, some applications have a need for the controller to
support more than one PMBus address. This application note provides a firmware solution
to make a single UCD3138 device support multiple PMBus addressees. The document
covers the high-level approach and provides a suggested firmware structure, along with
the detailed firmware code changes list. This approach also works on other devices in the
UCD3138 family of products such as UCD3138A, UCD3138064, UCD3138128 and so
on.

Contents
1 Introduction .. 4
2 Overview of the Approach ... 5

2.1 Handling Write Sequence ... 5
2.2 Handling Read Sequence ... 5

3 PMBus Low-Level Firmware Structure ... 6
3.1 PMBus Idle State Structure ... 6
3.2 PMBus Command ack State Structure .. 7
3.3 PMBus Wait for Handler ... 8
3.4 PMBus Read Handler Structure .. 9
3.5 PMBus Read Block Handler ... 10
3.6 PMBus Write Block Handler .. 10
3.7 PMBus Wait for EOM Handler .. 11

4 Changes to the Existing Code to Make it Respond to Multiple Slave Addresses 12
4.1 Implement Other 3 State Machines in the Existing Code .. 12
4.2 Implement the Address You Would Like to Respond .. 12
4.3 Define a New Variable to Store the PMBus Address and PMBus Status Registers............... 12
4.4 Changes to Initialization PMBus ... 12
4.5 Changes to pmbus_handler.c. .. 13

5 Test Result .. 20
5.1 Multiple Addresses Shown in Device GUI ... 20

SLUA758

2 UCD3138 – Responding to Multiple PMBus Slave Addresses

5.2 PMBus Master can get the Different Value in Different Address as There are Multiple Devices
in Slave... 21

6 Summary ... 21
7 Reference .. 21

 SLUA758

 UCD3138 – Responding to Multiple PMBus Slave Addresses 3

Figures
Figure 1. Use Single UCD3138 to Replace 2 or More Devices .. 4
Figure 2. Standard PMBus Write Sequence ... 5
Figure 3. Standard PMBus Read Sequence ... 5
Figure 4. Idle State Handler Structure .. 7
Figure 5. Command ack State Structure .. 7
Figure 6. Wait for State Handler Structure ... 8
Figure 7. Read Handler Structure ... 9
Figure 8. Read Block Handler Structure .. 10
Figure 9. Write Block Handler Structure .. 11
Figure 10. End of Message Handler Structure ... 12
Figure 11. Multiple Slave Addresses .. 20
Figure 12. Slaver Sends its own Address to Master ... 21

SLUA758

4 UCD3138 – Responding to Multiple PMBus Slave Addresses

1 Introduction
The Power Management Bus (PMBus) is an open standard protocol that defines a means of
communicating with power conversion and other devices.

In some power supply applications, there are 2 or more digital controllers or MCUs. One of them
is used to control the power converter, and others are added for monitoring or housekeeping. All
the digital controllers are able to communicate with host via PMBus or I2C, and each of devices
has its own slave address.

The UCD3138 has powerful peripherals, and it can do both monitoring and controlling of the
power converter. Please see Figure 1, here is the example of using a single UCD3xxx to replace
2 or more digital controllers. In order to be compatible with original PMBus or I2C host, UCD3xxx
should be able to respond at least more than 2 slave addresses.

PMBUS_CLKPMBUS_CLK

PMBUS_DATPMBUS_DAT

PMBUS_CLKPMBUS_CLK

PMBUS_DATPMBUS_DAT UCD3xxx
PMBUS_CLKPMBUS_CLK

PMBUS_DATPMBUS_DAT

PMBUS_CLKPMBUS_CLK

PMBUS_DATPMBUS_DAT

Digital
Controller 0#

Digital Controller
(N – 1)

Digital
Controller 1#

Figure 1. Use Single UCD3138 to Replace 2 or More Devices

The current PMBus solution only supports response to a single address. This application note
describes how to use the UCD3138 to respond to multiple addresses and introduce the PMBus
firmware structure. This solution can be also applicable to UCD30xx and UCD3138 refresh
silicon.

 SLUA758

 UCD3138 – Responding to Multiple PMBus Slave Addresses 5

2 Overview of the Approach
As previously described, a single UCD3138 should respond to multiple addresses, and the
addresses may not sequential, so the PMBus hardware could not meet this requirement. Here
we propose using manual acknowledge to each PMBus address and manual acknowledge to
command. Manual acknowledge to address means that firmware were used to ack valid PMBus
address and command instead of using hardware to do automatic ack.

2.1 Handling Write Sequence

For most standard write sequences, there is only one address, and others are data. Code is
implemented to identify the valid PMBus address when the address ready bit was set. So it is
easy to implement in firmware.

Figure 2. Standard PMBus Write Sequence

2.2 Handling Read Sequence

There is a little bit more difficulty for reading PMBus command sequence than write sequence,
since the command is in the middle of PMBus address write and PMBus address read. In the
UCD3xxx family, the polling method is recommended since it is simple and leaves more time
available for interrupt. Suppose that using automatic ack to command, and further suppose that
the background loop is not fast enough, there is a possibility that the PMBus handler is executed
after both command and address are ready. That makes it hard to identify which is command
and which one is address. In order to handle the read sequence, manual acknowledge to
command is used. That means only the slaver got the command, then master can send out the
slave address plus read.

Figure 3. Standard PMBus Read Sequence

SLUA758

6 UCD3138 – Responding to Multiple PMBus Slave Addresses

3 PMBus Low-Level Firmware Structure
The PMBus Low-Level firmware was targeted to handle data from or to host. It will depend on
PMBus status Register, then change state machine and how to process data. The firmware,
supported multi-address responds, does contain 7 states. Each state has different responsibility.

• Idle state – When does the STOP condition occur, or some fault which causes PMBus
hardware reset, the firmware will be returned to this state. This is beginning of PMBus
handle data. And the valid address is acked in this state.

• Command ack state - If the address + write is valid in idle state, then the state will change
to this one, and the valid command will be acked.

• Wait for state - This state is from the original idle state, due to the manual ack to slave
address, this handler has a tiny difference with the original idle state code.

• Read state - If the wait for state find there is address + read, this state will be the next
subroutine in PMBus state machine. The data will be transferred from UCD to host in this
state.

• Read Block state – This state is similar with read state. But the condition of entering into
this state is that the host request more data than the read handler can operate, it just
continues to send data to host.

• Write block state – If the write number of bytes is more than wait for state can handle, this
state is executed, and it continues to handle the write data from host.

• Wait for EOM state – This sate handler is the continuous state for read sequence. The
firmware should wait for the host sends the stop condition before resetting the state to idle
state.

3.1 PMBus Idle State Structure

In this state, just check if there is a valid address ready or not.

• If the slave address ready bit was set

– If it is the valid address, ACK it and change the state to command ack handler.

– If there is an invalid address ready, NACK it and stay in idle state handler.

• Otherwise, do nothing, just keep staying in this sate

 SLUA758

 UCD3138 – Responding to Multiple PMBus Slave Addresses 7

START

ACK it

Pmbus_address_ready
Data ready = 0

Pmbus_address_ready
Data ready = 0

Changes state_machine
to cmd_ack_handler

Changes state_machine
to cmd_ack_handler

NACK it
Inactive AddressInactive Address

Active AddressActive Address

Other
Things
Other
Things

Check the
Address

Do Nothing

Figure 4. Idle State Handler Structure

3.2 PMBus Command ack State Structure

In this state:

• If nothing happened, still stay in this handler

• If there is a data ready, ack to the command and change the state to wait handler

• If the stop condition happened, that must be a quick command, then go back to idle state
directly

• If none of the previous 3 conditions, goes back to idle state

START
EOMEOM

Changes
state_machine to

wait_handler

Changes
state_machine to

wait_handlerData
Ready
Data

Ready

ACK this Command, go to
PMBus Wait Handler

Other
Things
Other
Things

Quick Command, go Back to
Idle Handler

Go Back to Idle
State Handler

Nothing
Happens
Nothing
Happens

Stay in this
Handler

Figure 5. Command ack State Structure

SLUA758

8 UCD3138 – Responding to Multiple PMBus Slave Addresses

3.3 PMBus Wait for Handler

This state is from the original idle state, due to the manual ack to slave address, this handler has
a tiny difference with the original idle state code:

• If nothing happened, just stay in this handler

• If the PEC and stop condition bit were set, that must be write byte or word. Process it
directly and goes back to idle state.

• If only the data ready bit is set, and the byte counter is 4, that means the buffer is full and it
needs to transfer multiple times. That must be a write block, change the state machine to
write block state.

• If the slave address bit is set, that must be a read sequence.

– If there is a valid address, ack to this address and it goes to PMBus read handler

– Otherwise, NACK to this address and it goes back to idle state

• If none of the previous things happen, reset firmware and it goes back to idle directly.

Changes
state_machine to

read_handler

Changes
state_machine to

read_handler

Changes
state_machine to

idle_handler

Changes
state_machine to

idle_handler

START

Stay in this
Handler

Nothing
Happens
Nothing
Happens

Write_byte/
wordEOM, PEC_validEOM, PEC_valid

Write_block

Go Back to
Idle State
Handler

Other
Things
Other
Things

Data_ready,
byte_count = 4

Data_ready,
byte_count = 4

Slave_address_ready,
data_ready = 0

Slave_address_ready,
data_ready = 0 ACK

pmbus_active_
address

Force Back
to Idle

Read Command

Changes
state_machine to

write_block

Changes
state_machine to

write_block

After Writing, Changes
state_machine to

idle_handler

After Writing, Changes
state_machine to

idle_handler

Figure 6. Wait for State Handler Structure

 SLUA758

 UCD3138 – Responding to Multiple PMBus Slave Addresses 9

3.4 PMBus Read Handler Structure

In this state:

• If nothing happened, just stay in this state.

• If Data request bit was set and the number of bytes of this command is less than 5, then
transmit the data to master directly, and change the state to wait of end of message state.

• If Data request bit was set and the number of bytes of this command is larger than 5,
transmit the first 4 bytes and change the state to read block state for continuing transfer.

• If none of the previous things happened, then it goes back to idle state

Changes
state_machine to

read_block

Changes
state_machine to

read_block

START

Stay in this
Handler

No FlagsNo Flags

Transmit to
Master

Data_request, and
only 1–4 Bytes

Data_request, and
only 1–4 Bytes

Go Back to Idle
State Handler

Other
Things
Other
Things

Changes
state_machine for

Waiting of EOM

Changes
state_machine for

Waiting of EOM

Transmit 4
Bytes to Master

Data_request, and
More Than 4 Bytes
Data_request, and
More Than 4 Bytes

Figure 7. Read Handler Structure

SLUA758

10 UCD3138 – Responding to Multiple PMBus Slave Addresses

3.5 PMBus Read Block Handler

The read block handler is very similar to the read handler, it continues to transfer the data to
master.

START Transmit Data
to Host

Data_request and
Only 1–4 Bytes Data

No FlagNo Flag

Force Back to
Idle With NACKReturn

OthersOthers

Change State Machine to IdleChange State Machine to Idle

Data_request and
More Than 4 Bytes Data

Change State Machine
to Waiting for EOM

Waiting for Send Next DataWaiting for Send Next Data

Transmit Data
to Host

Figure 8. Read Block Handler Structure

3.6 PMBus Write Block Handler

If there are more than 4 bytes for write sequence, the state will enter into this handler:

• No flag was set, just stay in this handler.

• If EOM, Data ready and PEC valid bit are set, that means write block is finished, process
this command and it goes back to idle.

• If EOM was set, process this command and go back to idle.

• If data ready was set, RD_BYTE_COUND is 4, and NO EOM, that means the receive data
from master is still required.

– If the total number of bytes is less than the max buffer size, stay in this state and
continuing to receive data

– Otherwise, stop to receive the data and force the sate machine back to idle

• If none of the previous things occurred, then force the state machine back to idle state.

 SLUA758

 UCD3138 – Responding to Multiple PMBus Slave Addresses 11

START

Waiting for
Other Data

EOM, Data_ready
PEC_Valid

No FlagNo Flag

Force Back to
Idle With NACKReturn

OthersOthers

pmbus_number_of_bytes ≥ PMBUS_BUFFER_SIZE

Change State
Machine to Idle

Change State
Machine to Idle
Change State

Machine to Idle

Force Back
to Idle, NACK

Write Block
Finished

Process This CMD

Process
CMD

Block Data
not

FinishedData_ready
RD_Byte_Count = 4

EOM
Change State

Machine to Idle
Change State

Machine to Idle

pmbus_number_of_bytes < PMBUS_BUFFER_SIZE

PMBus Data Buffer Overflow

Figure 9. Write Block Handler Structure

3.7 PMBus Wait for EOM Handler

This state handler is the continuous state for read sequence:

• If the stop condition bit is set, then goes back to idle state

• If nothing happened, stay in this state

• If other things, such as clock low time out, goes back to idle state

SLUA758

12 UCD3138 – Responding to Multiple PMBus Slave Addresses

START
EOMEOM

No FlagNo Flag

Return;

Goes Back to
Idle State

OthersOthers

Goes Back to
Idle State

Figure 10. End of Message Handler Structure

4 Changes to the Existing Code to Make it Respond to Multiple Slave
Addresses

4.1 Implement Other 3 State Machines in the Existing Code
• #define PMBUS_STATE_WAIT 4
• #define PMBUS_STATE_CMD_ACK 5
• #define PMBUS_STATE_READ 6

4.2 Implement the Address You Would Like to Respond
• #define PMBUS_ADDRESS1 0x01
• #define PMBUS_ADDRESS2 0x22
• #define PMBUS_ADDRESS3 0x59
• #define PMBUS_ADDRESS4 0x7b

4.3 Define a New Variable to Store the PMBus Address and PMBus Status Registers
EXTERN Uint32 pmbus_active_address;
EXTERN union PMBST_REG pmbst_shadow;

4.4 Changes to Initialization PMBus

UCD should be able to manually acknowledge to multiple addresses, the initialization code
should be changed from auto acknowledge address to manual acknowledge address. And
considering the PMBus read sequence, UCD should be also configured as manual acknowledge
to command.

PMBusRegs.PMBCTRL2.all = PMBCTRL2_HALF0_PEC_ENA + pmbus_address
 + PMBCTRL2_HALF0_SLAVE_ADDRESS_MASK_DISABLE
 + PMBCTRL2_ALL_RX_BYTE_ACK_CNT
 + PMBCTRL2_ALL_MAN_SLAVE_ACK

 SLUA758

 UCD3138 – Responding to Multiple PMBus Slave Addresses 13

 + PMBCTRL2_ALL_MAN_CMD; // for Manual slave address ack

4.5 Changes to pmbus_handler.c.

As previously described, the manual acknowledge address and command will be used in this
part. So the related PMBus handler part also should be modified.

a. Implement 3 subroutines at PMBus low-level routine.
else if (pmbus_state == PMBUS_STATE_CMD_ACK)

 {
 pmbus_cmd_ack_handler();
 return ;

 }
 else if (pmbus_state == PMBUS_STATE_WAIT)
 {
 pmbus_wait_handler();
 return ;

 }
 else if (pmbus_state == PMBUS_STATE_READ)
 {
 pmbus_read_handler();
 return ;
 }
 else
 {
 pmbus_state = PMBUS_STATE_IDLE;
 pmbus_idle_handler();
 return ;
 }

b. For pmbus_idle_handler, the main job is to check the valid PMBus address if there is an
address ready.

void pmbus_idle_handler(void)
{
 pmbst_shadow.all=PMBusRegs.PMBST.all;

 if((pmbst_shadow.bit.SLAVE_ADDR_READY == 1) && (pmbst_shadow.bit.DATA_READY == 0))
 {
 pmbus_active_address = (PMBusRegs.PMBRXBUF.byte.BYTE0 & 0x7F);
 if((pmbus_active_address == PMBUS_ADDRESS1)
 || (pmbus_active_address == PMBUS_ADDRESS2)
 ||(pmbus_active_address == PMBUS_ADDRESS3)
 ||(pmbus_active_address == PMBUS_ADDRESS4))
 {

SLUA758

14 UCD3138 – Responding to Multiple PMBus Slave Addresses

 PMBusRegs.PMBACK.bit.ACK=1;
 pmbus_state= PMBUS_STATE_CMD_ACK;

 }
 else
 {
 PMBusRegs.PMBACK.bit.ACK=0;
 pmbus_state = PMBUS_STATE_IDLE;

 }
 }
 return;
}

 SLUA758

 UCD3138 – Responding to Multiple PMBus Slave Addresses 15

c. Add void pmbus_cmd_ack_handler(void) function to acknowledge command manually.
 void pmbus_cmd_ack_handler(void)

{
 pmbst_shadow.all=PMBusRegs.PMBST.all;

if((pmbst_shadow.all & (PMBST_HALF0_CHECK_BITS +
 PMBST_BYTE0_RD_BYTE_COUNT)) == 0) //if there is nothing happen

 {
 return;
 }

 if(pmbst_shadow.bit.DATA_READY==1)
 {
 pmbus_buffer[0] = PMBusRegs.PMBRXBUF.byte.BYTE0;// copy command

 PMBusRegs.PMBACK.byte.BYTE0 = 1; //ack them
 pmbus_state = PMBUS_STATE_WAIT ;
 }

else if (pmbst_shadow.all & (PMBST_HALF0_CHECK_BITS+
 PMBST_BYTE0_RD_BYTE_COUNT) == PMBST_BYTE0_EOM) //quick command

 {
 pmbus_state= PMBUS_STATE_IDLE ;
 }

 else
 {
 pmbus_state= PMBUS_STATE_IDLE ;
 }
 return ;

}

d. In pmbus_wait_handler() is from the original pmbus_idle_handler()
 i. Use pmbst_shadow.all to replace int32 pmbus_status = PMBusRegs.PMBST.all
 pmbst_shadow.all=PMBusRegs.PMBST.all;
 pmbus_status_half_word_0_value = pmbst_shadow.all & 0xFFFF ;

 ii. Write command changes
 if((pmbus_status_half_word_0_value & (PMBST_HALF0_CHECK_BITS)) ==
 (PMBST_BYTE0_EOM + PMBST_BYTE0_DATA_READY +
PMBST_BYTE0_PEC_VALID))
 //end of message, good data ready, pec valid, must be 2 to 4 bytes
 {
 //copy all 4 over just to make sure
 pmbus_buffer[1] = PMBusRegs.PMBRXBUF.byte.BYTE0;

SLUA758

16 UCD3138 – Responding to Multiple PMBus Slave Addresses

 pmbus_buffer[2] = PMBusRegs.PMBRXBUF.byte.BYTE1;
 pmbus_buffer[3] = PMBusRegs.PMBRXBUF.byte.BYTE2;
 pmbus_buffer[4] = PMBusRegs.PMBRXBUF.byte.BYTE3;

 pmbus_number_of_bytes = ((pmbus_status_half_word_0_value &
PMBST_BYTE0_RD_BYTE_COUNT) + 1);

 pmbus_write_message();
 //PMBusRegs.PMBACK.byte.BYTE0 = 1; //ack them
 pmbus_state = PMBUS_STATE_IDLE;
 return;
 }
 iii. Write block request changes
 else if((pmbus_status_half_word_0_value & (PMBST_HALF0_CHECK_BITS +
PMBST_BYTE0_RD_BYTE_COUNT)) ==
 (4 //4 is read byte count
 + PMBST_BYTE0_DATA_READY))
 //no end of message, good data ready, 4 bytes of data - must be a send block
 {
 //copy data into buffer, set up to receive more.
 pmbus_buffer[1] = PMBusRegs.PMBRXBUF.byte.BYTE0;
 pmbus_buffer[2] = PMBusRegs.PMBRXBUF.byte.BYTE1;
 pmbus_buffer[3] = PMBusRegs.PMBRXBUF.byte.BYTE2;
 pmbus_buffer[4] = PMBusRegs.PMBRXBUF.byte.BYTE3;
 pmbus_number_of_bytes = 5 ; //start counting bytes.

 PMBusRegs.PMBACK.byte.BYTE0 = 1; //ack first 4 bytes;
 pmbus_state = PMBUS_STATE_WRITE_BLOCK;
 }

iv. Delete read request and add ack to valid address to this function
else if((pmbst_shadow.bit.SLAVE_ADDR_READY == 1) && (pmbst_shadow.bit.DATA_READY==0)) //ack

pmbus address
{
 pmbus_active_address = (PMBusRegs.PMBRXBUF.byte.BYTE0 & 0x7F);

 if((pmbus_active_address == PMBUS_ADDRESS1)
 ||(pmbus_active_address == PMBUS_ADDRESS2)
 ||(pmbus_active_address == PMBUS_ADDRESS3)
 ||(pmbus_active_address == PMBUS_ADDRESS4))
 {

 PMBusRegs.PMBACK.bit.ACK=1;
 pmbus_state = PMBUS_STATE_READ;
 return;

 }
 else
 {

 SLUA758

 UCD3138 – Responding to Multiple PMBus Slave Addresses 17

 PMBusRegs.PMBACK.bit.ACK=0;
 pmbus_state = PMBUS_STATE_IDLE;
 return;
 }

e. Add new void pmbus_read_handler(void), in addition, please also set the manual
command bit in PMBCTRL2 while writing to the register for sending data to host.

void pmbus_read_handler(void)
{
 int32 i; //loop counter
 union
 {
 Uint32 pmbus_transmit_load;

 Uint8 pmbus_transmit_bytes[4];
 }
 u;

 pmbst_shadow.all=PMBusRegs.PMBST.all;

 pmbus_status_half_word_0_value = pmbst_shadow.all & 0xFFFF ; //assign to temporary value
 pmbus_status_half_word_0_value_ored = pmbus_status_half_word_0_value_ored |
pmbus_status_half_word_0_value;

 if((pmbus_status_half_word_0_value & (PMBST_HALF0_CHECK_BITS +
PMBST_BYTE0_RD_BYTE_COUNT)) == 0)
 {//if no activity on PMBus, do nothing

 return ;
 }

 else if ((pmbus_status_half_word_0_value & (PMBST_HALF0_CHECK_BITS +
PMBST_BYTE0_RD_BYTE_COUNT)) ==
 PMBST_BYTE0_DATA_REQUEST)//
 {

 pmbus_read_message();

 if(pmbus_number_of_bytes == 0) //0 shows it is not a valid command, so
 {
 PMBusRegs.PMBACK.byte.BYTE0 = 1; //nack them
 pmbus_state= PMBUS_STATE_IDLE ;
 return;
 }

 else if(pmbus_number_of_bytes < 5) //here if it all fits in one rxbuf

SLUA758

18 UCD3138 – Responding to Multiple PMBus Slave Addresses

 {
// PMBusRegs.PMBACK.byte.BYTE0 = 1; //ack command;

 PMBusRegs.PMBCTRL2.byte.BYTE2 = PMBCTRL2_BYTE2_TX_PEC +
pmbus_number_of_bytes + PMBCTRL2_BYTE2_MAN_CMD +
PMBCTRL2_BYTE2_RX_BYTE_ACK_CNT; //transmit with pec, desired number of bytes.

 for(i = 0;i < pmbus_number_of_bytes;i++)
 {
 u.pmbus_transmit_bytes[3-i] = pmbus_buffer[i]; //big
endian stuff - great fun
 }

 PMBusRegs.PMBTXBUF.all = u.pmbus_transmit_load; //this
sends message

 PMBusRegs.PMBACK.byte.BYTE0 = 1; //ack command;

 pmbus_state= PMBUS_STATE_READ_WAIT_FOR_EOM;

 //pmbus_state = PMBUS_STATE_ACK;

 return ;
 }
 else //here if we have to do multiple rxbuf loads - do first one, set up for more
 {

 PMBusRegs.PMBCTRL2.byte.BYTE2 = 4 +
PMBCTRL2_BYTE2_RX_BYTE_ACK_CNT + PMBCTRL2_BYTE2_MAN_CMD;

 for(i = 0;i < 4;i++)
 {
 u.pmbus_transmit_bytes[3-i] = pmbus_buffer[i]; //big
endian stuff - great fun
 }

 PMBusRegs.PMBTXBUF.all = u.pmbus_transmit_load; //this
sends message

 PMBusRegs.PMBACK.byte.BYTE0 = 1; //ack command;
 pmbus_buffer_position = 4;

 pmbus_state = PMBUS_STATE_READ_BLOCK;
 return ;
 }

 }

 SLUA758

 UCD3138 – Responding to Multiple PMBus Slave Addresses 19

}

f. Changes to void pmbus_read_wait_for_eom_handler(void):
else if((pmbus_status_half_word_0_value & (PMBST_HALF0_CHECK_BITS+
PMBST_BYTE0_RD_BYTE_COUNT)) == PMBST_BYTE0_EOM)

 {//if eom, done
 pmbus_state = PMBUS_STATE_IDLE;
 //PMBusRegs.PMBACK.byte.BYTE0 = 1; //ack them
 return ;
 }
 else //some other error, still go back to idle.
 {
 //PMBusRegs.PMBACK.byte.BYTE0 = 0; //NACK
 pmbus_state = PMBUS_STATE_IDLE;
 return;
 }

g. Changes to void pmbus_write_block_handler(void):

Delete the ack since we have manual ack after receiving address in pmbus_idle_handler
else if((pmbus_status_half_word_0_value & (PMBST_HALF0_CHECK_BITS)) ==

 (PMBST_BYTE0_EOM + PMBST_BYTE0_DATA_READY +
PMBST_BYTE0_PEC_VALID))
 //end of message, good data ready, pec valid, must be 2 to 4 bytes
 {
 //copy all 4 over just to make sure
 pmbus_buffer[pmbus_number_of_bytes] = PmbusRegs.PMBRXBUF.byte.BYTE0;
 pmbus_buffer[pmbus_number_of_bytes + 1] = PmbusRegs.PMBRXBUF.byte.BYTE1;
 pmbus_buffer[pmbus_number_of_bytes + 2] = PmbusRegs.PMBRXBUF.byte.BYTE2;
 pmbus_buffer[pmbus_number_of_bytes + 3] = PmbusRegs.PMBRXBUF.byte.BYTE3;
 pmbus_number_of_bytes = pmbus_number_of_bytes +

 (pmbus_status_half_word_0_value & PMBST_BYTE0_RD_BYTE_COUNT);
 pmbus_write_message();
 //PmbusRegs.PMBACK.byte.BYTE0 = 1; //ack these 4 bytes;
 pmbus_state = PMBUS_STATE_IDLE;
 return;
 }

else if((pmbus_status_half_word_0_value & (PMBST_HALF0_CHECK_BITS)) ==
 (PMBST_BYTE0_EOM + PMBST_BYTE0_PEC_VALID))
 //end of message, no new data ready, pec valid; was exact multiple of 4 bytes, already
acked last time
 {
 pmbus_write_message();

SLUA758

20 UCD3138 – Responding to Multiple PMBus Slave Addresses

 //PmbusRegs.PMBACK.byte.BYTE0 = 1; //ack the message;
 pmbus_state = PMBUS_STATE_IDLE;
 return;
 }
 else //here if something has happened on bus, not covered by anything above
 {
 //PmbusRegs.PMBACK.byte.BYTE0 = 1; //nack them
 pmbus_state = PMBUS_STATE_IDLE;
 return;
 }

5 Test Result

5.1 Multiple Addresses Shown in Device GUI

The device GUI shows there are multiple slavers on the PMBus interface, but it is actually a
single device.

Figure 11. Multiple Slave Addresses

 SLUA758

 UCD3138 – Responding to Multiple PMBus Slave Addresses 21

5.2 PMBus Master can get the Different Value in Different Address as There are
Multiple Devices in Slave

Figure 12. Slaver Sends its own Address to Master

6 Summary
This application note describes a firmware solution to let UCD3138 respond to multiple PMBus
addresses. The method involves firmware to ack address and command manually. From the test
result, UCD3xxx families can fully support this feature.

7 Reference
1. PMBus – Power System Management Protocol Specification, System Management

Interface Forum, Inc. February, 2010

2. UCD3138 Highly Integrated Digital Controller for Isolated Power (SLUSAP2C), Texas
Instruments, 2013

3. UCD3138 ARM and Digital System Programmer’s Manual (SLUU994), Texas
Instruments, July 2012

4. UCD3138 Monitoring and Communications Programmer’s Manual (SLUU996), Texas
Instruments, April, 2013

http://www.ti.com/lit/pdf/slusap2
http://www.ti.com/lit/pdf/sluu994
http://www.ti.com/lit/pdf/sluu996

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

